Enumerative mathematics and its connection to combinatorics, computer science and geometry

Péter Hajnal

Bolyai Intézet, SZTE, Szeged

$$
\text { 2012. december } 7 \text {. }
$$

Some basic questions

Basic question of enumerative combinatorics

Given a finite set S_{p}.

Some basic questions

Basic question of enumerative combinatorics

Given a finite set S_{p}. Determine $\left|S_{p}\right|$.

Some basic questions

Basic question of enumerative combinatorics

Given a finite set S_{p}. Determine $\left|S_{p}\right|$.

Basic question of extremal combinatorics
Given a finite set \mathcal{S}_{p} and a parameter q.

Some basic questions

Basic question of enumerative combinatorics

Given a finite set S_{p}. Determine $\left|S_{p}\right|$.

Basic question of extremal combinatorics
Given a finite set \mathcal{S}_{p} and a parameter q.
Determine $\min / \max \left\{q(S): S \in \mathcal{S}_{p}\right\}$.

Classical examples

Permutations

Let S_{p} be the set of permutations of $[p]=\{1,2,3, \ldots, p\}$.

Turán's theorem

Let $\mathcal{S}_{p, k}$ be the set of graphs over [p] not containing a clique of size k.
Determine $\max \left\{|E(G)|: G \in \mathcal{S}_{p, k}\right\}$.

Examples

Permutations with excluded pattern

Let S_{p} be the set of permutations of $[p]=\{1,2,3, \ldots, p\}$ not containing ... $\alpha \ldots$.....a..., where $\alpha<a<A$.

Davenport-Schinzel

Let \mathcal{S}_{p} be the set of words over $[p]=\{1,2,3, \ldots, p\}$ not containing ...a... $\alpha \ldots$..... $\alpha \ldots$...... andaa....
Let $\ell(w)$ be the length of the word w.
Determine $\max \left\{\ell(w): w \in \mathcal{S}_{p}\right\}$.

Examples

Diagonals (Euler)

Let S_{p} be the set of maximal collection of diagonals in a regular p-gon without intersection.

Examples

Diagonals (Euler)

Let S_{p} be the set of maximal collection of diagonals in a regular p-gon without intersection.

Diagoals again

Let S_{p} be the set of diagonals in a regular p-gon without intersection.

Examples

Diagonals (Euler)

Let S_{p} be the set of maximal collection of diagonals in a regular p-gon without intersection.

Diagoals again

Let S_{p} be the set of diagonals in a regular p-gon without intersection.
\equiv How many ways can you draw non intersecting diagonals into a convex p-gon?

Examples

Diagonals (Euler)

Let S_{p} be the set of maximal collection of diagonals in a regular p-gon without intersection.

Diagoals again

Let S_{p} be the set of diagonals in a regular p-gon without intersection.
\equiv How many ways can you draw non intersecting diagonals into a convex p-gon?

Diagonals again

What is the maximum numbers of diagonals you can draw in a regular p-gon without having three pairwise intersecting ones?

Extremal combinatorial geometry

Basic question of Erdős

Maximum how many unit distances can be determined by p points in convex position?

Extremal combinatorial geometry

Basic question of Erdős

Maximum how many unit distances can be determined by p points in convex position?

Unit distance graph

Given p point in convex position. Connect two of them iff their distance is 1 .

From geometry to combinatorics

Füredi's observation

A unit distance cannot have the following as a substructure:

From geometry to combinatorics

Füredi's observation

A unit distance cannot have the following as a substructure:

A combinatorial question

Given a 0-1 matrix of size $p \times p$. What is the maximum number of 1 's in it if it doesn't contain

$$
\left(\begin{array}{lll}
1 & 1 & \\
& & 1 \\
1 & & 1
\end{array}\right) ?
$$

Extremal vs enumerative questions

A much simpler combinatorial question

Given a 0-1 matrix of size $p \times p$. What is the maximum number of 1 's in it if it doesn't contain

$$
\left(\begin{array}{lll}
& 1 & \\
& & 1 \\
1 & &
\end{array}\right) ?
$$

Extremal vs enumerative questions

A much simpler combinatorial question

Given a 0-1 matrix of size $p \times p$. What is the maximum number of 1 's in it if it doesn't contain

$$
\left(\begin{array}{lll}
& 1 & \\
& & 1 \\
1 & &
\end{array}\right) ?
$$

A simple enumerative question

What is the number of permutation matrices of size $p \times p$ NOT containing

$$
\left(\begin{array}{lll}
& 1 & \\
& & 1 \\
1 & &
\end{array}\right) ?
$$

Füredi-Hajnal conjecture

The maximum number of 1 's in a 01 matrix of size $p \times p$ not containing F_{π} (a fix permutation matrix) is linear,

Füredi-Hajnal conjecture

The maximum number of 1 's in a 01 matrix of size $p \times p$ not containing F_{π} (a fix permutation matrix) is linear, i.e. $\mathcal{O}(p)$.

The conjectures

Füredi-Hajnal conjecture

The maximum number of 1 's in a 01 matrix of size $p \times p$ not containing F_{π} (a fix permutation matrix) is linear, i.e. $\mathcal{O}(p)$.

Stanley-Wilff conjecture

The number of permutation matrices of size $p \times p$ NOT containing F_{π} (a fix permutation matrix) is exponential,

The conjectures

Füredi-Hajnal conjecture

The maximum number of 1 's in a 01 matrix of size $p \times p$ not containing F_{π} (a fix permutation matrix) is linear, i.e. $\mathcal{O}(p)$.

Stanley-Wilff conjecture

The number of permutation matrices of size $p \times p$ NOT containing F_{π} (a fix permutation matrix) is exponential, i.e. $2^{\mathcal{O}(p)}$.

The conjectures

Füredi-Hajnal conjecture

The maximum number of 1 's in a 01 matrix of size $p \times p$ not containing F_{π} (a fix permutation matrix) is linear, i.e. $\mathcal{O}(p)$.

Stanley-Wilff conjecture

The number of permutation matrices of size $p \times p$ NOT containing F_{π} (a fix permutation matrix) is exponential, i.e. $2^{\mathcal{O}(p)}$.

Now both conjectures can be quoted as Marcus-Tardos theorem.

The moral is that counting ordered structures and considering extremal questions on ordered structures lead to hard,

The moral is that counting ordered structures and considering extremal questions on ordered structures lead to hard, interesting,

The moral is that counting ordered structures and considering extremal questions on ordered structures lead to hard, interesting, and often interlaced problems.

Graphs on ordered vertex set

We are considering graphs on the vertex set $[p]$.

Graphs on ordered vertex set

We are considering graphs on the vertex set $[p]$.

Ordered graphs with two edges

Surprising incidences

Ozsvárt's theorem (2012)

Surprising incidences

Ozsvárt's theorem (2012)

The number of ordered graphs over $[p]$ without

Surprising incidences

Ozsvárt's theorem (2012)

The number of ordered graphs over $[p]$ without

The number of ordered graphs over $[p]$ without

Surprising incidences

Ozsvárt's theorem (2012)
The number of ordered graphs over $[p]$ without

The number of ordered graphs over $[p]$ without

Counting permutations according their maximum distance

Definition

Maximal distance of a permutation on $[n]$ is

$$
D(\pi)=\max \{|\pi(i)-i|: i \in[n]\} .
$$

Counting permutations according their maximum distance

Definition

Maximal distance of a permutation on $[n]$ is

$$
D(\pi)=\max \{|\pi(i)-i|: i \in[n]\} .
$$

$$
\begin{array}{ccccc}
& D=0 & D=1 & D=2 & D=3 \\
n=1 & 1 & & & \\
n=2 & 1 & 1 & & \\
n=3 & 1 & 2 & 3 & \\
n=4 & 1 & 4 & 9 & 10
\end{array}
$$

Békésy—Galambos—Hajnal lemma

The lemma
The average maximal distance of permutations from S_{n} is at least

Békésy—Galambos—Hajnal lemma

The lemma

The average maximal distance of permutations from S_{n} is at least

$$
n-\alpha \cdot \sqrt{n}
$$

Lattice paths

Lattice

Lattice paths

Lattice and a lattice path

Lattice paths

Lattice and a lattice path and another one.

Catalan strikes again

Theorem (Callan, Gábor V. Nagy)

The number of lattice paths to $(0,4 n)$ not touching the points $(0,2 i+1)$ is $C_{2 n}$.

Final puzzles

Continue the pattern:

Final puzzles

Continue the pattern:

Final puzzles

Continue the pattern:

$$
1,2,4,9,23, ?
$$

The End

Happy Birthday to Gábor!

Happy Birthday to Gábor!

Thank you for your attention!

