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Some basic questions

Basic question of enumerative combinatorics

Given a finite set Sp.

Determine |Sp|.

Basic question of extremal combinatorics

Given a finite set Sp and a parameter q.
Determine min /max{q(S) : S ∈ Sp}.
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Classical examples

Permutations

Let Sp be the set of permutations of [p] = {1, 2, 3, . . . , p}.

Turán’s theorem

Let Sp,k be the set of graphs over [p] not containing a clique of
size k .
Determine max{|E (G )| : G ∈ Sp,k}.
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Examples

Permutations with excluded pattern

Let Sp be the set of permutations of [p] = {1, 2, 3, . . . , p} not
containing . . . α . . .A . . . a . . ., where α < a < A.

Davenport—Schinzel

Let Sp be the set of words over [p] = {1, 2, 3, . . . , p} not
containing . . . a . . . α . . . a . . . α . . . a . . . and . . . aa . . ..
Let `(w) be the length of the word w .
Determine max{`(w) : w ∈ Sp}.
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Examples

Diagonals (Euler)

Let Sp be the set of maximal collection of diagonals in a regular
p-gon without intersection.

Diagoals again

Let Sp be the set of diagonals in a regular p-gon without
intersection.

≡ How many ways can you draw non intersecting diagonals into a
convex p-gon?

Diagonals again

What is the maximum numbers of diagonals you can draw in a
regular p-gon without having three pairwise intersecting ones?
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Extremal combinatorial geometry

Basic question of Erdős

Maximum how many unit distances can be determined by p points
in convex position?

Unit distance graph

Given p point in convex position. Connect two of them iff their
distance is 1.
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From geometry to combinatorics

Füredi’s observation

A unit distance cannot have the following as a substructure:

A combinatorial question

Given a 0-1 matrix of size p × p. What is the maximum number of
1’s in it if it doesn’t contain1 1

1
1 1

?
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Extremal vs enumerative questions

A much simpler combinatorial question

Given a 0-1 matrix of size p × p. What is the maximum number of
1’s in it if it doesn’t contain 1

1
1

?

A simple enumerative question

What is the number of permutation matrices of size p × p NOT
containing  1

1
1

?
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The conjectures

Füredi—Hajnal conjecture

The maximum number of 1’s in a 01 matrix of size p × p not
containing Fπ (a fix permutation matrix) is linear,

i.e. O(p).

Stanley—Wilff conjecture

The number of permutation matrices of size p× p NOT containing
Fπ (a fix permutation matrix) is exponential, i.e. 2O(p).

Now both conjectures can be quoted as Marcus—Tardos theorem.
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Füredi—Hajnal conjecture

The maximum number of 1’s in a 01 matrix of size p × p not
containing Fπ (a fix permutation matrix) is linear, i.e. O(p).

Stanley—Wilff conjecture

The number of permutation matrices of size p× p NOT containing
Fπ (a fix permutation matrix) is exponential, i.e. 2O(p).

Now both conjectures can be quoted as Marcus—Tardos theorem.
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The moral

The moral is that counting ordered structures and considering
extremal questions on ordered structures lead to hard,

interesting,
and often interlaced problems.
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Graphs on ordered vertex set

We are considering graphs on the vertex set [p].

Ordered graphs with two edges
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Surprising incidences

Ozsvárt’s theorem (2012)

The number of ordered graphs over [p] without

The number of ordered graphs over [p] without
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Surprising incidences

Ozsvárt’s theorem (2012)

The number of ordered graphs over [p] without

=
The number of ordered graphs over [p] without
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Counting permutations according their maximum distance

Definition

Maximal distance of a permutation on [n] is

D(π) = max{|π(i)− i | : i ∈ [n]}.

D = 0 D = 1 D = 2 D = 3
n = 1 1
n = 2 1 1
n = 3 1 2 3
n = 4 1 4 9 10
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Békésy—Galambos—Hajnal lemma

The lemma

The average maximal distance of permutations from Sn is at least

n − α ·
√

n.
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Lattice paths

(0,0)

Lattice

and a lattice path and another one.
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Péter Hajnal Gábor Galambos 65



Catalan strikes again

Theorem (Callan, Gábor V. Nagy)

The number of lattice paths to (0, 4n) not touching the points
(0, 2i + 1) is C2n.
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Final puzzles

Continue the pattern:

1
1 1

1 3 1
1 7 6 1

1 15 25 10 1
1 31 90 ?

1, 2, 4, 9, 23, ?
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The End

Happy Birthday to Gábor!

Thank you for your attention!
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Thank you for your attention!
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