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The problem

Given a convex point set, P on the plane with even cardinality
(2k). Someone color half of the points red and the other half blue
(it is an equicolored pointset): P

Find maximal geometric path (edges are straight/intervals) such
that

(i) non-crossing geometrically

(ii) alternating in color
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Hajnal Péter Laci is 60



The problem

Given a convex point set, P on the plane with even cardinality
(2k). Someone color half of the points red and the other half blue
(it is an equicolored pointset): P

Find maximal geometric path (edges are straight/intervals) such
that

(i) non-crossing geometrically

(ii) alternating in color
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The problem (cont.)

Definition

`(P) = max
U is an alternating, non-crossing path

{`(U)},

where `(U) is the number of vertices in U.

The problem

Assume that the coloring party is adversary. How long path we can
guarantee?

Definition (Erdős)

`(n) = min
P is equicolored

{`(P)},

where P geometrically 2n-element convex planar point set.
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Erdős’ base camps

Consider the following colored point set:

By easy case analysis we obtain the bound

`(n) ≤ 5/4n.
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Erdős’ base camp (cont.)

n=14
n/2=7

Consider an arbitrary point. Starting from here go to one direction.
Count the different colors you encounter, until one color reaches
n/2, say red. Take n/2 blue points, that are not encountered.
Match the choosen red and blue points. Extend the matching to a
path.
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Hajnal Péter Laci is 60



Erdős’ base camp (cont.)

Theorem (Erdős)

Hence `(n) ≥ n.

Very easy, BUT...
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Sharpness of Erdős’ lower bound

If the advesary party gives the initial point of the path then it is
the best:

For beating the Erdős bound we must choose the initial point
carefully.
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The structure of non-crossing paths

Each non-crossing path has the following structure

(i) an axe,

(ii) matching part,

(iii) side edges.
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Sharpness of Erdős’ lower bound II.

SEPERATED MATCHING: An axe, non-crossing matching through
the axe. Let M be a seperated matching.

alt(M) is the number of blocks in M.

Observation

In Erdős’ path with matching part M, we have alt(M) = 1.
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Sharpness of Erdős’ lower bound II. (cont.)

If we insist of the non-alternating matching part, then we cannot
beat the Erdős bound...

... upto a remainder term.
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Kinčl–Pach–Tóth’ construction

`(P) = 4
3n + α

√
n, by case analysis.
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Kinčl–Pach–Tóth’ construction

`(P) = 4
3n + α

√
n, by case analysis.
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Kinčl–Pach–Tóth’ lower bound

Find two neighboring arcs of equal length k , I and J such that

]B − ]R(I ), ]R − ]B(J) ≥ L.

THEN match first k/2 + L/2 blue points of I with first k/2 + L/2
red points of J.
THEN extend this matching with Erdős technique to obtain a
separated matching of size n/2 + L/2.
HENCE they find an alternating, non-crossing path of length n + L.
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separated matching of size n/2 + L/2.
HENCE they find an alternating, non-crossing path of length n + L.
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Kinčl–Pach–Tóth’ lower bound (cont.)

HOW to fing good I , J arcs?

ASSUMING the number of runs is
controlled.

You must be clever. They succeed with

L =
√

n/logn.

Their matching, M is such that alt(M) ≤ 2. HENCE they have a
limit: L ≤

√
n.
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Kinčl–Pach–Tóth’ lower bound (cont.)

HOW to fing good I , J arcs? ASSUMING the number of runs is
controlled.

You must be clever. They succeed with

L =
√

n/logn.

Their matching, M is such that alt(M) ≤ 2. HENCE they have a
limit: L ≤

√
n.
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Kinčl–Pach–Tóth’ lower bound (cont.)

HOW to fing good I , J arcs? ASSUMING the number of runs is
controlled.

You must be clever. They succeed with

L =
√

n/logn.

Their matching, M is such that alt(M) ≤ 2. HENCE they have a
limit: L ≤

√
n.

Hajnal Péter Laci is 60



Folklore conjecture

The upper bound gives the correct order of magnitude. For
suitable α > 0

`(n) ≥ 4/3n + α
√

n.
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Further constructions

Remember Kinčel-Tóth-Pach construction

It has a structure.
That can be combined to give colored point sets with `-parameter
4/3n +O(

√
n)
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Further constructions (cont.)

We need another look at Kinčel-Tóth-Pach construction

An other utilization of the observation. Different type of examples
(extremal?)
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An other utilization of the observation. Different type of examples

(extremal?)
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An other utilization of the observation. Different type of examples
(extremal?)

Hajnal Péter Laci is 60



Lower bound: Coding a equicolored pointset

Start from an arbirary point and walk around the circle. Take an
initial point fore the code. If you see a red point, then make a NE
step, if you see a blue point, then make a SE step Choose a
different initial point to obtain a DYCK-PATH.
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Lower bound: Finding good I , J arcs

Let r be the number of runs.

Observation

At each level of the Dyck-path there are at most r steps.

Corollary

More than half of the steps are at higher level than O(n/r)
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Lower bound: Finding good I , J arcs (cont.)

Observation

There are two SYMMETRIC point of the coding Dyck path of
height at least O(n/r)

JI

The corresponding I , J provide L = O(n/r).

Theorem

`(n) ≥ n +
√

n.
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Hajnal Péter Laci is 60



Lower bound: Finding good I , J arcs (cont.)

Observation

There are two SYMMETRIC point of the coding Dyck path of
height at least O(n/r)

JI

The corresponding I , J provide L = O(n/r).

Theorem

`(n) ≥ n +
√

n.
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Sharpness of the lower bound

The previous remarks show that we need new ideas.

Working with seperated matching M such that alt(M) ≤ 2 (or
even alt(M) is bounded) is not enough.

So far we recognized local densities in the color distribution. We
MUST recognize global similarities.
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Discrepancy of the coloring
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Thank you for Laci’s rendering his educational work
with great ENTHUSIASM.

Thank you for your attention
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