On long alternating non-crossing paths in 2-equicolored convex sets

Hajnal Péter
Bolyai Intézet, SZTE, Szeged, Hungary
2010

Given a convex point set, \mathcal{P} on the plane with even cardinality $(2 k)$. Someone color half of the points red and the other half blue (it is an equicolored pointset): \mathcal{P}

Given a convex point set, \mathcal{P} on the plane with even cardinality ($2 k$). Someone color half of the points red and the other half blue (it is an equicolored pointset): \mathcal{P}

Find maximal geometric path (edges are straight/intervals) such that
(i) non-crossing geometrically

Given a convex point set, \mathcal{P} on the plane with even cardinality ($2 k$). Someone color half of the points red and the other half blue (it is an equicolored pointset): \mathcal{P}

Find maximal geometric path (edges are straight/intervals) such that
(i) non-crossing geometrically
(ii) alternating in color

Given a convex point set, \mathcal{P} on the plane with even cardinality $(2 k)$. Someone color half of the points red and the other half blue (it is an equicolored pointset): \mathcal{P}

Find maximal geometric path (edges are straight/intervals) such that
(i) non-crossing geometrically
(ii) alternating in color

Definition

$$
\ell(\mathcal{P})=U \text { is an alternating, non-crossing path }\{\ell(U)\}
$$

where $\ell(U)$ is the number of vertices in U.

The problem (cont.)

Definition

$$
\ell(\mathcal{P})=U \text { is an alternating, non-crossing path }\{\ell(U)\}
$$

where $\ell(U)$ is the number of vertices in U.

The problem

Assume that the coloring party is adversary. How long path we can guarantee?

The problem (cont.)

Definition

$$
\ell(\mathcal{P})=U \text { is an alternating, non-crossing path }\{\ell(U)\}
$$

where $\ell(U)$ is the number of vertices in U.

The problem

Assume that the coloring party is adversary. How long path we can guarantee?

Definition (Erdős)

$$
\ell(n)=\min _{\mathcal{P} \text { is equicolored }}\{\ell(\mathcal{P})\},
$$

where \mathcal{P} geometrically $2 n$-element convex planar point set.

Erdős' base camps

Consider the following colored point set:

By easy case analysis we obtain the bound

$$
\ell(n) \leq 5 / 4 n .
$$

Erdős' base camps

Consider the following colored point set:

By easy case analysis we obtain the bound

$$
\ell(n) \leq 5 / 4 n .
$$

Erdős' base camp (cont.)

Erdős' base camp (cont.)

Consider an arbitrary point. Starting from here go to one direction.

Erdős' base camp (cont.)

Consider an arbitrary point. Starting from here go to one direction. Count the different colors you encounter, until one color reaches $n / 2$, say red.

Erdős' base camp (cont.)

Consider an arbitrary point. Starting from here go to one direction. Count the different colors you encounter, until one color reaches $n / 2$, say red. Take $n / 2$ blue points, that are not encountered.

Erdős' base camp (cont.)

Consider an arbitrary point. Starting from here go to one direction. Count the different colors you encounter, until one color reaches $n / 2$, say red. Take $n / 2$ blue points, that are not encountered. Match the choosen red and blue points.

Erdős' base camp (cont.)

Consider an arbitrary point. Starting from here go to one direction. Count the different colors you encounter, until one color reaches $n / 2$, say red. Take $n / 2$ blue points, that are not encountered. Match the choosen red and blue points. Extend the matching to a path.

Erdős' base camp (cont.)

Theorem (Erdős)
Hence $\ell(n) \geq n$.

Erdős' base camp (cont.)

Theorem (Erdős)
Hence $\ell(n) \geq n$.

Very easy, BUT...

Sharpness of Erdős' lower bound

If the advesary party gives the initial point of the path then it is the best:

Sharpness of Erdős' lower bound

If the advesary party gives the initial point of the path then it is the best:

For beating the Erdős bound we must choose the initial point carefully.

The structure of non-crossing paths

Each non-crossing path has the following structure

The structure of non-crossing paths

Each non-crossing path has the following structure

(i) an axe,

The structure of non-crossing paths

Each non-crossing path has the following structure

(i) an axe,
(ii) matching part,

The structure of non-crossing paths

Each non-crossing path has the following structure

(i) an axe,
(ii) matching part,
(iii) side edges.

Sharpness of Erdős' lower bound II.

SEPERATED MATCHING: An axe, non-crossing matching through the axe. Let M be a seperated matching.

Sharpness of Erdős' lower bound II.

SEPERATED MATCHING: An axe, non-crossing matching through the axe. Let M be a seperated matching.
alt (M) is the number of blocks in M.

Sharpness of Erdős' lower bound II.

SEPERATED MATCHING: An axe, non-crossing matching through the axe. Let M be a seperated matching.
alt (M) is the number of blocks in M.

Observation

In Erdős' path with matching part M, we have alt $(M)=1$.

Sharpness of Erdős' lower bound II. (cont.)

If we insist of the non-alternating matching part, then we cannot beat the Erdős bound...

Sharpness of Erdős' lower bound II. (cont.)

If we insist of the non-alternating matching part, then we cannot beat the Erdős bound...

Sharpness of Erdős' lower bound II. (cont.)

If we insist of the non-alternating matching part, then we cannot beat the Erdős bound...

... upto a remainder term.

Kinčl-Pach-Tóth' construction

$$
\ell(\mathcal{P})=\frac{4}{3} n+\alpha \sqrt{n},
$$

Kinčl-Pach-Tóth' construction

$$
\ell(\mathcal{P})=\frac{4}{3} n+\alpha \sqrt{n} \text {, by case analysis. }
$$

Kinčl-Pach-Tóth' lower bound

Find two neighboring arcs of equal length k, I and J such that

$$
\sharp B-\sharp R(I), \sharp R-\sharp B(J) \geq L .
$$

Kinčl-Pach-Tóth' lower bound

Find two neighboring arcs of equal length k, I and J such that

$$
\sharp B-\sharp R(I), \sharp R-\sharp B(J) \geq L .
$$

THEN match first $k / 2+L / 2$ blue points of I with first $k / 2+L / 2$ red points of J.

Kinčl-Pach-Tóth' lower bound

Find two neighboring arcs of equal length k, I and J such that

$$
\sharp B-\sharp R(I), \sharp R-\sharp B(J) \geq L .
$$

THEN match first $k / 2+L / 2$ blue points of I with first $k / 2+L / 2$ red points of J.
THEN extend this matching with Erdős technique to obtain a separated matching of size $n / 2+L / 2$.

Kinčl-Pach-Tóth' lower bound

Find two neighboring arcs of equal length k, I and J such that

$$
\sharp B-\sharp R(I), \sharp R-\sharp B(J) \geq L .
$$

THEN match first $k / 2+L / 2$ blue points of I with first $k / 2+L / 2$ red points of J.
THEN extend this matching with Erdős technique to obtain a separated matching of size $n / 2+L / 2$.
HENCE they find an alternating, non-crossing path of length $n+L$.

Kinčl-Pach-Tóth' lower bound (cont.)

HOW to fing good I, J arcs?

Kinčl-Pach-Tóth' lower bound (cont.)

HOW to fing good I, J arcs? ASSUMING the number of runs is controlled.

Kinčl-Pach-Tóth' lower bound (cont.)

HOW to fing good I, J arcs? ASSUMING the number of runs is controlled.

You must be clever. They succeed with

$$
L=\sqrt{n / \log n}
$$

Kinčl-Pach-Tóth' lower bound (cont.)

HOW to fing good I, J arcs? ASSUMING the number of runs is controlled.

You must be clever. They succeed with

$$
L=\sqrt{n / \log n}
$$

Their matching, M is such that $\operatorname{alt}(M) \leq 2$.

Kinčl-Pach-Tóth' lower bound (cont.)

HOW to fing good I, J arcs? ASSUMING the number of runs is controlled.

You must be clever. They succeed with

$$
L=\sqrt{n / \log n}
$$

Their matching, M is such that $\operatorname{alt}(M) \leq 2$. HENCE they have a limit: $L \leq \sqrt{n}$.

Folklore conjecture

The upper bound gives the correct order of magnitude. For suitable $\alpha>0$

$$
\ell(n) \geq 4 / 3 n+\alpha \sqrt{n} .
$$

Further constructions

Remember Kinčel-Tóth-Pach construction

Further constructions

Remember Kinčel-Tóth-Pach construction

Further constructions

Remember Kinčel-Tóth-Pach construction

It has a structure.

Remember Kinčel-Tóth-Pach construction

It has a structure.
That can be combined to give colored point sets with ℓ-parameter $4 / 3 n+\mathcal{O}(\sqrt{n})$

Further constructions (cont.)

We need another look at Kinčel-Tóth-Pach construction

Further constructions (cont.)

We need another look at Kinčel-Tóth-Pach construction

Further constructions (cont.)

We need another look at Kinčel-Tóth-Pach construction

An other utilization of the observation. Different type of examples

Further constructions (cont.)

We need another look at Kinčel-Tóth-Pach construction

An other utilization of the observation. Different type of examples (extremal?)

Lower bound: Coding a equicolored pointset

Lower bound: Coding a equicolored pointset

Start from an arbirary point and walk around the circle. Take an initial point fore the code.

Lower bound: Coding a equicolored pointset

Start from an arbirary point and walk around the circle. Take an initial point fore the code. If you see a red point, then make a NE step,

Lower bound: Coding a equicolored pointset

Start from an arbirary point and walk around the circle. Take an initial point fore the code. If you see a red point, then make a NE step,

Lower bound: Coding a equicolored pointset

Start from an arbirary point and walk around the circle. Take an initial point fore the code. If you see a red point, then make a NE step, if you see a blue point, then make a SE step

Lower bound: Coding a equicolored pointset

Start from an arbirary point and walk around the circle. Take an initial point fore the code. If you see a red point, then make a NE step, if you see a blue point, then make a SE step

Lower bound: Coding a equicolored pointset

Start from an arbirary point and walk around the circle. Take an initial point fore the code. If you see a red point, then make a NE step, if you see a blue point, then make a SE step

Lower bound: Coding a equicolored pointset

Start from an arbirary point and walk around the circle. Take an initial point fore the code. If you see a red point, then make a NE step, if you see a blue point, then make a SE step

Lower bound: Coding a equicolored pointset

Start from an arbirary point and walk around the circle. Take an initial point fore the code. If you see a red point, then make a NE step, if you see a blue point, then make a SE step

Lower bound: Coding a equicolored pointset

Start from an arbirary point and walk around the circle. Take an initial point fore the code. If you see a red point, then make a NE step, if you see a blue point, then make a SE step Choose a different initial point to obtain a DYCK-PATH.

Lower bound: Coding a equicolored pointset

Start from an arbirary point and walk around the circle. Take an initial point fore the code. If you see a red point, then make a NE step, if you see a blue point, then make a SE step Choose a different initial point to obtain a DYCK-PATH.

Lower bound: Finding good I, J arcs

Let r be the number of runs.
Observation
At each level of the Dyck-path there are at most r steps.

Lower bound: Finding good I, J arcs

Let r be the number of runs.

Observation

At each level of the Dyck-path there are at most r steps.

Corollary

More than half of the steps are at higher level than $\mathcal{O}(n / r)$

Lower bound: Finding good I, J arcs (cont.)

Observation

There are two SYMMETRIC point of the coding Dyck path of height at least $\mathcal{O}(n / r)$

Lower bound: Finding good I, J arcs (cont.)

Observation

There are two SYMMETRIC point of the coding Dyck path of height at least $\mathcal{O}(n / r)$

Lower bound: Finding good I, J arcs (cont.)

Observation

There are two SYMMETRIC point of the coding Dyck path of height at least $\mathcal{O}(n / r)$

The corresponding I, J provide $L=\mathcal{O}(n / r)$.

Lower bound: Finding good I, J arcs (cont.)

Observation

There are two SYMMETRIC point of the coding Dyck path of height at least $\mathcal{O}(n / r)$

The corresponding I, J provide $L=\mathcal{O}(n / r)$.

Theorem

$$
\ell(n) \geq n+\sqrt{n} .
$$

Sharpness of the lower bound

The previous remarks show that we need new ideas.

Sharpness of the lower bound

The previous remarks show that we need new ideas.
Working with seperated matching M such that alt $(M) \leq 2$ (or even $\operatorname{alt}(M)$ is bounded) is not enough.

Sharpness of the lower bound

The previous remarks show that we need new ideas.
Working with seperated matching M such that $\operatorname{alt}(M) \leq 2$ (or even $\operatorname{alt}(M)$ is bounded) is not enough.

So far we recognized local densities in the color distribution. We MUST recognize global similarities.

Discrepancy of the coloring

Thank you for Laci's rendering his educational work with great ENTHUSIASM.

Thank you for Laci's rendering his educational work with great ENTHUSIASM.

Thank you for your attention

