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Foreword

This dissertation is about two topics, both concerning partially ordered sets, in short
posets. Accordingly, it is split into two chapters. It is built around four papers of the au-
thor [7–10].

The first chapter deals with the author’s oldest research topic and is based on the
papers [7–9]. In 2009–2010 Jaroslav Ježek and Ralph McKenzie published a series of pa-
pers [3–6] in which they examined (among other things) the first-order definability in
substructure orderings (some particular posets) of finite mathematical structures with a
given type, and determined the automorphism group of these orderings. They considered
finite semilattices [3], ordered sets [6], distributive lattices [4] and lattices [5]. Similar in-
vestigations [12, 15–17] have emerged since. Substructureness induces a natural order on
the set of (isomorphism types of) structures of a fixed type, e. g. finite semilattices. By
definability in substructure orderings, they meant first-order definability in the language
of partially ordered sets in these particular substructure-orders. In such languages, the
internal structure of the structures that are the vertices of the poset cannot be invoked
(formally). Only their relations to each other, i. e. the substructure relation between them
can be referenced. By examining such languages, we mean investigating their expressive
power: what can and what can’t they tell? Those limits are intimately related to the auto-
morphism groups of the orderings and that is one of the reasons why Ježek and McKenzie
dealt with them in their papers.

The author, as a BSc student at the time, set out to continue this research for finite
directed graphs. He was advised to do so by his first supervisor, Miklós Maróti, who, telling
it by heart, told the basic concept not quite in line with the Ježek-McKenzie papers. Neither
of them had any idea how outstandingly lucky this mistake was going to turn out eventually.
Given the problem, the author immediately started working on it. Only when already
having results did he and his first supervisor realize the difference in the basic concepts.
At that point, they decided to carry on, not to let go of the research that already had been
done. Instead of the substructure concept used by Ježek and McKenzie, the author started
to work on the embeddability concept for directed graphs which is related the constraint
satisfaction problem. As their names suggest, both speak of directed graphs being parts of
each other somehow, but there is a huge difference in the how. Substructureness lets one
delete only vertices to get its smaller parts, while to get embeddable directed graphs, we
can delete both edges and vertices. To get a feeling of the difference, see Figures 1 and 2,
showing the lower segments of the embeddability and substructure orderings, respectively.

In this thesis, we will deal with both concepts for directed graphs, dividing Chapter 1
into two parts correspondingly. In the first years, the author was considering exclusively
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Figure 2: The initial segment of the Hasse diagram of the substructure ordering of digraphs,
that is (D;v). (The labels are only used for a specific purpose in the thesis. Please disregard
them unless they are being specifically referred to, for they are not the general notations
of the digraphs under them.)

the embeddability concept. Both his BSc and MSc theses were written around this topic
and he had two papers published [8, 9], almost literal adaptations of these. The Ježek-
McKenzie papers, in spite of dealing with four different structure types, had a particular
joint taste. For one, the automorphism groups of the partial orders all turned out to be
either trivial or the two element group. The first two studies of the author [8, 9] shared
this taste despite working with embeddability instead of substructureness. The author did
have a foggy feeling how the substructure case might play out, but not until having a
sense of closure for the embeddability research did he start to think seriously about the
substructure concept, the original one studied by Ježek and McKenzie. Upon having an
earnest look at the problem, automorphisms were beginning to turn up. Gradually, more
and more automorphisms were being found. This, being unprecedented in the line of this
particular research topic, startled the author. He finally found 768 automorphisms, form-
ing a group far from trivial. As already mentioned, the automorphism groups are closely
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related to the power of the languages being probed here. The bigger the automorphism
group, the weaker the language. Hence it is not surprising that this vast automorphism
group makes the research veer off of its usual trajectory. Unfortunately, the author cannot
prove there are no automorphisms beyond the ones he has found. Yet, we will prove that
there are finitely many automorphisms. As for the expressive power of the first-order lan-
guage in question, that is where the enormous luck of getting the main concept wrong at
the beginning comes in. What we will prove is roughly the following. Modulo the orbits of
the (finite) automorphism group, the first-order language of the substructure ordering can
express that of the embeddability ordering. This is a big deal only because the first-order
language of the embeddability ordering has already been examined, and it has turned out
to be very strong. Now we see how the author (and his first supervisor) got lucky. If faced
with the substructure-problem first, the author probably would have gotten deterred at
the beginning, stumbling into the hardness of the problem, having no tools to tackle it.

The second chapter investigates a completely different problem, still having posets
as main players in it though. Ivo G. Rosenberg, in a classical result [13], classified the
maximal clones into six classes. For five of the six classes it has been shown that the clones
of these classes are finitely generated. The unsettled class is the class of clones containing
monotone operations of bounded partial orders, that is posets having both least and largest
elements. Some partial results have already been obtained. Monotone clones of at most
seven element posets are proven to be finitely generated and so are posets with an at
least ternary monotone near unanimity operation. In a brilliant paper from 1986, Gábor
Tardos [14] shows that the clone of a particular eight element poset is not finitely generated.
This was the first proof showing a maximal clone to be not finitely generated. In a 1993
paper [18], László Zádori, the second supervisor of the author, generalized Tardos’s result
by describing all series parallel posets having not finitely generated clones. Since Zádori,
up until recently no one found non-finitely generated maximal clones, though one may
conjecture there are a lot of them. In the second chapter, we present the recent paper [10]
finding new such clones, written by the author of this Thesis and his two supervisors. We
come up with a new family of finite bounded posets whose clones of monotone operations
are not finitely generated and suggest some directions where we think this research might
evolve in the future.

In the first part of the chapter, as already mentioned, we present a new family of finite
bounded posets whose clones of monotone operations are not finitely generated. The proofs
of these results are analogues of those of Tardos. Another interesting family of finite posets
from the finite generability point of view is the family of locked crowns. To decide whether
the clone of a locked crown, where the crown is of at least six elements, is finitely generated
or not, one needs to go beyond the scope of Tardos’s proof. Although our investigations
are not complete in this direction, they led to the results in the second part of the chapter.

We call a monotone operation ascending if it is greater than or equal to some projection.
We prove that the clones of bounded posets are generated by certain ascending idempotent
monotone operations and the 0 and 1 constant operations. A consequence of this result is
that if the clone of ascending idempotent operations of a finite bounded poset is finitely
generated, then its clone is finitely generated as well. We provide an example of a half
bounded finite poset whose clone of ascending idempotent operations is finitely generated
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but whose clone is not finitely generated. Another interesting consequence of our result is
that if the clone of a finite bounded poset is finitely generated, then it has a three element
generating set that consists of an ascending idempotent monotone operation and the 0 and
1 constant operations.
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Chapter 1

Definability in the Embeddability and
Substructure Orderings of Finite Directed
Graphs

1.1 General Introduction

This chapter synthesizes the papers [7–9]. Though only two of them, namely [9] and [7],
are included as they are. This is because there is an intricate connection between the pa-
pers [8] and [9]. Oversimplified, we could say the main result of [9] yields that of [8]. But
there is more to it than that, which is to be explained later. Nevertheless, this saves us
from including [8] as is.

Before introducing the most basic concepts, a few words on the notations in general.
There is a table of notations at the end of the chapter, starting on page 48, to save the
readers from getting lost among the many notations used throughout. It would be nice
to keep the notations of the original papers, but it is impossible as they have conflicting
notations. This is not because the author did not try to stay consistent. The papers share
the following characteristic. Their main theorems are proven with a main construction that
requires a lot of preparation involving a lot of special digraphs to be introduced, all of them
needing notations, naturally. The author tried to make the notations intuitive, e. g. the
circle graph having n vertices is denoted by On. The main constructions do resemble at
first sight but differ in the details, so do the technicalities leading up to them. There were
cases when, in separate papers, slightly different notions cried for the same notations, or at
least it was natural to use the same notation for a different, though similar, concept. This,
happening in separate papers, did not cause conflict. However, obviously, such ambiguities
must not happen inside such a thesis, therefore change of some notations is unavoidable.
We will tackle this the following way. As we go forward, we keep the original notations as
long as it causes no conflict. If, to avoid a conflict, a change of notation is implemented,
the reader is always notified.

It is time to introduce the most basic mathematical concepts of this chapter precisely.
Let us consider a nonempty set V and a binary relation E ⊆ V 2. We call the pairG = (V,E)

a directed graph or just digraph. LetD denote the set of isomorphism types of finite digraphs.
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The elements of V (= V (G)) and E(= E(G)) are called the vertices and edges of G,
respectively. A digraph G is said to be embeddable into G′, and we write G ≤ G′, if
there exists an injective homomorphism ϕ : G → G′, i.e. an injective map for which
(v1, v2) ∈ E(G) implies (ϕ(v1), ϕ(v2)) ∈ E(G′). A digraph G is a substructure of G′, and
we write G v G′, if it is isomorphic to an induced substructure (on some subset of the
vertices) of G′ . In graph theory, the term subgraph is used rather for the embeddability
concept, so will it be used here. Every substructure is embeddable but the converse is not
true. The names of these two concepts often mix both orally and on paper when it is clear
from the context which notion we are using the whole time. In this thesis, however, we must
be very cautious as both concepts are used alternately throughout. It is easy to see that
both ≤ and v are partial orders on D. Both partially ordered sets are naturally graded.
The digraph G is on the nth level of (D;≤) or (D;v) if |V (G)|+ |E(G)| = n or |V (G)| = n,
respectively. See Figures 1 and 2 for the initial segments of the Hasse diagrams of the two
partial orders. For digraphs G,G′ ∈ D, let G ∪̇ G′ denote their disjoint union, as usual.
We use the term weakly connected in the usual sense, i. e. just disregarding the direction of
the edges. Our digraphs split into weakly connected components, naturally. Let us use the
abbreviation wcc=“weakly connected component” and wccs for the plural because there are
proofs mentioning this particular expression many many times.

Let (A;≤) be an arbitrary poset. An n-ary relation R is said to be (first-order) de-
finable in (A;≤) if there exists a first-order formula Ψ(x1, x2, . . . , xn) with free variables
x1, x2, . . . , xn in the language of partially ordered sets such that for any a1, a2, . . . , an ∈ A,
Ψ(a1, a2, . . . , an) holds in (A;≤) if and only if (a1, a2, . . . , an) ∈ R. A subset of A is defin-
able if it is definable as a unary relation. An element a ∈ A is said to be definable if the
set {a} is definable.

1.2 Embeddability

1.2.1 Introduction

The directed graph GT := (V,E−1) is called the transpose of G, where E−1 denotes the
inverse relation of E. In the poset (D,≤) let G ≺ G′ denote that G′ covers G. Obviously
≺ is a definable relation in (D,≤). In [8], the main result is

Theorem 1.1 (Theorem 2.38 [8]). In the poset (D;≤), the set {G,GT } is first-order
definable for all finite digraph G ∈ D.

This theorem is the best possible in the following sense. Observe, that G 7→ GT is
an automorphism of (D;≤). This implies that the digraphs G and GT cannot be distin-
guished with first-order formulas of (D;≤). What does Theorem 1.1 tell about first-order
definability in (D;≤)? It tells the following

Corollary 1.2. A finite set H of digraphs is definable if and only if

∀G ∈ D : G ∈ H ⇒ GT ∈ H.

So the first-order definability of finite subsets in (D;≤) is settled. What about infinite
subsets? One might ask if the set of weakly connected digraphs is first-order definable in
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(D;≤) as a standard model-theoretic argument shows that it is not definable in the first-
order language of digraphs. The answer to this question appears to be out of reach with the
result of [8]. In [9] though, some apparatus is built to handle a number of such questions.
In doing so, a path laid by Ježek and McKenzie in [6] was followed. In particular, the set
of weakly connected digraphs turned out to be definable.

This section’s main theorem coincides with that of [9], so we build from this paper
mostly. The method (of [9]) is the following. We add a constant—a particular digraph that
is not isomorphic to its transpose—A to the structure (D;≤) to get (D;≤, A). We define
an enriched small category CD′ and show that its first-order language is quite strong:
it contains the full second-order language of digraphs. Finally, we show that first-order
definability in CD′ (after factoring by isomorphism) is equivalent to first-order definability
in (D;≤, A). This result gives Theorem 1.1 as an easy corollary and a lot more.

We offer two approaches for the proof (of the main theorem). We either use the result
of [8], Theorem 1.1, and do not get it as a corollary but have a more elegant proof for our
main result. Or we do not use it, instead we get it as a corollary but we have a little more
tiresome proof for the main result.

1.2.2 Precise Formulation of the Section’s Main Theorem and Some
Display of its Power

Once more, we emphasize that the approach we present in this section is from Ježek
and McKenzie [6].
Let [n] denote the set {1, 2, . . . , n} for all n ∈ N. Let us define the small category CD of
finite digraphs the following way. The set ob(CD) of objects consists of digraphs on [n] for
some n ∈ N. For all A,B ∈ ob(CD) let hom(A,B) consist of triples f = (A,α,B) where
α : A → B is a homomorphism, meaning (x, y) ∈ E(A) implies (α(x), α(y)) ∈ E(B).
Composition of morphisms are made the following way. For arbitrary objects A,B,C ∈
ob(CD) if f = (A,α,B) and g = (B, β,C), then

fg = (A, β ◦ α,C).

It is easy to see that f ∈ hom(A,B) is injective if and only if for all X ∈ ob(CD)

∀g, h ∈ hom(X,A) : gf = hf ⇔ g = h. (1.1)

Similarly f ∈ hom(A,B) is surjective is and only if for all X ∈ ob(CD)

∀g, h ∈ hom(B,X) : fg = fh⇔ g = h.

These are first-order definitions in the (first-order) language of categories, hence in CD,
isomorphism and embeddability are first-order definable. This implies that all first-order
definable relations in (D,≤) are definable in CD too. To put it more precisely, if ρ ⊆ Dn is
an n-ary relation definable in (D;≤) then

{(A1, . . . , An) : Ai ∈ ob(CD), (Ā1, . . . , Ān) ∈ ρ}

is definable in CD, where Āi denotes the isomorphism type of Ai.
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Definition 1.3. Let us introduce some objects and morphisms:

E1 ∈ ob(CD) : V (E1) = [1], E(E1) = ∅,
I2 ∈ ob(CD) : V (I2) = [2], E(E1) = {(1, 2)},

f1 ∈ hom(E1, I2) : f1 = (E1, {(1, 1)}, I2),
f2 ∈ hom(E1, I2) : f2 = (E1, {(1, 2)}, I2).

Adding these four constants to CD we get CD′.

In the first-order language of (D,≤), formulas can only operate with the facts whether
digraphs as a whole are embeddable into each other or not, the inner structure of digraphs
is (officially) unavailable. In the first-order language of CD′ though, we can capture em-
beddability (as we have seen above) but it is possible to capture the first-order language
of digraphs too. The latter is far from trivial, but the following argument explains it. For
any X ∈ ob(CD) the set of morphisms hom(E1, X) is naturally bijective with the elements
of X. Observe that if f, g ∈ hom(E1, X) are

f = (E1, {(1, x)}, X), g = (E1, {(1, y)}, X) (x, y ∈ V (X)),

then (x, y) ∈ E(X) holds if and only if

∃h ∈ hom(I2, X) : f1h = f, f2h = g. (1.2)

To put it briefly, X ∼= CDX , where

V (CDX) = hom(E1, X), E(CDX) = {(f, g) : f, g ∈ hom(E1, X), (1.2) holds}.

This shows how we can reach the inner structure of digraphs with the first-order language
of CD′. So the first-order language of CD′ is much richer than that of (D,≤). We can go even
further. One can show that the first-order language of CD′ can express the full second-order
language of digraphs. To formulate this more precisely, the first-order language of CD′ can
express a language containing not only variables ranging over objects and morphisms of
CD′ but also

(I) quantifiable variables ranging over

(a) elements of any object,

(b) arbitrary subsets of objects,

(c) arbitrary functions between two objects,

(d) arbitrary subsets of products of finitely many objects (heterogeneous relations),

(II) dependent variables giving the universe and the edge relation of an object,

(III) the apparatus to denote

(a) edge relation between elements,

(b) application of a function to an element,

(c) membership of a tuple of elements in a relation.
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For example, let us see how (Ib), (Id) and (IIIc) can be “modeled” in CD′.
Let us start with (Ib). Let En ∈ ob(CD′) denote the empty digraph on [n]. The set

E = {En ∈ ob(CD′) : n ∈ N}

is easily definable in CD′. Let A ∈ ob(CD′) be an arbitrary object and S ⊆ A a subset of
it. Let γ be a bijection V (E|S|)→ S. Let us define the morphism

p : E|S| → A, p(x) = γ(x) (x ∈ V (E|S|)).

It is easy to see that we represented the subset S with the pair (E|S|, p). A universal
quantification over the subsets of A would look like

(∀E|S| ∈ E)(∀p ∈ hom(E|S|, A)),

with the addition of p being injective, which is expressible, see (1.1). Next, let us consider
(Id). Let A1, . . . , An ∈ ob(CD′) be arbitrary objects and let R ⊆ A1×· · ·×An be nonempty.
Let πi(r) be the ith projection of r ∈ R. The functions π1, . . . , πn “determine” the relation
R in the following sense:

(a1, . . . , an) ∈ R ⇔ ∃r ∈ R : πi(r) = ai (i = 1, . . . , n).

We will represent the functions πi the following way. Let γ : V (E|R|) → R be a bijection.
Let us define the morphisms pi:

pi : E|R| → Ai, pi(x) = πi(γ(x)) (x ∈ V (E|R|))

It is easy to see that we represented the relation R uniquely with (E|R|, p1, . . . , pn). So an
example of an existential quantification of type (Id) is

(∃E|R| ∈ E)(∃p1 ∈ hom(E|R|, A1)) . . . (∃pn ∈ hom(E|R|, An)).

For (IIIc), an element of A1 × · · · ×An is represented with an element of

hom(E1, A1)× · · · × hom(E1, An) (1.3)

and if (E|R|, p1, . . . , pn) belongs to R ⊆ A1×· · ·×An and (f1, . . . , fn), an element of (1.3),
belongs to x ∈ A1 × · · · ×An, then x ∈ R can be expressed in the way

(∃f ∈ hom(E1, E|R|))(fp1 = f1 ∧ . . . ∧ fp1 = f1).

Let A ∈ ob(CD) denote the digraph V (A) = [3], E(A) = {(1, 3), (2, 3)}. Now from the
fact that in CD′ isomorphism and embeddability are definable and from Theorem 1.1, the
set

{X ∈ ob(CD) : X ∼= A or X ∼= AT }

is definable in CD′. From this set, the formula (using the first order language of digraphs
turned out to be expressible above)

(∃x ∈ X)(∀y ∈ X)(y 6= x ⇒ (y, x) ∈ E(X))

chooses the set
{X ∈ ob(CD) : X ∼= A}.

This shows that the first order language of CD′ is stronger then the first-order language of
(D,≤) because in the latter, the isomorphism type of A, denoted by A is not definable as
it is not isomorphic to its transpose.
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Definition 1.4. By adding the isomorphism type of A as a constant to (D,≤) we get
(D;≤, A). Let us denote this structure by D′.

We say that the relation ρ ⊆ (ob(CD))n is isomorphism invariant if when for Ai, Bi ∈
ob(CD), Ai ∼= Bi (1 ≤ i ≤ n) hold, then

(A1, . . . , An) ∈ ρ ⇔ (B1, . . . , Bn) ∈ ρ.

The set of isomorphism invariant relations of ob(CD) is naturally bijective with the relations
of D. The main result of the section is the following

Theorem 1.5. A relation is first-order definable in D′ if and only if the corresponding
isomorphism invariant relation of CD′ is first-order definable in CD′.

We have already seen the proof of the easy(=only if) direction of this theorem. We
prove the difficult direction in Subsection 1.2.3 by creating a model of CD′ in D′.

Definition 1.6. A relation R ⊆ ob(CD)n is called transposition invariant if it is isomor-
phism invariant and (G1, . . . , Gn) ∈ R implies (GT1 , . . . , G

T
n ) ∈ R.

Corollary 1.7. A relation is first-order definable in D if and only if the corresponding iso-
morphism invariant relation of CD′ is both transposition invariant and first-order definable
in CD′.

Proof. The “only if” direction is obvious. For the “if” direction, let R ⊆ Dn be a relation
that corresponds to a transposition invariant and first-order definable relation of CD′. We
need to show that R is first-order definable in D. We know, by Theorem 1.5, that it is first-
order definable in D′. Let Φ(x1, . . . , xn) be a formula that defines it. Let Φ′(y, x1, . . . , xn)

denote the formula that we get from Φ(x1, . . . , xn) by replacing the constant A with y at
all of its occurrences. The set {A,AT } is easily defined (even without the usage of Theorem
1.1) in D. Let us define

Φ′′(x1, . . . , xn) := ∃y(y ∈ {A,AT } ∧ Φ′(y, x1, . . . , xn)). (1.4)

We claim that for S := {(x1, . . . , xn) : Φ′′(x1, . . . , xn)}, S = R holds. R ⊆ S is clear as
Φ′(A, x1, . . . , xn) defines R. Let s ∈ S. If this particular tuple s is defined with y = A in
Φ′′ then s ∈ R is obvious. If s is defined with y = AT then sT can be defined with y = A

in Φ′′ and this yields sT ∈ R, where the transpose is taken componentwise. Finally, the
transposition invariance of R implies s ∈ R.

We have already seen that in the first-order language of CD′ we have access to the
first-order language of digraphs. Let G = (V,E) be an arbitrary fixed digraph with V =

{v1, . . . , vn}. Then the formula

∃x1 . . . ∃xn∀y
( ∧

1≤i 6=j≤n
xi 6= xj ∧

n∨
i=1

y = xi ∧

∧
(vi,vj)∈E

(xi, xj) ∈ E ∧
∧

(vi,vj)/∈E

(xi, xj) /∈ E
)

defines G in the first-order language of digraphs. This leads to the following corollary of
Theorem 1.5.
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Corollary 1.8. In D′, all elements are first-order definable.

Corollary 1.9 (=Theorem 1.1). For all G ∈ D, the set {G,GT } is first-order definable in
(D,≤).

Proof. By Corollary 1.8, we have a formula φG(x, y) for which φG(x,A) defines G. We can
now conclude with the argument seen at (1.4).

The previous two statements will only earn the “title” corollary truly, if we prove The-
orem 1.5 without using them, which will be one way to approach the proof of Theorem
1.5.

In the second-order language of digraphs—which has turned out to be available in the
first-order language of CD′—the formula

∃H ⊆ G(∃v, w ∈ G(v ∈ H ∧ w /∈ H) ∧ ∀x, y ∈ G(x→ y ⇒ (x, y ∈ H ∨ x, y /∈ H)))

defines the set of not weakly connected digraphs. This means that the set of weakly con-
nected digraphs is first-order definable in D, by Corollary 1.7. That fact seems quite non-
trivial to prove without Theorem 1.5. This definability is surprising as the set of weakly
connected digraphs is not definable in the first-order language of digraphs (by a standard
model-theoretic argument).

1.2.3 The Proof of the Section’s Main Theorem (Theorem 1.5)

In this subsection, we prove the “if” direction of Theorem 1.5. Throughout the proof,
the elementwise definability of some particular digraphs is being used. To make it precise,
see the following lemma. Note that some of the lemmas digraphs are not introduced yet.

Lemma 1.10. The following digraphs (of at most 9 elements) are first-order definable in
D′: I2, L1, E2, A, AT , and the digraphs under (1.28), (1.30), and (1.36).

Proof. We offer two separate approaches. The first is based on the observation that we only
need to consider some (finite) levels at the “bottom” of the poset D. This means it is only
a matter of time for someone to create this proof. The detailed proof would be technical
and it would bring nothing new to the table, so we skip it. If contemplating having a go
at it, some computer calculation could be evoked to help.

The second approach is using the statement of Corollary 1.8. Our lemma at hand is
just a special case of that. We have to be very cautious with this though. The statement of
Corollary 1.8 was a consequence of the very theorem whose proof we are dealing with at the
moment (Thm. 1.5). Hence, the statement of Corollary 1.8 must be achieved alternatively
in this approach. What gives us this as a viable option is Theorem 1.1 being proven in [8]
from the ground, using nothing. Thus we can use this and conclude with showing that
the statement of Corollary 1.8 is a consequence of Theorem 1.1. This is not trivial, but
manageable nonetheless. The reader finds this argument at point of the Thesis where it
fits better: see the second proof of Theorem 1.49 located on page 29.

Some basic definitions and concepts follow.
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Definition 1.11. Let En (n = 1, 2, . . . ) denote the “empty” digraph with n vertices and
Fn (n = 1, 2, . . . ) denote the “full” digraph with n vertices:

V (En) = {v1, v2, . . . , vn}, E(En) = ∅,

V (Fn) = {v1, v2, . . . , vn}, E(Fn) = V (Fn)2.

The following definition, numbered 1.12, shows up in each of the papers [7–9] introduc-
ing the families of digraphs In, On, and Ln. Unfortunately these occurrences do not agree
on where they run the ns of the families from. These alterations were for technical reasons
at the time but, clearly, now we have to come up with one universal version for the whole
thesis. We have decided to use the variant of the paper [7]. Consequently, regarding this
particular issue, modifications are required in the present section, but the following section
(Substructure) remains unaffected.

Definition 1.12. Let In for n ∈ {1, 2, . . . }, On for n ∈ {3, 4 . . . }, and Ln for n ∈ {1, 2, . . . }
be the following (fig. 1.1.) digraphs:

V (In) = V (On) = V (Ln) = {v1, v2, . . . , vn},

E(In) = {(v1, v2), (v2, v3), . . . , (vn−1, vn)},

E(On) = {(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)},

E(Ln) = {(v1, v1), (v2, v2), . . . , (vn, vn)}.

I5 O6 L6

Figure 1.1: I5, O6, I6

Definition 1.13. For G ∈ D, let L(G) denote the digraph that we get from G by adding
all loops possible. For G ⊆ D, let us define L(G) = {L(G) : G ∈ G}.

We remark that this previous definition was a little different in [8]. We then assumed
that G has no loops which we do not do here.

Definition 1.14. For G ∈ D, let M(G) the digraph that we get from G be by leaving all
the loops out. For G ⊆ D, let us defineM(G) := {M(G) : G ∈ G}.

14



Here, by “definability”, we will always mean first-order definability in D′.

Lemma 1.15. The sets E := {En : n ∈ N}, L := {Ln : n ∈ N} and the relation
{(Ln, En) : n ∈ N} are definable.

Proof. E is the set of X ∈ D for which I2 � X and L1 � X. L is the set of those digraphs
X ∈ D for which there exists Ei ∈ E such that X is maximal with the properties Ei ≤ X,
Ei+1 � X and I2 � X. (Ei+1 is easily defined using Ei as it is the only cover of Ei in the
set E .)
The relation consists of those pairs (X,Y ) ∈ D2 for which X ∈ L, and Y is maximal
element of E that is embeddable into X.

The relations
{(G,En) : En ≤ G, En+1 � G}, and (1.5)

{(G,Ln) : Ln ≤ G, Ln+1 � G} (1.6)

are obviously definable, from which the following relations are definable too:

Definition 1.16.

E := {(G,K) : ∃ En ∈ E , for which (G,En), (K,En) ∈ (1.5)},

L := {(G,K) : ∃ Ln ∈ L, for which (G,Ln), (K,Ln) ∈ (1.6)}.

Definition 1.17. Let O denote the set of those digraphs that are disjoint unions of circles
(On for n ≥ 3) of not necessarily different sizes.

Lemma 1.18. O is definable.

Proof. Let us define the digraph II of Fig. 1 first. This is definable as this is the only digraph
on the fourth level, above I2, that is a cover of only one. Let H be the set consisting of
those X ∈ D for which there exists En ∈ E such that X is maximal with the properties

E2 ≤ X, A,AT , L1, II � X, and (X,En) ∈ E. (1.7)

We state that
H = O ∪ {G ∪̇ E1 : G ∈ O}. (1.8)

Let G ∈ H. It is easy to see that there can be at most 1 weakly connected component of
G that has only 1 vertex (and hence is isomorphic to E1) as the opposite would conflict the
maximality of G. The conditions A � X and AT � X mean there is no vertex in G that
is either an ending or a starting point of two separate edges, respectively. Therefore every
weakly connected component of G is either the digraph II, a circle, or only one element.
II is excluded by (1.7). Finally, O is the set of X ∈ D for which X ∈ H but there is no
such Y ∈ H that Y ≺ X.

Lemma 1.19. The following sets and relations are definable:

O∪ := {On : n ≥ 3}, {(On, En) : n ≥ 3},
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{Fn : n ∈ N}, {(Fn, En) : n ∈ N}, (1.9)

{(G,M(G)) : G ∈ D}, (1.10)

M := {(X,Y ) : ∃Z((X,Z), (Y,Z) ∈ (1.10))},

{(G,L(G)) : G ∈ D}. (1.11)

Proof. O∪ is the set of digraphs X ∈ D for which X ∈ O but there is no Y ∈ O such that
Y < X. The corresponding relation {(On, En) : n ≥ 3} is definable with (1.5).
The set under (1.9) consists of those X ∈ D for which X < Y implies (X,Y ) /∈ E. The
corresponding relation is defined as above.
(1.10) is the set of pairs (X,Y ) ∈ D2 for which Y is maximal with the conditions Y ≤ X

and L1 � Y .
M is already given by a first-order definition.
(1.11) is the set of pairs (X,Y ) ∈ D2 for which Y is maximal with the property that
(X,Y ) ∈M.

Lemma 1.20. The following relation is definable:

E+ := {(En, Em, En+m) : n,m ∈ N}.

Proof. The relation E+ consists of the triples (X,Y, Z) ∈ D3 that satisfy the following
conditions. X,Y ∈ E , meaning X = Ei and Y = Ej for some i, j ∈ N. With Lemma 1.19,
M(Fj) can be defined (with Ej). Let F ∗j denote the digraph the we get from M(Fj) by
adding one loop. This is the only digraph W ∈ D for which M(Fj) ≺ W and L1 ≤ W .
Now the digraph Li ∪̇M(Fj) is definable as the digraph Q ∈ D which is minimal with the
conditions Li ≤ Q, M(Fj) ≤ Q and F ∗j � Q. Finally, Z ∈ E such that (Z,Li ∪̇ M(Fj)) ∈
E.

Lemma 1.21. The following relation is definable:

{(En, Em) : 3 ≤ n+ 2 ≤ m ≤ 2n+ 1}. (1.12)

Proof. The relation is the set of those pairs (X,Y ) ∈ D2 which satisfy the following
conditions. For X ∈ E , meaning X = En, we can define E2n to be the element from
the set E for which (En, En, E2n) ∈ E+. E2n+1 and En+1 are defined similarly, with

(E2n, E1, E2n+1) ∈ E+, and (En, E1, En+1) ∈ E+

Finally, Y ∈ E and En+1 < Y ≤ E2n+1.

Definition 1.22. Let O∗n := On+2 ∪̇ On+3 ∪̇ . . . ∪̇ O2n+1 for n ∈ {1, 2, . . . }.

Lemma 1.23. The relation
{(O∗n, En) : n ∈ N} (1.13)

and the set {O∗n : n ∈ N} are definable.

Proof. The relation (1.13) can be defined as the set of pairs (X,Y ) ∈ D2 satisfying the
following conditions. Y ∈ E , meaning Y = En. X satisfies X ∈ O and is minimal with the
following property: for all Oi ∈ O∪ for which (En, Ei) ∈ (1.12) holds, Oi ≤ X.
With the relation (1.13), the set is easily defined the usual way.
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Definition 1.24. Let O→n denote the set of digraphs X which we get by adding an edge
that is not a loop to On.

Note that X � On for all X ∈ O→n .

Lemma 1.25. The following relation is definable:

{(X,En) : 2 < n, X ∈ O→n }.

Proof. The relation consists of those pairs (X,Y ) ∈ D2 that satisfy the following conditions.
Y ∈ E and E2 < Y , meaning Y = En, where 2 < n.On ≺ X, L1 � X, and (X,On) ∈ E.

Definition 1.26. Let ♂n (see Fig. 1.2) be the digraph with n + 1 vertices V (♂n) =

{v1, . . . , vn+1} for which v1, v2, . . . , vn constitute a circle On and the only additional edge
in ♂n is (vn, vn+1). Let ♂Ln be the previous digraph plus one loop:

E(♂Ln) = E(♂n) ∪ {(vn+1, vn+1)}.

♂6 ♂L6

Figure 1.2: ♂6 and ♂L6

Definition 1.27. Let 2 < i, j be integers and let us consider the circles Oi, Oj and E1

with
V (Oi) = {v1, . . . , vi}, V (Oj) = {v1, . . . , vj}, V (E1) = {u}.

Let ♂Li,j denote the following digraph:

V (♂Li,j) := V (Oi) ∪ V (Oj) ∪ V (E1), E(♂Li,j) := E(Oi) ∪ E(Oj) ∪ {(v1, u), (v1, u), (u, u)}.

Definition 1.28. LetOn,L (see Fig. 1.3) be the following digraph: V (On,L) = {v1, v2, . . . , vn},
E(On,L) = E(On) ∪ {(v1, v1)}, meaning

E(On,L) = {(v1, v1), (v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)}.

Lemma 1.29. Let
O∗n,L := On+1,L ∪̇ On+2,L ∪̇ . . . ∪̇ O2n,L.
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Figure 1.3: O3,L

The following sets and relations are definable:

{(♂n, En) : n > 2}, {♂n : n > 2}, (1.14)

{(♂Ln , En) : n > 2}, {♂Ln : n > 2}, (1.15)

{(♂Li,j , Ei, Ej) : 2 < i, j, i 6= j}, {♂Li,j : 2 < i, j, i 6= j}, (1.16)

{On,L : n > 2}, {(On,L, En) : n > 2}, (1.17)

{O∗n,L : n ∈ N}, {(O∗n,L, En) : n ∈ N}. (1.18)

Proof. The relation (1.14) consists of those pairs (X,Y ) ∈ D2 that satisfy the following.
Y ∈ E , meaning Y = En. There exists Z ∈ D for which On ≺ Z ≺ X, (En+1, X) ∈ E, and
L1 � X. There exists no Z ∈ O→n for which Z ≤ X. Finally, AT ≤ X. The corresponding
set is easily defined using the relation we just defined.
The set under (1.17) consists of those digraphs X ∈ D for which there exists On ∈ O∪
such that On ≺ X and L1 ≤ X. The corresponding relation is easily defined.
The relation (1.15) consists of those pairs (X,Y ) ∈ D2 that satisfy the following. Y ∈ E ,
meaning Y = En. With the relation (1.14), ♂n is definable. Now X is determined by the
following properties: ♂n ≺ X, L1 ≤ X and On,L � X. The corresponding set is easily
defined using the relation we just defined.
The relation (1.16) consists of those triples (X,Y, Z) ∈ D3 that satisfy the following.
Y,Z ∈ E such that E2 < Y,Z and Y 6= Z, meaning Y = Ei, Z = Ej for some 2 < i, j,
i 6= j. Now Oi ∪̇ Oj is the digraph W ∈ D determined by W ∈ O, (W,Ei+j) ∈ E

and Oi, Oj ≤ W . Oi ∪̇ Oj ∪̇ E1 is the digraph W determined by Oi ∪̇ Oj ≺ W and
(Oi ∪̇ Oj ,W ) /∈ E. Finally, X is defined by:

∃W1,W2 : Oi ∪̇ Oj ∪̇ E1 ≺W1 ≺W2 ≺ X, (X,Oi ∪̇ Oj ∪̇ E1) ∈ E,

L1 ≤ X, Oi,L � X, Oj,L � X, ♂Li ≤ X, ♂Lj ≤ X.

The corresponding set is easily defined using the relation we just defined.
The relation {(O∗n,L, En) : n ∈ N} consists of those pairs (X,Y ) ∈ D2 that satisfy the
following conditions. Y ∈ E , meaning Y = En. For X, the following properties hold:

• O∗n ≤ X and (X,O∗n) ∈ E,

• Oi ≤ O∗n ⇒ ( Y ∈ O→i ⇒ Y � X),

• Oi ≤ O∗n ⇒ ♂i � X,

• Oi ≤ O∗n ⇒ Oi,L ≤ X,
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• Ln+1 � X.

With the relation we just defined the corresponding set is easily defined.

Definition 1.30. Let us denote the vertices of Oi and Oj with

V (Oi) = {v1, . . . , vi}, V (Oj) = {v1, . . . , vj}.

Let Oi→j denote the digraph

V (Oi→j) = V (Oi) ∪ V (Oj), E(Oi→j) = E(Oi) ∪ E(Oj) ∪ {(v1, v1)}.

Lemma 1.31. The following relation and set are definable:

{(Oi→j , Ei, Ej) : i, j > 2}, {Oi→j : i, j > 2} (1.19)

Proof. The relation (1.19) consists of those triples (X,Y, Z) ∈ D3 for which the following
conditions hold. Y,Z ∈ E satisfy E2 < Y,Z, meaning Y = Ei and Z = Ej , where i, j > 2.
(X,Ei+j) ∈ E and W ≺ X, where W ∈ O is such that (W,X) ∈ E and precisely Oi and
Oj are embeddable into W from the set O∪ (here i = j is possible). Finally, ♂i ≤ X. The
set is easily defined using the relation.

The proof of the crucial Lemma 1.36 requires a lot of nontrivial preparation which we
begin here.

Definition 1.32. Let W(G) denote the set of weakly connected components of G.

Now we have to announce a change to the original notations of the paper [9]. Unfor-
tunately, the set of symbols {v,<,w,=}, which we use here to express substructureness,
got used for a small part of the paper for a completely different concept. We replace with
{E,C,D,B}, see the following definition.

Definition 1.33. Let

G E G′ ⇔M(G) ≤M(G′), and G C G′ ⇔M(G) < M(G′),

G ≡ G′ ⇔ M(G) = M(G′) (⇔ (G,G′) ∈M), that is ≡ = E ∩ E−1,

≡CG := {H ∈ W(G) : H ≡ C}, and similarly

=C
G := {H ∈ W(G) : H = C}.

Recall that we use the abbreviation wcc=“weakly connected component” and wccs for
the plural. E is obviously a quasiorder and ≡CG is the set of the wccs of G that are equivalent
to C with respect to the equivalence ≡.

We say that a wcc W of G is raised by the embedding ϕ : G → G′ if for the wcc W ′

of G′ that it embeds into, i. e. ϕ(W ) ⊆ W ′, W C W ′ holds. In this case, we say that W
is raised into W ′. A wcc W of G is either raised or embeds into ≡WG′ (considered now as a
subgraph of G′).

Lemma 1.34. Let G and G′ be digraphs having n vertices such that G ≡ G′. Let ϕ be an
embedding G→ G′ ∪̇ O∗n. Let us suppose that W and W ′ are wccs of G and G′ respectively,
such that W is raised into W ′. Then W ′ ≡ Im for some m, and consequently W ≡ Im′ for
some m′ < m.
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Proof. It suffices to show thatM(W ′) can be embedded into O∗n, that is what we are going
to do. For an arbitrary wcc V of G, it is clear that ≡VG and ≡VG′ are either bijective under ϕ
(considered as subgraphs of G and G′) or a wcc of ≡VG is raised. The fact that W is raised
into W ′ excludes ≡W ′G and ≡W ′G′ being bijective as these two subgraphs are ≡–equivalent,
so a bijection would only be possible if only ≡W ′G was mapped into ≡W ′G′ . This means that
a wcc W1 of ≡W ′G is raised into some wcc W ′1. If W ′1 is a wcc of O∗n, then we are done as
clearly

W CW1 CW ′1.

If this is not the case, then we repeat the same argument to get wccs W2 ∈≡
W ′1
G , and W ′2

such that W2 is raised into W ′2. Again, if W ′2 is in O∗n, then we are done as

W CW1 CW2 CW ′2.

If not, we repeat the argument. Since an infinite chain of wccs with strictly increasing size
is impossible, we will get to our claim eventually.

We are in the middle of the preparation for Lemma 1.36. The following Lemma 1.35 is
the key, the most difficult part of the paper. Before the lemma, we give an example to aid
the understanding of its statement. We consider the digraphs G and G′ ∪̇ O∗n and we are
interested if the assumptions

• G ≤ G′ ∪̇ O∗n,

• G ≡ G′, and

• G and G′ have the same number of loops

force G = G′? The answer is negative and a counterexample is shown in Figure 1.4.
To prove Lemma 1.36, we will need to ensure that G = G′ with a first-order definition.
Observe the following. Let G denote the digraph we get from G by adding a loop to the
vertex labeled with v. Now it is impossible to add one loop to G′ such that we get a G′

for which G ≤ G′ ∪̇ O∗3 holds. We just showed the following property: we can add some
loops to G, getting G, such that it is impossible to add the same number of loops to G′,
getting G′, such that G ≤ G′ ∪̇ O∗3 holds. If we have G = G′ this property does not hold,
obviously. Have we found a property that, together with the three above, ensures G = G′?
The following lemma answers this question affirmatively.

Lemma 1.35. Let G,G′ be digraphs with n vertices and with the same number of loops.
Let us suppose G ≡ G′ and G ≤ G′ ∪̇ O∗n. Then G 6= G′ holds if and only if we can add
some loops to G so that we get the digraph G such that it is impossible to add the same
number of loops to G′, getting the digraph G′, such that G ≤ G′ ∪̇ O∗n. In formulas this is:
there exists a digraph G for which

G ≤ G, G ≡ G

such that there exists no digraph X for which

G′ ∪̇ O∗n ≤ X, X ≡ G′ ∪̇ O∗n, X ≤ L(G) ∪̇ O∗n, (G,X) ∈ L.
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G G′ ∪̇ O∗3

v

Figure 1.4: A G and a corresponding G′ ∪̇ O∗3 forming a counterexample

Proof. The direction⇐ (or rather its contrapositive) is obvious. Accordingly, let us suppose
G 6= G′.

Let C denote the largest joint subgraph consisting of whole wccs of both G and G′. Let
us introduce the so-called reduced subgraphs:

G = C ∪̇ GR, and G′ = C ∪̇ G′R. (1.20)

Observe that the digraphs GR and G′R are not empty and GR ≡ G′R.
Let W denote a E-maximal wcc of GR. We claim W ≡ Ik for some k > 1, and

| =Ik
G | − | =

Ik
G′ | = | ≡

Ik
GR
|, (1.21)

or equivalently, all wccs of ≡IkGR
are loop-free. Let ϕ be an embedding G → G′ ∪̇ O∗n.

Observe that ϕ raises a wcc isomorphic to W as G′ has less wccs isomorphic to W by the
definitions of the reduced subgraphs. Hence, by Lemma 1.34, we have W ≡ Ik for some
k ≥ 1. This is less then what we claimed, the exclusion of the case k = 1 remains to be
seen yet. First, we prove (1.21) for k ≥ 1, then by using that, we prove k 6= 1. It is easy
to see from the definitions that (1.21) is equivalent to the fact that all wccs of ≡IkGR

are
loop-free. Let us suppose, for contradiction, that a wcc V of ≡IkGR

has a loop in it. Observe
that the loops of G and G′ are bijective under ϕ. Moreover, from the maximality of W , it
is easy to see that for a wcc U B Ik of G, the loops of ≡UG are bijective with the loops of
≡UG′ under ϕ. Consequently, none of the wccs of =V

G is raised as, by our previous argument,
there is no component to be raised into. Hence | =V

G | ≤ | =V
G′ |, which clearly contradicts

the fact that V is an element of ≡IkGR
. We have proven (1.21), only the exclusion of k = 1

remains from our claim above. Let us suppose k = 1 for contradiction. An arbitrary wcc
K of G is either K ≡ I1 or K B I1. In the latter case, as we have seen above, the loops of
≡KG are bijective with ≡KG′ . If K ≡ I1, then from (1.21) the nonempty set ≡I1GR

is loop-free.
Consequently, ≡I1

G′R
, that has the same number of elements, consists of L1s. This means G

has more loops then G′ does, a contradiction. We have entirely proven our claim.
Observe that, from our claim above, the nonempty set ≡Ik

G′R
contains no loop-free el-

ements. Take W ′ ∈ ≡Ik
G′R

. We make the digraph W from Ik by adding 1 loop so that

W 6= W ′. This is possible because either W ′ has loops on all of its vertices, then (using
k > 1) adding the loop arbitrarily suffices; or there is a vertex that has no loop on it, then
adding the loop to this vertex in Ik does.
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Now we create the digraph G of the theorem by adding 1 loop to each loop-free wcc
of G. To the wccs of =Ik

G we add 1 loop each such that they all become W . To all other
loop-free wccs of G, we add 1 loop each arbitrarily.

To prove that G is sufficient, we suppose, for contradiction, that, by adding the same
number of loops to G′, we can get some G′ for which G ≤ G′ ∪̇ O∗n. Let φ be an embedding
G→ G′ ∪̇ O∗n. For each wcc has a loop in G, φ is technically an isomorphism φ : G→ G′.
Our final claim is,

| =W
G
| > | =W

G′
|, (1.22)

which contradicts the existence of the isomorphism φ : G → G′. If (1.22) gets proven, we
are done. Using the decomposition (1.20) and the knowledge on how G was created, the
left side of (1.22) is

| =W
G
| = | =Ik

G |+ | =
W
GR
|+ | =W

C | = | =Ik
G |+ | =

W
C |, (1.23)

since ≡WGR
= ≡IkGR

was shown to be loop-free above. Observe that even though we do
not know exactly how G′ was created, a component isomorphic to W can only appear
in it if either it was already in G′ and no loop was added to that specific component, or
the component was isomorphic to Ik in G′, but a loop was added to the right place. This
implies

| =W
G′
| ≤ | =Ik

G′ |+ | =
W
G′R
|+ | =W

C |. (1.24)

Using (1.23) and (1.24), it is enough to show that

| =Ik
G |+ | =

W
C | > | =Ik

G′ |+ | =
W
G′R
|+ | =W

C |,

or equivalently,
| =Ik

G | − | =
Ik
G′ | > | =W

G′R
|.

Using (1.21), this turns into | ≡IkGR
| > | =W

G′R
|, which is obvious considering how W was

created. We have proven (1.22), we are done.

Lemma 1.36. The following relation is definable:

{(G,G ∪̇ O∗n) : G ∈ D, |V (G)| = n}. (1.25)

Proof. The relation in question is the set of pairs (X,Y ) ∈ D2 that satisfy the following
conditions. Let (X,En) ∈ E. Now L(X) ∪̇ O∗n is the minimal digraph W ∈ D with the
following conditions: L(X) ≤ W , O∗n ≤ W , there is no O∗n ≺ Z for which L1 ≤ Z and
Z ≤ W . (Here we used the fact that O∗n has so big circles that cannot fit into X.) Now
Lemma 1.35 tells us that the set of the following first-order conditions suffice:

• Y ≡ L(X) ∪̇ O∗n,

• X ≤ Y ,

• (X,Y ) ∈ L, and

• (taken from the end of the statement of Lemma 1.35:) there exists NO digraph X

for which:
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– X ≤ X, X ≡ X, and

– there exists no digraph Z for which Y ≤ Z, Z ≡ Y , Z ≤ L(X) ∪̇ O∗n, and
(X,Z) ∈ L.

Definition 1.37. Let G ∈ D be a digraph having n vertices. Let us denote the vertices of
O∗n with

V (O∗n) := {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ n+ 1 + i}

such that V (On+i) = {vi,j : 1 ≤ j ≤ n + 1 + i}. Let v := (v1, . . . , vn) be a tuple of the
vertices of G. Let us define the digraph G

v← O∗n the following way:

V (G
v← O∗n) := V (G ∪̇ O∗n), E(G

v← O∗n) := E(G ∪̇ O∗n) ∪ {(vi,1, vi) : 1 ≤ i ≤ n}.

Lemma 1.38. The following relation is definable:

{(G,G v← O∗n) : G ∈ D, |V (G)| = n and v is a tuple of the vertices of G}. (1.26)

Proof. First, we define the relation

{(G,L(G)
v← O∗n) : G ∈ D, |V (G)| = n and v is a tuple of the vertices of L(G)}. (1.27)

This relation consists of those pairs (X,Y ) ∈ D2 for which the following holds. Let
(X,En) ∈ E. From X, L(X) is definable. Hence, with the relation (1.25), L(X) ∪̇ O∗n
is definable. Now Y is minimal with the following properties:

• L(X) ∪̇ O∗n ≤ Y and (Y, L(X) ∪̇ O∗n) ∈ E.

• There is no L(X) ≺ Z for which (L(X), Z) ∈ E and Z ≤ Y .

• There is no O∗n ≺ Z for which (O∗n, Z) ∈ E and Z ≤ Y .

• For all Oi ∈ O∪, Oi ≤ O∗n implies ♂Li ≤ Y .

• There are no Oi, Oj ∈ O∪ for which Oi 6= Oj , Oi, Oj ≤ O∗n and ♂Li,j ≤ Y .

Finally, the relation (1.26) consists of those pairs (X,Y ) ∈ D2 which satisfy the fol-
lowing conditions. Let (X,En) ∈ E again. Then Y satisfies: there exists L(X)

v← O∗n for
which

(L(X)
v← O∗n, Y ) ∈M, X ∪̇ O∗n ≤ Y ≤ L(X)

v← O∗n, (X,Y ) ∈ L.

Definition 1.39. Let v1 and v1 denote the vertices of ♂i and ♂j with degree 1. Let us
define ♂i → ♂j the following way:

V (♂i → ♂j) := V (♂i ∪̇ ♂j), E(♂i → ♂j) := E(♂i ∪̇ ♂j) ∪ {(v1, v1)}.

Lemma 1.40. The following relation is definable:

{(♂i → ♂j , Ei, Ej) : 2 < i, j, i 6= j}.
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Proof. The relation above consists of those pairs (X,Y, Z) ∈ D3 which satisfy the following.
Y, Z ∈ E , E2 < Y,Z and Y 6= Z, meaning Y = Ei, Z = Ej , where 2 < i, j and i 6= j.
Now Oi ∪̇ Oj ∪̇ E1 can be similarly defined as in Lemma 1.29. From this, Oi ∪̇ Oj ∪̇ E2 is
the only digraph W ∈ D for which Oi ∪̇ Oj ∪̇ E1 ≺ W and (W,Oi ∪̇ Oj ∪̇ E1) /∈ E. Now
Oi ∪̇ Oj ∪̇ L2 is the only digraph W ∈ D for which there exists V ∈ D such that

Oi ∪̇ Oj ∪̇ E2 ≺ V ≺W, L2 ≤W, Oi,L �W and Oj,L �W.

♂Li ∪̇ ♂Lj is the only digraph W ∈ D for which there exists V ∈ D such that

Oi ∪̇ Oj ∪̇ L2 ≺ V ≺W, ♂Li ≤W, ♂Lj ≤W, but ♂Li,j �W.

Let I denote the digraph

V (I) = {u, v}, E(I) := {(u, v), (u, u), (v, v)}. (1.28)

The set
{♂Li → ♂Lj ,♂

L
j → ♂Li } (1.29)

consists of those W ∈ D for which ♂Li ∪̇ ♂Lj ≺ W , I ≤ W . The digraph ♂Li ∪̇ E1 is
defined as usual. From this, the digraph ♂Li ∪̇ L1 is definable as the only W ∈ D for which
♂Li ∪̇ E1 ≺ W , L2 ≤ W and there is no V ∈ D such that ♂Li ≺ V , L2 ≤ V and V ≤ W .
Let v denote the vertex of ♂Li that has a loop on it and let x be the only vertex of L1. Let
♂L→i and I∗ be the following digraphs:

V (♂L→i ) := V (♂Li ∪̇ L1), E(♂L→i ) := E(♂Li ∪̇ L1) ∪ {(v, x)}

V (I∗) := {u, v, w}, E(I∗) := {(v, v), (w,w), (u, v), (v, w)}. (1.30)

Now ♂L→i is the only digraph W ∈ D for which ♂Li ∪̇ L1 ≺W and I∗ ≤W . From the set
(1.29) we can choose ♂Li → ♂Lj with the fact

♂L→i ≤ ♂Li → ♂Lj , ♂L→i � ♂Lj → ♂Li .

Finally, X = M(♂Li → ♂Lj ).

Lemma 1.41. The following relation and set are definable:

{(Oi,i, Ei) : 2 < i}, {Oi,i : 2 < i}, (1.31)

where Oi,i := Oi ∪̇ Oi.

Proof. The relation (1.31) consists of those pairs (X,Y ) ∈ D2 for which the following
holds. Y ∈ E , meaning Y = Ei. X ∈ O, (X,E2i) ∈ E, and from the set O∪, Oi is the only
element that is embeddable into X. The corresponding set can now be easily defined.

Lemma 1.42. The following relation is definable:

{(O∗i ∪̇ O∗j,L, Ei, Ej) : 1 ≤ i, j}.

Proof. The relation above is the set of triples (X,Y, Z) ∈ D3 which satisfy the following.
Y, Z ∈ E , E1 ≤ Y,Z, meaning Y = Ei, Z = Ej , where 1 ≤ i, j. Now O∗i ∪̇ O∗j is the
digraph W satisfying the following:
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• W ∈ O

• If Ex, Ey ∈ E satisfy (O∗i , Ex) ∈ E and (O∗j , Ey) ∈ E, then (W,Ex+y) ∈ E.

• For all On ∈ O∪ that satisfy On ≤ O∗i or On ≤ O∗j , On ≤W holds.

• For all On ∈ O∪ which satisfy On ≤ O∗i and On ≤ O∗j , On,n ≤W holds.

Finally, X is the minimal digraph with O∗i ∪̇ O∗j ≤ X ≤ L(O∗i ∪̇ O∗j ) and O∗j,L ≤ X.

Definition 1.43. Let us denote the vertices of O∗n by

V (O∗n) := {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ n+ 1 + i}

such that the circle On+1+i consists of {vi,j : 1 ≤ j ≤ n + 1 + i}. Similarly, let us denote
the vertices of O∗m,L by

V (O∗m,L) := {vi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ m+ 1 + i}

such that the circle Om+1+i,L consists of {vi,j : 1 ≤ j ≤ m + 1 + i} and the loops are on
the vertices {vi,1 : 1 ≤ i ≤ m}. For a map α : [n]→ [m], we define the digraph Fα(n,m) as

V (Fα(n,m)) := V (O∗n ∪̇ O∗m,L),

E(Fα(n,m)) := E(O∗n ∪̇ O∗m,L) ∪ {(vi,1, vα(i),1) : 1 ≤ i ≤ n}.

Let
F(n,m) := {Fα(n,m) : α : [n]→ [m]}.

Lemma 1.44. The following relation is definable:

{(Fα(n,m), En, Em) : 1 ≤ n,m, α : [n]→ [m]}. (1.32)

Proof. The relation above consists of those triples (X,Y, Z) ∈ D3 that satisfy the following.
Y, Z ∈ E , meaning Y = En, Z = Em, where 1 ≤ n,m. Now X is a minimal digraph with
the following conditions:

• O∗n ∪̇ O∗m,L ≤ X and (O∗n ∪̇ O∗m,L, X) ∈ E ∩ L.

• Oi ≤ O∗n implies ♂Li ≤ X.

• Oi ≤ O∗n ∪̇ O∗m,L implies there is no W ∈ O→i , for which W ≤ X.

• There is no V for which V ≤ X and ♂i ≺ V , such that ♂i ≤ X and ♂Li � V .

• There is no ♂Li ≺ V for which V ≤ X and L2 ≤ V .

Lemma 1.45. The following relation is definable:

{(Fid[n]
(n, n), En, En) : 1 ≤ n}. (1.33)
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Proof. The relation in question consists of those triples (X,Y, Z) ∈ (1.32) for which Y =

Z ∈ E and for i, j ≥ 2 we have

Oi→j ≤ X ⇒ Ei = Ej .

Lemma 1.46. The following relation is definable:

{(Fα(n,m), Fβ(m, l), Fβ◦α(n, l), En, Em, El) : 1 ≤ n,m, l, α : [n]→ [m], β : [m]→ [l]}.
(1.34)

Proof. The relation in question is the set of those 6-tuples (X1, . . . , X6) ∈ D6 which satisfy
the following. X4, X5, X6 ∈ E , meaning X4 = En, X5 = Em and X6 = El where 1 ≤ n,m, l.
X1 ∈ F(n,m), X2 ∈ F(m, l) and X3 ∈ F(n, l). Finally:

(Oi→j ≤ X1 and Oj→k ≤ X2) ⇒ Oi→k ≤ X3.

Definition 1.47. There is a bijection between the digraphs G
v← O∗n and the elements of

ob(CD). Let us observe that the vertices of G are labeled with the circles

O(n+1)+1, O(n+1)+2, . . . , O(n+1)+n

in G
v← O∗n. On the other hand, in ob(CD), they are labeled with 1, . . . , n. The element of

ob(CD) that corresponds to G
v← O∗n will be denoted by (G

v← O∗n)CD from now on.

Lemma 1.48. The following relation is definable:

{(X,Fα(n,m), Y ) ∈ D3 : X = G
v← O∗n, Y = H

w← O∗m for some v and w, and

((X)CD, α, (Y )CD) ∈ hom((X)CD, (Y )CD)}
(1.35)

Proof. The relation in question is the set of those pairs (X,F, Y ) ∈ D3 which satisfy the
following. There exist G and H such that (G,X) ∈ (1.26) and (H,Y ) ∈ (1.26). Finally, F
satisfies

• (F,En, Em) ∈ (1.32),

• (♂i → ♂j ≤ G
v← O∗n(= X), Oi, Oj ≤ O∗n and Oi→k, Oj→l ≤ F ) =⇒

((Ok 6= Ol and ♂k → ♂l ≤ H
w← O∗m) ∨ (Ok = Ol and ♂Lk ≤ H

w← O∗m)),

• (♂Li ≤ G
v← O∗n, Oi ≤ O∗n and Oi→k ≤ F )⇒ ♂Lk ≤ H

w← O∗m.

The proof of Theorem 1.5 is now properly prepared for, we only need to put the pieces
together.
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Proof of the main theorem: Theorem 1.5. We have already seen in Section 1.2.2 that all
relations first-order definable in D′ are definable in CD′ as well. So we only need to deal
with the converse. We wish to build a copy of CD′ inside D′ so that all things we can
formulate in the first-order language of CD′ becomes accessible in its model in D′. Let the
set of objects be

{G v← O∗n : G ∈ D, |V (G)| = n and v is a vector of the vertices of G},

and the set of morphisms be (1.35). We can define both as Lemma 1.48 shows. Identity
morphisms can be defined with Lemma 1.45. For the triples

(X1, Z1, Y1), (X2, Z2, Y2), (X3, Z3, Y3) ∈ D3

the condition (Xi, Zi, Yi) ∈ (1.35) ensures that there exist αi such that

((Xi)CD, αi, (Yi)CD) ∈ hom((Xi)CD, (Yi)CD).

Moreover, if we suppose Y1 = X2, X3 = X1, Y3 = Y2 and that there exists a 6-tuple in
(1.34) of the form (Z1, Z2, Z3, ∗, ∗, ∗), we have forced

((X1)CD, α1, (Y1)CD)((X2)CD, α2, (Y2)CD) = ((X3)CD, α3, (Y3)CD).

The four constants in CD′ require 4 digraphs, say,

C1, C2, C3, and C4 (1.36)

of D′ to be defined such that

(C1)CD = E1, (C2)CD = I2

and C3, and C4 are the elements of the set F(1, 2). Now we have all the “tools” accessible
in CD′. Finally, the relation (1.26) lets us “convert” the elements of D′ and CD′ back and
forth. We are done.

1.2.4 The Automorphism Group

So far we know two automorphisms of (D,≤), namely the trivial one and G 7→ GT . In
this subsection we prove that there is no other, meaning that the automorphism group of
(D,≤) is isomorphic to Z2.

We offer two approaches. First, we build on the strong Theorem 1.5, and we reach
our goal easier, naturally. Second, we just use the much weaker Theorem 1.1, making it
trickier to succeed. On the second path, there is an argument quite useful when going for
the second approach of the proof of Lemma 1.10.

Determining the automorphism group using Theorem 1.5

Theorem 1.49. The poset (D,≤) has exactly two automorphisms, namely the trivial and
the one that maps every digraph to its transpose. Consequently, the automorphism group
of (D,≤) is isomorphic to Z2.
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Proof. Here, we are allowed to take adventage of Corollary 1.8. Regarding the automor-
phisms, it says that the only automorphism fixing the digraph A is the identity. To prove
this, let ϕ be an automorphism fixing A, and let G be an arbitrary digraph. What we need
to show is ϕ(G) = G. Let φ(x) be the formula defining G using the constant A. We apply
the automorphism ϕ to the formula φ, that is we change all appearances of A to ϕ(A).
This way, we get a formula φ′, defining ϕ(G), naturally. To conclude, ϕ(A) = A gives us
φ = φ′, and, as a consequence, ϕ(G) = G.

Finally we use Corollary 1.9. As an automorphism cannot take an element outside from
a definable set, for an arbitrary automorphism α, α(A) ∈ {A,AT } holds. If α(A) = A, then
α is the identity, as proven above. If the other possibility is realized, then with αT denoting
the transposition automorphism, we have α−1T ◦ α(A) = A, resulting in α−1T ◦ α(A) having
to be the identity. Hence α = αT , indeed.

Determining the automorphism group using only Theorem 1.1

Lemma 1.50. GT ≤ G ∪̇ On implies G = GT for every finite digraph G and integer
2 < n.

Proof. Our first easy observation is that X ≤ On implies X = XT . Let us denote the
weakly connected components of G by {Ga}a∈A. Let A = B ∪̇ C such that b ∈ B if
and only if Gb is embeddable into On. Now let us suppose that GT ≤ G ∪̇ On. With the
notation just introduced (⋃̇

a∈A
Ga

)T
≤

(⋃̇
a∈A

Ga

)
∪̇ On

⋃̇
a∈A

GTa ≤

(⋃̇
a∈A

Ga

)
∪̇ On

(⋃̇
b∈B

GTb

)
∪̇

(⋃̇
c∈C

GTc

)
≤

(⋃̇
b∈B

Gb

)
∪̇

(⋃̇
c∈C

Gc

)
∪̇ On

which obviously implies

⋃̇
c∈C

GTc ≤

(⋃̇
c∈C

Gc

)
∪̇

(⋃̇
b∈B

Gb

)
∪̇ On︸ ︷︷ ︸

=:X

. (1.37)

If there exists a c ∈ C for whichGTc ≤ X, thenGTc ≤ On, forX consists of weakly connected
components embeddable into On. Then, according to our first observation, GTc = Gc which
means Gc ≤ On, a contradiction. This means there is no c ∈ C for which GTc ≤ X so from
(1.37) we deduce ⋃̇

c∈C
GTc ≤

⋃̇
c∈C

Gc, and

(⋃̇
c∈C

Gc

)T
≤
⋃̇
c∈C

Gc.
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Figure 1.5: The digraph X4.

By transposing both sides the direction of the embeddability stays the same obviously, but
we get the converse, implying (⋃̇

c∈C
Gc

)T
=
⋃̇
c∈C

Gc.

Using our first observation once more, we obtain(⋃̇
b∈B

Gb

)T
=
⋃̇
b∈B

GTb =
⋃̇
b∈B

Gb.

Finally, putting together what we have we get

G =
⋃̇
a∈A

Ga =

(⋃̇
b∈B

Gb

)
∪̇

(⋃̇
c∈C

Gc

)
=

(⋃̇
b∈B

Gb

)T
∪̇

(⋃̇
c∈C

Gc

)T
= GT .

Definition 1.51. Let us call Xn (see Fig. 1.5) the digraph with

V (Xn) = {v, v1, v2, . . . , vn}, E(Xn) = {(v1, v), (v2, v), . . . , (vn, v)}.

Proof of Theorem 1.49 using just Theorem 1.1. It is easily seen that an automorphism can
only move the elements of D inside definable sets, therefore from Theorem 1.1 it follows
that it either does not move an element or maps it to its transpose. Let us consider an
automorphism ϕ : D 7→ D for which there exists G ∈ D such that G 6= GT and ϕ(G) = G.
We must show that ϕ is the identity function. This can be done by showing that adding
G to the language of partially ordered sets as a constant results in every element of D
becoming definable. So let us add G to the language of partially ordered sets as a constant
and pick an arbitrary F ∈ D that is not isomorphic to its transpose (those digraphs that
are isomorphic to their transposes are definable by Theorem 1.1). Our goal will be to show
that F is definable.
Let V (G) = {v1, v2, . . . , vn}. Lemma 1.50 lets us define G ∪̇ On+1 as the unique element
from the definable set

{G ∪̇ On+1, (G ∪̇ On+1)
T = GT ∪̇ On+1}

that G is embeddable into. Let us use the notation

V (G ∪̇ On+1) = V (G) ∪ {v′1, v′2, . . . , v′n+1}.
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O3 O′3

Figure 1.6: The digraph O3 and a corresponding O′3.

We create a digraph G′ (see Fig. 1.6) by adding edges to G ∪̇ On+1 as follows:

E(G′) = E(G ∪̇ On+1) ∪ {(v′1, v1), (v′2, v1), (v′3, v1), . . . , (v′n+1, v1)}. (1.38)

Now G′ is definable as the unique element of the set {G′, (G′)T } into which G ∪̇ On+1 is
embeddable. Xn+1 is the unique element from the set {Xn+1, (Xn+1)

T } that is embed-
dable into G′ so it is definable too. A is the unique element from the set {A,AT } that is
embeddable into Xn+1. So far we have proven that A is definable.
Now we do the same as above, but backwards. Let m be the number of vertices of F .
Xm+1 is the unique element in the set {Xm+1, (Xm+1)

T } that A is embeddable into. Let
F ′ be created from F analogously to how G′ was created from G in (1.38) (see Fig. 1.6).
Now F ′ is the only element from the set {F ′, (F ′)T } that Xm+1 is embeddable into. Next,
F ∪̇ Om+1 is the only element from the definable set

{F ∪̇ Om+1, (F ∪̇ Om+1)
T = F T ∪̇ Om+1}

that is embeddable into F ′. Finally, by Lemma 1.50, F is definable as the only element
from the set {F, F T } that is embeddable into F ∪̇ Om+1.

1.3 Substructure

1.3.1 Introduction

To recall the definition of substructureness and the most basic concepts about it, see
Section 1.1, General Introduction.

The main result of the section is the following.

Theorem 1.52. There exists a finite set of finite directed graphs {C1, . . . , Ck} such that
the binary embeddability relation,

{(G,G′) : G ≤ G′},

is definable in the first-order language of (D;v, C1, . . . , Ck). Consequently, every relation
definable in the first-order language of (D;≤) is definable in that of (D;v, C1, . . . , Ck).

In itself, this theorem is quite weightless, what fills it with content is that we already
know that the first-order language of (D;≤) is surprisingly strong, recall Subsection 1.2.2.
With Theorem 1.52, everything we proved in the previous section for the first-order lan-
guage of (D;≤) transforms automatically into statements for the first-order language of
(D;v, C1, . . . , Ck). For example:
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Corollary 1.53. There exists a finite set of finite directed graphs {C1, . . . , Ck} such that
in the first-order language of (D;v, C1, . . . , Ck)

• every single digraph G is definable,

• the set of weakly connected digraphs is definable, moreover,

• the full second-order language of digraphs becomes available.

We remark that the notations of Theorem 1.52 and Corollary 1.53 may suggest that
the set {C1, . . . , Ck} in the two statements can be the same. This is not necessarily true,
even though there is a strong connection between the two sets. Depending on the set of
Theorem 1.52, an additional digraph might have to be added the get the corresponding set
of Corollary 1.53. This is due to the fact that the first-order language of (D;≤) does not
yield the listed statements of Corollary 1.53 in itself. As we saw in the previous section,
a constant (a particular digraph), e.g. the digraph A, has to be added to the first-order
language of (D;≤) to make these true. If this constant is not already there in the set of
{C1, . . . , Ck} of Theorem 1.52 then its addition might be required to get that of Corollary
1.53. As the equality of the sets is not stated anywhere, this technically is not a problem.

We wish to make another remark on the lists {C1, . . . , Ck} to avoid false expectations.
Naturally, as we proceed with our proof the lists {C1, . . . , Ck} will be continuously growing.
The final list is revealed gradually throughout the section, and that is why we now outline
it in advance. To do so, we describe a family of our arguments used in the last, technical
section of the paper. Some properties of digraphs can be told by saying something about
the list of their, say, at most 4-element substructures (without multiplicity, naturally). For
example one can tell if a digraph has loops based on the list of its 1-element substructures.
Similarly, one can judge if it has a non-loop edge by the list of its (at most) 2-element
substructures. Far more complicated properties can be told in this way, say, locally. We
adopt this thinking in the last section of the paper. This will force our lists {C1, . . . , Ck}
to be {at most 12-element digraphs}. This list is long but finite nevertheless.

The main reason for a minimal list {C1, . . . , Ck} being out of our grasp lies in the com-
plexity of the automorphism group of (D;v). Unfortunately, we are not able to determine
it, we can only prove it is finite.

Theorem 1.54. The automorphism group of (D,v) is finite.

The proof is in the next subsection.
Though unable to prove it, we will formulate a conjecture for the automorphism group

in the next subsection.
In the next subsection, numbered 1.3.2, we prove what we know about the automor-

phisms group, namely Theorem 1.54, and tell our conjecture in detail. The subsection af-
ter that, Subsection 1.3.3, contains the proof of the main theorem, Theorem 1.52, without
some technicalities. In the following one, Subsection 1.3.4, the reader finds the technicalities
skipped before.

1.3.2 On the Automorphism Group

First, we prove Theorem 1.54 using Theorem 1.52.
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Proof of Theorem 1.54. It is clear that the orbits of the automorphism group are finite as
an automorphism can only move a digraph inside its level in (D,v). Let o(G) denote the
size of the orbit of the digraph G (which is therefore a positive integer).

We state that it suffices to present a finite set of digraphs such that the only auto-
morphism fixing them all is the identity. To prove that, let {C1, . . . , Ck} be such a set
and ϕ be an arbitrary automorphism. Observe that the images of Ci under ϕ determine ϕ
completely, or in other words, the only automorphism agreeing with ϕ on {C1, . . . , Ck} is
ϕ. Indeed, with the notations

S = {α ∈ Aut(D;v) : α(Ci) = ϕ(Ci), i = 1, . . . , k},

and S′ = {αϕ−1 : α ∈ S}, |S| = |S′| holds, and |S′| = 1 for all elements of S′ fix all of
{C1, . . . , Ck}. The fact that an automorphism is completely determined by its action on
{C1, . . . , Ck} means that the automorphism group has at most o(C1) · . . . · o(Ck) elements.
That proves our statement.

Finally, we claim that {C1, . . . , Ck} of Theorem 1.52 suffices for the purpose above,
namely the only automorphism fixing them all is the identity. Let ϕ be an automorphism
that fixes all Ci. Let G ∈ D be arbitrary. We need to show that ϕ(G) = G. We know from
Corollary 1.53 that there exists a formula φG(x) with one free variable, that defines G in
the first-order language of (D,v, C1, . . . , Ck). If we change all occurrences of Ci to ϕ(Ci) in
φG(x), then we get a formula φϕ(G)(x) defining ϕ(G). For ϕ fixes all Cis, φG(x) = φϕ(G)(x),
implying G = ϕ(G).

In the remaining part of the subsection, we present the automorphisms that we know
of. Here, no claim is proven rigorously, they are all rather conjectures. Our intention is just
to offer some insight on how the author sees the automorphism group at the moment.

Before the (semi-)precise definition of our automorphisms, we feel it is useful to give a
nontechnical glimpse at them. Automorphisms map digraphs to digraphs in D. To define
an automorphism ϕ, we need to tell how to get ϕ(G) from G. All the automorphisms, that
we know of at the moment, share a particular characteristic. They are all, say, local in the
following sense. Roughly speaking, to get ϕ(G) from G, one only needs to consider and
modify G’s at most two element substructures according to some given rule.

To make this clearer, we give an example. Let ϕ(G) be the digraph that we get from
G such that we change the direction of the edges on those two element substructures of
G that have loops on both vertices. It is easy to see that this defines an automorphism,
indeed. Perhaps, one would quickly discover the automorphism that gets ϕ(G) by reversing
all edges of G, but this is different. In this example, the modification of G happens only
locally, namely on 2-element substructures. All the automorphisms, that we know of, share
this property.

Now, we define some of our automorphisms, ϕi, (semi-)precisely. We tell how to get
ϕi(G) from G. One of the most trivial automorphisms is

• ϕ1: where there is a loop, clear it, and vice versa, to the vertices with no loop, insert
one.

Observe that this automorphism operates with the 1-element substructures. Now we start
to make use of the labels of Fig. 2.
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• ϕ2: change the substructures (isomorphic to) E to E′ and vice versa.

• ϕ3: change the substructures (isomorphic to) L to L′ and vice versa.

• ϕ4: reverse the edges in the substructures (isomorphic to) P .

• ϕ5: reverse the edges in the substructures (isomorphic to) Q.

Let S4 denote the symmetric group over the four-element set {A,B,C,D}, and π ∈ S4.
We define

• ϕπ: We change the substructures (isomorphic to) X ∈ {A,B,C,D} to π(X) (such
that the loops remain in place).

Observe that, with the exception of ϕ1, the automorphisms defined above do not touch
loops (when getting ϕi(G) from G). We conjecture that these automorphisms generate the
whole automorphism group.

Finally, we investigate the structure of the group of our conjecture. Let I denote the
set of possible indexes of our ϕs, namely

I = {1, . . . , 5} ∪ {π ∈ S4}.

Let 〈〉 stand for subgroup generation. Let S = 〈ϕi : i ∈ I〉 denote the group of our
conjecture. It seems that S splits into the internal semidirect product

S = 〈ϕi : i ∈ I \ {1}〉o 〈ϕ1〉.

Furthermore, the first factor appears to be a(n internal) direct product

〈ϕ2〉 × 〈ϕ3〉 × 〈ϕ4〉 × 〈ϕ5〉 × 〈ϕπ : π ∈ S4〉.

Here, at the last factor, the subgroup generation is just a technicality as, clearly, the ϕπs
constitute a subgroup themselves. These observations all need a proper checking, but they
give rise to the conjecture that S is isomorphic to

(Z4
2 × S4)oα Z2,

where S4, again, denotes the symmetric group over the set {A,B,C,D}, and α is the
following. Obviously, α(0) = id ∈ Aut(Z4

2 × S4). To define α(1), let p, q, r, s ∈ {0, 1} and
π ∈ S4. Then

α(1) : (p, q, r, s, π) 7→ (q, p, s, r, (BC)π(BC)), (1.39)

where (BC) is just the usual cycle notation of the permutation of S4 that takes B to C
and vice versa. Note that the group of our conjecture has 768 elements. Even though we
cannot prove that there are no more automorphisms beyond the ones in S, we conjecture
so.

Conjecture 1.55. The automorphism group of the partial order (D;v) is isomorphic to
(Z4

2 × S4)oα Z2, with the α defined above (around (1.39)).
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1.3.3 The Proof of the Section’s Main Theorem (Theorem 1.52) Without
Some Technicalities

As long and technical as it may seem, the whole proof of Theorem 1.52 is based on a
simple idea, which we outline here. We get substructures of a directed graph by leaving out
vertices, while, to get embeddable digraphs, we can leave out vertices and edges both. We
want to define the latter, so we should be able to ‘simulate’ leaving out edges somehow. Our
approach is the following. In a digraph G, if there is an edge (u, v) ∈ E(G), then we add a
vertex and two edges to “support” the edge (u, v). Namely, we add w to the set of vertices,
and the edges (u,w) and (w, v) to the set of edges. After the addition, we say that the edge
(u, v) is “supported”. The idea is that the supportedness of an edge can be terminated by
leaving out a vertex, in the previous example w, what we can do by taking substructures.
Roughly, what we should do is: support all edges, take a substructure, and in one more step,
leave only the supported edges in. Of course, there seem to be many problems with this
(if told in such a simplified way). Firstly, how can we distinguish between the supporting
vertices and the original ones? This appears to be an essential part of the plan. Secondly,
the plan ended with “leave only the supported edges in” which just looks running into the
original problem again: We cannot leave edges out. Even though the plan seems flawed for
these reasons, it is manageable. The whole section is no more than building the apparatus
and carrying it out.

Definition 1.56. In this section, we use two particular automorphisms:

• the loop-exchange automorphism, denoted by l, which is ϕ1 (of the previous section),

• the complement automorphism, denoted by c, which replaces E(G) with its comple-
ment, V (G)2 \ E(G).

Definition 1.57. A directed graph is called an IO-graph if it satisfies the following con-
ditions. The only one-element substructure of it is E1. If X is a two-element substructure
then it is either E2 or I2. If X is a three-element substructure then X is E3, or I2 ∪̇ E1,
or I3, or O3. Let the set of IO-graphs be denoted by IO.

Lemma 1.58. The set IO is definable.

Proof. Observe that the set IO is already given by a first-order definition, using the one,
two, and three element digraphs as constants.

Observe that the set IO is closed under taking substructures. The following lemma
motivates our notation IO.

Lemma 1.59. A directed graph is an IO-graph if and only if it is a disjoint union of lines
and/or circles.

Proof. Straightforward induction on the number of vertices suffices, using the closedness
mentioned prior to the lemma.

Lemma 1.60. The set {On : n ≥ 3} is definable.
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Proof. It is clear that all elements of the set are IO-graphs, we just need to choose which.
It is easy to see that, in IO, those that have a unique lower-cover (within IO) are:

G ∪̇ · · · ∪̇ G︸ ︷︷ ︸
k copies

, where G ∈ {E1, I2} ∪ {On : n ≥ 3},

for k ≥ 1 except when X = E1, then k > 1. In this set, the desired digraphs are exactly
those that are minimal (in this particular set) and have I3 or O3 as a substructure.

Definition 1.61. A digraph is called loop-full if all vertices have loops on them, and loop-
free if none. The loop-full part of a digraph is the maximal loop-full substructure of it, and
the loop-free part is the maximal loop-free substructure.

Lemma 1.62. The relation

{(G,F,G ∪̇ F ) : G,F ∈ D, G is loop-full and F is loop-free}

is definable.

Proof. The relation consists of those triples (X,Y, Z) for which

• X is the loop-full part of Z,

• Y is the loop-free part of Z, and

• there is no two element substructure of Z that consists exactly one loop and has a
non-loop edge in it.

Definition 1.63. Let L→ denote the digraph with

V (L→) = {v1, v2}, and E(G) = {(v1, v1), (v1, v2)}.

Definition 1.64. Let G be a loop-full digraph with V (G) = {v1, . . . , vn}. Then l(G) is
loop-free. Let the set of its vertices be l(G) = {v′1, . . . , v′n} (to recall l, see Def. 1.56) with

for i 6= j : (v′i, v
′
j) ∈ E(l(G))⇔ (vi, vj) ∈ E(G).

Let G→ l(G) denote the digraph for which

V (G→ l(G)) = V (G) ∪ V (l(G)), and

E(G→ l(G)) = E(G) ∪ E(l(G)) ∪ {(vi, v′i) : 1 ≤ i ≤ n}.

Lemma 1.65. The relation

{(G, l(G), G→ l(G)) : G ∈ D, G is loop-full}

is definable.

Proof. Let us consider the triples (X,Y, Z) for which

• X is the loop-full part of Z, and Y is the loop-free part of Z,
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• X ∪̇ E1 6v Z, and Y ∪̇ L1 6v Z (both are definable by Lemma 1.62),

• on two points, the only substructure having exactly one loop and at least one non-loop
edge is L→, and

• no digraph of the first two pictures of Fig. 1.7 is a substructure. We consider the
dashed edges possibilities, either we draw them (individually) or not. In this way,
there are 6 (isomorphism types) encoded into the first two pictures of Fig. 1.7. We
exclude them all.

Now we have ensured that the edges L→ constitute a bijection between the vertices of X
and Y in Z. It only remains to force this bijection to be edge and non-edge preserving as
well. This can be done by requiring the additional the property

• Consider the third picture of Figure 1.7 as before, the dashed edges are possibili-
ties. We forbid those from being substructures in which the dashed edges are not
symmetrically drawn on the two (loop-full and loop-free) sides.

Figure 1.7:

We are going to need some basic arithmetic later. We define addition in the following
lemma.

Lemma 1.66. The following relation is definable:

{(En, Em, En+m) : n,m ≥ 1}.

Proof. The set {En} is definable as it consists of E1 plus those digraphs which have only
E2 as a two-element substructure. En ∪̇ (Lm → Em) is the digraph X for which

• En ∪̇ Lm v X (using Lemmas 1.62 and 1.65),

• Lm → Em v X (using Lemma 1.65),

• the second digraph of Fig. 1.7, without the dashed edges, is not a substructure,

• En+1 ∪̇ Lm 6v X (En+1 is just the cover of En in {En}),

• on two vertices, the only substructure having a non-loop edge is L→,

• the maximal loop-full substructure of X is Lm, and

• the maximal loop-free substructure of X is of the form Ei.
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The Ei of the last condition is En+m.

Lemma 1.67. The following relation is definable:

{(G,F ) : G and F have the same number of vertices}. (1.40)

Proof. We “determine” the number of vertices for the loop-full and the loop-free parts of the
graphs separately and add them using Lemma 1.66. Let G1 denote the loop-full part of G,
and G2 denote the loop-free part. Let X denote the digraph with the following properties:

• The loop-full part of X is G1, and the loop-free part is Ei for some i.

• On two points, the only substructure having exactly one loop and at least one non-
loop edge is L→.

• G1 ∪̇ E1 6v X, and Ei ∪̇ L1 6v X.

• Just as in the proof of Lemma 1.65, no digraph of the 6 digraphs of the first two
pictures of Fig. 1.7 is a substructure. (No matter, we wouldn’t even need all 6 in this
case.)

Observe that inX, the edges L→ constitute a bijection betweenG1 and Ei, consequently
i in the first condition is |V (G1)|.

Now we proceed analogously for the loop-free part, G2. We do not write all the con-
ditions down again, as they are just the ones above converted with the automorphism l.
This way, we get Lj with j = |V (G2)|. We already have Ei and Lj defined, such that
i+ j = |V (G)|. To conclude, we use the relation of Lemma 1.65 to get Ej and Lemma 1.66
to obtain the desired Ei+j , marking the number of vertices of G.

Finally, (G,F ) ∈ (1.40) holds if and only if, by doing the same, we get the same Ei′+j′
marking the number of vertices.

We define some more arithmetic in the following lemma, namely multiplication.

Lemma 1.68. The following relation is definable:

{(En, Em, Enm) : n,m ≥ 1}.

Proof. The relation {(Ei, Fi) : i = 1, 2, . . . } is definable as, beyond (E1, F1), for i > 1,
Fi is the only digraph having the same vertices as Ei that has only F2 as a two element
substructure. Let X be a digraph that is maximal with the following properties:

1. E1 6v X to ensure that the relation E(X) is reflexive.

2. l(I2) 6v X to ensure that the relation E(X) is symmetric.

3. The digraph of Fig. 1.8 is not a substructure of X to ensure that the relation E(X)

is transitive.

4. Ln is the maximal Li substructure.

5. Fm is the maximal Fi substructure.
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The conditions 1-3 force E(X) to be an equivalence. Condition 4 tells the equivalence
has at most n classes and condition 5 requires the classes to have at most m elements. It is
easy to see that such an equivalence relation has a base set of at most nm elements, hence
|V (X)| = nm. Thus, using Lemma 1.67, we are done.

Figure 1.8:

Lemma 1.69. Disjoint union of IO graphs is definable, i.e. the following relation is de-
finable:

{(G1, G2, G1 ∪̇ G2) : G1, G2 ∈ IO}.

Proof. Though the notion l(G)→ G was not defined as is in Definition 1.64, it is such an
analogue that the reader surely can decipher without effort. Using G1 and G2, we want to
define

G1 ∪̇ (l(G2)→ G2), (1.41)

whose loop-free part is the sought G1 ∪̇ G2. For this, let X satisfy the following conditions.

• |V (X)| = |V (G1)|+ 2|V (G2)| (using Lemmas 1.67 and 1.66),

• G1 ∪̇ l(G2) v X (using Lemma 1.62),

• l(G2)→ G2 v X (using Lemma 1.65), and

• l(F2) 6v X.

It easy to see that these three conditions ensure that (1.41) is embeddable (not substruc-
ture!) into X: there can be edges between the substructures G1 and G2 which we need
to exclude. If there is an edge from G2 to G1 (in this particular direction), then the first
graph of Fig. 1.9 is a substructure, without the dashed edges. Analogously, if an edge goes
from G1 to G2, then the second digraph of Fig. 1.9 is a substructure, without the dashed
edges. Edges going both directions is forbidden by the last condition above. Thus we need
to exclude these two substructures. Let Y satisfy the following conditions.

• |V (Y )| = |V (G2)|+ 2, and Y w l(G2).

• I2 and L→ are substructures of Y .

• The digraph of Fig. 1.10 is not a substructure of Y .

These three conditions do not define the two digraphs of Fig. 1.9 without the dashed
edges, they rather define the set of those with the dashed edges meant as possibilities, as
usual. However none of the dashed edges can actually appear in our X so by excluding all
such, we do not do more than by excluding only the two without the dashed edges. Finally,
(1.41) is the loop-free part of X .
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l(G2) l(G2)

Figure 1.9:

Figure 1.10:

Lemma 1.70. The following set is definable.

{G : G is a disjoint union of circles of different sizes}. (1.42)

Proof. The set of digraphs that are disjoint unions of circles contains those IO graphs that
have unique upper-covers (in the set IO). In this set, the digraphs of the form Oi ∪̇ Oi are
those that have a unique circle substructure Oi and have twice as many vertices as Oi. We
have defined two sets of digraphs, the set of the lemma is just the set of those digraphs of
the first set that have no substructures from the second.

Lemma 1.71. The following relation is definable.

{(O∗, G ∪̇ O∗) :G ∈ D and O∗ is a disjoint union of |V (G)|-many circles of

different sizes such that the smallest has at least |V (G)|+ 1 vertices}.
(1.43)

Proof. First, we define a relation counting the number of circles inO∗, actually we formulate
it without the restriction on the sizes of the circles:

{(Ei, O) : O is a disjoint union of i circles}. (1.44)

The set of O’s of this relation was defined in the first sentence of the proof of Lemma 1.70.
Let O′ denote such a substructure of O that has no circle in it and has a maximal number
of vertices with this property. Then i+ |V (O′)| = |V (O)| holds for the i of (1.44), thus we
can conclude with the addition relation defined earlier.

Let O∗ be an element of the set defined in Lemma 1.70 and i be the number of its
circles. Let X satisfy:

• |V (X)| = |V (O∗)|+ i.

• The smallest circle in O∗ has at least i+ 1 vertices.
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• O∗ v X.

• X does not have a substructure Y for which

– |V (Y )| = |V (O∗)|+ 1, and Y w O∗,

– Y is loop-free, and

– Y is not an IO-graph.

• X does not have a substructure Y for which

– |V (Y )| = |V (O∗)|+ 1, and Y w O∗,

– Y has a loop in it, and

– Y has one of L→ or LT→ (the transpose of L→) or c(L1 ∪̇ E1) as a substructure.

With these properties, X is of the required form G ∪̇ O∗.

Definition 1.72. Let O∗ be a digraph that is a disjoint union of circles of different sizes,
as usual, and let G be an arbitrary digraph. We introduce the notation GO∗N for the digraph
that is the disjoint union of weakly connected components of G not embeddable into O∗.

Lemma 1.73. The following relation is definable.

{(O∗, G,GO∗N ) : G ∈ D, and O∗ is a disjoint union of circles of different sizes}

Proof. The following conditions suffice.

• O∗ ∈ (1.42),

• GO∗N v G,

• for all X ∪̇ O∗ (using (1.43)), GO∗N v X ∪̇ O∗ implies |V (X)| ≥ |V (GO
∗

N )|, and

• GO∗N is maximal with the properties above.

The third condition forces GO∗N to have only such wccs that are not substructures of O∗.
Note that the third condition can be encoded into a first-order formula using Lemmas 1.66
and 1.67.

Lemma 1.74. The following relation is definable.

{(O∗, G,G ∪̇ O∗) : (O∗, G ∪̇ O∗) ∈ (1.43)} (1.45)

Proof. The relation in question is the set of triples (O∗, G,X) for which

1. (O∗, X) ∈ (1.43),

2. |V (X)| = |V (O∗)|+ |V (G)|,

3. XO∗
N = GO

∗
N (using Lemma 1.73), and

4. Y ∪̇ O∗ v X, for all IO-substructures Y of G.
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Condition 1 entails X = G′ ∪̇ O∗ for some G′. With this notation, what we have to
prove is G = G′.

Condition 2 adjusts the size of G′.
Before explaining Conditions 3 and 4, we introduce a notation needed. For a digraph

G, its wccs fall into two categories, those that are IO-graphs, and those that are not. Let
GIO and GNIO stand for the substructures of G consisting of the IO- and non-IO-wccs of
G, respectively. To prove G = G′, it is enough to show that GIO = G′IO and GNIO = G′NIO

both hold.
Condition 3 forces GNIO = G′NIO, because we clearly have XO∗

N ⊇ G′NIO (this is not
substructureness, but containment between parts of digraphs, meaning the multiset of wccs
of the left side contains that of the right side).

Condition 4 is to ensure GIO = G′IO, but seeing it serves its purpose is far from trivial.
Our goal is to prove that for any wcc W of GIO:

the number of wccs isomorphic to W in G′IO is greater

or equal to the corresponding number of GIO.
(1.46)

If this goal is achieved, we are done as we already have |V (GIO)| = |V (G′IO)|. Let us
fix an arbitrary wcc W of GIO. We pick a particular Y = Y W from the many possible
Y s of Condition 4. Firstly, let Y W have a maximal number of vertices (among the IO-
substructures of G), and on top of that, let it have a maximal number of wccs isomorphic
to W in it. Note that Y W need not be uniquely determined by these properties. In case
it is not, we pick arbitrarily from the ones meeting the requirements. Condition 4 grants
Y W ∪̇ O∗ v X. Let ϕ be a map from Y W ∪̇ O∗ toX that certifies this fact. The maximality
of the number of vertices of Y W gives us G′IO ⊆ Range(ϕ), and it is easy to see that even
if wccs isomorphic to W map into G′NIO, the second maximality property of Y W implies
(1.46).

Some technical tools follow with another alteration of notation. In [7], the notation ♂
was used slightly differently than in [9]. That is the reason why we replace ♂ with for
the rest of the section.

Definition 1.75. Let V (On) = {v1, . . . , vn} and let us define two digraphs with

V ( n) := V (On) ∪ {u1, u2}, E( n) := E(On) ∪ {(v1, u1), (u1, u2)}, and

V ( L
n) := V ( n), E( L

n) := E( n) ∪ {(u2, u2)}.

Now let m be a different positive integer from n and define m and L
m analogously with

V ( m) = V ( L
m) = {v′1, . . . , v′m, u′1, u′2}.

Now we are going to deal with pairs of the digraphs just defined, which leaves us 4 = 2×2

cases with respect to the presence of the loops. To avoid the tiresomeness of listing all 4
possibilities all the time, we resort to the following notation. We say, let (2,O) ∈ {∅, L}2,
and for example, in the case (2,O) = (L, ∅), we mean ( L

n , m) by ( 2
n ,

O
m), naturally.

Let (2,O) ∈ {∅, L}2. We introduce two more types of digraphs with

V ( 2
n → O

m) := V ( n) ∪ V ( m), E( 2
n → O

m) := E( 2
n ) ∪ E( O

m) ∪ {(u2, u′2)}, and

V ( 2
n ↔ O

m) := V ( n) ∪ V ( m), E( 2
n ↔ O

m) := E( 2
n → O

m) ∪ {(u′2, u2)}.
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Lemma 1.76. The following relation is definable for all (2,O) ∈ {∅, L}2.

{(Ei, Ej , 2
i ,

2
i ∪̇ O

j ,
2
i → O

j ,
2
i ↔ O

j ) : i, j > 3, i 6= j} (1.47)

The proof is put in the next subsection for its technical nature.
The following definition introduces a construction of great importance in the remaining

half of the proof.

Definition 1.77. Let G be a digraph on n vertices with V (G) = {v1, . . . , vn}, and let
(O∗, G ∪̇ O∗) ∈ (1.43) with V (O∗) = {uji : 1 ≤ j ≤ n, 1 ≤ i ≤ kj} such that the jth circle
Okj of O∗ consists of the vertices {uji : 1 ≤ i ≤ kj}. Let C(O∗) = {Ok1 , . . . , Okn} denote
the set of the circles of O∗ and let α : C(O∗) → V (G) be a bijective map. We introduce
the notation G α← O∗ for the digraph with

V (G
α← O∗) = V (G ∪̇ O∗) ∪ {w1, . . . , wn}, and

E(G
α← O∗) = E(G ∪̇ O∗) ∪ {(uj1, wj) : 1 ≤ j ≤ n} ∪ {(wj , α(Okj )) : 1 ≤ j ≤ n}.

Lemma 1.78. The following relation is definable.

{(O∗, G,G ∪̇ O∗, G α← O∗) : (O∗, G ∪̇ O∗) ∈ (1.43), α : C(O∗)→ V (G)}. (1.48)

Proof. As we already defined (1.45), we only need to define the digraphs G α← O∗ (using
O∗, G and G ∪̇ O∗). The relation of the lemma consists of those triples (O∗, G,G ∪̇ O∗, X)

for which:

• |V (X)| = |V (G ∪̇ O∗)|+ |V (G)|,

• G ∪̇ O∗ v X,

• Oi v O∗ implies i v X or L
i v X,

• Oi, Oj v O∗ (i 6= j) implies 2
i ∪̇ O

j v X, or 2
i → O

j v X, or 2
i ↔ O

j v X for
some (2,O) ∈ {∅, L}2.

Unfortunately, these conditions do not ensure X = G
α← O∗ yet. That is because, say, the

tails of the s can still get entangled. Additional technical conditions have to be added to
avoid this unwanted scenario. For its technical nature, this argument is put in Subsection
1.3.4.

In the following definition we introduce the soul of our proof: the edge-supporting
construction. Before starting to study the long definition, it is worth to read the simplified
idea of it, back at the beginning of this subsection.

Definition 1.79. In this definition, we introduce the edge-supporting construction. Let G
be a digraph with

V (G) = {v1, . . . , vn}, and E(G) = {e1, . . . , er}.

Note that r ≤ n2 is necessary. Let p1 and p2 be two maps from E(G) to {v1, . . . , vn} defined
by the rule

∀e ∈ E(G) : e = (vp1(e), vp2(e)).
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Let us introduce a digraph Gs with

V (Gs) := V (G) ∪ {vs1, . . . , vsr}, and E(Gs) := E(G) ∪
r⋃
i=1

{(vp1(ei), v
s
i ), (v

s
i , vp2(ei))}.

We call the edges added by the big union the supporting edges. Let

O∗ = Ol1 ∪̇ Ol2 ∪̇ · · · ∪̇ Oln such that n2 + n < l1 < l2 < · · · < ln.

Let Ds be a set of integers with

|Ds| = r(= |E(G)|), and x ∈ Ds ⇒ x > ln. (1.49)

Let s be a bijective map from Ds, satisfying (1.49), to {vs1, . . . , vsr}. Let

O∗s := O∗ ∪̇
⋃̇
x∈Ds

Ox with V (O∗s) = {uji : j ∈ {l1, . . . , ln} ∪Ds, 1 ≤ i ≤ j}.

Let α : C(O∗)→ V (G) be a bijective map. We define the digraph (G
α← O∗)s by

(G
α← O∗)s := Gs

β← O∗s , where β|C(O∗) := α, β|{Ox:x∈Ds} := {(Ox, s(x)) : x ∈ Ds},

and say it is an edge-supporting digraph for G.

Remark 1.80. Note that the definition of the edge-supporting digraphs includes a condi-
tion for the size of the circles of O∗. That condition is very important here, and was not
present in (1.48). We need to be cautious about this later on.

Lemma 1.81. The following relation is definable.

{(O∗, G,G α← O∗, (G
α← O∗)s) : (G

α← O∗)s is an edge-supporting digraph for G} (1.50)

Proof. The relation in question consists of those quadruples (X1, X2, X3, X4) for which
the highlighted conditions hold. In some cases, there are explanations inserted between the
conditions.

• There exists a quadruple (X1, X2, Y,X3) ∈ (1.48), meaning (X1, X2, X3) is of the
form (O∗, G,G

α← O∗).

Thus, instead of (X1, X2, X3), we use (O∗, G,G
α← O∗) from now on in the proof. Let G

have n vertices. Now we are ready to shape O∗.

• Oi v O∗ implies i > n2 + n.

We turn to defining X4 of the quadruple we started with.

• There exists a quadruple (W1,W2,W3, X4) ∈ (1.48), meaning (W1, X4) is of the form
(O∗s , Gs

β← O∗s).

At this point, O∗s , Gs, and β are just notations yet, we need additional conditions to make
them be like in Definition 1.79.

• O∗ v O∗s
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• Oi v O∗s implies i ≥ l1, where l1 is the size of the smallest circle of O∗, as before.

• G α← O∗ v X4(= Gs
β← O∗s).

The following conditions are to shape the supporting edges of our construction according
to the definition.

• If Oi v O∗ and L
i v X4, then there exists k > ln for which L

i ↔ k v X4 holds.
Additionally, if l is different from i, k, and Ol v O∗s , then there exists � ∈ {∅, L} for
which k ∪̇ �

l v X4 holds.

• If Oi, Oj v O∗, i 6= j, and 2
i → O

j v X4 with (2,O) ∈ {∅, L}2, then there exists
k > ln for which 2

i → k v X4 and k → O
j v X4 both hold. Additionally,

if l is different from i, j, k, and Ol v O∗s , then there exists � ∈ {∅, L} for which
k ∪̇ �

l v X4 holds.

• If Oi, Oj v O∗, i 6= j, and 2
i ↔ O

j v X4 with some (2,O) ∈ {∅, L}2, then there
exist two different k1, k2 > ln for which all of

2
i → k1 , k1 →

O
j ,

O
j → k2 , and k2 →

2
i

are substructures of X4. Additionally, if l is different from i, j, ki, and Ol v O∗s , then
there exists � ∈ {∅, L} for which ki ∪̇

�
l v X4 holds for i = 1, 2.

• If Ok v O∗s and k > ln, then k is one of the ks or kis of the previous three conditions.

It is not hard to see that these conditions provide the structure we need.

We are finally ready to prove our main theorem.

Proof of Theorem 1.52. With (1.50), fix a triple (G,O∗, (G
α← O∗)s), and let n be the

number of vertices of G. We need to show that the set of digraphs embeddable into G is
definable. Let X v (G

α← O∗)s and let (GX , O
∗
X , GX

γ← O∗X) be a triple consisting the
second, first and third element of a 4-tuple of (1.50) for which the following conditions
hold.
Before listing the actual conditions being quite technical, it may be worth summarizing
their goal plainly. What they do is link GX to both X and G the natural way, i. e. making
sure that we have GX ≤ G and we leave out the edges that got unsupported taking the
substructure X.

• Oi v O∗X holds if and only if both Oi v O∗, and 2
i v X for some 2 ∈ {∅, L} hold.

• If Oi, Oj v O∗X , i 6= j, and (2,O) ∈ {∅, L}2, then

– 2
i ∪̇ O

j v GX
γ← O∗X holds if and only if one of the following three holds:

∗ 2
i ∪̇ O

j v X, or
∗ 2

i → O
j v X, but the edge is not supported in X, i. e. there exists no

k > ln (where ln is the size of the largest circle of O∗, as before) for which
2
i → k v X and k → O

j v X both hold, or
∗ 2

i ↔ O
j v X, but none of the two edges is supported in X.
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– 2
i → O

j v GX
γ← O∗X holds if and only if one of the following two holds

∗ 2
i → O

j v X, and the edge is supported in X, or
∗ 2

i ↔ O
j v X, but only the “i→ j” edge is supported in X.

– 2
i ↔ O

j v GX
γ← O∗X holds if and only if 2

i ↔ O
j v X and both edges are

supported in X.

It is not hard to see that GX ≤ G holds indeed, and all embeddable digraphs can be
obtained this way.

1.3.4 The Remaining Technicalities

Definition 1.82. The sum of the number of (both in- and out-)edges for a vertex, not
counting the loops, is called the loop-free degree of the vertex.

Lemma 1.83. Let 0 ≤ p and 1 ≤ q be two fixed integers. We can define, with finitely many
constants added to (D,v), the set of digraphs that contain at most p many vertices with
loop-free degree at least q each.

Before the easy proof, note that we can only use this lemma if we have a fixed constant,
say K = 4, for the whole paper, such that all usage of the lemma restricts to p, q ≤
K. Otherwise there would be no guarantee we are using finitely many constants at all.
Fortunately, K = 4 will do for the whole section. At the end of this subsection, we give a
more elaborate account on the usage of Lemma 1.83, which then will be behind us.

Proof. Observe that the digraph G has more than p many vertices with at least q loop-free
degree each, if and only if it has an at most (p+1)(q+1) element “certificate” substructure
with the same property. Hence, by forbidding all those (finitely many) certificates, we define
the set we need.

2 2 O

Figure 1.11:

Proof of Lemma 1.76. Let us consider Ei and Ej given. We define the other components
of the relation.

We start with 2
i which is just the digraph X for which

• |V (X)| = i+ 2.

• Oi v X.

• We use Lemma 1.83 with p = 1, and q = 3, i. e. X has at most one vertex with
loop-free degree at least 3.

• We use Lemma 1.83 with p = 0, and q = 4 as well.
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• The first digraph of Fig. 1.11 is a substructure. The 2 symbol is understood naturally,
if 2 = L, then there is a loop there, if 2 = ∅, then there is not.

• Depending on 2,

– if 2 = ∅, then Oi ∪̇ E1 v X, that is the only cover of Oi among the IO-graphs,

– if 2 = L, then Oi ∪̇ L1 v X, that is definable with Lemma 1.62.

We now start to deal with 2
i ∪̇ O

j . Oi ∪̇ Oj is the digraph with i+ j vertices that is
a disjoint union of circles and both Oi and Oj are substructures. 2

i ∪̇ O
j is the digraph

X for which

• |V (X)| = |V ( 2
i )|+ |V ( O

j )|.

• 2
i v X, and O

j v X.

• We use Lemma 1.83 with p = 2, q = 3 and with p = 0, q = 4.

• Depending on (2,O),

– if (2,O) = (∅, ∅), then Oi ∪̇ Oj ∪̇ E2 v X, which is just the digraph Y for
which

∗ |V (Y )| = i+ j + 2, and Oi ∪̇ Oj v X,
∗ Y has the maximal substructure Ek (among the ones with the previous

property).

– if (2,O) = (L, ∅) or (∅, L), then Oi ∪̇ Oj ∪̇ E1 ∪̇ L1 v X, which is just the
digraph Y for which

∗ |V (Y )| = i+ j + 2, and Oi ∪̇ Oj v X,
∗ Oi ∪̇ Oj ∪̇ E1, which is the only IO-graph cover of Oi ∪̇ Oj , is a substruc-

ture,
∗ Oi ∪̇ Oj ∪̇ L1 is a substructure, and
∗ on two elements, there is no substructure with both a loop and a loop-free

edge.

– if (2,O) = (L,L) then Oi ∪̇ Oj ∪̇ L2 v X.

Now we turn to 2
i → O

j , which is just the digraph X for which

• |V (X)| = |V ( 2
i )|+ |V ( O

j )|.

• 2
i v X, and O

j v X.

• We use Lemma 1.83 with p = 2, q = 3 and with p = 0, q = 4.

• The second digraph of Fig. 1.11 is substructure of X.

Finally, 2
i ↔ O

j is defined with the analogues of the conditions for 2
i → O

j .
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The end of the proof of Lemma 1.78 To exclude the possible entanglement of the s, it
is enough to forbid two types of digraphs as substructures. To introduce these two, first,
we need two circles Oi and Oj with

i 6= j, V (Oi) = {u1, . . . , ui}, and V (Oj) = {v1, . . . , vj}.

Then we define Pi and PO
i,j (where, as usual, O ∈ {∅, L}) to be

V (Pi) = V (Oi) ∪ {u′, u′′}, E(Pi) = E(Oi) ∪ {(u1, u′), (u1, u′′)},

and
V (Pi,j) = V (Oi) ∪ V (Oj) ∪ {u′, v′, w},

E(Pi,j) = E(Oi) ∪ E(Oj) ∪ {(u1, u′), (u′, w), (v1, v
′), (v′, w)},

with the usual, minor modification

V (PLi,j) = V (Pi,j), E(PLi,j) = E(Pi,j) ∪ {(w,w)}.

First, we define Pi (using Oi). Actually, the very first, we define P ′i , that is just Pi
minus the vertex u′′. This is easy as P ′i is the digraph one below i such that it has Oi in
it as a substructure but it does not equal Oi ∪̇ E1. Now the sought Pi = X can be defined
by the following properties:

• X covers P ′i ,

• Oi v X,

• X has exactly the same three-element substructures as Pi, and

• if X covers Y such that Oi v Y , then Y = P ′i .

Second, we define PO
i,j (using Oi and Oj). It is the only digraph X for which

• |V (X)| = |V (Oi)|+ |V (Oj)|+ 3,

• Oi ∪̇ Oj v X,

• O
i ,

O
j v X, and

• we use Lemma 1.83 with p = 2, q = 3.

Finally, to conclude the proof, we add two conditions to the ones already listed at the
beginning of the proof:

• Oi v O∗ implies Pi 6v X,

• Oi, Oj v O∗ (i 6= j) implies PO
i,j 6v X (for both O ∈ {∅, L}).

It is worth counting how big constants the usage of Lemma 1.83 requires. By its proof,
it is clear that its usage with the pair (p, q) requires constants of size at most (p+1)(q+1).
Looking back, we see that we used the lemma for the pairs (0, 4), (1, 4), and (2, 3). Hence
the answer to our question is 12, that is just max{5, 10, 12}.
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1.4 Table of Notations

Notation Number of
item it is in

Page number

≤ 8
v 8
∪̇ 8
C, E 1.33 19
≡, ≡CG, =C

G 1.33 19
(.)CD 1.47 26
♂n 1.26 17
♂Ln 1.26 17
♂Li,j 1.27 17
♂i → ♂j 1.39 23
m, L

m 1.75 41
2
n → O

m 1.75 41
2
n ↔ O

m 1.75 41
A 11
A 11
(A,α,B) 9
c 1.56 34
CD 9
CD′ 1.3 10
D 7
D′ 1.4 12
E 1.16 15
E+ 1.20 16
E(G) 8
E1 1.3 10
En 1.11 14
Fα(n,m) 1.43 25
F(n,m) 1.43 25
En 1.11 14
f1, f2 1.3 10
Fn 1.11 14
GT 8
GO

∗
N 1.72 40

G→ l(G) 1.64 35
G

α← O∗ 1.77 42
(G

α← O∗)s 1.79 42
G

v← O∗n 1.37 23
hom(A,B) 9
I2 1.3 10

48



Notation Number of
item it is in

Page number

In 1.12 14
IO-graph, IO 1.57 34
l 1.56 34
L 1.16 15
L→ 1.63 35
Ln 1.12 14
L(.) 1.13 14
L(.) 1.13 14
M 1.19 15
M(.) 1.14 14
M(.) 1.14 14
O 1.17 15
O∪ 1.19 15
On 1.12 14
O→n 1.24 17
O∗n 1.23 16
O∗n,L 1.29 17
On,L 1.28 17
Oi,i 1.41 24
Oi→j 1.30 19
ob(C) 9
V (G) 8
W 1.32 19
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Chapter 2

On Finite Generability of Clones of Finite
Posets

2.1 Introduction

Let F be a set of operations on a set A. We call F a clone if it is closed under composition
and contains the projections. A subset of a clone is called a subclone if it is closed under
composition and contains the projections. On a set A the subclones of the clone of all
operations of A form a lattice, the lattice of clones on A.

A generating set of a clone F is a subset of F from which every element of F is obtained
by the use of composition and projections. A clone is finitely generated if it has a finite
generating set. In this chapter we study certain clones related to finite posets. Our main
goal is to decide if these clones are finitely generated.

We say that an n-ary operation f on A preserves a k-ary relation R on A, if by applying
f componentwise to any r1, . . . , rn ∈ R the resulting k-tuple also is in R. Clearly, for any
set of relations S on A, the set of operations that preserve all of the relations of S is a
clone. The operations that preserve the one element subsets of their base sets are called
idempotent.

Let P be a partially ordered set, a poset for short. An operation f on the base set of
P is called monotone if f preserves the ordering ≤ of P . Then we also say that P admits
the operation f . For a finite poset P , let C(P ) and I(P ) denote the clone of monotone
operations of P and the clone of idempotent monotone operations of P , respectively. We
call C(P ) the clone of P and I(P ) the idempotent clone of P .

A clone is called maximal if it is a coatom in the lattice of clones. In [13] Rosenberg
proved that there are only six types of maximal clones in the lattice of clones on a finite
set. Later the clones of five types of them were shown to be finitely generated. The clones
of the sixth type are the clones of bounded posets. A poset is bounded if it has a smallest
and a largest element. On the finite generability of clones of bounded posets only partial
results were obtained so far.

An n-ary operation f , n ≥ 3, is a near unanimity operation if it satisfies the identities

f(x, y, . . . , y) = f(y, x, . . . , y) = · · · = f(y, y, . . . , x) = y.

Notice that the near unanimity operations are idempotent. It is well known that on a finite
set any clone that contains an n-ary near unanimity operation is finitely generated. In [1]
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Demetrovics, Hannák and Rónyai proved that by deleting any convex subset of a finite
lattice we obtain a poset whose clone contains a near unanimity operation. A fence is a
finite poset of height 1 whose covering graph is a path. The linear sum P +Q of two posets
P and Q is the poset whose base set is the union of the base sets of P and Q, and whose
ordering is defined by a ≤ b iff either a ∈ P and b ∈ Q or a ≤ b in P or a ≤ b in Q. Let
k denote the k-element antichain. If F is a fence, then 1 + 2 + F + 2 + 1 is a called a
locked fence. Fences and locked fences also admit a near unanimity operation. It is easy to
see that the class of finite posets whose clones contain near unanimity operations is closed
under retract and finite product. A retract of a poset P is a poset R that is isomorphic to
the image of a unary monotone operation f on P where f2 = f .

It is an open question if besides the finite bounded posets that admit a near unanimity
operation there are other types of finite bounded posets whose clones are finitely generated.
If we drop the boundedness condition in this question, then the answer is positive. A crown
is a poset of height 1 whose covering graph is a cycle. In [2] Demetrovics and Rónyai proved
that the clone of any crown is finitely generated. It is well known, on the other hand, that
the idempotent clone of any crown contains only projections, hence its clone does not
contain a near unanimity operation.

Figure 2.1: Posets T, H, and N

In his famous paper [14] Tardos proved that the clone of the eight element poset T in
Figure 2.1 is not finitely generated. His result was generalized by Zádori in [18]. A finite
poset P is series-parallel if the four element posetN in Figure 2.1 is not an induced subposet
of P . In [18] it was proved that for a series-parallel poset P , C(P ) is finitely generated if
and only if none of the posets T, H in Figure 2.1 and the dual of H are retracts of P .
A natural question arises: is it true that if the clone of a finite poset is finitely generated,
then the clone of any of its retracts is finitely generated. We are not able to answer even
the simpler question: is it true that if T or H is a retract of a finite poset P , then C(P ) is
non-finitely generated.

The aim of this chapter is to establish the non-finitely generated (or finitely generated)
property for clones of posets in new classes of finite posets. We think that such results
eventually may lead to a characterization of finite posets with non-finitely generated clones.

In Section 2.2 we exhibit an infinite family of finite (bounded) posets which are not
series-parallel and have non-finitely generated clones. Hence we get to new examples of
non-finitely generated maximal clones. Let An be the poset obtained from the Boolean
lattice with n atoms by removing its greatest element, and Bn the dual of An. Let Cm,n =

Am + 2 + Bn (see Fig. 2.2). We shall prove that if m,n ≥ 2, then C(Cm,n) and I(Cm,n)

are non-finitely generated. An analogous proof shows that C(2+Bn) and I(2+Bn) where
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Figure 2.2: The posets C2,2, C3,2, C2,3, and C3,3

n ≥ 2 are not finitely generated. We note that each of the posets Cm,n where m,n ≥ 2

retracts onto T , and each of the 2 +Bn where n ≥ 2 retracts onto H.
For any integer k ≥ 2, let Ck denote the 2k-element crown. Let Dk denote the poset

1 + 2 +Ck + 2 + 1. These posets were introduced by McKenzie in [11] under the name of
locked crowns. To settle the finite generability question for C(Dk) when k ≥ 3 seems difficult
and needs essentially new ideas beyond the scope of the ones in Tardos’s seminal paper [14].
The poset D2 is series-parallel and hence, by [18], its clone is non-finitely generated. When
k ≥ 3, then Dk is not series-parallel and it is not known whether C(Dk) is finitely generated
or not. Our investigations in this direction led to the results in Section 2.3.

We call an n-ary monotone operation f on a poset ascending if it is greater than or equal
to some projection, that is there is an i such that f(x1, . . . , xn) ≥ xi for all (x1, . . . , xn).
We prove that the clones of bounded posets are generated by certain ascending idempotent
monotone operations and the 0 and 1 constant operations. A consequence of this result is
that if the clone of (ascending) idempotent operations of a finite bounded poset is finitely
generated, then its clone is finitely generated as well. Another interesting consequence
of our result is that if the clone of a finite bounded poset is finitely generated, then it
has a three element generating set that consists of an ascending idempotent monotone
operation and the 0 and 1 constant operations. Our result does not extend to half bounded
finite posets: we prove that the clone of ascending idempotent operations of H is finitely
generated but, as we mentioned above, the clone of H is not finitely generated.

Our investigations on the clone of Dk led us to seemingly simpler problems. Unfortu-
nately, these problems turned out to be difficult ones, as well. For example, we are not
able to decide whether the clone of ascending idempotent operations of 1 + 2 + 2 + 1 is
finitely generated. Per se, it also remains an open question whether the clone of Dk, k ≥ 3,
is finitely generated.

2.2 Classes of Finite Posets with Non-Finitely Generated Clones

In this section we shall prove that the clones and the idempotent clones of the posets
Cm,n, An +2 and 2+Bn where m,n ≥ 2 are not finitely generated. We require some basic
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definitions to proceed.
For two posets O and P , the partial mappings f : O ⇀ P are called P -colorings

of O. If f is a P -coloring of a poset O, then we call the pair (O, f) a P -colored poset.
The P -colored poset (O, f) is called P -extendible if there exists a fully defined monotone
extension of f to O. We say that a poset O′ is contained in an other poset O if the ordering
relation of O′ is contained in the ordering relation of O. A P -colored poset (O, f) is called
a P -obstruction if (O, f) is not extendible, but for all posets O′ properly contained in O,
(O′, f |O′) is extendible. An obstruction is trivial if it has two elements or, equivalently, has
no non-colored elements. We note that if O is connected, then in the preceding definition
it suffices to take those O′ that are obtained from O by deleting a single covering edge.
Clearly, every finite non-extendible colored poset contains an obstruction. Later throughout
the text, we frequently use the notation P \ S where P is a poset and either S is a subset
of elements of P or S only contains a covering edge of P . In these cases, P \S denotes the
poset remaining from P after removing the elements of S and all edges incident with the
elements in S, or removing the covering edge of S from P , respectively.

First we describe the Bn-obstructions. By Proposition 1.12 and Theorem 2.2 in [19]
each non-trivial Bn-obstruction consists of a single non-colored element that is covered by
the colored elements of the obstruction. By taking into account the definition of obstruction
we have the following.

Theorem 2.1. Every non-trivial Bn-obstruction consists of a single non-colored element
that is covered by the colored elements of the obstruction. The colors of the colored ele-
ments form an antichain in Bn such that their intersection does not exist in Bn and the
intersection of all but any one of them does exist in Bn.

Observe that the number of colored elements of a non-trivial Bn-obstruction is at most
n, and if the set of colors of a Bn-obstruction is contained in the set of coatoms of Bn, then
it is equal to it. It also follows that the set of colors of any Bn-obstruction with n-colored
elements is equal to the set of coatoms of Bn. We need the following result, see Theorem
3.3 in [19].

Theorem 2.2. Let P be a finite poset and B a poset whose obstructions have at most one
non-colored element. Let P ′ = P + B. Then every non-trivial P ′-obstruction is in one of
the following form:

(i) a P -obstruction in which every maximal element is colored,

(ii) a B-obstruction in which every minimal element is colored, or

(iii) it is obtained from a P -obstruction (O, f) such that to each non-colored maximal
element of (O, f) we glue a B-obstruction with a non-colored minimal element at
its minimal element, possibly identifying some colored maximal elements of the same
color after the gluing.

We note that part (i) is a special case of part (iii), when the P -obstruction (O, f) has
only colored maximal elements. For a more interesting use of part (iii) we provided an
example in Figure 2.3.

We remark that the obstructions of the two element antichain {β, β′} are the colored
fences whose only colored elements are their two endpoints colored by β and β′, respectively.
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Figure 2.3: An example of construction (iii) in Theorem 2.2

By this remark, the preceding two theorems and their dual, we obtain a description of
the Cm,n-obstructions. From now on, we refer to the members of the two element antichain
in the definition (in the middle) of Cm,n as β and β′.

Corollary 2.3. Every non-trivial Cm,n-obstruction is obtained from a colored fence (O, f)

whose endpoints are colored by β and β′ such that to each non-colored maximal element
of (O, f) we glue a non-trivial Bn-obstruction and to each non-colored minimal element
of (O, f) we glue a non-trivial Am-obstruction, possibly identifying some colored maximal
elements of the same color and some colored minimal elements of the same color after the
gluing.

Now, we are set to prove the main theorem of the section. Our proof is analogous to
that of Tardos, hence we advise the reader to consult Tardos’s original paper [14] before
getting into the proof of our theorem.

Theorem 2.4. If m, n ≥ 2, then the clone of Cm,n and the idempotent clone Cm,n are
non-finitely generated.

Proof. First we prove that the clone of Cm,n is not finitely generated. For every k ≥ 4 we
shall define a relation R such that all [k/2]-ary monotone operations of Cm,n preserve R
but there is a monotone operation of Cm,n that does not preserve R. Then, clearly, for
every k ≥ 4, C(Cm,n) is not generated by the [k/2]-ary operations. Thus, C(Cm,n) is not
finitely generated.

The relation R is defined by the help of the poset Q in Figure 2.4. For every k ≥ 4,
poset Q consists of

(i) the fence y, w1, w2, . . . , w2k−1, y
′,
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x0 x2

w1 w3 w5 w2k−3

xm−1
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w2 w4 w2k−2
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z2 zk−1 zkz0 z1 . . .

. . .

. . .

. . .

Figure 2.4: Poset Q

(ii) the minimal elements x0, x2, . . . , xm−1 that are all lower covers of the minimal ele-
ments w1, w3, . . . , w2k−1 of the fence,

(iii) the maximal elements v1, v2, . . . , vn−1 that all cover the maximal elements w2, w4,
. . . , w2k−2 of the fence,

(iv) the maximal elements z1, z2, . . . , zk−1 such that zi uniquely covers w2i for 1 ≤ i ≤
k − 1, and

(v) two isolated elements z0 and zk.

Suppose f is a partial map from Q to Cm,n whose domain is the set of extremal elements
of Q. For every 0 ≤ j ≤ k we set fj(zi) = f(zi+j) for all 0 ≤ i ≤ k where the indices are
meant modulo k + 1, and fj(x) = f(x) where x is extremal and x 6= z0, . . . , zk.

Now, we define Ri to be the (m+n+k+2)-ary relation that consists of those partially
defined maps f on Q whose domains are the set of extremal elements of Q, (Q \ {e}, fj)
is extendible for every 0 ≤ j ≤ k and covering edge e of Q, and (Q, fi) is extendible. We
note that the Ri are preserved by the monotone operations of Cm,n. Let R = ∪ki=0Ri. We
conceive each element f ∈ R as an (m+ n+ k + 2)-tuple (a column vector) of the form

(f(x0), . . . , f(xm−1), f(y), f(y′), f(z0), . . . , f(zk), f(v1), . . . , f(vn−1)). (2.1)

First, we prove that the [k/2]-ary operations of Cm,n preserve R. This follows from the fact
that for any [k/2] elements in R there is an i such that Ri contains all of these elements. To
prove this we show that any element f of R is contained by k−1 of the Ri. Suppose that f
is in R but not in any of Ri0 , Ri1 and Ri2 where i0, i1 and i2 are pairwise different indices.
This implies that (Q \ {z0, zk}, fi0) is an obstruction. Hence - by the use of Corollary 2.3,
the second remark after Theorem 2.1 and its dual - up to a symmetry of Cm,n

fi0(x0) = α0, . . . , fi0(xm−1) = αm−1, fi0(y) = β, fi0(y′) = β′,

fi0(z1) = · · · = fi0(zk−1) = γ0, fi0(v1) = γ1, . . . , fi(vn−1) = γn−1
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where the αj are the atoms of Am, {β, β′} = 2 is the two element antichain in the middle
of Cm,n, and the γl are the coatoms of Bn. We similarly have

fi1(z1) = · · · = fi1(zk−1) = γ0 and fi2(z1) = · · · = fi2(zk−1) = γ0.

So by the definition of the fi, fi0(z0) = fi0(zk) = γ0 also holds. Hence f is not in any of
the Ri, which contradicts f ∈ R. Thus, f is contained by k − 1 of the Ri. Therefore, for
any choice of [k/2] elements in R there exists a j such that Rj contains them. Hence, any
[k/2]-ary monotone operation of Cm,n preserves R.

m
+

2
ro
w
s

α0 α0 . . . . . . α0 α0
...

...
. . . . . .

...
...

αm−1 αm−1 . . . . . . αm−1 αm−1
β β . . . β β 1 1 . . . 1 β

β′ β′ . . . β′ β′ 1 1 . . . 1 β′

k
+

1
ro
w
s

1 γ0 γ0 . . . γ0 γ0 1 β γ0 . . . γ0 β′ γ0
γ0 1 γ0 . . . γ0 γ0 β′ 1 β . . . γ0 γ0 γ0
γ0 γ0 1 . . . γ0 γ0 γ0 β′ 1 . . . γ0 γ0 γ0
...

...
...

. . .
...

...
...

...
...

. . .
...

...
...

γ0 γ0 γ0 . . . 1 γ0 γ0 γ0 γ0 . . . 1 β γ0
γ0 γ0 γ0 . . . γ0 1 β γ0 γ0 . . . β′ 1 γ0

n
−

1
ro
w
s γ1 γ1 . . . . . . γ1 γ1

γ2 γ2 . . . . . . γ2 γ2
...

...
. . . . . .

...
...

γn−1 γn−1 . . . . . . γn−1 γn−1

Figure 2.5: The matrix defining g

Let g be the partial function from C
2(k+1)
m,n to Cm,n defined by the (k+m+n+2)×(2k+3)-

matrix in Figure 2.5 such that for each row g assigns the (2k + 3)-th component to the
2(k + 1)-tuple determined by the first 2(k + 1) components of the row. As we mentioned
earlier, we conceive each element f ∈ R as a column vector of the form (2.1). Notice then
that the first 2(k + 1) columns of the matrix in Figure 2.5 are in R, and the last column
is not in R. We shall prove that the colored poset (C

2(k+1)
m,n , g) is extendible. Then any

extension of g is a monotone 2(k + 1)-ary operation of Cm,n that does not preserve R,
which concludes the proof of the first part of the theorem.

So it remains to prove that (C
2(k+1)
m,n , g) is extendible. Suppose that (C

2(k+1)
m,n , g) is

not extendible. Then it contains an obstruction (O, g′). We invoke Corollary 2.3, the first
remark after Theorem 2.1 and its dual. Since g is monotone on its domain, (O, g′) is
obtained by adding some suitable colored elements to a colored fence whose endpoints are
colored by β and β′, respectively. In particular, the endpoints colored by β and β′ are
maximal in O, for otherwise one of these elements would be below an element colored by
γ0, which is impossible by the definition of g. As the set of colors of (O, g′) is determined
by g, each minimal non-colored element of the fence has a lower cover colored by αi for
all 0 ≤ i ≤ m− 1 and each maximal non-colored element of the fence has an upper cover
colored by a γj for all 0 ≤ j ≤ n − 1. Observe that all rows with a last component γ0
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from the matrix occur in (O, g′) as γ0-colored elements. Indeed, if the l-th one of them was
missing, then the l-th projection of O would be an extension of g′. Let ai, 1 ≤ i ≤ t, be the
sequence of γ0-colored elements in (O, g′) where ai covers the i-th maximal non-colored
element in the fence of non-colored elements of (O, g′). Let (aj , γ0) the row of the matrix
that occurs last in the sequence (ai, γ0) 1 ≤ i ≤ t. Say, (aj , γ0) is the s-th row of the
matrix. Then the s− 1-th and the s+ 1-th rows of the matrix occur preceding (aj , γ0) in
the sequence (ai, γ0), 1 ≤ i ≤ t. Hence there is a subsequence of consecutive elements of
(ai, γ0), 1 ≤ i ≤ t such that none of the s− 1-th, s-th and s+ 1-th rows occur in it except
the first and the last members that coincide with the s − 1-th and s + 1-th rows in some
order. Here the indices s− 1, s and s+ 1 are considered modulo k + 1. Then, the colored
poset whose base poset is O and whose coloring is the restriction of the (s + k + 1)-th
projection to the colored elements of O is a non-extendible colored poset, a contradiction.
Thus we have proved that the clone of Cm,n is non-finitely generated.

In order to prove that the idempotent clone of Cm,n is not finitely generated it suffices
to prove that the partial function g given by the matrix in Figure 2.5 has a totally defined
idempotent monotone extension. First, we extend g by adding the constant γ0 row to the
matrix to obtain a new partial function. The same proof as in the preceding paragraph
gives that the partial function defined in this way is extendible. Let ĝ be any monotone
extension of it onto C2(k+1)

m,n . We claim that the restriction of ĝ onto the diagonal tuples
must be a projection. The map ĝ restricted to the diagonal elements where g is defined
and to the constant γ0-tuple is clearly a projection. The value of ĝ on the constant β-
tuple must equal β by the definition of g and by the monotonicity of ĝ. Similarly, on the
constant β′-tuple the value of ĝ is β′. Then the values of ĝ are uniquely determined on the
remaining diagonal elements by the monotonicity of ĝ. Hence, ĝ is a projection restricted
to the diagonal, so ĝ is an idempotent extension of g.

Let Q2 denote the poset Q from the preceding proof for the parameters m = n = 2.
We note that Q2 is the poset used by Tardos in his original proof. By using Q2 instead of
Q for defining R for any m,n ≥ 2, a similar but a bit simpler proof can be given to prove
that the clone of Cm,n is non-finitely generated. We have opted for the present proof, since
it easily carries over to prove that the idempotent clone of Cm,n is non-finitely generated
and, in particular, to prove that the idempotent clone of 2 +Bn is non-finitely generated.

Let Q′ be the poset obtained from poset Q in the preceding proof by deleting the
minimal elements x0, . . . , xm−1. Then Q′ is used to get a proof of the following theorem.
The proof follows mutatis mutandis of the preceding proof, hence we omit it.

Theorem 2.5. If n ≥ 2, then the clones C(2+Bn) and I(2+Bn) are non-finitely generated.

We note that a similar claim holds for the poset An + 2 if n ≥ 2. We shall see by
Corollary 2.8 in the next section that if the idempotent clone of a finite bounded poset is
finitely generated, then its clone is also finitely generated. By this result, the first part of
Theorem 2.4 implies its second part. We do not know a general result by which the second
part of Theorem 2.5 follows from its first part.
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2.3 The Clone of Ascending Idempotent Operations

Recall that a monotone operation of a poset is ascending if it is greater than or equal to
some projection. Clearly, the ascending idempotent monotone operations form a subclone
in the clone of a poset. In this section we prove a theorem that reduces the finite generability
of the clone of a finite bounded poset to the finite generability of the clone of its ascending
idempotent operations. We prove that a similar theorem does not hold for half bounded
posets. Let Dk denote the poset 1+ 2+Ck + 2+ 1 where Ck is the 2k-element crown. We
sketch a possible way to prove that the clone of monotone ascending idempotent operations
of Dk, k ≥ 3, is non-finitely generated. To decide if C(Dk), k ≥ 3, is finitely generated looks
further away. An approach like the ones in Tardos’s paper and in the proof of Theorem
2.4 does not seem to work since the shapes of the Dk-obstructions are too unwieldy due
to the fact that the shapes of the Ck-obstructions are too unwieldy, cf. Theorem 2.2.

We call the clone of the ascending idempotent operations of a poset the reduced idem-
potent clone of the poset. The reduced idempotent clone of P is denoted by Ir(P ). The
following theorem gives indication how ascending idempotent operations play a role in the
generability of the clone of a bounded poset.

Theorem 2.6. The clone of a finite bounded poset is generated by its ascending idempotent
operations and the unary constant operations 0 and 1.

Proof. Let P be a finite bounded poset. It suffices to prove that for any monotone n-ary
f : Pn → P there exists an ascending idempotent monotone (n + 2)-ary fI such that
fI(0, 1, x1, . . . , xn) = f(x1, . . . , xn). We define fI as follows:

fI(y1, y2, x1, x2, . . . , xn) :=


1 if y1 6= 0 and y2 = 1,

f(x1, . . . , xn) if y1 = 0 and y2 = 1,

y1 otherwise.

(2.2)

Now it is clear that fI is idempotent, monotone, moreover

fI(0, 1, x1, . . . , xn) = f(x1, . . . , xn) and fI(y1, y2, x1, x2, . . . , xn) ≥ y1.

The preceding theorem has the following corollaries.

Corollary 2.7. If the reduced idempotent clone of a finite bounded poset is finitely gener-
ated, then its clone is also finitely generated.

Corollary 2.8. If the idempotent clone of a finite bounded poset is finitely generated, then
its clone is also finitely generated.

The first part of Theorem 2.4 and Corollary 2.7 immediately yield the following.

Corollary 2.9. If m,n ≥ 2, then the clone Ir(Cm,n) is non-finitely generated.

We also note that the first part of Theorem 2.4 and Corollary 2.8 implies the second
part of Theorem 2.4.
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Figure 2.6: The poset 1 + 2 + 2 + 1

We do not know if the converse of Corollary 2.7 is true. The poset 1 + 2 + 2 + 1 is a
candidate for a counterexample. It is well known that 1 + 2 + 2 + 1 admits a 5-ary near
unanimity operation, so its clone and idempotent clone are finitely generated. On the other
hand, a near unanimity operation on a poset of more than one elements is never ascending.
So if the reduced idempotent clone of 1 + 2 + 2 + 1 is yet finitely generated, the usual
near unanimity argument does not work to prove it. Nevertheless, we are able to prove
for a finite bounded poset P that C(P ) is finitely generated if and only if an appropriate
subclone of Ir(P ) is finitely generated. For a finite bounded poset P , let D(P ) denote the
clone generated by the ascending idempotent operations defined in the proof of Theorem
2.6.

Corollary 2.10. For a finite bounded poset P , C(P ) is finitely generated if and only if
D(P ) is finitely generated.

Proof. If D(P ) is finitely generated, then C(P ) is finitely generated by the proof of Theorem
2.6. For the converse suppose that C(P ) has a finite generating set and is generated by the
operations f1, . . . , fk. Let f1I , . . . , f

k
I be the corresponding ascending idempotent operations

defined in the proof of Theorem 2.6.
Now we prove that for any monotone operation g, gI is a composition of f1I , . . . , f

k
I ,

hence D(P ) is generated by f1I , . . . , f
k
I . The operation g is a composition of the operations

f1 = f1I (0, 1, . . . ), . . . , fk = f1I (0, 1, . . . ) where the . . . within the parentheses stands for a
suitable number of variables. By replacing 0 with the variable y1 and 1 with the variable
y2 in this composition, we get to a composition g′ of f1I , . . . , f

k
I . By the definition in (2.2),

it is now easy to check that g′ = gI .

Another interesting corollary of Theorem 2.6 is as follows.

Corollary 2.11. If the clone of a finite bounded poset is finitely generated, then it is
generated by three elements: an ascending idempotent operation and the constant operations
0 and 1.

Proof. Let P be a finite bounded poset such that C(P ) is generated by the operations
f1, . . . , fk. Then let f1I , . . . , f

k
I be the corresponding ascending idempotent operations de-

fined in the proof of Theorem 2.6. Then f1I , . . . , f
k
I and the 0 and 1 constant operations

generate C(P ). Finally, in this generating set we replace f1I , . . . , f
k
I by a composition f of

them such that f1I , . . . , f
k
I are obtained from f by identifying variables. Such an f is defined

by replacing two members - say, an m-ary s and an n-ary t - in the sequence f1I , . . . , f
k
I

by the operation s(t(x1, . . . , xn), . . . , t(x(m−1)n+1, . . . , xmn)) and by iterating this process
until we get to a one element sequence of operations.
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It looks as an interesting and non-trivial problem to give some tractable characterization
of the finite posets P such that the idempotent operations of P and the constant operations
of P together generate the clone of P . A finite connected poset P with this property must
satisfy the fixed point property, that is, every monotone unary operation on P has a fixed
point. In this respect, we note that H is a finite connected poset that has the fixed point
property, but it is not hard to prove that the idempotent operations and constant operations
of H do not generate the clone of H. Our next theorem yields the weaker consequence that
the ascending idempotent operations and the constant operations of H do not generate
the clone of H.

We shall prove that the reduced idempotent clone of H is finitely generated. On the
other hand, by Theorem 2.5 the clone of H is not finitely generated. This shows that
Corollary 2.7 does not extend to the class of the half bounded posets. Just to compare, the
idempotent clone of H is not finitely generated, also by Theorem 2.5.

β β′

γ γ′

1

Figure 2.7: Poset H with labeling

Theorem 2.12. The reduced idempotent clone of H is finitely generated.

This theorem is an immediate consequence of the next two lemmas. We are going to
prove that any idempotent operation that is greater than or equal to the first projection is
a composition of 4-ary operations of such a type. The whole argument works for the other
operations of the reduced idempotent clone analogously.

Let Ir1 denote the set of the operations in Ir(H) that are greater than or equal to
the first projection π1, and let Ir1,n be the n-ary part of Ir1. Next we define some basic
operations in Ir1. Our proof is based on the observation that all members of Ir1 are built
as compositions from these operations.

We say that f ∈ Ir1,n jumps to q at x ∈ Hn if π1(x) < f(x) = q. We define the smallest
operations in Ir1,n that jump to a certain value at a certain element. For a ∈ H, let a
denote the m-tuple, each of whose components equals a, where m will be clear from the
context throughout. Let z = (z1, . . . , zn) be an arbitrary element of Hn.

For any z with z1 < 1, z 6≤ γ and z 6≤ γ′ we define

gz1(x) :=

{
1 if z ≤ x,
π1(x) otherwise.

For any z with z1 < γ and z 6≤ γ′ we define

gzγ(x) :=


γ if z ≤ x and π1(x) = z1,

1 if z ≤ x and π1(x) = γ′,

π1(x) otherwise.
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The operation gzγ′ is defined analogously to gzγ . It is easy to see that gzy ∈ Ir1,n for every
possible values of y and z. Notice that gzy is the smallest operation in Ir1,n that jumps to
y at z.

We define a binary operation denoted by ∨ on H that is almost a compatible join
semilattice operation:

x ∨ y =

{
x if {x, y} = {β, β′},
the least upper bound of x and y otherwise.

Obviously, ∨ ∈ Ir1,2. Moreover, ∨ is associative, not commutative, though.

Lemma 2.13. For any f ∈ Ir1,n and x ∈ Hn we have

f(x) =
∨
{gzy(x) : f jumps to y at z }

where the order of joinands on the right hand side is chosen arbitrarily.

Proof. On one hand for each x ∈ Hn if y = f(z) > π1(z), then gzy(x) takes on a value
between π1(x) and f(x). On the other hand, for each x where f jumps gxf(x)(x) = f(x), so
the join on the right hand side of the equality in the claim equals f(x). If f does not jump
at x, then gzy(x) = π1(x) for all of the gzy on the right hand side, and so the join equals
π1(x).

By Lemma 2.13, it suffices to exhibit a finite generating set for the operations gzy to
finish our proof. The following lemma yields us a generating set of 4-ary operations. We
note that the operations gzy are defined only under some stipulations for the values of the
parameters y and z, see definition.

Lemma 2.14. Let n ≥ 5. Let y ∈ H and z = (z1, . . . , zn) ∈ Hn such that the n-ary
operation gzy is defined. Then there exist i, j and k 6= i, j, 1 such that for the 4-tuple z′ =

(z1, zi, zj , zk) and the (n−1)-tuple z′′ = (z1, . . . , zk−1, zk+1, . . . , zn), the 4-ary operation gz′y
and the (n− 1)-ary operation gz′′y are defined, and

gzy(x) = g(z1,y,y)y (x1, g
z′
y (x′), gz

′′
y (x′′))

where x′ = (x1, xi, xj , xk) ∈ H4 and x′′ = (x1, . . . , xk−1, xk+1, . . . , xn) ∈ Hn−1.

Proof. First, we consider the case when y = 1. Then z1 < 1, z 6≤ γ and z 6≤ γ′. If zi = 1

for some i, then let j = i and choose k to be different from 1 and i. If for all i, zi 6= 1,
then there are two components of z such that one of them equals γ and the other does γ′.
Then we choose i, j and k such that zi = γ, zj = γ′ and k is different from 1, i, j. In both
cases, we take z′ and z′′ as in the claim. Notice that for the tuples z′ and z′′, gz′1 and gz′′1

are defined. Moreover,
z ≤ x iff (z′ ≤ x′ and z′′ ≤ x′′).

Thus if z ≤ x, then gz′1 (x′) = 1 and gz′′1 (x′) = 1, hence

g
(z1,1,1)
1 (x1, g

z′
1 (x′), gz

′′
1 (x′′)) = g

(z1,1,1)
1 (x1, 1, 1) = 1 = gz1(x).
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For the case when z 6≤ x, we may assume that x1 < 1, since otherwise both sides of the
equality in the claim equal 1. Now if, for example, z′ 6≤ x′, then gz

′
1 (x′) = x1 < 1. This

yields
g
(z1,1,1)
1 (x1, g

z′
1 (x′), gz

′′
1 (x′′)) = g

(z1,1,1)
1 (x1, x1, g

z′′
1 (x′′)) = x1 = gz1(x),

which concludes our proof for the case y = 1.
For the remaining part of the proof, we assume without loss of generality that y = γ.

Then z1 < γ and z 6≤ γ′. We may assume that z1 = β. Now, there exists an i such that
zi = 1 or zi = γ. We put j = i and choose k different from 1 and i. We take z′ and z′′ as
in the claim. Then gz′γ and gz′′γ are defined, and

z ≤ x iff (z′ ≤ x′ and z′′ ≤ x′′).

We split the rest of the proof in three cases.
In the first case we assume that z ≤ x and x1 = β. Then we have that gz′γ (x′) = γ and

gz
′′
γ (x′′) = γ, hence

g(β,γ,γ)γ (x1, g
z′
γ (x′), gz

′′
γ (x′′)) = g(β,γ,γ)γ (β, γ, γ) = γ = gzγ(x).

In the second case we assume that z ≤ x and x1 = γ′. Now we have that gz′γ (x′) = 1

and gz′′γ (x′′) = 1, and hence

g(β,γ,γ)γ (x1, g
z′
γ (x′), gz

′′
γ (x′′)) = g(β,γ,γ)γ (γ′, 1, 1) = 1 = gzγ(x).

For the third case we assume that none of the conditions

(z ≤ x and x1 = β) and (z ≤ x and x1 = γ′)

hold. This implies that if z ≤ x, then x1 = γ or x1 = 1, and it is clear in both cases that
both sides of the equality in the claim equal x1. Hence we have to consider only z 6≤ x.
Then, for example, z′′ 6≤ x′′ and gz′′γ (x′′) = x1. This yields

g(β,γ,γ)γ (x1, g
z′
γ (x′), gz

′′
γ (x′′)) = g(β,γ,γ)γ (x1, g

z′
γ (x′), x1) = x1 = gzγ(x),

which concludes the proof.

Finally, we delineate some ideas on the question if Ir(Dk) is finitely generated. We pro-
ceed with a straightforward lemma on general clones. A homomorphism from a clone C to
a clone D is a map that preserves the projections and commutes with composition of oper-
ations. A clone D is a homomorphic image of a clone C if there is an onto homomorphism
from C to D.

Lemma 2.15. If a clone is finitely generated, then its homomorphic images are also finitely
generated.

Let P be a finite poset. A subset U of P is called an up-set of P , if for any a ∈ U ,
b ∈ P and a ≤ b we have b ∈ U . We note that every n-ary monotone ascending idempotent
operation of an up-set U of P extends to an n-ary monotone ascending idempotent oper-
ation on P . Indeed, by taking an appropriate projection on Pn \ Un yields an extension.
Moreover, any up-set U of P is preserved by all monotone ascending operations of P , hence
Ir(U) is a homomorphic image of Ir(P ) via the restriction homomorphism. So by Lemma
2.15 we get the following.
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Corollary 2.16. If the reduced idempotent clone of a finite poset P is finitely generated,
then the reduced idempotent clone of any up-set of P is finitely generated.

We mentioned above that we are not able to decide whether Ir(1+2+2+1) is finitely
generated. By the preceding corollary - as 1 + 2 + 2 + 1 is an up-set in Dk - a negative
answer would yield that Ir(Dk) is non-finitely generated. We note that D2 is series-parallel
and T is a retract of it, and hence C(D2) is non-finitely generated. So by Corollary 2.7,
Ir(D2) is non-finitely generated. Nevertheless, it remains open whether Ir(Dk) and C(Dk)

are finitely generated if k ≥ 3.
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Summary

This thesis is about two problems both concerning partially ordered sets, shortly, posets.
Though being connected by the type of their main objects of interest, i.e. posets, the two
problems are unrelated.

The first problem, which fills up Chapter 1, is first-order definability in substructure
and embeddability orderings. It is based on three papers of the author [7–9], where the
research questions seem like logic: try to grasp the expressive power of a certain first-order
language in a given structure. To get answers, we use basic, finite, combinatorial thinking,
no more. What looms behind the problems though, is the symmetries of some particular,
complicated, infinite posets. This research is, in fact, a continuation of a series of papers
by Jaroslav Ježek and Ralph McKenzie [3–6], published in 2009-2010. Beyond the author
of this thesis, others have picked up on this topic [12,15–17].

Let us go into detail a little more. Let D be the set of (the isomorphism types of)
finite directed graphs, shortly, digraphs. For two digraphs G,G′ ∈ D, let G ≤ G′ denote
that G is embeddable into G′, that is we can get G from G′ by leaving out vertices and
edges. Equivalently, there exists an injective map from G to G′ preserving the edges. An
ostensibly similar notion follows. Let G v G′ denote that G is a substructure of G′, that is
we can get G from G′ by leaving out vertices only. Equivalently, there exists an injective
map from G to G′ preserving both edges and non-edges (i. e. the absence of edges). What
we have so far is two partially ordered sets: (D;≤) and (D;v). In the first chapter of the
thesis, we investigate the expressive power of the first-order language of partially ordered
sets for these two particular posets (see Figs. 2.8 and 2.9).

Probably, the most natural question is elementwise definability. Can you identify every
single element in either (D;≤) or (D;v) with a first-order formula in the language of
posets? This is where symmetries, i. e. automorphisms, come into play. Say, in a poset P ,
the element p is taken by an automorphism to some different p′. Then, naturally, first-order
formulas cannot distinguish p from p′ as they share the exact same structural properties
in P .

With regard to both the automorphisms and definability, (D;≤) is a much easier nut to
crack. Therefore, we start Chapter 1 with the embeddability ordering. The automorphism
that sends G to its transpose GT , that is just reversing all edges, is easy to discover.
Consequently, the strongest we can prove, in terms of elementwise definability, is that the
set {G,GT } is first-order definable for every digraph G ∈ D. Indeed, this is proven in the
thesis. Using this theorem, we can show that there is no other nontrivial automorphism,
pointing to a strong, back-and-forth connection between the definability we investigate
and the automorphisms. So far, what we have settled is the definability of finite subsets of
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Figure 2.9: The initial segment of the Hasse diagram of the substructure ordering, (D;v).

(D;≤): a finite subset S ⊂ D is first-order definable if and only if G ∈ S implies GT ∈ S.
Hence, to move forward, we must ask about infinite subsets.

As a famous statement in model theory reveals, there is no first-order formula defining
the set of weakly connected digraphs in their own first-order language. Surprisingly, we do
have such a formula in our language. What we show in fact is that with the addition of just
a single constant, a digraph that is not isomorphic to its transpose, the whole second-order
language of directed graph is expressible in our language. Technically, what we do is go on
path laid by Ježek and McKenzie in [6]. We define a new language, say, L. The language
L is seemingly much stronger than the first-order language in question. Nonetheless we
show that, in fact, it possesses the same expressive power. L belongs to a concrete small
category, consisting of directed graphs as objects and maps between them as morphisms.
To prove that L is indeed expressible with our language, we somehow ‘model’ the workings
of this category in (D;≤) using the first-or language of posets.

The second part of Chapter 1 examines the substructure ordering, (D;v). Here, we
are faced with something new right away. Unprecedented in the line of this topic, we find
nontrivial automorphisms. Though we present a conjecture for the automorphism group, it
is unproven at the moment. Our conjecture is that the automorphism group is isomorphic
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to a 768-element group, (Z4
2 × S4) oα Z2, with a given α in the semidirect product. We

have already seen that there is a strong connection between the expressive power of the
first-order language of posets and their automorphism groups. Does this mean that the
uncertain automorphism group blocks us from getting any definability result? Though this
could very well be the case, fortunately, it is not. What we show is that with the addition
of finitely many constants, the first-order language of (D;v) can express that of (D;≤).
This statement carries weight only because, at this point, we’ve already established that
the first-order language of (D;≤) is very strong. Finding a minimal list of these constants
is almost equivalent to determining the automorphism group. Hence such a minimal list
is not provided. A possible, far-from-minimal list consists of the digraphs of at most 12
elements. As a corollary (to the definability statement), we get that the automorphism
group is finite—the best we can prove as for now. It might seem odd that we do not ‘know’
what constant digraphs we use in our proof. This is because some of our arguments go the
following way. Some properties of digraphs can be told by saying something about them
locally. For example, one can test if a digraph has a non-loop edge by the set of its (at
most) 2-element substructures. Far more complicated properties can be tested in this way.
It would get overwhelmingly tedious to list all the digraphs that are used in this manner.
And even if we did so, though we would get a much more concrete list, it would still be
quite far from minimal. Therefore, analyzing this particular proof to get a minimal list
seems hopeless (at least to the author).

Chapter 2 investigates a completely different problem, still having posets as main play-
ers in it. A set of finitary operations is called a clone if it contains all projections and is
closed under superposition (composition). In this thesis, we always assume the base set of
our operations to be finite. Clearly, the set of all operations (on a finite base set) is a clone.
The largest (with respect to inclusion) clones that are smaller than this one are called
maximal clones. Ivo G. Rosenberg, in a classical result [13], classified the maximal clones
into six classes. For five of the six classes it has been shown that the clones of these classes
are finitely generated. The unsettled class is the class of clones consisting of the monotone
operations of bounded partial orders, that is posets having both least and largest elements.
Some partial results have already been obtained. Monotone clones of at most seven element
posets are proven to be finitely generated and so are posets with a monotone near unanim-
ity operation. In a brilliant paper [14] from 1986, Gábor Tardos shows that the clone of a
particular eight element poset is not finitely generated. This was the first proof showing a
maximal clone to be not finitely generated. In a 1993 paper [18], László Zádori generalized
Tardos’s result by describing all series parallel posets having not finitely generated clones.
Since Zádori, up until recently no one found non-finitely generated maximal clones, though
one may conjecture that there are a lot of them. We present the recent paper [10] finding
new such clones in Chapter 2. The author submerged in this topic as a PhD student guided
by his second supervisor, the professor Zádori just mentioned. Miklós Maróti, the first su-
pervisor of the author, also joined. The three of them wrote the paper [10] that comes
up with a new family of finite bounded posets whose clones of monotone operations are
not finitely generated and suggests some directions where, the authors think, this research
might evolve in the future.

In the first part of the chapter, we present this new family of finite bounded posets
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whose clones of monotone operations are not finitely generated. Let k denote the k-element
antichain. Let An be the poset obtained from the Boolean lattice with n atoms by removing
its greatest element, and Bn the dual of An. Let Cm,n = Am + 2 +Bn.
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Figure 2.10: The posets C2,2, C3,2, C2,3, and C3,3

We prove that if m,n ≥ 2, then the clones and idempotent clones of Cm,n are non-
finitely generated, where by the idempotent clone, as usual, we mean the clone of those
monotone operations that satisfy the identity f(x, . . . , x) = x. The proofs of these results
are analogues of those in the famous paper of Tardos.

Another interesting family of finite posets from the finite generability point of view is
the family of locked crowns. To decide whether the clone of a locked crown of at least six
elements is finitely generated or not, one needs to go beyond the scope of Tardos’s proof.
Although our investigations are not complete in this direction, they led to the results in
the second part of the chapter.

We call a monotone operation ascending if it is greater than or equal to some projection.
We prove that the clones of bounded posets are generated by certain ascending idempotent
monotone operations and the 0 and 1 constant operations. A consequence of this result is
that if the clone of ascending idempotent operations of a finite bounded poset is finitely
generated, then its clone is finitely generated as well. We provide an example of a half
bounded finite poset whose clone of ascending idempotent operations is finitely generated
but whose clone is not finitely generated. Another interesting consequence of our result is
that if the clone of a finite bounded poset is finitely generated, then it has a three element
generating set that consists of an ascending idempotent monotone operation and the 0 and
1 constant operations.
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Összefoglaló

Az értekezés két részbenrendezett halmazokkal kapcsolatos problémával foglalkozik. Ha-
bár az érdeklődésük tárgyát képező struktúrák típusa (részbenrendezések) összeköti őket,
a két probléma ezen túl nem kapcsolódik egymással.

Az első probléma, ami az első fejezetet tölti ki, elsőrendű definiálhatóság részstruktúra-
és beágyazás-részbenrendezésekben. Az első fejezet a szerző három cikkén alapul [7–9], me-
lyekben az alapkérdések logikának tűnnek: próbáljuk megfogni a kifejező erejét adott struk-
túrák elsőrendű nyelveinek. Hogy válaszokat kapjunk, nem használunk mást, mint alapvető
kombinatorikus gondolkodást. A problémák mögött azonban ott húzódnak végtelen, bo-
nyolult részbenrendezett halmazok szimmetriái. Ez a kutatás, valójában, Jaroslav Ježek és
Ralph McKenzie egy 2009-2010-es cikksorozatának [3–6] folytatása. Az értekezés szerzőjén
túl mások is felkapták ezt a témát [12,15–17].

Menjünk bele a részletekbe egy kicsit. Jelölje D a véges irányított gráfok (izomorfia-
típusainak) halmazát. Két irányított gráf, G,G′ ∈ D, esetén jelölje G ≤ G′ azt, hogy
G beágyazható G′-be, azaz G-t megkaphatjuk G′-ből csúcsok és élek elhagyásával. Más
szóval, létezik egy G → G′ injektív leképezés, amely megtartja az éleket. Egy látszólag
hasonló fogalom következik. Jelölje G v G′ azt, hogy G részstruktúrája G′-nek, azaz G-t
megkaphatjuk G′-ből csak csúcsok elhagyásával. Más szóval, létezik egy G → G′ injek-
tív leképezés, amely megtartja az éleket és a „nem-éleket” (az élek hiányát) is. Eddig két
részbenrendezésünk van: (D;≤) és (D;v) (ld. 2.11. és 2.12. ábrák). Az értekezés első feje-
zetében ezen részbenrendezések esetén vizsgáljuk a részbenrendezett halmazok elsőrendű
nyelvének kifejező erejét.

Valószínűleg a legtermészetesebb kérdés az elemenkénti definiálhatóság kérdése. Tudjuk-
e definiálni a (D;≤) vagy (D;v) részbenrendezések elemeit elsőrendű formulákkal (a rész-
benrendezett halmazok nyelvén)? Itt jönnek be a szimmetriák, más néven automorfizmu-
sok. Tegyük fel, hogy, egy P részbenrendezett halmazban, a p elemet egy automorfizmus
egy tőle különböző p′-be visz. Ekkor, természetesen, elsőrendű formulák nem tudják meg-
különböztetni p-t és p′-t, hiszen ugyanazok a strukturális jellemzőik a P -n belül.

Az automorfizmusok és a definiálhatóság tekintetében is sokkal könnyebben kezelhető
(D;≤), így a beágyazás-részbenrendezéssel kezdjük az 1. fejezetet. Jelölje GT a G transzpo-
náltját, azt a gráfot, melyet G-ből az élek megfordításával kapunk. Az automorfizmust, ami
G-tGT -be képezi, könnyű felfedezni. Ennélfogva, a legerősebb állítás, amiben az elemenkén-
ti definiálhatóság szempontjából reménykedhetünk az, hogy a {G,GT } halmaz minden G
irányított gráf esetén definiálható. Ezt bizonyítjuk az értekezésben. Ezt a tételt használva,
bebizonyítjuk, hogy nincs más nemtriviális automorfizmus, rámutatva az erős oda-vissza
kapcsolatra a definiálhatóság és az automorfizmusok között. Eddig odáig jutottunk, hogy

68



E1

II E4

I2 E3

L2

E2L1

F

G

H

E I J

K L M N
O P Q

R S
T U V W

Z A1 B1
C1D1E1

F1G1L1M1

T2

U2

V2

W2

Z2

A3

B3 C3D3 E3 F3 G3H3
I3 J3 K3L3 M3

N4 O4 P4 Q4
R4 S4H5 I5 J5 K5

J2S2

N6O62.11. ábra. A (D;≤) részbenrendezés aljának Hasse-diagramja.

2.12. ábra. A (D;v) részbenrendezés Hasse-diagramjának alja.

(D;≤) véges részhalmazainak definiálhatóságát lezártuk: Egy véges S ⊂ D részhalmaz ak-
kor és csak akkor elsőrendű-definiálható, ha minden G ∈ S esetén GT ∈ S is teljesül. Tehát
ahhoz, hogy tovább menjünk, végtelen részhalmazok definiálhatóságát kell vizsgálnunk.

Ahogy egy híres modellelméleti állítás mutatja, nincs olyan elsőrendű formula az irá-
nyított gráfok nyelvén, mely definiálná a gyengén-összefüggő irányított gráfok halmazát.
Meglepő módon, az általunk vizsgált elsőrendű nyelven van ilyen formula. Még azt is meg-
mutatjuk, hogy egy konstans (egy konkrét, transzponáltjával nem izomorf irányított gráf)
hozzáadásával az irányított gráfok teljes másodrendű nyelve kifejezhető az általunk vizs-
gált nyelv segítségével. Egy olyan utat járunk be, melyet Ježek és McKenzie fektettek le
a [6] dolgozatban. Egy új nyelvet definiálunk, jelölje most L. Az L nyelv látszólag sokkal
erősebbnek tűnik, mint az általunk vizsgált elsőrendű nyelv. Ennek ellenére megmutatjuk,
hogy valójában ugyanolyan erős. L egy konkrét kis kategóriához tartozik, melynek ob-
jektumai irányított gráfok, morfizmusai pedig éltartó leképezések közöttük. Ahhoz, hogy
megmutassuk, hogy L valóban kifejezhető az általunk vizsgált nyelv segítségével, valami-
lyen módon „modellezzük” ennek a kategóriának a működését a (D;≤) struktúra elsőrendű
nyelvének segítségével.

Az első fejezet második fele a (D;v) részstruktúra-részbenrendezést vizsgálja. Itt rögtön
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valami újdonsággal találjuk szembe magunkat. Ennek a kutatási témának a történetében
eddig példátlan módon, nemtriviális automorfizmusokat találunk. Habár prezentálunk egy
sejtést az automorfizmuscsoportra, bizonyítani nem tudjuk azt. A sejtésünk az, hogy a
(D;v) részbenrendezés automorfizmuscsoportja a 768-elemű (Z4

2 × S4) oα Z2 csoporttal
izomorf, ahol α egy adott hatás.

Már láttuk, hogy erős kapcsolat van az általunk vizsgált elsőrendű nyelvek kifejező ereje
és az automorfizmusok között. A kérdés, hogy a bizonytalan automorfizmuscsoport jelen
esetben megakadályozza-e, hogy a definiálhatóságról állításokat bizonyítsunk. Bár könnyen
lehetne, szerencsére nem ez a helyzet. Azt mutatjuk meg, hogy véges sok konstans hoz-
záadásával a (D;v) elsőrendű nyelve ki tudja fejezni a (D;≤) elsőrendű nyelvét. Ennek
a tételnek csak azért van súlya, ezen a ponton, mert a (D;≤) elsőrendű nyelvéről már
korábbról tudjuk, hogy nagyon erős. Ehhez a tételhez megtalálni konstansoknak egy mi-
nimális listáját majdnem ekvivalensnek tűnik az automorfizmuscsoport meghatározásával.
Ennélfogva, nem tudunk egy ilyen minimális listát adni. Egy lehetséges, de minimálistól tá-
vol álló lista állhat a legfeljebb 12 elemű irányított gráfokból. A definiálhatósági eredmény
következményeképpen azt kapjuk, hogy az automorfizmuscsoport véges — ez a legjobb,
amit jelen pillanatban bizonyítani tudunk. Furcsának tűnhet, hogy nem „tudjuk”, hogy
milyen konstansokat használunk a bizonyításunk során. Ez azért van, mert néhány esetben
a következő gondolatmenetet használjuk. Bizonyos tulajdonságait az irányított gráfoknak
jellemezni lehet lokális módon. Például meg tudjuk mondani tartalmaz-e az irányított gráf
egy nem-hurok élet a 2-elemű részstruktúrái alapján. Sokkal bonyolultabb tulajdonságokat
is el lehet így mondani. Nagyon fáradtságos és hosszú volna listázni azokat a konstansokat,
melyeket ilyen módon használunk a bizonyításunk során. Még ha meg is tennénk, akkor
sem kapnánk egy minimális listát (habár a listánk sokkal konkrétabb lenne). Emiatt, ennek
a konkrét bizonyításnak az analizálásával reménytelennek tűnik egy minimális konstanslis-
ta megállapítása (legalábbis a szerző számára).

A második fejezet egy teljesen másik problémát vizsgál, melyben azért továbbra is
részbenrendezett halmazok játsszák a főszerepet. Véges műveletek egy halmazát klónnak
nevezzük, ha tartalmazza az összes projekciót és zárt a kompozícióra (függvényösszetétel).
Az értékezésben mindig feltesszük, hogy a műveleteink alaphalmaza véges. Világos módon,
az összes művelet (egy véges alaphalmazon) klón. Tartalmazásra nézve a legnagyobbakat,
melyek kisebbek ennél, maximális klónoknak nevezzük. Ivo G. Rosenberg, egy klasszikus
eredményben [13], klasszifikálta a maximális klónokat, hat osztályra bontva őket. Ezek kö-
zül öt esetén meg lett mutatva, hogy az ezekben lévő klónok végesen generáltak. A hatodik,
kérdéses osztály a korlátos részbenrendezett halmazok monoton klónjainak osztálya. Azo-
kat a részbenrendezéseket nevezzük korlátosnak, melyeknek van legnagyobb és legkisebb
eleme. Néhány részeredmény már ismert. Ismert, hogy a legfeljebb 7-elemű részbenrende-
zések monoton klónjai végesen generáltak, továbbá azoké is, melyeknek van monoton több-
ségi művelete. Egy zseniális dolgozatban [14], 1986-ban, Tardos Gábor megmutatta, hogy
egy adott 8-elemű részbenrendezés klónja nem végesen generált. Ez volt az első alkalom,
hogy egy maximális klónról kiderült, hogy nem végesen generált. Egy 1993-as dolgozatban
Zádori László általánosította Tardos eredményét, karakterizálva azon soros párhuzamos
részbenrendezett halmazokat, melyek klónja nem végesen generált. Azóta, egészen mosta-
náig, senki nem talált nem végesen generált maximális klónokat, annak ellenére, hogy azt
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sejthetjük, hogy sok ilyen van. A 2. fejezetben egy olyan friss dolgozatot [10] mutatunk
be, mely új ilyen klónokat talál. Az értekezés szerzőjét, PhD hallgató korában, második
témavezetője, a fent említett Zádori professzor vezette be témába. Maróti Miklós, az első
témavezetője is csatlakozott a kutatáshoz. Hárman írták a fent említett [10] dolgozatot,
mely korlátos részbenrendezések egy új családjáról mutatja meg, hogy nem végesen generált
a klónjuk, továbbá néhány új irányt is javasol, amerre a szerzők szerint ezek a kutatások
fejlődhetnek.

A fejezet első felében bemutatjuk ezt az új családot, mely tagjainak klónjai nem végesen
generáltak. Jelölje k a k-elemű antiláncot. Legyen An az a részbenrendezés, melyet úgy
kapunk az n-atomú Boole-hálóból, hogy elhagyjuk a legnagyobb elemét. Jelölje Bn az An
duálisát. Legyen Cm,n = Am + 2 +Bn.
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2.13. ábra. The posets C2,2, C3,2, C2,3, and C3,3

Bizonyítjuk, hogy ha m,n ≥ 2, akkor Cm,n klónja és idempotens klónja is nem végesen
generált. Itt, a szokásos módon, idempotens klón alatt azon monoton műveletek klónját
értjük, melyek teljesítik az f(x, . . . , x) = x azonosságot. A tétel bizonyítása Tardos bizo-
nyításának analogonja.

Egy másik érdekes családja a korlátos részbenrendezett halmazoknak a zárt koronák
családja. Ezek esetén az akadályok leírása reménytelennek tűnik, így a Tardos-bizonyítás
nem átvihető. Habár az ebbe az irányba tett vizsgálataink még hiányosak, a fejezet második
felében ismertetünk néhány eredményünket.

Egy monoton műveletet felszállónak nevezünk, ha nagyobb vagy egyenlő valamelyik
projekciónál. Bebizonyítjuk, hogy a korlátos részbenrendezések klónjait generálják bizo-
nyos felszálló idempotens műveletek és a 0, 1 konstans műveletek. Következésképpen, ha
egy korlátos részbenrendezett halmaz felszálló idempotens műveleteinek klónja végesen
generált, akkor a klónja is végesen generált. Mutatunk egy példát egy félig-korlátos rész-
benrendezett halmazra, melynek felszálló idempotens klónja ugyan végesen generált, de a
klónja nem az. Egy másik érdekes következménye az eredményeinknek, hogy ha egy véges
korlátos részbenrendezésnek a klónja végesen generált, akkor három elem generálja, egy
(konkrét) felszálló idempotens művelet, és a 0, 1 konstans műveletek.
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