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Abstract. We further generalise a construction – the fibre construction –
that was developed in an earlier paper of the first two authors. The extension
in this paper gives a polynomial-time reduction of CSP(H) for any relational
system H to CSP(P ) for any relational system P that meets a certain technical
partition condition, that of being K3-partitionable.

Moreover, we define an equivalent condition on P , that of being block pro-
jective, and using this show that our construction proves NP -completeness
for exactly those CSPs that are conjectured to be NP -complete by the CSP
dichotomy classification conjecture made by Bulatov, Jeavons and Krohkin,
and by Larose and Zádori. We thus provide two new combinatorial versions
of the CSP dichotomy classification conjecture.

As with our previous version of the fibre construction, we are able to address
restricted versions of the dichotomy conjecture. In particular, we reduce the
Feder-Hell-Huang conjecture to the CSP dichotomy classification conjecture,
and we prove the Kostochka-Nešeťril-Smoĺıková conjecture. Although these
results were proved independently by Jonsson et. al. and Kun respectively,
we give different, shorter, proofs.

1. Introduction

Many combinatorial problems can be expressed as Constraint Satisfaction Prob-
lems (CSPs). This concept originated in the context of Artificial Intelligence (see
e.g. [33]) and is very active in several areas of Computer Science. CSPs include
standard satisfiability problems and many combinatorial optimization problems,
thus are also a very interesting class of problems from the theoretical point of view.
The whole area was revitalized by Feder and Vardi [11], who reformulated CSPs
as homomorphism problems (or H-colouring problems) for relational structures.
Motivated by the results of [40] and [16], they formulated the following.

Conjecture 1.1. (Dichotomy) Every Constraint Satisfaction Problem is either
in P or NP -complete.

Throughout the paper we will assume that P 6= NP , and we call a relational
structure NP -complete if the associated CSP is NP -complete. Schaefer [40] es-
tablished the dichotomy for CSPs with boolean domains, and Hell Nešetřil [16]
established the dichotomy for undirected graphs; it follows from [11] that the di-
chotomy for CSPs can be reduced to the dichotomy problem for H-colouring for
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oriented graphs. This setting, and related problems, have motivated intensive re-
search in descriptive complexity theory. This is surveyed, for example, in [8], [17],
[14], and [18].

Recently the whole area was put into yet another context by Peter Jeavons and
his collaborators, in [21] and [6], when they recast the complexity of CSPs as prop-
erties of algebras and polymorphisms of relational structures. In particular, they
related the complexity of CSPs to a Galois correspondence between polymorphisms
and definable relations (obtained by Bodnarčuk et al. [2] and by Geiger [13]; see
[38] and [39]). This greatly simplified elaborate and tedious reductions of particu-
lar problems and led to the solution of the dichotomy problem for CSPs with three
element domains [3] and other results which are surveyed, for example, in [6] and
[15]. This approach to studying CSPs via certain algebraic objects yields, in par-
ticular, that every projective structure H is NP -complete [22], [21]. It also led to
Conjecture 4.11, (first formulated in [6]), which strengthens Dichotomy Conjecture
1.1 by actually conjecturing what the dichotomy is.

The success of these general algebraic methods gave motivation for some older
results to be restated in this new context. For example, [4] treats H-colouring
problems for undirected graphs in such a way that the dichotomy between the
tractable and NP -complete cases of H-colouring problem agrees with Conjecture
[6]. A substantial generalization of this dichotomy result was obtained in [1] for the
H-colouring problems over digraphs with no sources and no sinks.

Since [6], other algebraic interpretations of Conjecture 4.11 have been found. In
particular, equivalent versions are implicit in the papers [27] and [30].

In [36], the first two authors proposed a new combinatorial approach to the
dichotomy problem, generalising a construction of the second author from [42] (and
[41]) that gave the first combinatorial proof that any projective relational structure
is NP -complete. We were able to show that subprojective relational structures
are NP -complete. It was then that we applied the name fibre construction to
the construction. An example provided by Ralph McKenzie [31] gave us strong
motivation to extend our results: he showed that there are structures that are
NP -complete by the results of [6], that are not subprojective. We mentioned this
extension in [36] and give the details here.

In this paper, we present an incarnation of the fibre construction that is general
enough to provide a combinatorial version of Conjecture 4.11. In Section 3, we ex-
tend the fibre construction to all structures which are what we callK3-partitionable,
thus showing that all K3-partitionable structures are NP -complete (Theorem 3.2,
Corollary 3.3 ).

In Section 4 we recall the reduction that allows us to assume that a structure is
idempotent for questions of its complexity. We then define what we call block projec-
tive structures and show that they are K3-partitionable. As well as being a cleaner
quantification than K3-partitionable, block projectivity is useful in showing that
the structures that are NP -complete by Conjecture 4.11 are also K3-partitionable.

In [36] we suggested that the set of K3-partitionable structures may be greater
than the set of structures that conjectured to be NP -complete in 4.11. Here we
prove that the two sets of structures are in fact the same. This is included in Section
4.4 of this paper.

Thus we get the following equivalences for idempotent structures.
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NP -complete by Conjecture 4.11
⇐⇒ block projective
⇐⇒ K3-partitionable

This allows us to rephrase the CSP Dichotomy Classification Conjecture in terms
of either K3-partitionable, or block projective structures, see Conjecture 4.16.

In [10], Feder, Hell, and Huang conjecture that any CSP that is NP -complete,
is NP -complete for instances of bounded degree. In [36], we extended results of
[42] to show that for any subprojective structure H , CSP(H) is NP -complete for
instances of maximum degree at most 4 · ∆(H)6, where ∆(H) is the maximum
degree of H . In Section 5 we get similar bounds for block projective structures, in
particular, this gives far better bounds for the graph case than were achieved in [42].
Independently, Jonsson, Krokhin, and Kuivinen [23], reduced the Feder-Hell-Huang
conjecture to the CSP Dichotomy Classification Conjecture. Such a reduction is an
immediate corollary of our main results.

It was conjectured by Kostochka, Nešetřil, and Smoĺıková [24] that for any integer
ℓ ≥ 3, and any graphH that isNP -complete, CSP(H) isNP -complete for instances
of girth at least ℓ. Although a recent result of Kun [25] for general relational
structures settles this conjecture in the positive, we give a simpler proof in Sections
6 and 7.

It is interesting to note how flexible the notion of the fibre construction is, and
as this is a culmination of several earlier papers [41, 42, 36], we include, in Section 8
the general setting. We generalise the notion of K3-partitionable, to G-partitionable
for arbitrary relational structures G, and point out why this will be important in
future applications.

2. Standard Definitions

We work with finite relational structures of a given finite type. A type is a (finite)
vector K = (ki)i∈I of positive integers, called arities. A relational structure H of
type K, consists of a vertex set V = V (H), and a ki-ary relation Ri = Ri(H) ⊂ V ki

on V , for each i ∈ I. An element of Ri is called a ki-tuple.
Thus a digraph is just a relational structure of type K = (2). A graph is the

same, but in which the single 2-ary relation is symmetric and irreflexive.
Throughout the paper, we will use script letters, such as G,H and P, to represent

relational structures except in the case that we are talking specifically of graphs.
Given two relational structures G and H of the same type, an H-colouring of

G, or a homomorphism from G to H, is a map φ : V (G) → V (H) such that for all
i ∈ I and every ki-tuple (v1, . . . , vki

) ∈ Ri(G), (φ(v1), . . . , φ(vki
)) is in Ri(H). For

a fixed relational structure H, CSP(H) is the following decision problem:

Problem CSP(H)
Instance: A relational structure G;
Question: Does there exist an H-colouring of G?

We write G → H to mean that G has an H-colouring. A relational structure
H is a core if its only H-colourings are automorphisms. It is well known, (see, for
example, [17]) that G → H if and only if G′ → H′, where G′ and H′ are the cores
of G and H respectively. This allows us to restrict our attention to core relational
structures in particular problems related to CSP.
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All relational structures of a given type form a category with nice properties. In
particular, this category has products and powers which are defined explicitly as
follows:

Given a relational structure H, and a positive integer d, the d-ary power Hd of
H is the relational structure of the same type as H, defined as follows.

• V (Hd) = {(v1, . . . , vd) | v1, . . . , vd ∈ V (H)}.
• For i ∈ I, ((v1,1, v1,2, . . . , v1,d), . . . , (vki,1, . . . , vki,d)) is in Ri(H

d) if and
only if all of (v1,1, v2,1, . . . , vki,1), . . . , (v1,d, . . . , vki,d) are in Ri(H).

We will write f(v1, . . . , vd) in place of f((v1, . . . , vd)) when f is a function on
V (Hd). An H-colouring of Hd (i.e. a homomorphism Hd → H) is called a d-ary
polymorphism of H. A d-ary polymorphism φ is called a projection if there exists
some i ∈ {1, . . . , d} such that φ(v1, . . . , vd) = vi for any v1, . . . , vd ∈ V (H). A
d-ary polymorphism φ is called idempotent if φ(v, . . . , v) = v for all v ∈ V (H). A
relational structure is called projective if all of its idempotent polymorphisms are
projections. One of our main definitions in this paper, Definition 4.3, generalises
these structures.

3. The Fibre Construction

In this section we define the notion of K3-partitionable structures, one of the
two main combinatorial concepts that we introduce in the present paper. We shall
prove a theorem that connects the CSP over these structures with the K3-colouring
problem of graphs. Before we get to the definition of K3-partitionable structures,
we mention some notational conventions that we will use.

We will often define sets of indexed vertices such as W ∗ = {w∗

1 , . . . , w
∗

d}. A copy
W a of the set W ∗ will mean the set W a = {wa

1 , . . . , w
a
d}. Given two copies W a and

W b of the same set W ∗ we say that we identify W a and W b index-wise to mean
we identify the vertices wa

i and wb
i for i = 1, . . . , d. When we define a function f

on W ∗, we will assume it to be defined on any copy W a of W ∗ by f(wa
α) = f(w∗

α)
for all α = 1, . . . , d. We refer to a function f on an set W ∗ as a pattern of W ∗. In
the case that the image of f is contained in the vertex set of some structure H we
speak about H-pattern of W ∗. We will often describe H-patterns of W ∗ explicitly
as vectors of elements of H. For example:

f({w∗

1 , w
∗

2 , w
∗

3 , w
∗

4}) = [h, h, h′, h],

for h, h′ ∈ V (H).

Definition 3.1. (K3-partition) Let H be a relational structure. An instance M of
CSP(H) is called a K3-partition if V (M) contains two disjoint copies W 1 and W 2

of some set W ∗ of indexed vertices, and there are three disjoint sets P1,P2,P3 of
H-patterns of W ∗ such that the following properties are met.

(i) Under every H-colouring φ of M, φ|W 1 and φ|W 2 are in different sets in
{P1,P2,P3}.

(ii) There are representative H-patterns P1, P2, and P3 of P1,P2, and P3 re-
spectively such that for every choice of i 6= j ∈ {1, 2, 3} there is an H-
colouring φij of M for which φij |W 1 = Pi and φij |W 2 = Pj .

If H has a K3-partition, it is called K3-partitionable.
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The following theorem sheds light on the relationship between CSPs over K3-
partitionable structures and CSP(K3). We view K3 as a relational structure with
one binary relation containing six ordered 2-tuples, thus an instance of CSP(K3)
also has ordered 2-tuples. In this way the classical problem of 3-colouring undirected
graphs is just the subproblem of CSP(K3) in which the instances have a symmetric
and irreflexive relation.

Theorem 3.2. (Fibre construction) If a relational structure H has a K3-partition
M, then there is a polynomial time construction that provides, for any instance G
of CSP(K3) an instance M(G) of CSP(H) such that

G→ K3 ⇐⇒ M(G) → H.

Proof. Let M be a K3-partition of H, and let G be any instance of CSP(K3) (i.e.,
a digraph). We construct the necessary instance M(G) of CSP(H) as follows.

(i) For each vertex v of G let W v be a copy of W ∗.
(ii) For each edge e = (u, v) of G let Me be a copy of M. Identify, index-wise,

Wu and W v with W 1 and W 2 of Me respectively.

Thus M(G) consists of |V (G)| copies of W ∗ and |E(G)| copies of M. All vertices are
distinct unless identified above 1. We now show that G → K3 ⇐⇒ M(G) → H.
Since |V (M(G))| is polynomial in |V (G)|, this will prove the theorem.

Let φ be an H-colouring of M(G). For each v ∈ V (G), W v is a copy of W 1

or W 2 in some copy of M, so by (i) of Definition 3.1, φ restricts on it to some
H-colouring in Pi for i = 1, 2, or 3. Thus φ′ : v → 1, 2, 3 is well defined by

φ′(v) = i if φ restricts on W v to a pattern in Pi.

Moreover, since for any edge e = (u, v) of G, Wu and W v are identified with W 1

and W 2 in the copy Me of M, we have that φ′(u) 6= φ′(v), again by (i) of Definition
3.1. Thus φ′ is a K3-colouring of G.

On the other hand, let φ be a K3-colouring of G. We define an H-colouring φ′

of M(G) as follows.

• For each v ∈ V (G), let φ′ restricted to W v be the H-pattern Pφ(v) from
(ii) of Definition 3.1.

• For each edge e = (u, v) ofG, the copies ofW 1 andW 2 are already coloured
with the H-patterns Pφ(u) and Pφ(v), where φ(u) 6= φ(v) ∈ {1, 2, 3}, so by
(ii) of Definition 3.1 we can extend φ′ to an H-colouring of Me.

�

Corollary 3.3. If a relational structure H has a K3-partition M, then CSP(H) is
NP -complete.

Proof. This follows immediately from the theorem by the fact, shown in [12], that
CSP(K3) is NP -complete (even for undirected instances).

�

1Observe that this construction is not the amalgamation of M and G which is often used in
indicator constructions. In fact, for a given copy W v of W ∗ in M(G) that has been identified with
copies of W 1 and W 2 from different copies of M, W v induces the union of the edges induced by
W 1 and W 2.
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4. The CSP Dichotomy Classification Conjecture

In this section we consider how the notion of K3-partitionable structures relates
to the CSP Dichotomy Classification Conjecture. In Subsection 4.1 we recall a
common reduction used for CSP problems. While the definition of K3-partitionable
structures may be quite intuitive to those familiar with indicator constructions it is
somewhat technical when compared to earlier versions of the fibre construction, and
less concrete. In Subsection 4.2 we give a more manageable definition, our second
main combinatorial concept in the the paper: block projective structure. In Sub-
section 4.3 we introduce the necessary algebra, and then state the CSP Dichotomy
Classification Conjecture. In Subsection 4.4 we give an alternate statement of the
CSP Dichotomy Classification Conjecture in terms of K3-partitionable and block
projective structures.

4.1. A Preliminary Reduction. Recall that a d-ary polymorphism φ is called
idempotent if φ(v, . . . , v) = v for all v ∈ V (H). A relational structure is idempotent
if its only polymorphisms are idempotent. There is a simple construction one can
use to make a relational system idempotent.

Definition 4.1. Given a relational structure H, let Id(H) be the idempotent struc-
ture constructed from H by adding, for each vertex v of H, the unary relation Rv

containing the single 1-tuple (v).

For CSPs, it is generally much easier to deal with idempotent structures, so
it is common to reduce a problem to the CSP of the corresponding idempotent
structure. The following, cf. [7], allows us to do this.

Proposition 4.2. Let H be a core relational structure. Then CSP(H) is polynomial-
time equivalent to CSP(Id(H)). In particular, CSP(H) is NP -complete if and only
if CSP(Id(H)) is.

In Section 5 we prove a bounded degree version of the second part of this theorem.

4.2. Block Projective Structures. The following definition is new, and is an
extension of the idea of subprojective which was introduced in [36].

Definition 4.3. (Block Projective.) A pair {0, 1} of vertices of H is block projective
if there are associated disjoint sets Ha, Hb ⊂ V (H) (called blocks) such that the
following is true. For any polymorphism φ : Hd → H of H, there is some i ≤ d
such that for any (s1, . . . sd) ∈ {0, 1}d,

φ(s1, . . . , sd) ∈ Hsi
.

A relational system is block projective if it contains a block projective pair.

Proposition 4.4. Let H be a block projective relational structure. Then H is
K3-partitionable, and so by Corollary 3.3, NP -complete.

( A very similar proof that subprojective structures are K3-partitionable is em-
bedded in the proof of the fibre construction in [36].)

Proof. Let {0, 1} be a block projective pair in H. Let G = H6 and define copies
W 1 and W 2 of W ∗ in V (G) by 2

W 1 = {(001111), (110011), (111100)} and W 2 = {(110101), (011110), (101011)}.

2We drop the commas in the 6-tuples, as it helps readability.
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Since the sets H0 and H1 from Definition 4.3 are disjoint, the following sets of
H-patterns of W ∗ are also disjoint.

P1 = {[x, y1, y2] | x ∈ H0; y1, y2 ∈ H1}

P2 = {[y1, x, y2] | x ∈ H0; y1, y2 ∈ H1)}

P3 = {[y1, y2, x] | x ∈ H0; y1, y2 ∈ H1)}.

We now observe that the properties (i) - (ii) of Definition 3.1 are satisfied.

Property (i): Let φ be an H-colouring of G = H6. Since {0, 1} is block projective,
there is some projection π : {0, 1}6 → {0, 1} such that for any ~v ∈ {0, 1}6, φ(~v) ∈
Hπ(~v). So we have

φ(W 1) = [φ(001111), φ(110011), φ(111100)] = [x, y, z],

where x ∈ Hπ(001111), y ∈ Hπ(110011), z ∈ Hπ(111100), and

φ(W 2) = [x′, y′, z′],

where x′ ∈ Hπ(110101), y
′ ∈ Hπ(011110), z

′ ∈ Hπ(101011). Whichever slot π projects

onto, we get that φ(W 1) and φ(W 2) are in different sets of {P1,P2,P3}.

Property (ii): This is easy. Observe that any projection π : G = H6 → H is an H-
colouring, 0 = π(000000) ∈ H0 and 1 ∈ H1. Take the patterns P1 = [0, 1, 1], P2 =
[1, 0, 1], and P3 = [1, 1, 0]. The six projections are thus the H-colourings that we
need.

�

4.3. Algebraic Approach. An algebra A = (A,F ) consists of a non-empty set
A, called the base set of A, and a set F of finitary operations on A. It is finite if A
is finite and is trivial if |A| = 1. Given a relational structure H, recall that Pol(H)
is the set of polymorphisms of H. This defines an algebra AH = (V (H),Pol(H)).
We say that an algebra of the form AH is NP -complete (in P ) if CSP(H) is
NP -complete (in P ). This definition is well defined, as it is shown in [6] that
the computational complexity of a relational structure over V (H) depends only on
Pol(H), that is, if we add finitely many of the relations over V (H) that are preserved
by Pol(H), we do not change the complexity of the structure. Further, it is known
from [2] and [13] that the set of relations preserved by Pol(H) are exactly those
that are primitive positive in the relations of H (that is, can be described using
the relations of H, the equality relation, conjunction, and first order existential
quantification).

We require the following basic algebraic definitions.

Definition 4.5. Let A = (A,F ) be an algebra and B a subset of A such that,
for any f ∈ F and for any b1, . . . , bd ∈ B, where d is the arity of f , we have
f(b1, . . . , bd) ∈ B. Then the algebra B = (B,F |B) is called a subalgebra of A,
where F |B consists of the restrictions of all operations in F to B.

Definition 4.6. Let B = (B,FB) and C = (C,FC) be algebras such that FB =
{fB

i | i ∈ I} and FC = {fC
i | i ∈ I}, where both fB

i and fC
i are di-ary, for all
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i ∈ I. Then C is a homomorphic image of B if there exists a surjection ψ : B → C
such that the following holds for all i ∈ I, and all b1, . . . , bdi

∈ B.

ψ ◦ fB

i (b1, . . . , bdi
) = fC

i (ψ(b1), . . . , ψ(bdi
)).

( Notationally, we will say that ψ ◦ fB
i = fC

i ◦ ψ on Bdi . )

Definition 4.7. Given an algebra A = (A,FA), any homomorphic image C =
(C,FC) of a subalgebra B = (B,FB) of A is called a factor of A.

Definition 4.8. The product A × B of two algebras A = (A,FA) and B =
(B,FB) is the algebra (A × B,FA×B) such that each operation fA×B ∈ FA×B

acts componentwise on A×B via fA and fB. For a set of algebras, the product is
defined in a similar manner.

The subalgebras of finite powers of an algebra are sometimes called the invariant
relations of the algebra. By the remark at the end of the first paragraph of Subsec-
tion 4.3, for any relational structure H the invariant relations of the algebra AH

are exactly the relations definable by primitive positive formulas over the relations
of H.

Definition 4.9. A class of algebras is called a variety if it is closed under taking
subalgebras, homomorphic images and products. A variety generated by an algebra
is the smallest variety containing the algebra.

Given an algebra C = (C,F ), the term operations of C refer to the set of finitary
operations of C that can be built from F and the projections via superposition of
functions, or equivalently, that preserve the same relations on C as F does.

The following is a consequence of Corollary 7.3 in [6].

Theorem 4.10. For an idempotent relational structure H, the algebra AH is NP -
complete if it has a non-trivial factor, all of whose term operations are projections.

In fact, it is conjectured in [6] that this is the only situation in which an idem-
potent structure is NP -complete, provided that P 6= NP . That is, the following
CSP dichotomy classification conjecture is formulated in [6, Conjecture 7.5].

Conjecture 4.11. For an idempotent relational structure H, CSP(H) is NP -
complete if AH has a non-trivial factor, all of whose term operations are projec-
tions. Otherwise, it is polynomial time solvable.

By Proposition 4.2, this conjecture implies that a relational structure H is NP -
complete if the algebra AId(H′) associated with its core H′ has a non-trivial factor
all of whose term operations are projections, and is otherwise polynomial time
solvable. As such, it is a strengthening of Conjecture 1.1.

4.4. Comparison.

Proposition 4.12. Let H be a relational structure such that AH has a subalgebra
B = (B,FB) with a non-trivial homomorphic image C = (C,FC), all of whose
term operations are projections. Then H is block projective.

Proof. Let ψ be a surjective homomorphism from B to C. Since ψ is surjective,
ψ−1(c) is non-empty for every c ∈ C. Let 0 and 1 be vertices in C, and let 0 and 1
be arbitrary elements in ψ−1(0) and ψ−1(1) respectively. We will show that {0, 1}
is a block projective pair in H.
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Let H0 = ψ−1(0) and H1 = ψ−1(1). These subsets of B ⊂ V (H) are clearly
disjoint. Let φ : Hd → H be an idempotent polymorphism of H. We must show
that for some i ∈ [d] and all ~v = (s1, . . . , sd) ∈ {0, 1}d, φ(~v) ∈ Hsi

.
Let fB be the restriction of φ to Bd, and fC be the member of FC such that

ψ ◦ fB = fC ◦ ψ. Since fC is a projection, assume, wlog, that it projects onto the
ith slot. Then we have that for any ~v = (s1, . . . , sd) ∈ {0, 1}d,

ψ ◦ φ(~v) = ψ ◦ fB(~v) = fC ◦ ψ(~v) = ψ(si).

So φ(~v) ∈ ψ−1(si) = Hsi
. This completes the proof of the proposition.

�

Thus by putting together Propositions 4.12 and 4.4 we get a combinatorial proof
of Theorem 4.10.

It turns out that one can use a K3-partition of H to build a graph relation G
out of primitive positive formulas over the relations of a power of H, such that G
retracts to a triangle. This yields an alternate proof of the fact that H is NP -
complete. The construction of such a graph G will be described in detail in the
proof of Proposition 4.14. The proof requires a few more results that we recall now.

In [5], Bulatov and Jeavons show that an idempotent algebra B has a non-trivial
factor, all of whose term operations are projections if and only if, in the language
of tame congruence theory, the variety generated by B admits type 1. In [30], it
is shown that this is true if and only if B admits no weak near unanimity term
operation.

Definition 4.13. A operation φ of arity at least 3 of an algebra A = (A,F ) is
called a weak near unanimity operation (or weak nu operation) if it is idempotent
and satisfies the following identity for all x, y ∈ A.

φ(y, x, x, . . . , x, x) = φ(x, y, x, . . . , x, x) = · · · = φ(x, x, x, . . . , x, y)

In order to prove that a variety admits type 1 it suffices to show that some of the
algebras in the variety generates a subvariety which admits type 1. With this in
mind, we complete the picture which shows that for an idempotent K3-partitionable
structure H, the algebra AH has a non-trivial factor, all of whose term operations
are projections.

Proposition 4.14. For an idempotent K3-partitionable structure H, the variety
generated by AH contains an algebra B that admits no weak near unanimity term
operation. Thus AH has a non-trivial factor all of whose term operations are
projections.

Proof. Let M be a K3-partition of H, and let W ∗,W 1, and W 2 be as in Definition
3.1. Let w = |W ∗| and B = Aw

H. So B is an algebra in the variety generated by
AH. Further, elements in the base set of B can be viewed as maps from W ∗ to
V (H). We show that B has no weak nu term operation. Towards contradiction let
us assume that t is a d-ary weak nu term operation of B, d ≥ 2.

Now we define a graph G on B. The set E of edges of G is defined as follows:
(f, g) ∈ E if and only if there exist h1, h2 : M → H such that h1|W 1 = f, h1|W 2 = g,
and h2|W 1 = g, h2|W 2 = f . Since the definition of E is primitive positive in terms
of invariant relations of AH, t preserves E. This fact can also be seen directly as
follows. By restricting the set of homomorphisms from M to H to W1 ∪ W2 we
get a 2w-ary invariant relation R1 of AH. By switching the variables of R1 that
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correspond to the elements of W1 with those that correspond to the elements of
W2 we get another 2w-ary invariant relation, say R2 of AH. Clearly, the relation
Q = R1∩R2 is also a 2w-ary invariant relation of AH. Now, observe that (f, g) ∈ E
if and only if the 2w-tuple determined by the two w-tuples f and g is in Q. Since
Q is an invariant relation of AH and the operations of Aw

H act componentwise, E
is an invariant binary relation of B = Aw

H.
Clearly, E is symmetric and by Definition 3.1 (i), E is irreflexive, too. Observe

that by Definition 3.1(ii), there is a triangle T in G through the vertices P1, P2, P3

and by Definition 3.1 (i) the graph G retracts onto T , say under the retraction r.
But then the operation rt|T is a weak nu operation admitted by the triangle T .
This contradicts the fact that the triangle is projective.

�

From Propositions 4.12, 4.4 and 4.14, we immediately get the following.

Theorem 4.15. For an idempotent relational structure H, the following are equiv-
alent.

(i) AH has a factor all of whose term operations are projections.
(ii) H is block projective.
(iii) H is K3-partitionable.

Thus we have the following equivalent version of Conjecture 4.11

Conjecture 4.16. An idempotent relational structure H is NP -complete if it sat-
isfies one of the equivalent conditions of Theorem 4.15. Otherwise, it is polynomial
time solvable.

5. Bounded Degree CSP Dichotomy

For a relational structure H, the degree deg(V ) of a vertex v of H is the number
of tuples it occurs in in all relations of H. The maximum degree ∆(H) of H is the
maximum of deg(V ) over all vertices v of H.

In the introduction of the paper we mentioned the following conjecture of Feder,
Hell, and Huang.

Conjecture 5.1 ([10]). For any relational structure H that is NP -complete, there
exists an integer b = b(H) such that the problem CSP(H) is NP -complete even
when restricted to instances of degree at most b(H).

As our proof that a K3-partitionable structure H is NP -complete is an explicit
construction, it takes very little work to show the stronger statement that there is
some constant b, depending on H, for which the problem CSP(H) is NP -complete
even when restricted to instances of degree at most b.

Indeed, a finer reading of the proof of Theorem 3.2 yields the following version
of Corollary 3.3.

Corollary 5.2. If a core relational structure H has a K3-partition M, then b(H)
exists and is at most 4 · ∆(M).

Proof. It follows from a result of [20] that CSP(K3) is NP -complete for instances
of maximum degree at most 4. (The result in [20] is for undirected graphs, but
arbitrarily directing edges, it holds for directed graphs.) Where M is the K3-
partition of H from Theorem 3.2, and G is an instance of K3 with maximum
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degree at most 4, the instance M(G) from Theorem 3.2 has maximum degree at
most 4 ·∆(M). Thus CSP(H) is NP -complete for instances with maximum degree
at most 4 · ∆(M). �

If a structure H is block projective, we explicitly find the K3-partition M = H6,
and so get that

b(H) < 4 · ∆(H)6. (1)

This bound was observed for subprojective structures in [36]. It holds for all
idempotent relational structures satisfying the conditions of Conjecture 4.16. In the
next subsection, we prove a bounded degree version of the second part of Proposi-
tion 4.2 which allows us to extend this bound, slightly weakened, to all relational
structures H with cores H′ for which Id(H′) is block projective.

Thus we show that the truth Conjecture 5.1 is a consequence of the truth of
Conjecture 4.16. In [23], Jonsson, Krokhin, and Kuivinen independently reduced
Conjecture 5.1 to Conjecture 4.11.

5.1. Bounded degree version of Proposition 4.2. We start with a definition.

Definition 5.3. Given a structure H containing a vertex v, the structure vHv′,
read ’v-cloned H’, is defined as follows.

• V (vHv′) = V (H) ∪ {v′}, where v′ 6∈ V (H).
• For any relation Ri(H), Ri(vHv

′) is Ri(H) with a second copy of any
ki-tuple containing v in which all occurrences of v are replaced with v′.

If H is a core, then in an H-colouring of vHv′, v and v′ have the same image. We
will use vHv′ in the proof of the following proposition, which is a bounded degree
version of the second part of Proposition 4.2.

Proposition 5.4. Let H be a core relational structure. If CSP(Id(H)) is NP -
complete for instances of degree at most b, then CSP(H) is NP -complete for in-
stances of degree at most

b(H) = max(b+ ∆(H), 3∆(H)).

Proof of Proposition 5.4. It will be enough to give a polynomial time construction
that provides, for any instance G of CSP(Id(H)), an instance G′ of CSP(H), such
that

(i) G → Id(H) ⇐⇒ G′ → H, and
(ii) ∆(G′) = max(∆(G) + ∆(H), 3∆(H)).

Let G be an instance of CSP(Id(H)). For each v ∈ V (H) let Rv(G) denote the
relation of G that corresponds to the unary relation introduced for v in the definition
of Id(H) (Definition 4.1). Construct the instance G′ of CSP(H) from G by doing
the following for each v ∈ V (H).

• Remove Rv(G) for any v ∈ V (H).
• String together |Rv(G)| v-clones vHv′ of H by identifying the copy of v′

in the ith with the copy of v in the i+ 1th copy, for i = 1, . . . , |Rv(G)| − 1.
• For the jth 1-tuple (g) in Rv(G), take a new copy of vHv′. Identify the v

with the vertex g of G, and identify the v′ with the copy of v in the jth

copy of vHv′ from the second step.
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Let H be a new copy of H and for each v ∈ V (H) identify the last copy of v′ in
the string of v-clones from the second step with the copy of v in H . Call this whole
structure G′.

It is not hard to verify that ∆(G′) = max(∆(G) + ∆(H), 3∆(H)). We conclude
the proof by verifying that G → Id(H) ⇐⇒ G′ → H.

Let φ be an H-colouring of G′. This clearly restricts to a mapping φ′ : V (G) →
V (H) = V (Id(H)) which preserves all the relations of G. We show that φ′ composed
with some automorphism of H also preserves the relations Rv for v ∈ V (H), thus
is an Id(H)-colouring of G.

Indeed, since H is a core, φ restricts on the copyH of H in G′ to an automorphism
α of H. The map α−1 ◦φ′ : V (G) → V (Id(H)) still preserves the relations preserved
by φ′. Furthermore, φ maps the vertices v and v′ in all copies of vHv′ to the same
vertex α(v) of H, so α−1 ◦ φ maps them to v. In particular, it maps any vertex of
G′ in the relation Rv(G

′), to v. Since (v) ∈ Rv(Id(H)), this preserves Rv as needed.
On the other hand, let φ be an Id(H)-colouring of G. Then φ can be extended

to an H-colouring of G′, and in a unique way.
�

Applying this to the bound given in Equation (1) we get the following.

Corollary 5.5. For any core relational structure H such that Id(H) is block pro-
jective, CSP(H) is NP -complete for instances of degree at most

b(H) = 4 · ∆(Id(H))6 + ∆(H) ≤ 4 · (∆(H) + 1)6 + ∆(H).

Corollary 5.6. If Conjecture 4.16 is true, then so is Conjecture 5.1.

Proof. It suffices to prove the claim for core relational structures. Assume that
Conjecture 4.16 is true, if H is a core relational structure for which CSP(H) is NP -
complete, then Id(H) is block projective, and so by the previous corollary, there
exists a finite b(H) such that CSP(H) is NP -complete for instances with maximum
degree at most b(H). �

6. The Large Girth CSP Dichotomy

The girth of a graph H is the length of its shortest cycle. The problem CSP(H)
restricted to instances of large girth was considered for graphs H in [24] where the
following conjecture was made:

Conjecture 6.1. Let H be a non-bipartite graph, and ℓ ≥ 3 be an integer. Then
CSP(H) is NP -complete for instances of girth at least ℓ.

The conjecture was shown in [24] to be true if ℓ ≤ 7 or if H is symmetric. A
generalisation of this conjecture to all relational structures that are NP -complete
has recently been proved by Gabor Kun in [25], independent of the Dichotomy
Classification Conjecture.

In this section we give a simpler proof of Conjecture 6.1. Our proof is independent
of Kun’s proof that relies on the heavy machinery of expander graph constructions.
The argument we give uses our main results, requiring only two main steps.

We have to construct K3-partitions with a given girth, and we have to prove a
girth version of the second part of Proposition 4.2.

To construct K3-partitions of a given girth, we must apply what is known
as a ‘girth pumping’ theorem to an ordinary K3-partition. The concept of K3-
partitionable does not allow us to prove such a theorem, but the concept of block
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projective does. Thus we apply girth pumping to a block projective graph, and
from there, build the large girth K3-partition. The actual girth pumping theorem,
Theorem 7.2, is quite technical, and of independent interest, so we put it off until
Section 7. For now, we give just a couple corollaries that follow from Theorem 7.2.

As we intend on applying the girth pumping to Id(G) of a graph G, we must
prove it for relational structures with one symmetric irreflexive binary relation, and
any number of unary relations, (note that these are not loops). We refer to such
structures as u-graphs and observe that graphs are indeed u-graphs. We define the
girth of a u-graph as the girth of the binary relation. This agrees with the common
definition of girth of a relational structure in terms of the girth of its incidence
structure. An edge of a u-graph is a tuple in the binary relation. The tuples of the
unary relations are called 1-tuples.

Corollary 6.2. Let H be a core graph such that Id(H) is block projective with
block projective pair {0, 1}, and associated disjoint sets H0 and H1. Let ℓ ≥ 3 be
an integer. There exists a u-graph M and an injection α : {0, 1}6 → V (M) such
that the following are true.

(i) For any Id(H)-colouring φ of M there is some i ≤ 6 such that for any
(s1, . . . , s6) ∈ {0, 1}6,

φ(α(s1, . . . , s6)) ∈ Hsi
.

(ii) M has girth at least ℓ.
(iii) Vertices of the range of α are distance at least ℓ apart in M .

This is a corollary of Theorem 7.2, and is proved in Section 7. Now letting W 1 =
{α(001111), α(110011), α(111100)} and W2 = {α(110101), α(011110), α(101011)}
much like we did in the proof of Proposition 4.4, and analogously defining the sets
P1,P2 and P3 as in that proof, we get that M is a K3-partition of Id(H) having
girth at least ℓ and such that vertices of W 1 ∪W 2 are distance at least ℓ apart.
This ensures, when we use M to build an instance M(G) of CSP(Id(H)) from any
instance G of CSP(K3), that M(G) has girth at least ℓ.

The following is also a consequence of Theorem 7.2, and proved in Section 7.

Corollary 6.3. Let H be a graph core, v be a vertex of H, and ℓ ≥ 3 be an integer.
Then there exists a graph vHℓv

′ with the following properties.

(i) vHℓv
′ has girth at least ℓ.

(ii) The vertices v and v′ of vHℓv
′ are distance at least ℓ apart.

(iii) Under any H-colouring φ of vHℓv
′, φ(v) = φ(v′).

(iv) For any automorphism α of H, there is an H-colouring φα of vHℓv
′ such

that φα(v) = α(v).

6.1. Girth version of Proposition 4.2.

Proposition 6.4. Let H be a core graph. If CSP(Id(H)) is NP -complete for
instances of minimum girth ℓ, then CSP(H) is NP -complete for instances of min-
imum girth ℓ.

Proof. We proceed as in the proof of Proposition 5.4 except that we use a more
complicated construction in place of the clones vHv′. We use graphs vHℓv

′ whose
existence is guaranteed by Corollary 6.3. Assuming the existence of vHℓv

′ the graph
G′ constructed as in the proof of Proposition 5.4 from a graph G of girth at least ℓ
will still have girth at least ℓ. So the proposition follows. �
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6.2. Proof of Conjecture 6.1. Without loss of generality we may assume that
H is a core graph. It was shown in [4] that for any non-bipartite core graph H , the
algebra AId(H), has a non-trivial factor, all of whose term operations are projections.
Hence, by Proposition 4.12, Id(H) is block projective. Applying Corollary 6.2
(and the discussion following it), we get a K3-partition M of Id(H) such that the
instances M(G) of CSP(Id(H)) constructed in Theorem 3.2 all have girth at least
ℓ. Thus CSP(Id(H)) is NP -complete for instances of girth at least ℓ. Proposition
6.4 then shows that CSP(H) is NP -complete for instances of girth at least ℓ. We
therefore get the following theorem.

Theorem 6.5. Let H be a non-bipartite graph, and ℓ ≥ 3 an integer. Then the
problem CSP(H) is NP -complete when restricted to instances with girth ≥ ℓ.

7. Block Projectivity and Girth

Answering a question of Erdős, Müller [34] proved that for any integers k, ℓ ≥ 3,
and any set S of k-colourings of a set of vertices W , there is a graph G of girth ℓ
containing the vertices W such that the restrictions of the k-colourings of G to W ,
up to permutation of colours, are exactly those in S . The girth condition aside, this
result underlies our fibre construction. However, the difficult part is maintaining
control of the colourings while applying the girth condition. Müller did this for k-
colouring, i.e. for mapping to cliques. In [37], this result was extended to projective
graphs, and in [36] to subprojective graphs. In this section we extend the result to
block projective graphs, and show how it implies Corollary 6.2.

First, we need a definition, which generalises a concept introduced in [37], that
of a graph being H-pointed. (Recall, u-graphs are defined before Corollary 6.2.)

Definition 7.1. Let M,H be u-graphs. Let SM be a subset of V (M), and SH be
a family of disjoint subsets of V (H). Then SM and SH are said to be a system of
(M,H)-block pointed subsets if the following is true. For any two homomorphisms
g, g′ : M → H , if g(x) and g′(x) are in the same set in SH for all x ∈ SM , x 6= x0

(for some fixed vertex x0 ∈ SM ), then g(x0) and g′(x0) are also in the same set in
SH .

Theorem 7.2. For every u-graph M and every choice of positive integers k and ℓ
there exists a u-graph M ′ with the following properties.

(i) g(M ′) > ℓ;
(ii) For every u-graph H with at most k vertices, there exists a homomorphism

g : M ′ → H if and only if there exists a homomorphism f : M → H.

Furthermore, there exists a surjective homomorphism c : M ′ →M such that

(iii) There exists a set {s′ ∈ c−1(s) | s ∈ SM} of representatives of the sets
c−1(s) that are pairwise distance at least ℓ apart.

(iv) For every u-graph H with at most k vertices, every system of (M,H)-block
pointed subsets SM and SH , and every homomorphism g : M ′ → H there
exists an H-colouring f of M such that for every v ∈ c−1(SM ), g(v) and
f ◦ c(v) are in the same element of SH .

Before we prove the theorem, we show how it implies Corollaries 6.2 and 6.3.

Proof of Corollary 6.2. Let H be a core graph such that Id(H) has a block projec-
tive set {0, 1}, with associated disjoint sets H0 and H1. Let M = Id(H)6. Then M
has property (i) of Corollary 6.2, where α is taken as the identity on {0, 1}6 ⊂ V (M).
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Apply Theorem 7.2 to M for the given ℓ and k = |V (Id(H))| to get a u-graph
M ′. We show that is the graph promised by the corollary.

To get property (i) of the corollary, we need to define α : {0, 1}6 → V (M ′).
Theorem 7.2 gives us a surjective homomorphism c : M ′ → M . For v ∈ {0, 1}6 ⊂
V (M), let α(v) be the particular representative of c−1(v) singled out by item (iii)
of the theorem. Further, let SM = {0, 1}6 ⊂ V (M), and SH = {H0, H1}. This
is a system of (M, Id(H))-block pointed subsets. Because M satisfied property (i)
of Corollary 6.2, and M ′ satisfies property (iv) of Theorem 7.2, M ′ also satisfies
property (i) of Corollary 6.2.

That M ′ satisfies properties (ii) and (iii) of Corollary 6.2 is immediate from
properties (i) and (iii) of the theorem. �

Proof of Corollary 6.3. LetH be a core, v be a vertex ofH , and ℓ ≥ 3 be an integer.
Let vHv′ be v-cloned H , as in Definition 5.3. Already vHv′ satisfies properties (iii)
and (iv) of the Corollary. Let S = V (vHv′) and SH = {{x} | x ∈ V (H)}. This
is a system of (vHv′, H)-pointed subsets. Applying Theorem 7.2 to M = vHv′ we
get a graph M ′ (with vertices c−1(v) and c−1(v′)) that satisfies all properties (i) -
(iv). �

Now we prove Theorem 7.2.

Proof. We follow the proof of Theorem 1.2 from [37] very closely, and we refer to
this paper for many of the details.

Where M has a vertices {1, . . . , a} and q edges, let V1, . . . , Va be disjoint sets of
n vertices each. Let M0 be the u-graph with vertex set V1 ∪ V2 ∪ · · · ∪ Va, and edge
set

{xy | x ∈ Vi, y ∈ Vj , ij ∈ E(M)},

and in which each vertex of Vi occurs in all the same unary relations as the vertex
i of M does.

Thus M0, which is often referred to as the n-blowup of M , has qn2 edges. Let M

be the set of all subgraphs of M0 with all 1-tuples, and m = ⌊qn1+ε⌋ edges, where
0 < ε < 1/ℓ. Let δ = min{εℓ, 1/k}.

Asymptotically, almost all graphs G of M satisfy the following properties.

(a) G has at most nδ cycles of length ≤ ℓ, moreover, these cycles are vertex
disjoint.

(b) For any two non-empty sets A ⊂ Vi and B ⊂ Vj of V (G) (with ij in M)
such that |A| + |B| ≥ δn, the subgraph of G induced by A ∪ B is not a
matching (set of mutually disjoint edges,) with fewer than nδ edges.

(c) There is a choice of vertices {v1, . . . , va}, such that vi ∈ Vi, and for any
1 ≤ i 6= j ≤ a, the distance in G between vi and vj is at least ℓ.

It was shown in [37], using standard calculations, that asymptotically, almost all
graphs G of M satisfy properties (a) and (b), thus we prove that almost all graphs
of M satisfy properties (a) - (c), by proving the following claim.

Claim 7.3. Almost all graphs G of M satisfy property (c) above.

Proof. For a graph G chosen uniformly at random from M, the probability that a
given vertex u is distance ℓ or less from a vertex v is less than nℓε−1. Thus the
probability that a given set of a vertices {v1, . . . , va}, with vi ∈ Vi for all i, fail to
satisfy property (c) is less than a2nℓε−1. As ε < 1/ℓ, this goes to zero as n goes
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to infinity, so not only do almost all graphs G of M satisfy property (c), almost all
choices of the set {v1, . . . , va} in almost all G satisfy (c). �

We now continue with the proof of Theorem 7.2. Let G be any graph of M

that satisfies the properties (a), (b) and (c). It is clear that we can remove a
matching of size at most nδ from G and end up with a graph M ′ having the
following corresponding properties.

(a’) g(M ′) > ℓ
(b’) For any two non-empty sets A ⊂ Vi and B ⊂ Vj of V (M ′) (with ij in

M) such that |A| + |B| ≥ δn, there is at least one edge of M ′ with both
endpoints in A ∪B.

(c’) Same as (c).

We now verify that M ′ satisfies properties (i) - (iv) of the theorem. Property (i)
is given by property (a’).

Letting c : M ′ →M be the M -colouring defined by

c(v) = i where v ∈ Vi,

it is clear that for every graph H , and every H-colouring f of M , g = f ◦ c is an
H-colouring of M ′. To finish the proof that M ′ satisfies property (ii), it suffices to
show that for any graph H with at most k vertices, and any H-colouring g of M ′

there is an H-colouring f of M .
Let such an H-colouring g of M ′ be given, and define f : M → H as follows.

For each vertex i of M , there exists, by the pigeonhole principle, a vertex h of H
such that |Vi ∩ g

−1(h)| ≥ n/k > δn. Let f(i) = h for any such h. We now show
that f is an H-colouring of M . Let ij be an edge of M . There is an edge of M ′

whose endpoints map to f(i) and f(j) (under g), and so f maps ij to an edge of
H . Indeed, the sets A = Vi ∩ g

−1(f(i)) and B = Vj ∩ g
−1(f(j)) both have size at

least nδ and so by property (b’), there is an edge of M ′ with one endpoint in A and
one in B. This edge clearly maps to f(i)f(j), and so property (ii) is proved.

Property (iii) of the theorem follows directly from property (c’).
To show property (iv) of the theorem, assume that SM and SH are (M,H)-

block pointed subsets, where H has at most k vertices, and assume that g is an
H-colouring of M ′.

The main point is that for any vertex s in SM , g takes everything from Vs to the
same set in SH . Indeed let v be any vertex of Vs and define fv : V (M) → V (H)
by letting fv(s) = g(v), and otherwise letting fv be defined as f in the proof of
property (ii). That is, for i 6= s, set fv(i) = h for some vertex h of H such that
|Vi ∩ g

−1(h)| ≥ n/k > δn. By almost the same argument as before, we get that fv

is an H-colouring of M . Thus if g takes some v in Vs to some where other than
the set it takes s to, then we get different H-colourings of M that differ only on
s ∈ SM . This contradicts the fact that SM and SH are (M,H)-pointed.

The statement that g and f ◦ c restrict on SM to the same function, uniquely
determines the function f on SM , We have to show that there exists an f such that
g and f ◦ c take every thing in SM to the same set in SH . Because g is constant
on Vs for all s ∈ SM , the function f defined as in the proof of property (ii) is such
that g and f ◦ c restrict on c−1(SM ) to the same function. Thus M ′ has property
(iv).

�
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8. The General Fibre Constructions

In showing that a structure H has aK3-partition, we reduce CSP(K3) to CSP(H),
and so show that CSP(H) is NP -complete. Naturally we could replaceK3 with any
other structure that we know is NP -complete, and arrive at the same conclusion.
In practise it will often be easier to show that a structure is G-partitionable for some
other NP -complete structure G, than it will be to show that it is K3-partitionable.
Such a situation is seen in [43]. In this section we will define G-partitions, and out-
line the proof that any structure with such a G-partition is NP -complete, provided
that G is NP -complete.

Definition 8.1. Let H and G be relational structures. Then H has a G-partition
if there exists some set W ∗ of indexed vertices and a family {Pv | v ∈ V (G)} of
disjoint sets of H-patterns of W ∗, with Pv containing a representative pattern Pv

for each v ∈ V (G), such that the following condition holds.
For any integer k and any k-ary relation R of G, there is an instance M = MH

G(R)

of CSP(H), containing copies W 1, . . . ,W k of W ∗, for which the following properties
are met.

(i) Under every H-colouring φ of M, there is some (v1, . . . vk) ∈ R such that
for i = 1, . . . , k, φ|W i ∈ Pvi

.
(ii) For every ~v = (v1, . . . , vk) ∈ R, there is an H-colouring φ~v of M for which

φ~v|W i = Pvi
for i = 1, . . . , k.

Furthermore, we can generalise Theorem 3.2 to the following.

Theorem 8.2. If a relational structure H has a G-partition then there is a poly-
nomial time construction that provides, for any instance I of CSP(G) an instance
MH

G (I) of CSP(H) such that

I → G ⇐⇒ MH
G (I) → H.

We do not prove this in detail, but we do provide the construction in detail.

Construction 8.3. (General Fibre Construction I → MH
G (I).) Let H and G be

relational structures, such that H has a G-partition. Let I be an instance of CSP(G),
we define the instance MH

G (I) of CSP(H) as follows.

(i) For each vertex v ∈ I, let W v be a new copy of the set W ∗.
(ii) For each relation R of G and each tuple ~v = (v1, . . . , vk) ∈ R, let M~v be a

new copy of MH
G(R) from Definition 8.1, and for i = 1, . . . , k identify the

copy of W i in M~v with W vi index-wise.

The proof of Theorem 8.2 would involve showing two things. The first is that
for every H-colouring φ of MH

G (I), the mapping φ′ : V (I) → V (G) defined by

φ′(v) = g if φ|W v ∈ Pg,

is a G-colouring of I. The second is that for every G-colouring of I, there is an
H-colouring φ of MH

G (I) such that for every v ∈ V (I),

φ|W v = Pφ′(v).

The details of this just follow the proof of Theorem 3.2.

Corollary 8.4. If a relational structure H has a G-partition where G is an NP -
complete relational structure then H is NP -complete.
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The following proposition, along with [4] and Proposition 4.12, gives us in par-
ticular, that if a structure is Id(G)-partitionable for any non-bipartite core graph
G, then it is K3-partitionable.

Proposition 8.5. Let A, B and C be relational structures. If C is B-partitionable
and B is A-partitionable, then C is A-partitionable.

Proof. The proof is broken into three parts for readability.
Notation. In this proof, we will be referring to Definition 8.1 for three different
partitions. Thus to simplify notation, we will relabel the elements W ∗, Pv and Pv

for each of these partitions. We will denote vertices of A, B and C by a, b, and c
respectively.

Let C be B-partitionable. Let S∗ denote the corresponding copy ofW ∗. Let {Qb |
b ∈ V (B)}, where Qb is the representative element of Qb, denote the corresponding
family of disjoint C-patterns of S∗. Let s = |S∗|. Thus for any instance G of CSP(B)
we get the instance MC

B(G) of CSP(C) containing |V (G)| copies of S∗, one copy Sv

for each vertex v of G.
Let B be A-partitionable. Let T ∗ denote the corresponding copy of W ∗. Let

{Xa | a ∈ V (A)} (with representative Xa of Xa) be the corresponding family of
disjoint B-patterns of T ∗. Let t = |T ∗|. Thus for any k-ary relation R of A we have
the instance MB

A(R) containing k copies T 1, . . . , T k, of T ∗.

Definition of the A-partition of C. We will now define the W ∗ and {Pa | a ∈
V (A)} that are necessary to exhibit that C is A-partitionable. Let W ∗ = S∗×T ∗ =
{(s∗, t∗) | s∗ ∈ S∗, t∗ ∈ T ∗}. For any fixed t∗0 ∈ T ∗ the subset

W ∗(t∗0) = {(s∗i , t
∗

0) | s
∗

i ∈ S∗)}

is an copy of the set S∗. Thus for any function φ : W ∗ → V (C), and any t∗0 ∈ T ∗,
φ|W∗(t∗

0
) is an C-pattern that may be in one of the Qb. Define φ′ : T ∗ → V (B)∪{0}

by
φ′(t∗i ) = b if φ|W∗(t∗

i
) ∈ Qb, and φ′(t∗i ) = 0 otherwise.

Define φ′′ : T ∗ → V (B) ∪ {0} by

φ′′(t∗i ) = b if φ|W∗(t∗
i
) = Qb, and φ′′(t∗i ) = 0 otherwise.

For a ∈ V (A), let Pa be the set of functions P : W ∗ → V (C) such that P ′ ∈ Xa.
Let Pa be the function such that P ′′

a = Xa.
For any k-ary relation R of A, MB

A(R) is an instance of CSP(B). Let the needed

instance MC
A(R) of CSP(C) be MC

B(MB
A(R)) which is constructed from MB

A(R) by

Construction 8.3. For α = 1, . . . , k, Wα ⊂ V (MC
A(R)) is the copy of W ∗ defined by

Wα = {(si, t
α
j ) | si ∈ Stα

j , tαj ∈ Tα}.

Verification that this is an A-partition. We must show that M = MC
A(R) =

MC
B(MB

A(R)) satisfies properties (i) and (ii) of Definition 8.1.

Property (i). Let φ be an C-colouring of M. For each vertex v ∈ MB
A(R), M contains

a copy Sv of S∗. Let φ′ : V (MB
A(R)) → V (B) be defined by

φ′(v) = b if φ|Sv ∈ Qb.

By the proof of Theorem 8.2, (see remarks following Construction 8.3), φ′ is
a B-colouring of MB

A(R). In particular, this means that there is some k-tuple
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(a1, . . . , ak) ∈ R(A) such that φ′|T i ∈ Xai
for i = 1, . . . , k. Thus by the defini-

tion of Pi, φ|W i ∈ Pai
for i = 1, . . . , k. This is what we needed to show.

Property (ii). Let ~a = (a1, . . . ak) ∈ R. Because MB
A(R) is an A(R)-partition of B,

there a is B-colouring φ′ of MB
A(R) such that for i = 1, . . . , k, φ′|T i = Xai

.

Define φ : ∪i=1,...kW
i → C as follows. For each tij ∈ T i, let φ restricted to

the copy W i(tij) = {(sα, t
i
j) | sα ∈ Sti

j} of S∗ be the C-pattern QXai
(ti

j
) ∈ QXai

(ti
j
).

Thus φ restricts to the C-pattern Pai
on W i. If φ can be extended to an C-colouring

of M, we are done.
For any ki-ary relation Ri of B, and any ki-tuple ~u ∈ Ri(M

B
A(R)), we have by

Theorem 8.2 that for j = 1, . . . , ki, φ restricted to the copy of Sj in the copy M~u

of MC
B(Ri)

from Construction 8.3 is Qui
∈ Qui

. Thus by φ can be extended to an

C-colouring of M~u.
Thus φ is the necessary C-colouring φ~a.

�

9. Additional Comments

9.1. Idempotence. Observe that while Id(K3) is block projective, K3 is not. So to
use Proposition 4.4 to show that K3 is NP -complete we must also use the reduction
to idempotence (Proposition 4.2). However, with a slight variation, we could build
this reduction right into the fibre construction (Theorem 3.2) thus showing that
a core H is NP -complete if Id(H) is block projective. ( This would be done by
integrating the proof of Proposition 4.2 into the fibre construction. Specifically, we
could use clones of H to identify corresponding vertices in the diagonal copies of H

in the edge-gadgets M. All of this could be integrated into the definition of block
projective, so that H would be block projective if and only if Id(H) is.) This is a
semantic difference.

At the same time, K3 is K3-partitionable. It would be nice to show that if
Id(H) is block projective then H is K3-partitionable. Then Conjecture 4.16 would
be that H is NP -complete if H is K3-partitionable, and is otherwise polynomial
time solvable. This would be more than a semantic difference.

9.2. Theorem 4.15 and decidability. Based on the definitions, it is not clear
that the conditions of Theorem 4.15 are decidable. It is shown in [5] that they are.
But it also follows from our results. If a structure does meet these conditions, then
in particular it is block projective, and so by the proof of Proposition 4.4 it has a
K3-partition defined on H6. Thus to decide if H is K3-partitionable, we only have
to check if H6 is a K3-partition of H. This is decidable. In fact, it follows from
[5], and [43] (which uses a variation of the fibre construction) that deciding if a
structure satisfies these conditions is coNP -complete.

9.3. Bounded Degree Dichotomy. It is known that the directed triangle with
one extra edge added in the other direction, is NP -complete. If we develop the fibre
construction in terms of this graph, which has four tuples, instead of K3, which has
six ( directed ) tuples, then we can replace the power of 6 in the bound in Corollary
5.5 with a power of 4.
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[30] M. Maróti, R. McKenzie, Existence theorems for weakly symmetric operations, (2006), to
appear in Algebra Universalis.

[31] R. McKenzie, Personal Communication.
[32] M. Molloy, B. Reed, Colouring graphs when the number of colours is nearly the maximum

degree. Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing,
462–470 (electronic), ACM, New York, 2001, doi: 10.1145/380752.380840

[33] U. Montanari, Networks of constraints: Fundamental properties and applications to picture
processing, Information Sciences 7(1974), 95–132.

[34] V. Müller, On colorings of graphs without short cycles, Discrete Math. 26 (1979),165–176.
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