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Abstract. Let n ≥ 3. From the description of subdirectly ir-
reducible complemented Arguesian lattices with four generators
given by Herrmann, Ringel and Wille it follows that the subspace
lattice of an n-dimensional vector space over a finite field is gener-
ated by four elements if and only if the field is a prime field. By
exhibiting a 5-element generating set we prove that the subspace
lattice of an n-dimensional vector space over an arbitrary finite
field is generated by five elements.

1. Introduction

The subdirectly irreducible complemented Arguesian lattices with
four generators were completely described by C. Herrmann, C. M.
Ringel and R. Wille in [5]. From their result it follows that for n ≥ 3 the
subspace lattices of n-dimensional vector spaces over finite prime fields
are generated by four elements. C. Herrmann’s [3] has a description of
the 4-generated subdirectly irreducible lattices in the variety generated
by all complemented Arguesian lattices. These results stemmed from
the work of Gelfand and Ponomarev [2] in which certain quadruples
of subspaces of finite dimensional vector spaces are characterized. In
[4] C. Herrmann, M. Kindermann and R. Wille give a complete list
of subdirectly irreducible lattices generated by an ordered set of the
form 1+2+2 in the variety generated by all complemented Arguesian
lattices. In fact, it turns out that these lattices are generated by four
elements as well. In contrast with the 4-generated case, the 5-generated
subdirectly irreducible complemented Arguesian lattices do not have a
complete description.
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In this paper we show that for n ≥ 3 the subspace lattices of n-
dimensional vector spaces over finite fields distinct from prime fields
have generating sets with minimal cardinality five.

To prove that we need at least five elements to generate such lattices
we quote a result from [5]: a subdirectly irreducible sublattice of a
finite dimensional complemented modular lattice is generated by four
elements if and only if it is isomorphic to M4 or to S(n, 4) (first defined
in [1]), or to the subspace lattice of an n-dimensional vector space
over a prime field where n ≥ 3, or to a non-Arguesian plane with four
generators.

For each n ≥ 3 the subspace lattice of an n-dimensional vector space
over a finite field distinct from a prime field is simple (hence subdirectly
irreducible), complemented, and modular. The height of the subspace
lattice of a finite vector space of dimension at least two equals the
dimension of the vectorspace, and the number of elements covered by an
element of height two in the lattice coincides with the cardinality of the
field plus 1. Moreover, the lattices S(1, 4) and S(2, 4) are isomorphic
to D2 and M3, respectively, and for each n ≥ 3, S(n, 4) is a lattice of
height n which has an element of height two with a unique lower cover.
Therefore by the above theorem any generating set of the subspace
lattice of an n-dimensional finite vectorspace over a field distinct from
a prime field consists of at least five subspaces, provided n ≥ 3. Our
aim is to show that five subspaces are sufficent to generate it.

2. Results

First we introduce some notation related to finite fields and subspace
lattices. Let K be a finite field of order |K| = q = pm where p is a
prime and m is a positive integer. We will denote by K+ and K∗ the
additive and multiplicative groups of K, respectively. The subspace
lattice of the n-dimensional vector space Kn will be denoted by L(Kn).
The subspace of Kn spanned by the vectors ci = (ci,1, . . . , ci,n), i =

1, . . . , l, will be denoted by [
∑l

i=1 ci,1xi, . . . ,
∑l

i=1 ci,nxi]. We require
the following simple lemma.

Lemma 2.1. For every finite field K and for every integer n ≥ 3 the

following subspaces generate the subspace lattice of Kn :

si,j(a) = [0, . . . , 0, x, 0, . . . , 0, ax, 0, . . . , 0]
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where x and ax appear in the i-th and j-th positions, respectively, a ∈
K∗, 1 ≤ i < j ≤ n, and

si = [0, . . . , 0, x, 0, . . . , 0]

where x appears in the i-th position, 1 ≤ i ≤ n.

Proof. Let S denote the sublattice of L(Kn) generated by the above
subspaces. It suffices to show that every one dimensional subspace
of Kn belongs to S. We proceed by induction. It is clear from the
definition of S that S contains every one dimensional subspace of Kn

with a spanning vector which has at most two nonzero components.
Let 2 ≤ k < n and let us suppose that every one dimensional subspace
of Kn with a spanning vector which has at most k nonzero components
belongs to S. Let us consider a one dimensional subspace s spanned by
a vector with k+1 non-zero components. By symmetry we may assume
that this vector has the form (b1, . . . , bk+1, 0, . . . , 0) where b1, . . . , bk+1

are distinct from 0. Let s′ denote the subspace of Kn spanned by
(b1, . . . , bk, 0, . . . , 0). By the induction hypothesis s′ ∈ S, hence

s = (s′ ∨ sk+1) ∧ (s1 ∨ · · · ∨ sk−1 ∨ sk,k+1(bk+1b
−1
k )) ∈ S.

For a simple, connected graph G = (V, E), with V = {1, . . . , n} let

HG = {si : 1 ≤ i ≤ n}∪ {si,j(a) : a ∈ K∗, 1 ≤ i < j ≤ n, (i, j) ∈ E}.

Lemma 2.1 can be strenghtened as follows.

Lemma 2.2. For every simple, connected graph G = (V, E) with V =
{1, . . . , n} the elements of HG generate L(Kn).

Proof. Let S be the sublattice of L(Kn) generated by the elements
of HG. In view of Lemma 2.1 it suffices to show that every si,j(a),
1 ≤ i < j ≤ n, a ∈ K∗ belongs to S. The distance between two
vertices i and j of G, denoted by d(i, j), is the minimum length of
the paths between i and j. We use induction on the distance between
the vertices in G. Let i, j ∈ V. If d(i, j) = 1 then si,j(a) ∈ HG ⊆ S.
Suppose now that d(i, j) = k + 1, 1 ≤ k < n − 1, and S contains
every subspace si′,j′(a) such that the distance d(i′, j′) is at most k,
1 ≤ i′ < j′ ≤ n, a ∈ K∗. Then there exists l ∈ V such that d(i, l) = k
and d(l, j) = 1. The subspace si,l(1) belongs to S by the induction
hypothesis and sl,j(a), si, sj, sl ∈ HG ⊆ S. Hence

si,j(a) = (((si ∨ sl,j(a)) ∧ (si,l(1) ∨ sj)) ∨ sl) ∧ (si ∨ sj) ∈ S.
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Let N [z] denote the set of polynomials in one variable z with non-
negative integer coefficients. In the proof of our main result we shall
use the following lemma on finite fields.

Lemma 2.3. Let K be a finite field, and c a generating element of the

cyclic group K∗. Then

K = {g(c2) : g ∈ N [z]}.

Proof. Let A denote the right hand side of the equality in the claim.
Clearly, (A, +) is a subgroup of K+, hence |K+| = q = pm is divisible by
|A|. So |A| is a power of p. Since 0, c2, c4, . . . , c2[q/2] are distinct elements
of A, we have that |A| ≥ [q/2] + 1 > pm−1. Therefore |A| = pm = |K|
which implies A=K.

Now we have all the necessary tools at our disposal to prove the main
result of the paper.

Theorem 2.4. For every finite field K and for every integer n ≥ 3
the subspace lattice L(Kn) of the n-dimensional vector space Kn is

generated by five elements. According to whether n is odd or even the

following five subspaces form a generating set of L(Kn):

for n = 2k + 1, k ≥ 1,

t1 = [0, . . . , 0, xk+1, . . . , x2k+1],
t2 = [x1, . . . , xk, 0, . . . , 0],
t3 = [x1, . . . , xk, 0, x1, . . . , xk],
t4 = [x1, . . . , xk, cx1, . . . , cxk, 0],
t5 = [cx1, . . . , cxk, x1, . . . , xk, 0];

for n = 2k, k ≥ 2,

t1 = [0, . . . , 0, xk+1, . . . , x2k],
t2 = [x1, . . . , xk, 0, . . . , 0],
t3 = [x1, . . . , xk, x1, . . . , xk],
t4 = [0, x2, . . . , xk, cx2, . . . , cxk, 0],
t5 = [0, cx2, . . . , cxk, x2, . . . , xk, 0];

where c is a generating element of the multiplicative group of K.

Proof. First we prove the claim for n = 3. Then by using induction,
we step from 2k − 1 to 2k and from 2k − 1, 2k to 2k + 1 where k ≥ 2.
Through out the proof, we shall denote by S the sublattice of L(Kn)
generated by {ti : 1 ≤ i ≤ 5} where n will always be clear from the
context.
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First let n = 3 and let us consider the following elements of S:
t6 = (t2 ∨ t4) ∧ t1 = [0, x, 0],
t7 = (t2 ∨ t3) ∧ t1 = [0, 0, x],
t8 = (t5 ∨ t7) ∧ (t3 ∨ t6) = [cx, x, cx],
t9 = (t2 ∨ t8) ∧ t1 = [0, x, cx],

t10 = (t4 ∨ t7) ∧ (t3 ∨ t6) = [x, cx, x],
t11 = (t10 ∨ t2) ∧ t1 = [0, cx, x].

We show that rl = [x, 0, c2lx] and r′l = [x, c2l+1x, 0] belong to S for
all non-negative integer l. We use induction on l. Obviously, r0 = t3
and r′0 = t4 belong to S. Let us assume that rl, r

′

l ∈ S. Then

wl = (r′l ∨ t7) ∧ (t2 ∨ t9) = [x, c2l+1x, c2l+2x] ∈ S

and so

rl+1 = [x, 0, c2l+2x] = (wl ∨ t6) ∧ (t2 ∨ t7) ∈ S.

Similarly,

w′

l = (rl+1 ∨ t6) ∧ (t2 ∨ t11) = [x, c2l+3x, c2l+2x] ∈ S

and so

r′l+1 = [x, c2l+3x, 0] = (w′

l ∨ t7) ∧ (t2 ∨ t6) ∈ S.

Then

sl = (r′l ∨ t7) ∧ (t3 ∨ t6) = [x, c2l+1x, x] ∈ S

and so

r̂l = (sl ∨ t2) ∧ t1 = [0, c2l+1x, x] ∈ S

for all non-negative integers l.

We now show that for every polynomial g ∈ N [z]

u(g) = [x, cg(c2)x, 0] and û(g) = [0, cg(c2)x, x]

belong to S. We proceed by induction on the sum of the coefficients of
g. Clearly, for g = 0, u(g) = t2 ∈ S and û(g) = t7 ∈ S. Let us assume
that g 6= 0 and g(z) = g′(z)+zl where g′ ∈ N [z] and l is a non-negative
integer. Then we have that

t(g) = (r̂l ∨ u(g′)) ∧ (t3 ∨ t6) = [x, cg(c2)x, x] ∈ S,

hence

u(g) = (t(g) ∨ t7) ∧ (t2 ∨ t6) ∈ S and û(g) = (t(g) ∨ t2) ∧ t1 ∈ S.

Lemma 2.3 implies now that all subspaces of the form [x, ax, 0] and
[0, x, ax], a ∈ K, are in S. Since t2, t6 and t7 belong to S, an application
of Lemma 2.2 yields the statement of the theorem for n = 3.
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Let us suppose now that n = 2k, k ≥ 2 and consider the following
elements in S:

t6 = (t1 ∨ t4) ∧ t2 = [0, x2, . . . , xk, 0, . . . , 0],

t7 = (t1 ∨ t4) ∧ t3 = [0, x2, . . . , xk, 0, x2, . . . , xk].

Observe that t1, t6, t7, t4, t5 are exatly the five subspaces claimed
to generate the subspace lattice of the (2k − 1)-dimensional space
[0, x1, . . . , x2k−1]. So applying the induction hypothesis we get that
every one dimensional subspace of Kn spanned by a vector whose first
component is 0 belongs to S.

The vector space automorphism

ϕ : Kn → Kn, (a1, . . . , a2k) 7→ (a2k, . . . , a1)

maps each of the subspaces ti, i = 1, . . . , 5, into some tj , j = 1, . . . , 5,
and the subpace [0, x1, . . . , x2k−1] into the subspace [x1, . . . , x2k−1, 0].
Let ϕ∗ : L(Kn) → L(Kn) be the lattice automorphism induced by
ϕ in the natural way. Since ϕ∗ permutes the ti, i = 1, . . . , 5, and
t1, t6, t7, t4, t5 are in S, the subspaces

ϕ∗(t1), ϕ∗(t6), ϕ∗(t7), ϕ∗(t4), ϕ∗(t5)

are in S, as well. By applying the observation in the preceding para-
graph and using the fact that a suitable restriction of ϕ∗ is a lat-
tice isomorphism between the subpace lattices of [0, x1, . . . , x2k−1] and
[x1, . . . , x2k−1, 0] we get that

ϕ∗(t1), ϕ∗(t6), ϕ∗(t7), ϕ∗(t4), ϕ∗(t5)

generate the subspace lattice of [x1, . . . , x2k−1, 0]. Therefore it follows
that every one dimensional subspace of Kn spanned by a vector whose
last component is 0 belongs to S. Thus, by Lemma 2.2 the statement
of the theorem holds for n = 2k.
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Finally, let us suppose that n = 2k + 1, k ≥ 2 and consider the
following elements of S:

t6 = (t2 ∨ t3) ∧ t1 = [0, . . . , 0, xk+2, . . . , x2k+1],

t7 = (t2 ∨ t3) ∧ t4 = [0, x2, . . . , xk, 0, cx2, . . . , cxk, 0],

t8 = (t2 ∨ t3) ∧ t5 = [0, cx2, . . . , cxk, 0, x2, . . . , xk, 0],

t9 = (t2 ∨ t4) ∧ t1 = [0, . . . , 0, xk+1, . . . , x2k, 0],

t10 = (t2 ∨ t4) ∧ t3 = [x1, . . . , xk−1, 0, 0, x1, . . . , xk−1, 0],

t11 = (t9 ∨ t10) ∧ t4 = [x1, . . . , xk−1, 0, cx1, . . . , cxk−1, 0, 0],

t12 = (t9 ∨ t10) ∧ t5 = [cx1, . . . , cxk−1, 0, x1, . . . , xk−1, 0, 0],

t13 = (t9 ∨ t10) ∧ t2 = [x1, . . . , xk−1, 0, . . . , 0].

Clearly, t6, t2, t3, t7, t8 are exactly the five subspaces claimed to
generate the subspace lattice of the 2k-dimensional space

[x1, . . . , xk, 0, xk+2, . . . , x2k+1].

Furthermore, t9, t13, t10, t11, t12 are exactly the five subspaces claimed
to generate the subspace lattice of the (2k − 1)-dimensional space

[x1, . . . , xk−1, 0, xk+1, . . . , x2k, 0].

Therefore, by the induction hypothesis we get that S contains every
one dimensional subspace of Kn spanned by a vector in which either the
(k+1)-st component is 0 or both of the k-th and (2k+1)-st components
are 0. Thus, an application of Lemma 2.2 concludes the proof.
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