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Abstract. In a 1981 paper, Duffus and Rival define an order variety as a class of posets that is closed

- under the formation of products and retracts. They also introduce the notion of an irreducible poset. In

the present paper we define nonextendible colored posets and certain minimal nonextendible colored
posets that we call zigzags. We characterize via nonextendible colored posets the order varieties
generated by a set of posets. If the generating set contains only finite posets our characterization is via
zigzags. By using these theorems we give a characterization of finite irreducible posets.

As an application we show that two different finite irreducible posets generate two different order
varieties. We also show that there is a poset which has two different representations by irreducible
posets. We thereby settle two open problems listed in the Duffus and Rival paper.
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Definitions and Notation

We use the same boldface and slanted capital letters to denote a poset and its base
set, respectively. If Q and P are posets then we write f: Q —» P if fis a monotone
map from Q to P. A poset Q =(Q, <q) is a subposet of P = (P, <p ) if Q = P and
<q= <plp. We say that a poset Q is contained in P if Q = P and <o S <plg. If
Q 1s contained-in ‘P -we writeQ < P. We say that Q is properly contained in P if
Q<P and Q#P.

Let P and Q be posets. A pair (Q, f) is called a P-colored poset if fis a partially
defined map from @ to P. If f can be extended to a fully defined monotone map
f:Q—>P on Q then fand (Q, f) are called P-extendible, otherwise fand (Q, f) are
called P-nonextendible. A P-zigzag is a P-nonextendible, P-colored poset (H,f),
where H is finite and for every K, properly contained in H, the P-colored poset
(K, f |x) is P-extendible. Roughly speaking, the P-zigzags are the finite, minimial
P-nonextendible P-colored posets. The term zigzag was introduced by Tardos in [6]
when he found all P-zigzags for a particular eight-element poset. The notion of a
zigzag is related to that of the gap [1], hole [5] and obstruction [4]. For more on
these relationships see [7]. For two P-colored posets (H, /) and (Q, g) we write
(H,f) <(Q,g) if H= Q and f =g |,. When it is clear what P is we omit it in the
terms P-zigzags, P-extendible, etc.
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We define two important constructions of posets: product and retract. Let I be an
index set and let P;, i € I, be posets. Then the product I1;. ; P, is a poset with the
base set I1,.; P; and the ordering (&;);c 7 < (bi)ier iff ¢; <, b; foreveryiel Let P
and R be two posets. We say R is a retract of P if there are monotone functions
r:P>R and e: R—P such that r o e is equal to the identity function of R. The
maps r and e are called retraction and coretraction, respectively.

Let K be a class of posets. The order variety generated by K is the smallest class
of posets containing K and closed under the retract and product constructions. In
[1] it is shown that the order variety generated by K exists and is equal to ZP(K ),
where 2 is the operator of taking retracts of posets and £ is the operator of taking
products of posets.

The Order Variety of Posets of Finite Type

First we want to introduce an order variety that turns out to be useful when
working with finite posets.

We define a poset P to be of finite type if every P-colored poset (H,f) is
extendible whenever every finite (H', /) < (H, f) is extendible. Since every finite
nonextendible colored poset contains a zigzag we have the following simple
proposition.

PROPOSITION 1. Let P be a poset of finite type. A P-colored poset is P-extendible
if and only if it does not contain a P-zigzag.

One expects the following result.

PROPOSITION 2. Every finite poset P is of finite type.

Proof. Let P be a finite poset and let (H, /) be a P-colored poset. Suppose that
every finite (H, f*) < (H, f) is P-extendible. We want to show that fis P-extendible
to H. We give a compactness argument using Tikhonov’s theorem, which states that
a product of compact topological spaces is compact. For every & € H we define a
compact topological space T),, namely, if fis defined on % then T, is the one element
set {f(h)} otherwise T}, is P with the discrete topology. Then II, .4 T) can be
considered to be the set of all functions from H to P which extend f to H. For
h,<h,e H a £ b, where a, b € P, we define an open set of I, . 5 T} in the product
topology consisting of those elements of II, . T, whose h;-component is a and
whose h,-component is b. Let S denote the set of all open sets obtained in this way.
Observe that every nonmonotone P-extension of f is in.one of the open sets of S.
Let us suppose that f has no monotone extension to H. Then the open sets of S
cover I1,.4 T,. But since II,.y T, is compact there are only finitely many
members of S which cover I, . 5 T,. Now, we can find a finite set M < H which
contains all the elements of H which occur in the definition of this finite cover. Then
we have that every element of II, . 5 T, is nonmonotone on the finite subposet of
H having base set M. But this contradicts the assumption.
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PROPOSITION 3. The posets of finite type form an order variety.

Proof. First we show that a product IT,_; P, of posets P;, i € I, of finite type is
of finite type. Let (H,f) be a II,.; P;-colored poset such that every finite
|, f)y =(H,f) is II,.,; P;-extendible. Looking at the i-th component of f as a
coloring on H the so obtained P;-colored poset is P;-extendible since P; is of finite
type. Now, the i-th component. of a IT,_; P,-extension of fis defined by the above
extension. '

Second we show that a retract R of a poset P of finite type is of finite type. Let
r: P—R be an onto retraction and let e: R— P be a corresponding coretraction.
Let (H,f) be an R-colored poset such that every finite (H',f) = (H,f) is R-
extendible. The P colored poset (H, e o f) is P-extendible since P is of finite type.
So there exists a monotone map g:H—P which extends e «f to H. But then
rog:H—->R is an R-extension of fto H since rece o f = f.

COROLLARY 4. The order variety generated by all finite posets is a subvariety of
the order variety of all posets of finite type.
Proof. Apply Proposition 2 and 3.

We do not know if these two varieties are different.

Order Varieties and Nonextendible Colored Posets

Next we shall prove some general theorems concerning order varieties and, in
particular, order varieties generated by finite posets.

For a poset P let E(P), N(P), and Z(P) denote the class of all P-extendible
P-colored posets, the class of all nonextendible P-colored posets and the class of all
P-zigzags, respectively.

Throughout the following proofs we frequently use the fact that, if (H, 1) € Z(P)
and g:P—Q is a monotone map then (H, g o f) € Z(Q) L E(Q).

PROPOSITION 5. Let P and R be two posets. Then there exists a retraction r from
P onto R if and only if there is a monotone map e from R to P such that for every
R-colored poset (H, 1) in N(R) the P-colored poset (H, e o f) is in N(P).

Proof. Let r be a retraction from P onto R with a corresponding coretraction e.
Let (H, f) € N(R). Now, let us suppose (H, e - f) is P-extendible. By applying r to
this P-extension of (H,eof) we get an R-extension of (H,rceof)=(H,f)
contradicting (H, 1) € N(R).

Conversely, let us suppose that there is a monotone map e from R to P such that
for every R-colored poset (H,f) e N(R) we have (H, e of) e N(P). For every
a &b, a,b € R, the two element chain colored by a at the bottom and colored by
b at the top, is in N(R). Hence the two element chain colored by e(a) at the bottom
and by e(b) at the top, is in N(P) and so e(a) £ e(b). Thus e preserves the relations
< and «£. So e is an order embedding of R into P. Let us look at the R-colored
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poset (P,e~!). This is R-extendible by a monotone function r, for otherwise,
(P, e~!) e N(R) and then by the hypothesis, (P, e o e~!) = (P, id,r)) € N(P). This
is impossible since id, extends id,, to P. Clearly, r o e = idz showing that r is a
retraction of P onto R.

COROLLARY 6. Let P be a poset and let R be a poset of finite type. There exists
a retraction r from P onto R if and only if there is a monotone map e from R to P
such that (H, e o ) € Z(P) whenever (H, f) € Z(R).

Proof. Use Proposition 1 and Proposition 5.

PROPOSITION 7. Let P;,,iel, be a set of posets. Then a II,_,; P;-colored poset
(H, 1) e NI, ,; P,) if and only if there exist two subsets A and B of I, with A # 0
and AU B =1, such that (H, f;) € N(P;) for every i € A, (H, f;) € E(P;) for every
i € B, where f; is the i-th component of f.

Proof. The claim is obvious.

COROLLARY 8. Let P, i1, be a set of posets. Then a Il,.; P,-colored poset
(H, f) € Z(I1;.; P,) if and only if there exist two subsets A and B of I, with A # 0
and A UB =1, such that (H, f,) € Z(P,) for every i € A, (H,f;) € E(P;) for every
[ € B, where f; is the i-th component of f.

Proof. Use Proposition 7.

PROPOSITION 9. Let P be a poset and let K be a set of posets. Then P € ZP(K)
if and only if for every P-colored poset (H,f) € N(P) there is a Qe K and a
monotone map g: P —Q such that (H, g o f) € N(Q).

Proof. Let P be a retract of the product of IT;.; P,, where P, € K for every i e I
and let (H,f) e N(P). Then by Proposition 5 there exists a monotone map
e:P->Il,.,; P, which sends (H?f) e N(P) to (H,eof)e N(IL.; P). Then by
Proposition 7 there exists an i-such that (H, x; o e o ) € N(P;), where =; is the i-th
projection map. So taking P; € K as Q and =n; o e as g we get one direction of the
claim.

a set I, posets P, € K, i € I, and a monotone map e: P—1I,_, P, such that for every
(H, f) e N(P) we have (H, e o f) € N(IL,.; P,). Since K is a set we may define a set
I which contains all pairs (g, Q), where Q € K and g is a monotone map from P to

Q. Now we define a map e from P to I, ) Q by e, o)(@) = g(a), a € P. Now,,

e is trivially monotone. Moreover, if (H, /) € N(P) then (H, e < f) € NI, gy s Q)
since by the hypothesis there exists some (g, Q) e I'such that (H, g ° f) € N(Q), and
we can apply Proposition 7.

We have an unpleasant hypothesis in the previous proposition, namely that K must
be a set rather than a class of posets. This could be avoided if we knew that for any
poset P, there exists a cardinal x(P) such that any P-nonextendible colored poset

To prove the other direction, by Proposmon 5 it suffices to show that there exist
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(H, f) contains a P-nonextendible one of size less than x(P). Alan Mekler has
shown, [3], if for every cardinal A there exists a strongly compact cardinal greater
than /, then x(P) exists. It is known that the existence of a strongly compact
cardinal cannot be proven from ZFC, see Theorem 80 in [2], and the assumption
used by Mekler is considered to be a very strong one in set theory. Observe, for
every poset P of finite type we can let x(P) =w. So we state the following
proposition.

PROPOSITION 10. Let P be a poset of finite type and K be a class of posets. Then
P e 22(K) if and only if for every (H, /) € Z(P) there is a Q € K and a monotone
map g:P—Q such that (H, g of) € Z(Q).

Proof. We get the proof copying the proof of Proposition 9, replacing N(...) by
Z(...), Proposition 5 and 7 by Corollary 6 and 8, and changing the definition of
I'to a set of pairs (g, Q) such that for every (H, /) € Z(P) there exists a monotone

g:P->Q with (H, g o f) € Z(Q).

By a similar argument we can derive Theorem 8 in [4]. From Proposition 9 we
easily get a well known result of [1].

COROLLARY 11. Let a finite poset P € #P(K), where K is a finite set of finite
posets. Then P is a retract of a finite product of some members of K.

Proof. 1t follows from the only if part of Proposition 9 and from the proof of the
if part of Proposition 9 since I will be finite.

Finite Irreducible Posets

In the final section of the paper we study the finite irreducible posets. The following
definitions can be found in [1]. A represenitation of a poset P is a family (P, |i € I)

~ of posets such that P, is a retract of P for each i € I, and P is a retract of I, ; P,.

A poset P is irreducible if for every representation (P, |i € I) of P, P is a retract of
P, for some i € I. If P is not irreducible then it is called reducible.

For example, the two element antichain, fences and crowns are known to be
irreducible posets, see [1]. The following problem on the unique representation of
posets is mentioned as Problem 2 in [1].

PROBLEM 12. Let us suppose that we have two representations (P, |ieI) and
(Q, |j €J) of P such that P, and Q; are irreducible for every i € I and j € J. For every
i€lis there a j € J such that P, is a retract of Q;?

We will show that this problem is equivalent to the following.

PROBLEM 13. Does there exist an irreducible poset Q which is a retract of
L. ;Qy, where for all j € J, Q; is an irreducible poset and Q is not a retract of Q;?




346 LASZLO ZADORI

CLAIM 14. If the answer is no for Problem 12 then the answer is yes for Problem
13 and conversely.

Proof. Let us suppose that the answer is no for Problem 12. Then there exists P
which has two representations (P, |i e I) and (Q, |j €J) and there exists an i e
such that P, is not a retract of Q; for any j € J. Now, P;is a retract of P and hence
of I;e ; Q;. So, in Problem 13 taking Q = P; we get the answer yes.

For the converse, let us suppose that we answered Problem 13 affirmatively, ie.,
there exists an irreducible poset Q which is a retract of I1; . ; Q;, where Q;, j € J, are
irreducible posets, such that Q is not a retract of Qj for any jeJ. Then let
P=1IL.,; Q;. Now, (Q, |/ € J) is a representation of P by irreducibles since the j-th
projection map on P is a retraction. Another representation of P by irreducible
posets is given by Q and Q,, jeJ, since we can define a retraction from
Q xIL,., Q; onto P by f(4, 1,425 - - -) = (1, G2, - - - ), where g €Q and ¢;€ O,
je€J. Thus, we have the above two representations of P by irreducibles, and
because Q is not a retract of Q; for any j € J, the answer is no for Problem 12.

The following example, see footnote 4, p. 85 in [1], shows that Problem 13 has the
answer yes and so by the previous claim Problem 12 has the answer no.

. EXAMPLE 15. Let Q be the two element antichain and let Q; be a j-element fence

jeJ=w. Then Q is a retract of the product II;. ; Q;, but Q is not a retract of any
Q,jel.

Proof. Since J = w, IT;. , Q; is not connected so Q is a retract of I, ; Q;. On
the other hand, a retraction preserves the connectedness of posets. So the noncon-
nected poset Q cannot be a retract of a connected poset Q;, j € J.

We note that Problem 13 turns into Problem 5 in [1] if we assume that {Q; |j € J}
is a finite set of finite posets. That problem remains unsolved.

. Now. we. characterize finite irreducible posets in terms of their zigzags. We begin
with a consequence of Proposition 10.

PROPOSITION 16. A finite poset P .is irreducible if and only zf there exists a
P-zigzag (M, f) such that for every monotone map g: P —P either the range of g is
not a subset of a proper retract of P or (H, g o f) is P-extendible.

Proof. Let us suppose that P is irreducible and for every P-zigzag (H, /) there is
a monotone map g: P— P such that the range of g is a subset of a proper retract
R of P and (H, g of) is not P-extendible. Since R is a subposet of P, (H, g o f) is
also not R-extendible. Hence (H, g o f) is an R-zigzag. Then by Proposition 10, P
is a retract of a product of its proper retracts, which contradicts the fact that P is
irreducible.

Now, let P be reducible. Then there exists a representation of P by (P;|iel)
where each P, is a retract of P with |P;| < |P|. We can assume that each Py, i € I, is
the image of a monotone, idempotent map r;: P—P. Then by Proposition 10, for
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every P-zigzag (H,f) there is an iel and a monotone g:P—DP; such that
(H,g of) is a P;-zigzag. Observe that ¢ maps P to P and (H, g /) is not
P-extendible otherwise (H,r;0gof) =(H, g of) would be P;-extendible. So the
range of g is in a proper retract of P and (H, g o f) is not P-extendible, which
proves the claim. '

For a P-zigzag (H,f) and a monotone map g:P—P, if the P-colored poset
(H, g of) is P-extendible we say that g collapses (H, f).
We can strengthen the result of Proposition 16.

PROPOSITION 17. Let P be a finite poset. Then P is irreducible if and only if there
exists a P-zigzag (H, f) such that every monotone, non-onto map g: P —P collapses
(H, f).

Proof. Let P be a finite, irreducible poset. For every finite poset H let Sy be the
set of all the P-zigzags (H, f) such that for every monotone map g: P — P the range
of g is not a subset of a proper retract of P or g collapses (H, f). By Proposition
16 we can select a poset H for which Sy is not empty. We define a relation < on
Su by (H, f1) < (H, f,) if and only if there is a monotone, non-onto map g: P—->P
such that f; = g o f,. Clearly, < is transitive. We claim that < is irreflexive. Let us
suppose instead that (H, ) < (H, f) in Sg. Then there exists a monotone, non-onto
g:P—>P such that (H, f) = (H, g o). This equality implies (H, f) = (H, g" o f)
for any finite n. Let us select an # for which g” is an idempotent map. Since g is not
onto and g” is idempotent, the range of g” is in a proper retract of P. Because
(H,f)=(H,g"-f) the map g"” does not collapse (H,f). This contradicts
(H, f) € Sy.

Let (H,f) be a minimal element of (Sy, <). Let g:P—P be an arbitrary
monotone, non-onto map. We show that g collapses (H, /). Let us suppose this is
not true. Then we claim that the P-zigzag (H,gof) e Sy. Let g:P—>P be a

" monotone map. Since (H, /) € Sy the range of g’ - g is not in a proper retract of P

or g’ o g collapses (H, f). Hence either the range of g’ is not in a proper retract of
P or g’ collapses (H, g o f). So (H, g o f) € Sy, which contradicts the minimality of
(H,f) in (Sg, <). The other direction- of the proof obviously follows from
Proposition 16.

Proposition 17 is a useful tool of proving irreducibility for particular posets.

EXAMPLE 18. The poset P in the figure below is irreducible.

Proof. 1t is easily seen that the P-colored poset (H,f) in the figure below is
a P-zigzag. We show that (H, f) is collapsed by every monotone, non-onto map
on P. Let us suppose this is not true. Then there exists a monotone non-
onto map g:P—-P such that (H,gof) is a P-zigzag. First, observe that
g(a) | g(a”), g(®) || (") and g(d) || g(d"), otherwise (H, g o ) would be P-extendible.
Now, g(a) < a’, ais impossible. Otherwise g(a”) < a’, a as well and we cannot find
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the six element subposet determined by g(a), g(a”), g(b), g(0"), g(d) and g(d") in P.
Thus g({a, a’}) = {a, a’}. Dually, g({d,d'}) ={d,d’}. Hence g({b,b'}) ={b,b'},
otherwise (H, g o /) would be extendible. Let r be an idempotent power of g. Then
r is monotone and fixes a, a’, b, b’, d and d’. These properties of » imply that r is
the identity map on P. But this contradicts the fact that g is non-onto. So by
Proposition 17, P is irreducible.

By the same argument one can prove that the posets of the form 1 +2+F+2+1,

where F is a fence with at least four elements and + denotes the ordinal sum, are
irreducible.

(H,fH)=

With the help of Proposition 17 we can answer Problem 4 in [1].

THEOREM 19. Let P and Q be two nonisomorphic, finite, irreducible posets. Then
the order varieties generated by them are different.

Proof. Let us suppose the claim is not true. By Proposition 17 there exists a
P-zigzag (H, /) such that every monotone, non-onto map on P collapses (H, f).
Since P € Z2({Q}), by Proposition 10 there exists a monotone map g: P — Q such
that (H, g o f)is Q-zigzag. Since Q € 22 ({P}) we can apply Proposition 10 again.
So there exists'a monotone map 4: Q —P such that (H, 4 o g o f) is P-zigzag. But
then the map 4 - g: P—P, which does not collapse (H, /), has to be onto. So 4 is
an onto map from Q to P. Similarly we can get a monotone, onto map from P to
Q. Hence, by finiteness we get that P is iéomorphic to Q, which is a contradiction.
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