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We define nonextendible colored posets and zigzags of a poset. These notions are re-

lated to the earlier notions of gaps, holes, obstructions and zigzags considered by Duffus,

Nevermann, Rival, Tardos and Wille. We establish some properties of zigzags. By using

these properties it turns out, for example, that if we cancel a convex subset in a finite

lattice we get a poset such that its only zigzags are gaps. This makes obvious a result of

Ronyai that these posets admit near unanimity functions. We describe all the zigzags of

fences and we present other examples with a full description of their zigzags.

The thesis contains a series of results related to order varieties. It turns out there is

a strong connection between zigzags and the order varieties generated by finite posets.

Zigzags yield information on finite, irreducible posets as well. As an application of the

results on finite irreducible posets, we show that two different finite irreducible posets

generate two different order varieties. We also show that there is a poset which has two

different representations by irreducible posets. We thereby settle two open problems listed

in a 1981 paper of Duffus and Rival.

We describe the finite bounded irreducible posets admitting a near unanimity function

with arity at most six. Every finite bounded poset admitting a near unanimity function

with arity at most six is obtained as a retract of a finite product of these irreducible posets.

The main result of the thesis is the proof of the famous conjecture, which states that

any finite bounded poset which admits Jonsson operations, also admits a near unanimity

function. The proof relies on an observation of Tardos, a result of McKenzie and the

properties of zigzags studied in the thesis. We also provide an infinite poset that shows

that we cannot drop the finiteness in the preceding conjecture.

Another famous question is when the clone of all monotone operations of a finite bounded

poset is finitely generated. A finite bounded poset with a monotone clone that is not finitely

generated was found by Tardos. In the thesis we present an infinite class of finite bounded

posets such that their clones of monotone operations are not finitely generated.



deal of attention. A partially ordered set, briefly a poset, is called bounded if it has a

largest and a smallest element. Martynjuk proved in [13] that the monotone clone of a

finite bounded poset is maximal in the lattice of all clones on the underlying set. Later, in

[24] Rosenberg showed that there are six classes of maximal clones on an arbitrary finite

the other five types were shown to be finitely generated, see [12]. The problem remained:

Is the monotone clone of a finite bounded poset finitely generated? The answer is yes if

the poset is lattice ordered, or if it has at most seven elements, see [12], or if it is obtained

from a finite lattice ordered set by cancelling a convex subset of it, see [4]. But in 1986

Tardos answered the problem negatively in [26]by showing that the monotone clone of the

o
Figure 1. Poset T

f(x, ... ,x, ,!!,x, ... ,x) = x for every 1 ~ i ~n. If n = 3, then f is called a majority
~

function. So the next question that occurs for finite bounded posets is whether a monotone



clone is finitely generated if and only if it contains a near unanimity function. For any

.algebra that has a near unanimity function among its term operations, the clone of term

operations is finitely generated, which proves one direction of the claim, see [15] or [25].

The hard part, to prove or disprove the other direction, is mentioned as an open problem

in [2], [3] and [14].

In [26] Tardos uses certain special objects, zigzags, to prove that the clone of T is not

finitely generated. In the same paper there is a remark that characterizes the finite posets

having a monotone near unanimity function, in terms of their zigzags. Objects similar to

zigzags called gaps [9]and [20], holes [19],and obstructions [18], have been studied from an

order theoretical point of view. In [19] and [22] there is a characterization of finite posets

having a monotone ternary near unanimity function. The proof establishes a connection,

similar to Tardos's remark, between holes and ternary near unanimity functions. The

ideas in the papers cited in this paragraph encouraged me to study the zigzags of arbitrary

posets in connection with the structure theory of ordered sets as presented by Duffus and

Rival in [9].

A variety of algebras is called congruence modular if the congruence lattice of every

algebra in the variety satisfies the modular law. A variety of algebras is called congruence

distributive if the congruence lattice of every algebra in the variety is distributive. It

is well known, see [17], that if an algebra has a near unanimity term operation, then

the variety generated by the algebra is congruence distributive and so it is congruence

modular. We call an algebra a monotone algebra of a poset P, if the set of term operations

of the algebra coincides with the set of all monotone operations of P. Davey showed in

[2] that a monotone algebra of a bounded poset generates a congruence modular variety if

and only if it generates a congruence distributive variety. In [14] McKenzie gave a useful

characterization of finite bounded posets for which the corresponding monotone algebras

generate congruence distributive varieties. It was conjectured in [2], [3] and [14], if a

monotone algebra of a finite bounded poset generates a congruence distributive variety,



then the algebra has a near unanimity term operation. Since the congruence distributirity

of the variety generated by an algebra is equivalent to the algebra having some special

term operations, called Jonsson operations, satisfying certain identities, we can rephrase

the preceding conjecture as follows. A finite bounded poset P has monotone Jonsson

operations if and only if there exists a monotone near unanimity operation on P. Zigzags

turn out to be a powerful tool for settling this conjecture.

The remaining part of this chapter is a summary of the results contained in the thesis.

Chapter 2. In this chapter I give the basic definitions and show the connection between

gaps, holes, obstructions and zigzags. Posets with the strong selection property and posets

with near unanimity functions are characterized in terms of zigzags.

Chapter 3. I prove some claims about the shape of zigzags and I give an algorithm that

constructs all zigzags of a poset. By using the characterization of finite posets with the

strong selection property given in Chapter 2, I show if a convex subset of a finite lattice

ordered set is deleted, then the resulting poset has the strong selection property.

Chapter 4. In this chapter I describe the zigzags of the anti chains and fences. I prove a

theorem by which one can determine all zigzags of certain other posets constructed from

antichains and fences. Among these posets we find Tardos's eight element poset T and

the class of locked fences defined in [14]. I give an easy proof of the fact mentioned in [14]

that the monotone clone of any locked fence contains a near unanimity function.

Chapter 5. I characterize the order varieties generated by finite posets in terms of the

zigzags of their generating elements. The theorems here are stated in a more general

setting and apply not only to finite posets.

Chapter 6. By using the results of Chapter 5, I give a characterization of finite irreducible

posets via zigzags. I answer two open questions from [9]asked by Duffus and Rival: I show

that two different finite irreducible posets generate two different order varieties and that

there is a poset that is not uniquely factorable by irreducible posets.



Chapter 7. With the help of the characterization of finite irreducible posets gIVen III

Chapter 6, I establish an interesting property of finite irreducible posets having a monotone

near unanimity function. I give a complete list of all finite bounded irreducible posets with

n-ary near unanimity functions, n S; 6. It turns out that these posets have the strong

selection property.

Chapter 8. In this chapter I present a proof of the above mentioned conjecture that

states that for every finite bounded poset P there exist monotone Jonsson operations if

and only if there exists a monotone near unanimity operation on P. I present an example

of an infinite bounded poset that has monotone Jonsson terms but has no monotone near

unanimity function. So in the infinite case the conjecture does not hold.

Chapter 9. Finally, I generalize Tardos's theorem in [26] by proving that the monotone

clone of every finite poset P = 1 + E~l Ai+l, where n ~ 3 and each Ai is an antichain

with at least two elements, is not finitely generated.



The mam concept of this thesis is the zigzag. To define it we need to clarify some

basic concepts involving partially ordered sets. After we define the notion of a zigzag we

show the correspondence between zigzags and other concepts such as gaps, obstructions

and holes. In Proposition 2.3 we characterize via zigzags the finite posets with the strong

selection property. In 2.4 we give a proof of Tardos's remark in [26] that describes, via

zigzags, the finite posets with monotone near unanimity operations.

A partially ordered set, briefly, a poset P is a nonempty set P with a reflexive, transitive,

antisymmetric relation :Sp on it, i.e., P = (P,:Sp). A poset with a largest and a smallest

element is called bounded. For an arbitrary poset P we define <P=:SP \{(p,p) : pEP}.

We use boldface capital letters to denote a poset throughout this paper and when it is

possible we leave off the subscript from the relational symbol. In a poset P, b E P covers

a E P, i.e., a -< b, if a < b and there is no c E P such that a < c < b.

Let P be a poset and let T be a subset of P U -<p with P q, T. We denote the poset

(P \ T, (:Sp !P\T) \ T) by P \ T and we say that T is cancelled from P. For two posets P and

Q with P n Q = 0 let P+Q denote the poset (P U Q,:Sp U :SQ U{(p, q) : pEP, q E Q}).

Let I be an index set and let Pi, i E I, be posets. Then the product I1EI Pi is a poset with

the base set DiEI Pi and the ordering (a;)iEI :S (bi)iEI if and only if ai :Sp; bj for every

i E I. If Pi = P for every i E I then the product is called a power of P and is denoted pl.

A poset Q is a subposet of P, i.e., Q :SP, if Q ~ P and :SQ=:SpIQ. We say that a poset

Q is contained in P if Q ~ P and :SQ~:SP IQ. If Q is contained in P we write Q ~ P. We

say that Q is properly contained in P if Q ~ P and Q =I P. Vvenote that each poset P

contains any antichain defined on any nonempty subset of P.

An up set of P is a subset S of P for which s E Sand s :S pEP imply pES. A down

set of P is defined dually. Let S ~ P. Then S· denotes the set of all elements of P which



are greater than or equal to every element of S in P. 5. is defined dually. A set 5 ~ P is

called a convex set of P if 5 = (5*). n (5.)*.

A map f : Q -+ P is called monotone with respect to Q and P if for every a ::=;Q b we

have f(a) 'Sp f(b). For such a map we use the abbreviation that f : Q -+ P is monotone.

We sayan n-ary operation f on P preserves P or P admits f if and only if f : pn -+ P is

monotone.

Let P and Q be posets. A pair (Q, 1) is called a P-colored poset if f is a partially defined

map from Q to P. If f can be extended to a fully defined monotone map l' : Q -+ P

on Q then f and (Q, 1) are called P-extendible, otherwise f and (Q, 1) are called P-

nonextendible. A P-zigzag is a P-nonextendible, P-colored poset (H,1), where H is finite

and for every K, properly contained in H, the P-colored poset (K, f IK) is P-extendible.

Roughly speaking, the P-zigzags are the finite, minimal, nonextendible P-colored posets.

When it is clear what P is we leave it off from the terms like P-zigzags, P-extendible, etc.

For two P-colored posets (H,f) and (Q,g) we say that (H,J) is contained in (Q,g) and

we writ~ (H, J) ~ (Q, g) if H ~ Q and f = g IH. Observe that every finite nonextendible

colored poset contains a zigzag. Let (H,1) be a P-colored poset and let T be a subset of

H U -<H with H Cl:.T. We denote the P-colored poset (H \ T, f IH\T) by (H, J) \ T and

we say that T is cancelled from (H, 1).

For a P-colored poset (H,J) we define C(H,J) = {h E H: f(h) exists} and N(H,J) =

H \ C(H, J). We call the elements of C(H, J) colored elements and the elements of N(H, J)

noncolored elements. If C(H, J) and N(H, J) are nonempty we define the posets C(H, J)

and N(H, J) by the restriction of 'SH to CCH, J) and lqH, J), respectively.

Each poset P is associated with two undirected graphs on P. One is called the compa-

rability graph of P that has an edge between a and b if and only if a <p b. The other is

the covering graph of P that has an edge between a and b if and only if a -<p b. Often,

as an example, we shall draw a picture of a P-colored poset (H, J) for some particular P.

A picture like this consists of the covering graph of H and an element of H is drawn as a



small shaded circle or a small empty circle according to whether f is defined or not defined

on the given point. Every shaded point is labelled by the value of f. Sometimes unshaded

1

'~",
a~a

bXb'
a/ a'

,",/",
a~a

PROOF: The P-colored poset (H, I) clearly is P-nonextendible. Let hI be the non colored

element and let h2 be the element colored by bin (H, I). Then (H, I) \ {(hI, h2)}, which is

a maximal P-colored poset properly contained in (H, I), is extendible by coloring hI by b'.

The other three maximal P-colored posets properly contained in (H, f) are P-extendible

otherwise (H, f) is nonmonotone. A monotone P-colored poset (H, f) is called an extension

of the P-colored poset (H, 9) if f is an extension of 9. Observe that for any poset P the

this form. So for every monotone zigzag (H, I), f is monotone on its domain and there is

at least one element of H, where f is not defined.



Q
A{f(b) : b Eh< b}. In particular, no finite lattice ordered set possesses monotone

A pair (D, U), where D, U ~ P is called a gap of the poset P if D ~ U_, equivalently

U ~ D-, and D- n U_ = 0.

aI, .•. , an E D and b1, .•. , bm E U such that the colored poset in Figure 3 is a P -zigzag.

We note that this P-zigzag need not be unique. Nevertheless, every P-zigzag of the above

Let us fix a finite poset P. Let Bp = {(D, U) : D is a down set of P, U is an up set of P

and D-nU. =I=- 0} and let Bp be the poset on Bp given by the ordering (D1, U1) :s; (D2, U2)

if and only if D1 ~ D2 and U2 ~ [11- We say P has the strong selection property if and

only if there exists a monotone map g : Bp ~ P such that for every (D, U) E Bp,



PROOF: Let (H, f) be a P-zigzag, where P has the strong selection property. With every

hE H we can associate a pair (Dh,Uh) defining Dh = {a E P: there exists h' E C(H,f),

h' Shand as f(h')} an d Uh = {a E P : such that there exists h' E C(H,j), h S h' and

f(h') S a}. We claim that (H,f) cannot contain two or more noncolored elements. For

otherwise, if hE C(H,f) then f(h) E Dh• n Uh•• and if hE N(H,f) then by cancelling

a noncolored point ho i= h from (H, f) the resulting colored poset will be extendible, so

Dh" n Uh. i= 0. Thus, by f'(h) = 9(Dh, Uh), where 9 is obtained from the definition of

Now, let us suppose that P is a finite poset having P-zigzags with at most one noncolored

element. We want to show that the above map 9 exists. Let h be the partial map from

domain to P and it is P-extendible otherwise there would be a P-zigzag as in Figure 3

with exactly one noncolored element (D, U), which is contained in the finite colored poset

(Bp, h). But (D, ) cannot be in Bp since al, ... , an E D and b1, .•• , bm E U and so

D" n U. is empty. Thus, (Bp, h) is an extendible colored poset. Let 9 be a monotone

We define an obstruction for a finite poset P similarly to Nevermann [18]. Let Cp

{(D, U) : D is a down set of P, U is an up set of P}. First, we define the poset Cp by

ordering Cp by (Db U1) S (D2, U2) if and only if D1 ~ D2 and U2 ~ U1• For a finite poset

H, a monotone map v : H - Cp, v : h •........•(Dh, Uh), is called an H-ob.struetion if there is

no order preserving map v' from H to P such that for every h E H, v' (h) E D h • n Uh ••,

but from any proper subposet H' of H there exists such a v'. Nevermann noted that if

and for every h E H, for every a E Dh we put a covered element colored by a below.



h and for every b E U h we put a covering element colored by b above h. The resulting

colored poset is not P-extendible and so it contains a P-zigzag. We note that the set of

n-nuf, if and only if f( a, ... ,a, ~, a, ... , a) = a for every a, b E P and for every 1 S; i S;n.
. ~

If n = 3, then f is called a majority function. The role of near unanimity functions in

PROOF: Let us suppose P admits an n-nuf. Let (H, f) be a P-colored poset and let

C(H,f) = {hll ••• ,hl} such that n S; I = jC(H,f)I. Furthermore, let us suppose that for

every H' properly contained in H, (H', f IHI) is extendible. So for any h E C(H, f) the
•

colored poset (Hh, f IRk), where Hh = (H \ {h}, S;H !H\{h}), is extendible. Let us take a

function fh : H ~ P for each h E C(H, f) such that fh IRk is a P-extension of f IRk to

Hh. Then by the hypothesis there is an I-nuf MI preserving P. Hence Ml(!hl"" , !hI) is

a fully defined monotone map from H to P that extends f. Thus, every P-zigzag must



pn to P. Then the colored poset (pn, Mn) contains a P-zigzag (H, I). We know that

IC(H,I)I :::;n -1. Hence there exists an 1 :::;i S n such that f takes on the i-th component

for each element of C(H, I). But then the i-th projection from H to P is a P-extension

A finite poset is called a fence if its comparability graph is a path. A finite poset is called

a crown if it is of the from (F,:::;F U {(a,b)}), where F is a fence with 2n 2: 4 elements, a

subfence connecting a and b in P. So d( a, a) = O. The diameter of P is the supremum of

d(a, b), where a, bE P. We define the up distance from a to b as the least positive integer n

We define the down distance from a to b dually. Let (a, b) and 1 (a, b) denote the up

and down distance from a to b, respectively. Let +--+ ( a, b) = (T (a, b), 1 (a, b)). Clearly,

I T (a, b)- 1 (a, b)1 :::; 1, if the up or down distance from a to b is defined. We note that by

the definition +--+ (a, a) = (1, 1).

In [19] Nevermann and Rival define the concept of a hole in a poset. The definition for

a finite poset P is the following. Let V = {(n,m) E N2: Tl - ml :::;I}. We define the disc

of P with center c E P and radius rEV as Dp(c,r) = {a E P: +--+ (c,a):::; r}. Let T be

is called a hole of P if n {Dp(ct,rt)} = 0 and for every proper subset T' of T we have
tET

n {Dp( Ct, rtn =J 0. A hole with ITI = m is called an m-hole.
tET'

Now, we describe a one-to-one correspondence between holes and the elements of a class



of certain nonextendible colored posets. Let P be a finite poset. Let us consider a hole of P

defined in the previous paragraph. Let rl(t) and r2(t) be tne first and second components

of rt. We create one colored fence for those t where rl(t) 1- r2(t) and two colored fences for

those t where rl(t) = r2(t) in the following way. If rl(t) :s: r2(t) we take a fence with rl(t)

elements that starts upward from one of its endpoints, called a, and if r2( t) :s: rl (t) we take

a fence with r2(t) elements that starts downward from one of its endpoints, called a, and

in both cases we color a by Ct. Let us stick together all these fences at the non colored end.

In the resulting colored poset let us stick together those colored points which correspond

to the same t. In this way we get a nonextendible colored poset (Q,g) in which, if we

cancel any colored point, we get an extendible colored poset.

We call a poset a double fence if it is obtained from a fence with at least three elements by

taking a copy of it and a copy of its dual and sticking them together at their corresponding

endpoints. The two points, where we stick together the fences are called the endpoints

of the double fence. Now, let (Q,g) be a nonextendible P-colored poset such that if we

cancel any colored point from (Q, g) we get an extendible colored poset. Moreover, let F;,

i = 1, ... ,m, be a fence or a double fence with endpoints a; and b;. Let us suppose that Q

is the poset obtained from F;, i = 1, ... ,m by sticking the F; together at b;, i = 1, ... ,m,
and C(Q,g) = {al, ... ,am}. Then the sequence (g(a;), •.....•(a;,b;)), i = 1, ... ,m, is an

m-hole.

Observe that any zigzag contained in a nonextendible colored poset (Q, g) that corre-

sponds to an m-hole must contain all colored points of (Q,g). This fact and Remark 2.4

imply the result contained in [22] that the arity of every nuf that preserves a finite poset

P is greater than m for every m- hole of P.



3. Properties of zigzags

In the previous section we defined zigzags. Now, we will explore the properties of these

objects. In Proposi ion 3.1 we give a useful characterization of zigzags. Then in 3.2 through

3.11 we prove some claims concerning the shape of zigzags. In Claim 3.12 we describe all

zigzags with fewer than three noncolored elements. By using Claim 3.11 we show that by

cancelling a convex subset of a lattice ordered set we get a poset wi h the strong selection

property, see Proposition 3.14. In Proposition 3.15 we show that every zigzag of a finite

poset P is a monotone image of a zigzag of height less than the height of P. For a finite

poset P, by Proposition 3.16 we get a recursive algorithm that creates all P-zigzags with

m non colored elements for every m.

PROPOSITION3.1. Let (H, f) be a P-colored poset, where H is finite. Then (H, f) is a

P-zigzag if and only if H is connected, (H, f) is not P-extendible and by cancelling any

covering pair of (H, f) the resulting colored poset is P-extendible.

PROOF: The only if part should be clear by the definition of a zigzag. To show the

if part, let H' ~ H and let us suppose (H', f IHI) is not P-extendible. We will show

H' = H. By the assumption H' has to contain all covering pairs of H otherwise H' would

be extendible. Then H' has to contain every point of H which is in a connected component

C of the comparability graph of H, where C has at least two elements. By the assumption

H has only one component and this component has more than one element since (H, f) is

not P-extendible. So H ~ H', hence H = H'. 0

Now, we list some facts concerning the shape of a P-zigzag (H,f).

CLAIM 3.2. Let (H, f) be a P-zigzag. The subgraph spanned by (H, f) in the covering

graph of H is connected.

PROOF: Let us suppose the claim is not true. Then if we cancel the elements of one

component of the subgraph spanned by N(H, f) from (H, f) we get a colored poset that

13



is extendible. If we cancel all the other elements of N(H, 1) from (H,1) we get another

extendible colored poset. Because of the assumption, by taking the union of two extensions

which extend the above two colored posets we would get an extension of f to H. [

CLAIM 3.3. Let (H,1) be a monotone zigzag and let a E C(H, 1). For every bE H which

satisfies a -< b or b -< a we have b E N(H, 1).

PROOF: Without loss of generality we can assume b -< a. If b E C(H,1) then cancelling

(b, a) in (H,1) we get an extendible colored poset and since (H,1) is monotone putting

back (b, a) we still have an extendible colored poset. This contradicts the fact that (H,1)

is not extendible.

A monotone map between two P -colored posets means a monotone map between the

two base posets which maps each a-colored element to an a-colored element and each

non colored element to a noncolored element. We say that a P-colored poset (H,1) is a

monotone image of a P-colored poset (H', 1'), if there exists a monotone map from (H', 1')

onto (H, 1).

CLAIM 3.4. For every P-zigzag (H, 1) there exists a P-zigzag (H', 1') such that N(H, 1) =
N(H',f'), (H,1) is a monotone image of (H', 1') and every colored element of (H', 1')

occurs in exactly one covering pair of H' .

PROOF: For nonmonotone P-zigzags the claim is obvious. For a monotone P-zigzag (H, 1)

the P-colored poset (H', f') is defined as follows. The poset N(H', 1') is contained in

N(H,1) in such a way that the covering graph of N(H', 1') is the subgraph spanned by

N(H,1) in the covering graph of (H,1). For every s E C(H,1) and h E N(H,1) with

s -<H h there is a single element s' E C(H', 1') such that h is the unique element covering

s' in (H',f') and f'(s') = f(s). For every h E N(Hl1) and s E C(H,1) with h -<H s

there is single element s' E C(H', f') such that h is the unique element covered by s' in

(H',f') and 1'(8') = f(8). By Proposition 3.1 the so defined colored poset (H',f') is a

zigzag which obviously satisfies the requirements of the claim. 0



A colored poset in which every colored element occurs in exactly one covering pair is

called a standard colored poset.

CLAIM 3.5. Let (H, f) be a P-zigzag and let a and b be two different elements of C(H, I).

Let us suppose that there exists c E N(H,f) with c -< a,b. Then f(a) 1. f(b).

PROOF: Let us suppose the claim is not true. Then f(a) ::; f(b). If we cancel (c, b) we get

an extendible colored poset for which any extension extends (H, f), too. 0

CLAIM 3.6. Let (H, f) be a P-zigzag and let a, b E C(H, f), where a < b. Then f( a) =J

f(b).

PROOF: The claim is obvious for nonmonotone zigzags. Now, let (H, f) be a monotone

zigzag. By Claim 3.3 there is acE N(H, f) such that a < c < b. By cancelling c from

(H,f) the resulting colored poset has an extension 1'. If f(a) = f(b) then l' together

with the coloring of c by f( a) is an extension of f to H. 0

CLAIM 3.7. Let (H,f) be a P-zigzag. Let a,b E C(H,I) be two different maximal

elements of H for which f(a) = f(b). Then there exists a zigzag (H', 1') for which

N(H/,f') = N(H, I) and there is an onto monotone map from (H, I) to (H', f') which

identifies only a and b.

PROOF: We define H' as follows. Above every element of H\ {a, b} covered by a or bin H

we put the covering element c (j. H. The coloring l' of H' is defined by f on H \ {a, b} and

by f'(c) = f(a). By Proposition 3.1, (H/,f') is a zigzag which satisfies the requirements

of the claim. 0

CLAIM 3.8. Let (H, f) be a P-zigzag. Every monotone map 9 : H ---t H that is the identity

map on C(H, f) has to be onto, i.e., an automorphism of H.



PROOF: Let us suppose 9 is a monotone map that is the identity on C(H, f) and maps H

into a proper subset H' of H. Since (H, f) is a zigzag there is a P-extension l' of I IHI to

H'. So l' 0 9 is a P-extension of I to H which contradicts that (H, f) is not extendible. 0

Let Q be a finite poset. Then a E Q is called retractable if there is a non-onto monotone

map on Q that fixes each element different from a. An element a E Q is called irreducible

if there is a unique b E Q with a -< b or b -< a. Observe that every irreducible element is

retractable.

PROOF: Let us suppose h is a maximal element of Hand h E N(H, I). By cancelling h

in (H, f) we get an extendible colored poset. Now, an extension of I to this colored poset

together with the coloring of h by 1 extends I to H. 0

CLAIM 3.11. Let (H,f) be a P-zigzag with IN(H,I)! 2:2. Then for every a E N(H,I),

a (j. {b, c} ~ H with b -<H c there exists a monotone P-zigzag (H', 1') such that H' ~ H,

a,b,c E H', l' IH'\{a}= I IH'\{a} and 1'(a) is defined in such a way that ~(d):::; 1'(a):::;

I( e) for every d, e E C(H, I) with d <H a <H e.

PROOF: Since (H, I) is a P-zigzag and IN(H,I)I 2: 2 there exist pEP and a monotone

partial map I" from H to P given by I" IC(H,j)= I and I"(a) = p. For every such p we

select one P-zigzag contained in (H, I") and we denote it by (Hp,lp). Clearly, a E Hp.

Let us suppose there is no pEP such that (b,c) E :::;Hp' Let Hb,c = H \ {(b,c)}. Then

Hb,c ~ Hand (Hb,c, I) is not P-extendible because every monotone extension of (Hb,c, f)

to a contains a zigzag (Hp,lp) for some p. But this contradicts that (H, f) is a zigzag.

Thus there is a Po E P such that (b,c) E:::;Hpo' Taking (H',1') = (Hpo,lpo) we get the

cl~m. 0



CLAIM 3.12. For a P-zigzag (H,f) the following llOld.

(1) If IN(H, f)1 = 0, then (H, f) is a two element nonmonotone zigzag.

(2) If IN(H, f)1 = 1, then (H, f) is the first colored poset shown in Figure 4, where m

and n are nonnegative integers such that m + n > 0 and n, m =I 1. Moreover, f is

an order isomorphism on its domain.

(3) If IN(H, f)\ = 2, then (H, f) is the second colored poset shown in Figure 4, where

k,1 ;:: 1 and m and n are nonnegative integers for which m, n. =I 1. Moreover, any

comparable pair in Range(j) not shown in the picture is of the form di < Cj, Cj < b.,

or at < di for some 1 ::; i ::;k, 1 ::; j ::;1, 1 ::; s ::;m and 1 ::; t ::;n.

PROOF: We showed (1) before Example 2.2. First we prove (2). By Claim 3.3 we get the

picture of (H, f). Obviously, m + n > O. Claim 3.9 gives n, m =I 1. Claim 3.5 gives that f

is an order isomorphism on its domain. Next we prove (3). By using Claim 3.2 and Claim

3.3 we can see that (H, f) has to be a standard zigzag as shown in the picture. Claim 3.9

gives k,1 ;:: 1 and m, n =I 1. To prove the last claim use Claim 3.5, Claim 3.6 and the

definition of zigzag. 0

Let Si be the j>oset that we obtain by cancelling the top element from a Boolean lattice

ordered set with i atoms. Let Sf be the dual of Si. Let Tl,k be the poset (SI+I+S~) x

(1 + 1) without its top and bottom element. Then the reader can easily check the following

claims. The poset Sn+S~ has a zigzag of the form in (2) of Claim 3.12. The poset

Sn+TI,k+S~ has a zigzag of the form in (3) of Claim 3.12. For more on these posets see

[18] and [20].



a :::;L c :::;L b imply c E 5. There is a well known result [4] of Demetrovics, Hanmik and

R6nyai which states that for a finite lattice ordered set L the poset P = L \ 5, where S is

Remark 2.4 the poset P admits a nuL We note that the preceding argument gives a proof

of the result in [19]that a finite poset with the strong selection property admits a nuL

PROOF: By Proposition 2.3 it is enough to show that for every monotone P-zigzag (H. f)

we have IN(H, f)1 = 1. Let us suppose this is not true. Then there exists a P-zigzag (H, f)

such that IN(H, J)I is minimal with respect to I.N (H, 1)1 2:: 2. Let a i= b E N(H, f).

By Claim 3.11 there are two P-zigzags (H1,!J) and (H2,h) such that H1,H2 ~ H,

{a,b} ~ H1,H2 and !J IH1\{a}= f IH1\{a}, h IH2\{b}= f IH2\{b}. Moreover !J(a) and
•

h(b) are defined in such a way that f(c) :::;!J(a) :::;f(d) for every c,d E C(H,f) with

c < a < d and f(c) :::; h(b) :::; f(d) for every c d E C(H, I) with c < b < d. The

minimality of IN(H,I)I 2::2 implies that IN(H1,fdl = IN(H2, h)1 = 1. Hence (2) in



and u have to be in S otherwise (HI, II) or (H2, 12) would be extendible P-colored posets.

Since S is convex we get that iI (a) E S, which contradicts II(a) E P. 0

We remark that not every finite poset P with the strong selection property can be

obtained from a finite lattice ordered set in the above way. Let pI = 1 + 2 + 2 + 1, the

poset in Figure 2, and let P = pI X P'. Then P has the strong selection property since pI

has it by Proposition 3.14 and if Hand K have the strong selection property then H x K

has it, too, see [20]. In [6] it is shown that P cannot be obtained from a finite lattice

ordered set by cancelling a convex subset.

In a finite poset P we define the length between two elements a :Sp b as the maximum

cardinality of a chain between a and b. The length between a and b is denoted by fp( a, b).

PROPOSITION3.15. Let P be a finite, bounded poset. Then for every monotone P-zigzag

(H, J) there is a standard zigzag (H', 1') such that (H, J) is a monotone image of (H', 1')

and for every maximal chain a = aI < a2 < ... < an = b of H', n:S fp(J'(a),1'(b)) + 1.

PROOF: First of all, recall Claim 3.10 to see that for every maximal chain of any P-

zigzag the bottom and top elements are colored. The proof will proceed by induction

on the cardinality of the set of non colored elements of a zigzag. By (2) in Claim 3.12,

the zigzags with one non colored element satisfy the claim. Let (H, J) be a P-zigzag with

IN(H, J) I = m :2:: 2 and let us suppose that for every P-zigzag with m - 1 non colored

elements we have the claim. Let h E N(H, J) be a maximal element of N(H, J). Let

us color h by pEP in (H, J). For every pEP the resulting colored poset contains

a zigzag (Hp,Jp) such that h E H p' We select (Hp, ip) nonmonotone whenever this is

possible. If (Hp, ip) is monotone then by the induction hypothesis there exists a standard

zigzag (Qp,gp) which has (Hp, ip) as its monotone image and its maximal chains satisfy

the desired property in the claim. Observe that under the monotone map from (Qp, gp)

onto (Hp, ip) the preimage of h contains only maximal elements of Qp. If (Hp1 ip) is

nonmonotone then we make (Qp,gp) a copy of (Hp, Jp). Now, we can construct a standard



colored poset (Q,g) from (Qp,gp), pEP, by gluing all elements of the preimages of h

into one single noncolored point, called h', meanwhile preserving the coloring of the other

points. This colored poset is not extendible since (Qp,gp), pEP, is not extendible. So it

contains a zigzag (Q',g') in which the colored elements are exactly the extremal elements.

Let us construct a standard zigzag (H', 1') for (Q', g') as in Claim 3.4.

Clearly, there is a monotone map from (H', 1') to (H, /) and this map must be onto

otherwise (H', 1') would be extendible. Let a = al < a2 < ... < an = b be a maximal

chain of H'. If this chain does not contain h' then we are done by the induction hypothesis.

Otherwise an-l = h' -<H' b. The chain a = al < a2 < ... < an-l = h' has to be in

the preimage of Hp for some p. If (Hp, fp) is monotone then by applying the induction

hypothesis to (Qp,gp) we get n - 1 ::; fp(gp(a),p) + 1. Since (Hp, fp) is monotone our

construction guarantees that, if we color h by p in (H, /) we get a monotone colored poset.

Now, f'(b) must be the color of an element above h in (H,/). Hence, by Claim 3.9 and

Claim 3.5 wehave p < f'(b). Since gp(a) = f'(a) we have fp(gp(a),p)+l ::; fp(f'(a), f'(b)).

By combining the preceding two inequalities we get the claim. If (Hp, fp) is nonmonotone,

then n = 3 and the claim is obvious. 0

PROPOSITION 3.16. Let P be a finite poset. Let (H, /) be a monotone P-zigzag. Then

for every a E N(H,f) there exist P-colored posets (Hi,fd ~ (H,f), i E I, for which

a E N(Hi,Ji), and there exist Pi E P, i E I, such that if a is colored by Pi in (Hi,fi) the

resulting colored poset is a P-zigzag and if a is colored by Pi in (Hi, Ji), j E 1\ {i}, the

resulting colored poset is P-extendible. Moreover, for every pEP there exists i E I such

that, if a is colored by p in (Hi, fd the resulting colored poset is not P-extendible.

PROOF: As in the previous proposition, if we color a by an element of P in (H, f) the

resulting colored poset is still nonextendible so it contains some P-zigzags which must

contain a. Let X = {(Gt,gt): t E T} be the set of all zigzags which can be obtained in

this way. We assign a subset St S; P to every (Gt,gt), t E T, so that 5t contains 9t(a)



and all the elements of P by which recoloring a in (Gt, gt), the resulting colored poset is

nonextendible. We select a subset I of T as follows.

(1) I is a minimal set with respect to UiEISi = P.

(2) I has the maximal cardinality with respect to (1).

(3) I satisfies St U (UjEI\{i}Sj) =j:. P for every St that is a proper subset of Si, where

t E T and i E I.

For every i E I we select (Gt,gt} such that St = Si and Gt is minimal with respect to

the containment of posets. For simplicity, we can assume i = t. Then we define Hi = Gi

and Ii = giIOi\{a} for i E I.

Let Ti = Si \ (UjEI\{i}Sj) for i E I. These sets are nonempty by (1). We claim that

every Ti, i E I, contains an element Pi such that if a is colored by Pi in (Hi, Ii), then

we get a zigzag. Let us suppose this is not true. So there exists an i such that for every

P E Ti, if a in (Hi, Ii) is colored by P the resulting colored poset is not extendible but

also not a zigzag. Hence it properly contains some zigzags. Let these zigzags be (Gv,gv),

where v E V ~ T. Observe that Sv ~ Si and UvEVSv U (UjE1\{i}Sj) = P. Let us take a

subset Vo of V minimal with respect to UvEvoSv U (UjEI\{i}Sj) = P. Clearly, Vo U (I \ {i})

is minimal in the sense of (1). Since !Vol ~ 1 and I satisfies (2), Vo = {vol for some vo.

Then by (3), Si = Svo. But Gvo is properly contained in Hi which contradicts the fact

that Hi is minimal. Now, (Hi; Id and Pi, i E I, clearly satisfy the claims of the lemma. 0

Proposition 3.16 gives a procedure for constructing all P-zigzags of a finite poset P.

Let us suppose we have determined all P-zigzags with fewer than m noncolored elements.

Then any P-zigzag (H, J) with m noncolored elements can be obtained as a monotone

image of a P-zigzag (H',!,). The zigzag (H',!,) is obtained from the P-zigzags (Gi,gi),

i E I, with at most m - 1 noncolored elements, by deleting the color of an ai E C(G i, gd
in each (Gi,gi), i E I, and sticking together the resulting colored posets at ai, i E I. By

Proposition 3.16 we can choose (Gi,gi) an~ ai, i E I in such a way that the colored poset

(H', I') indeed is a zigzag and (H, J) is the monotone image of (H', !,).



First we describe the zigzags of fences and antichains. Then in Theorem 4.3 and in

Proposition 4.4 we present two constructions of posets from smaller posets and show that

for these constructions it is easy to describe all zigzags if we know the zigzags of the smaller

posets. For example, by these constructions we get locked fences, defined in [14], and

Tardos's eight element poset in [26]from fences and the two element antichain, respectively.

The description of the zigzags of locked fences yields an easy proof that each locked fence

admits a near unanimity function.

We define the middle element of three elements of a fence as the one which is on the path

connecting the other two. It was noticed, see for example [10], that for every fence the

ternary function which assigns the middle element to each 3-tuple is a monotone, majority

function. So by Remark 2.4 every zigzag of a fence has two colored elements. In the next

proposition we describe all the zigzags of a fence.

PROPOSITION 4.1. Let P be a fence. Then a P -zigzag (H, [) is a P -colored fence satisfying

the following properties. If a and b denote the endpoints of the colored fence, then a and b

are the only colored points and at least one of the inequalities i (a, b) <I (f(a), f(b)) and

1 (a,b) <1 (f(a),f(b)) holds.

PROOF: Certainly, a P-colored fence of the above form is a P-zigzag. Let (H,1) be a

P-zigzag. We want to prove that (H,1) is of the above form. As we mentioned above

IC(H,j)1 = 2. Let C(H,1) = {a,b}. Then f(a) and f(b) must be different otherwise

(H,1) would be extendible. If there is a path F between a and b such that at least one

of I (a,b) <I (j(a),f(b)) and 1 (a,b) <1 (f(a),f(b)) holds then (H,1) = (F,f IF) by the

minimality of (H,1) and we have the claim.

For otherwise, let both T (a,b) 2:1 (j(a),f(b») and 1 (a,b) 2:1 (j(a),f(b)). In this case

we show that (H, f) is extendible, thereby obtaining a contradiction. Let the path between



f(a) and f(b) in P be given by f(a) = a'l -< a2 ~ ... an = f(b), n ~ 2. We define the

nonempty sets Bi = {e E H : 1 (a,e) = i}, 1 :::;i :::;n - 1, and Bn = H \ U~11 Bi. Let

,1\"
'V" '/\", ·V\ava

b'

-
maximal element of (H, I). Moreover, every pI-colored poset constructed in tbis way will



PROOF: First, we prove the last claim. Let (H/,f') be a PI-colored poset created from a

P zigzag (H, J) in the above way. Observe that H' is connected since H is. The colored

poset (H', 1') is not pI-extendible since any pI extension of I' restricted to H must lie in P

and so it would be a P-extension of I to H. Then by Proposition 3.1 we have to show that

by cancelling any covering edge in (H', 1'), the resulting colored poset is PI-extendible.

The only problem occurs if we cancel a new covering edge (a, b). By the construction there

is a b' E H' that also covers a in H'. But then coloring a by f'(b') and coloring the other

elements of N(H/,f') by a P-extension of (H,J) \ {a} restricted to N(H/,f'), we get a

pI-extension of (H/,f') \ {(a,b)}.

Let (H/,f') be a monotone P'-zigzag. We show that we can get (H/,f') from a P-

zigzag (H, J) by the above procedure. By Claim 3.10 every maximal element of (H', 1') is

colored and so by Claim 3.9 and the remarks preceding it, above every non colored element

of (H', 1') there are at least two colored elements. If (H', 1') has no element colored from

A, then by Proposition 3.1 it follows immediately that (H', 1') is a P-zigzag, too.

Let us suppose now, (H', 1') has some elements colored from A. Let a E C(H/, 1')

and f' (a) EA. We will show that a is maximal in H' and every element covered by

a is maximal in N(H/, 1'). If a is not maximal in H' then there is a colored maximal

element b above it. By the monotonicity of (H',f') and by Claim 3.6, f'(a) < f'(b), hence

f'(b) = 1 which contradicts Claim 3.5. So a is maximal in H'. Now, let b -< a in H'.

By Claim 3.3, b E N(H', 1'). Let us suppose b is not maximal in N(H/, 1'). Then there

exists b' E N(H', 1') such that b < b' and b' is maximal in N(H/, 1'). So there exist

Cl,C2 E C(H/,f') which cover b' in (H/,f'). By Claim 3.5, 1 =f- f'(Cl) =f- f'(C2) =f- 1. If we

cancel (b, a) in (H/,f') we get a pI-extension of I' in which the color of b is smaller than

f'(a) E A, but then putting back (b, a), the resulting colored poset (H', I') is extendible,

which is a contradiction.

Let b be a maximal element of N(H/, 1') such that there exists an al :>- b ,where al E

C(H/,f') and 1'(ad E A. By Claim 3.5 every element which covers b is colored from A.



We know that there is another element a2 E C(H' 1') which covers b. But there is no third

one since otherwise cancelling (b, ad in (H', 1') we get an extension of I' which would be

a monotone extension of (H', 1') as well. So we have proved that every maximal element

of N(H', 1') is covered by exactly two A-colored elements or none.

Now, let us cancel every A-colored point of (H', 1'). So we obtain a P-colored poset

(H, f). By Claim 3.2, H is connected and P-nonextendible and if we cancel a covering

edge in (H, f) we get a P-extendible poset because this is true if we cancel the same edge

in (H', 1'). So by Proposition 3.1, (H, f) has to be a P-zigzag. By the above claims we

get (H', 1') from (H, f) in the desired way. 0

We can use the above theorem, its dual and the prevIOUSpropositions to obtain the

zigzags of certain posets like the famous poset 1+2+2+2+1, or 1-2+P+2+1, where P is

a fence. The latter posets are called locked fences in [14] and McKenzie mentions, without

a proof, that they admit near unanimity functions. In the case of a four element fence a

7-nuf is given in [22]. In general, it follows from Proposition 4.1, Theorem 4.3 and Remark

2.4 that a locked fence with IF I = n 2: 2 admits a (2n - 1)-nuf and 2n - 1 is the smallest

possible arity.

The following simple proposition is similar in nature to Theorem 4.3.

PROPOSITION 4.4. Let P be a finite poset and let pI = P T 1. Tben the set of all

monotone P'-zigzags equals tbe set of those monotone P-zigzags in which every maximal

element is colored.

PROOF: It is easy to see that every P-zigzag in which every maximal element is colored is

a P'-zigzag. Conversely, let (H', 1') be a monotone P'-zigzag. Then by Claim 3.10, every

maximal element of (H', 1') is colored. These maximal elements must have colors from P

because of Claim 3.9 and Claim 3.5. Since (H'I') is monotone it is a P-colored poset.

Now, H' is connected and (H',!') is P-nonextendible. If we cancel any covering pair in

(H', I') we get a pI-extension 9 of f. By Claim 3.9 and by the remarks preceding it, there
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In Figure 7 we have two posets constructed from the two element anti chain. All of their

zigzags can be determined by applying Theorem 4.3 and its dual. They have infinitely

many zigzags. In fact, they admit no near unanimity function.

The poset in Figure 8 is different. We had to use Proposition 3.11 and Proposition 3.16

to prove that the list of the monotone zigzags in Figure 8 is complete. The calculations

are tedious and the proof is omitted. There are sixteen possibilities for ({p, q}, {r, s } )

in Figure 8. If {p,q} = {a, a'}, then {r,s} is {b,b'}, {b,e}, {e',e} or {e',b'}. Dually, if

{r,s} = {d,d'}, then {p,q} is {e,e"}, {e,b}, {b",b} or {b",e"}. If (p,r) = (b",e'), then

(q,s) is (b,d), (b,d'), (a,d), (a,d'), (a,e), (a',d), (a',d') or (a',e). For (u,t) there are four

possibilities, (u,t) equals (e,b), (e,e'), (b",b) or (b",e').

o

Figure 8. A poset with its monotone zigzags



In Chapter 2 we defined the product of posets. Another important notion for posets

is the retract. Let P and R be two posets. We say that R is a retract of P if there are

monotone functions r : P --- Rand e : R --- P such that roe is equal to the identity

function of R. The maps rand e are called retraction and coretraction, respecti vely. Let

K be a class of posets. The order variety generated by K is the smallest class of posets

containing K and closed under the retract and product constructions. In [9] it is shown

that the order variety generated by K exists and is equal to RP(K), where R is the

operator of taking retracts of posets and P is the operator of taking products of posets.

In [22]it was shown that a finite poset P admits a majority function if and only if P is a

retract of a finite product of fences and the two element antichain. In general, the question

arises, what "nice" set of finite posets generates, by taking retract and finite product, the

set of all finite posets admitting an n-nuf. In Chapter 7 we answer this question for finite

bounded posets, if n :::;6. Before this we need to establish a connection between order

varieties and nonextendible colored posets. In the first part of Chapter 5 we define the

posets of finite type and show that they form an order variety that contains the order

variety generated by finite posets. The order variety of posets of finite type is convenient

to work with when we study order varieties generated by finite posets. In Proposition 5.9

we give a characterization of the members of an order variety generated by an arbitrary

set of posets. In Proposition 5.10 we provide a similar characterization of the members

of an order variety generated by an arbitrary class of posets of finite type. In Chapter 6,

Proposition 5.10 will be used for a description of finite irreducible posets via zigzags.

First we want to introduce a particular order variety that turns out to be useful when

working with finite posets. We define a poset P to be of finite type if and only if every

P-colored poset (H, f) is extendible if every finite (H', 1') ~ (H, f) is extendible. Since

28



every finite nonextendible colored poset contains a zigzag we have the following simple

proposition.

PROPOSITION 5.1. Let P be a poset of finite type. A P-colored poset is P-extendible if

and only if it does not contain a P-zigzag.

PROPOSITION 5.2. Every finite poset P is of finite type.

PROOF: Let P be a finite poset and let (H, f) be a P-colored poset. Suppose that every

finite (H', /') ~ (H, f) is P-extendible. Vvewant to show that f is P-extendible to H. We

will use Tikhonov's theorem, which states that a product of compact topological spaces

is compact. For every h E H we define a compact topological space Th, namely, if f is

defined on h then Th is the one element set {f(h)}, otherwise Th is P with the discrete

topology. Then nhEH Th can be considered to be the set of all functions from H to P

which extend f to H. For hI < h2 E H and a 1:. b where a, b E P, we define an open

set of nhEH Th in the product topology consisting of those elements of nhEH Th whose

hI -component is a and whose h2 -component is b. Let S denote the set of all open sets

obtained in this way. Observe that every nonmonotone P-extension of f is in one of the

open sets of S. Let us suppose that f has no monotone extension to H. Then the open

sets of S cover nhEH Th• But since nhEH Th is compact there only finitely many members

of S suffice to cover DhEH Th. Now, we can find a finite set M ~ H which contains all the

elements of H which occur in the definition of this finite cover. Then we have that every

element of nhEH Th is nonmonotone on the finite subposet of H having base set M. But

this contradicts the assumption. 0

PROOF: First we show that a product niE! Pi of posets Pi, i E I, of finite type is of finite

type. Let (H, f) be a ITiEI Pi-colored poset such that every finite (H', 1') ~ (H, f) is



DiE I Pi-extendible. Looking at the i-th component of f as a coloring on H the so obtained

Pi-colored poset is P i-extendible since Pi is of finite type. Now, the i-th component of a

DiEI Pi-extension of f is defined by the above extension.

Second we show that a retract R of a poset P of finite type is of finite type. Let

r : P -+ R be an onto retraction and let e : R -+ P be a corresponding coretraetion.

Let (H, f) be an R-colored poset such that every finite (H', 1') ~ (H, f) is R-extendible.

The P colored poset (H, e 0 f) is P-extendible since P is of finite type. So there exists

a monotone map 9 : H -+ P which extends e 0 f to H. But then r 0 9 : H -+ R is an

R-extension of f to H since roe 0 f = f. 0

COROLLARY 5.4. The order variety generated by all finite posets is a subvariety of the

order variety of all posets of finite type.

We do not know if these two varieties are different.

Next we shall prove some general theorems concerning order varieties and, in particular,

order varieties generated by finite posets.

For a poset P let E(P), N(P) and Z(P) denote the class of all P-extendible P-colored

posets, the class of all nonextendible P-colored posets and the class of all P-zigzags,

respecti vely.

Throughout the following proofs we frequently use the fact that, if (H, f) E Z(P) and

9 : P -+ Q is a monotone map then (H,g 0 f) E Z(Q) U E(Q).

PROPOSITION 5.5. Let P and R be two posets. Then there exists a retraction r from P

onto R if and only if there is a monotone map e from R to P such that for every R-colored

poset (H, f) in N(R) the P-colored poset (H, eo f) is in N(P).

PROOF: Let r be a retraction from Ponto R with a corresponding coretraction e. Let

(H,f) E N(R). Now, let us suppose (H,e 0 f) is P-extendible. By applying r to this



P-extension of (H, e 0 f) we get an R-extension of (H, roe 0 f)

(H, f) E N(R).

Conversely, let us suppose that there is a monotone map e from R to P such that for

every R-colored poset (H, f) E N(R) we have (H, e 0 f) E N(P). For every a 1:. b,

a, b E R, the two element chain colored by a at the bottom and colored by b at the top,

is in N(R). Hence the two element chain colored by e(a) at the bottom and by e(b) at

the top, is in N(P) and so e(a) 1:. e(b). Thus e preserves the relations:::; and 1:.. So e is

an order embedding of R into P. Let us look at the R-colored poset (P, e-1). This is

R-extendible by a monotone function r, for otherwise, (P,e-1) E N(R) and then by the

hypothesis, (P,e 0 e-1) = (P,ide(R)) E N(P). This is impossible since idp extends ide(R)

to P. Clearly, roe = idR showing that r is a retraction of Ponto R. 0

COROLLARY 5.6. Let P be a poset and let R be a poset of finite type. There exists a

retraction r from Ponto R if and only if there is a monotone map e from R to P such

that (H, eo J) E Z(P) whenever (H, f) E Z(R).

We note that Corollary 5.6 easily implies that there exists an idempotent map from a

poset P onto a subposet R of finite type if and only if every R-zigzag is also a P-zigzag.

PROPOSITION 5.7. Let Pi, i E I, be a set of posets. Then a ITiEI Pi-colored poset

(H, f) E N(niEI Pi) if and only if there exist two subsets A and B of I, with A =j::. 0 and

AU B = I, such that (H, fil E N(P;) for every i E A, (H, h) E E(P i) for every i E B,

where fi is the i-th component of f.

COROLLARY 5.8. Let Pi, i E I, be a set of po sets. Then a ITiEI Pi-colored poset (H, f) E

Z(ITiEI Pi) if and only if there exist two subsets A and B of I with A =j::. 0 and AU B = I,

such that (H, fil E Z(P il for every i E A, (H, fil E E(P i) for every i E B, where Ii is tbe

i-th component of f.



PROPOSITION 5.9. Let P be a poset and let K be a set of posets. Then P E RP(K) if

and only if for every P-colored poset (H, J) E N(P) there is a Q E K and a monotone

map 9 : P -t Q such that (H,g 0 f) E N(Q).

PROOF: Let P be a retract of the product of TIiE! Pi, where PiE K for every i E I and

let (H, J) E N(P). Then by Proposition 5.5 there exists a monotone map e : P -t TIiEl Pi

which sends (H, f) E N(P) to (H, e 0 J) E N(TIiEI Pi)' Then by Proposition 5.7 there

exists an i such that (H,1riOeof) E N(Pd, where 1ri is the i-th projection map. So taking

PiE K as Q and 1ri 0 e as 9 we get one direction of the claim.

To prove the other direction, by Proposition 5.5 it suffices to show that there exist a

set I, posets Pi E K, i E I, and a monotone map e : P -t TIiEI Pi such that for every

(H, f) E N(P) we have (H, e 0 f) E N(TIiEI Pi)' Since K is a set we may define a set

I which contains all pairs (g, Q), where Q E K and 9 is a monotone map from P to Q.

Now we define a map e from P to TI(9,Q)El Q by e(g,Q)(a) = g(a), a E P. Now, e is

trivially monotone. Moreover, if (H, f) E N(P) then (H, eo J) E N(TI(9,Q)EI Q) since by

the hypothesis there exists some (g, Q) E I such that (H, go f) E N(Q), and we can apply

We have an unpleasant hypothesis in the previous proposition, namely that K must be

a set rather than a class of posets. This could be avoided if we knew that for any poset P,

there exists a cardinal K(P) such that any P-nonextendible colored poset (H, f) contains

a P-nonextendible one of size less than K(P). Alan Mekler has shown, [16], if for every

cardinal >. there exists a strongly compact cardinal greater than >., then K(P) exists. It is

known that the existence of a strongly compact cardinal cannot be proven from ZFC, see

Theorem 80 in [11], and the assumption used by Mekler is considered to be a very strong

one in set theory. Observe, for every poset P of finite type we can let K(P) = w. So we

state the following proposition.



PROPOSITION 5.10. Let P be a poset of finite type and K be a class of posets. Then

P E RP(K) if and only if for every (H, f) E Z(P) there is a Q E K and a monotone map

9 : P -t Q such that (H,g 0 J) E Z(Q).

PROOF: We get the proof copying the proof of Proposition 5.9, replacing N( ... ) by Z( ... ),

Proposition 5.5 and 5.7 by Corollary 5.6 and Proposition 5.8, and changing the definition

of I to a set of pairs (g, Q) such that for every (H, J) E Z(P) there exists a monotone

g: P -t Q with (H,g 0 f) E Z(Q). 0

By a similar argument we can derive Theorem 8 in [18]. From Proposition 5.9 we easily

get a well known result of [9].

COROLLARY5.11. Let a finite poset P E RP(K), where K is a finite set of finite posets.

Then P is a retract of a finite product of some members of K.

PROOF: It follows from the only if part of Proposition 5.9 and from the proof of the if part

of Proposition 5.9 since I will be finite. 0



6. Finite irred ucible posets

The following definitions can be found in [9]. A representation of a poset P is a family

(P i liE 1) of posets such that Pi is a retract of P for each i E I, and P is a retract

of DiEI Pi' A poset P is irreducible if for every representation (Pi liE I) of P, P is a

retract of Pi for some i E I. If P is not irreducible then it is called reducible. For example,

the two element antichain, fences and crowns are known to be irreducible posets, see [9].

In this chapter, first we present a poset that has two different representations by irre-

ducible posets, see Claim 6.3 and Example 6.4. This answers a problem in [9]. Then, in

Proposition 6.6 we give a characterization of finite irreducible posets by using Proposition

5.10. Via this characterization, in Theorem 6.9 we show that two nonisomorphic, finite

irreducible posets generate two different order varieties, which also settles a problem in [9].

Proposition 6.6 is useful for proving the irreducibility of finite posets as demonstrated in

Example 6.7.

The following problem on the unique representation of posets is mentioned as Problem

2 in [9].

PROBLEM 6.1. Let (Pi liE 1) and (Qj I j E J) be two representations of P such that

Pi and Qj are irreducible for every i E I and j E J. For every i E I is there a j E J such

that Pi is a retract of Qj ?

We will show that this problem is equivalent to the following.

PROBLEM 6.2. Does there exist an irreducible poset Q which is a retract of DjEJ Qj,

where for all j E J, Qj is an irreducible poset and Q is not a retract of Qj ?

CLAIM 6.3. If the answer is no for Problem 6.1 then the answer is yes for Problem 6.2

and conversely.

PROOF: Let us suppose that the answer is no for Problem 6.1. Then there exists P which

has two representations (P i liE I) and (Qj I j E J) and there exists an i E I such that



Pi is not a retract of Qj for any j E J. Now, Pi is a retract of P and hence of ITjEJ Qj.

So, in Problem 6.2 taking Q = Pi we get the answer yes.

For the converse, let us suppose that we answered Problem 6.2 affirmatively, i.e., there

exists an irreducible poset Q which is a retract of ITjEJ Qj, where Qj, j E J, are irreducible

posets, such that Q is not a retract of Qj for any j E J. Then let P = ITjEJ Qj. Now,

(Qj I j E J) is a representation of P by irreducibles since the j-th projection map on P is a

retraction. An other representation of P by irreducible posets is given by Q and Qj, j E J,

since we can define a retraction from Q x ITjEJ Qj onto P by f( q, ql, q2, ... ) = (ql, q2, ... ),

where q E Q and qj E Qj, j E J. Thus, we have the above two representations of P by

irreducibles, and because Q is not a retract of Qj for any j E J, the answer is no for

The following example, see footnote 4, p. 85 in [9], shows that Problem 6.2 has the

answer yes and so by the previous claim Problem 6.1 has the answer no.

EXAMPLE 6.4. Let Q be the two element antichain and let Qj be a j-element fence,

j E J = w. Then Q is a retract of the product I1jEJ Qj, but Q is not a retract of any Qj,

j E J.

PROOF: Since J = w, ITjEJ Qj is not connected so Q is a retract of ITjEJ Qj. On the

other hand, a retraction preserves the connectedness of posets. So the nonconnected poset

Q cannot be a retract of a connected poset Qj, j E J. 0

We note that Problem 6.2 turns into Problem 5 in [9] if we assume that {Qj I j E J} is

a finite set of finite posets. That problem remains unsolved.

Now we characterize finite irreducible posets in terms of their zigzags. We begin with a

consequence of Proposition 5.10.

PROPOSITION 6.5. A finite poset P is irreducible if and only if there exists a P-zigzag

(H, J) such that for every monotone map 9 : P -t P either the range of 9 is not a subset

of a proper retract of P or (H,g 0 f) is P-extendible.



PROOF: Let us suppose that P is irreducible and for every P-zigzag (H, f) there is a

monotone map 9 : P -+ P such that the range of 9 is a subset of a proper retract R of

P and (H, go J) is not P-extendible. Since R is a subposet of P, (H, go I) is also not

R-extendible. Hence (H, 9 0 f) is an R-zigzag. Then by Proposition 5.10, P is a retract

of a product of its proper retracts, which contradicts the fact that P is irreducible.

Now, let P be reducible. Then there exists a representation of P by (P i liE I) where

each Pi is a retract of P with IPil < IPI. We can assume that each Pi, i E I, is the

image of a monotone, idempotent map Ti : P -+ P. Then by Proposition 5.10, for every

P-zigzag (H, f) there is an i E I and a monotone 9 : P -+ Pi such that (H, 9 0 f) is

a Pi-zigzag. Observe that 9 maps P to P and (H, 9 0 f) is not P-extendihle otherwise

(H, Ti 0 go f) = (H, go J) would be Pi-extendible. So the range of 9 is in a proper retract

of P and (H, go f) is not P-extendible, which proves the claim. 0

For a P-zigzag (H, J) and a monotone map 9 : P -+ P, if the P-colored poset (H, go f)

is P-extendible we say that 9 collapses (H, I).

We can strengthen the result of Proposition 6.5.

PROPOSITION6.6. Let P be a finite poset. Then P is irreducible if and only if there exists

a P-zigzag (H, J) such that every monotone, non-onto map 9 : P -+ P collapses (H, f).

PROOF: Let P be a finite, irreducible poset. For every finite poset H let SH be the set of

all the P-zigzags (H, J) such that for every monotone map 9 : P -+ P the range of 9 is not

a subset of a proper retract of P or 9 collapses (H, J). By Proposition 6.5 we can select a

poset H for which SH is not empty. We define a relation < on SH by (H, II) < (H, h) if

and only if there is a monotone, non-onto map 9 : P -+ P such that 11 = go 12' Clearly, <

is transitive. We claim that < is irreflexive. Let us suppose instead that (H, f) < (H, f)

in SH. Then there exists a monotone, non-onto 9 : P -+ P such that (H,f) = (H,g 0 f).

This equality. implies (H, f) = (H,gn 0 f) for any finite n. Let us select an n for which

gn is an idempotent map. Since 9 is not onto and gn is idempotent, the range of gn is in



a proper retract of P. Because (H, f) = (H, gn 0 f) the map gn does not collapse (H, f).

This contradicts (H, J) E SH'

Let (H, f) be a minimal element of (SH, <). Let 9 : P ~ P an arbitrary monotone,

non-onto map. We show that 9 collapses (H, f). Let us suppose this is not true. Then

we claim that the P-zigzag (H,g 0 f) E SH' Let g' : P -t P be a monotone map. Since

(H, f) E SH the range of g' 0 9 is not in a proper retract of P or g' 0 9 collapses (H, f).

,
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true. Then there exists a monotone non-onto map 9 : P -t P such that (H, 9 0 f) is a P-

cannot find the six element subposet determined by g( a), g( a'), g(b), g(b'), g( d) and g( d')

in P. Thus g({a,a'}) = {a,a'}. Dually, g({d,d'}) = {d,d'}. Hence g({b,b'}) = {b,b'},

otherwise (H,g 0 f) would be extendible. Let r be an idempotent power of g. Then r is

monotone and fixes a, a', b, b', d and d'. These properties of r imply that r is the identity



map on P. But this contradicts the fact that 9 is non-onto. So by Proposition 6.6, P is

irreducible. 0

By the same argument one can prove that the posets of the form 1 + 2 + F T 2 + 1,

where F is a fence with at least four elements, are irreducible. We can prove this fact more

easily, if we use the complete list of zigzags of 1 + 2 + F + 2 + 1 described by Proposition

4.1 and Theorem 4.3. The point is that Proposition 6.6 can be used for showing the

irreducibility of a finite poset P even in the case when we do not have a full description of

the P-zigzags.

Similarly, as in Example 6.7 one can prove that 1 + 2 + 2 + 2 + 1 is irreducible. So for

those who do not like Example 6.4, because Q is not connected, we can replace it by the

following example.

EXAMPLE 6.8. Let Q = 1 + 2 + 2 + 2 + 1 and let Qj = 1 + 2+Fj+2 + 1, wbere Fj is a

j-element fence and j E J = {4,5, 6, ... }. Tben Q is a retract of TIjEJ Qj but Q is not a

retract of any Qj, j E J.

PROOF: Recall that in Chapter 4 we described the Q-zigzags and from Theorem 4.1 by

applying Theorem 4.3 we get the Qj-zigzags, j E J. Let (H,1) be an arbitrary Q zigzag.

By Proposition 5.10 the only thing we have to prove is that for (H, 1) there exist a j E J

and a monotone map 9 : Q ---T Qj such that (H, go 1) is QFzigzag. A large enough j and

a monotone embedding 9 of Q into Qj such that the elements at the middle level of Q go

to the endpoints of Fj, will be a suitable choice. By Proposition 5.6, Q is not a retract of

any Qj, j E J, since Q has infinitely many zigzags and each Qj has only finitely many of

them. 0

With the help of Proposition 6.6 we can answer Problem 4 in [9].

THEOREM 6.9. Let P and Q be two nonisomorpbic, finite, irreducible posets. Tben tbe

order varieties generated by tbem are different.



zigzag (H, f) such that every monotone, non-onto map on P collapses (H, I). Since

P E RP( {Q}), by Proposition 5.10 there exists a monotone map 9 : P ~ Q such that

(H, go I) is Q-zigzag. Since Q E RP( {P}) we can apply Proposition 5.10 again. So there

exists a monotone map h : Q ~ P such that (H, hog 0 f) is P-zigzag. But then the map

hog: P ~ P, which does not collapse (H, I), has to be onto. So h is an onto map from

Q to P. Similarly we can get a monotone, onto map from P to Q. Hence, by finiteness

we get that P is isomorphic to Q, which is a contradiction. 0



7. Finite bounded posets admitting an n-ary near unanimity function

A finite algebra A with a near unanimity term operation has a lot of nice algebraic prop-

erties. For example, the clone of term operations on A is finitely generated. The variety

generated by A is congruence distributive or equivalently among the term operations on A

there are Jonsson operations, which are defined in Chapter 8. During the study of mono-

tone algebras, in the papers [2], [3], [5), [14], [22] and [26], the question occurred whether

for a monotone algebra A of a finite bounded poset these seemingly weaker properties im-

ply that A has a near unanimity term operation. The answer for this question has turned

out to be hard. The exploration of problems of this kind made clear the central role the

posets admitting a near unanimity function have in the study of monotone algebras.

Remark 2.4 gives a characterization of finite posets admitting a n-ary near unanimity

function. We would like to find a somewhat more constructive description, similar to

the result of Quackenbush, Rival and Rosenberg in [22], which states that every finite

poset admitting a majority function is a retract of a finite product of fences and the two

element antichain. Observe, the building elements here, i.e., the fences and the two element

antichain, are irreducible posets admitting a majority function. In general, we can expect

a similar characterization of the finite posets admitting an n-ary near unanimity function

as the next proposition states.

PROPOSITION 7.1. The class of the finite posets admitting an n-ary near unanimity op-

eration coincides with the class of retracts of finite products of irreducible posets which

admit an n-ary near unanimity operation.

PROOF: The retract and the product of posets preserve the existence of an n-ary near

unanimity operation. On the other hand, every finite poset has a finite representation by

irreducibles, see [9]. These facts imply the claim. 0

We note that a similar claim is true for finite bounded posets admitting an n-ary near

unanimity function.



In Proposition 7.3 we give a property of finite irreducible posets with a nuf that helps

us to decide for a particular finite poset with a nuf whether it is irreducible or not. In

Proposition 7.4 we determine all irreducible finite bounded posets admitting an n-ary near

unanimity function, where n :::;6.

For a finite irreducible poset P, a P-zigzag (H,I) is called a prime P-zigzag if every

non-onto monotone map on P collapses (H, f). Since P is irreducible, by Proposition 6.6,

P has at least one prime zigzag. Recall, we defined retractable and irreducible elements

for a finite poset in Chapter 3. For a finite poset P let Re(P) denote the set of retractable

elements of P and let Ir(P) denote the set of irreducible elements of P.

First we prove an easy corollary of Proposition 6.6.

COROLLARY 7.2. Let P be a finite irreducible poset. Then for every prime P-zigzag (H, I)

we have Re(P) ~ Range(f).

PROOF: Let us suppose the claim is not true. Then there exists a E Re(P) \ Range(f).

So there is an idempotent monotone map r from Ponto P \ {a}. But then (H, r 0 I) =

(H, I). Thus r does not collapse (H, I). Since (H, I) is prime and r is non-onto this is a

contradiction. 0

Let P be a finite poset and let Q be the poset of noncolored elements in a standard

P-zigzag. We define a poset MQ on the set of standard P-zigzags that have Q as their

poset of noncolored elements as follows. For two standard zigzags (H, I) and (H', 1') with

N(H, f) = N(H', 1') = Q we write (H, f) :s (H', 1') if the following hold. For every

a E C(H', 1') with h -<H' a there is b E C(H, f) with h -<H b such that f(b) :s f'(a),

and dually, for every a E C(H', 1') with h >-H' a there is b E C(H, I) with h >-H b

such that f(b) ~ f'(a). It is easy to check that:::; illdeed is a partial order. We note that

antisymmetry can be verified by Claim 3.5. A maximal element of MQ is called a stretched

zigzag. So a stretched zigzag is always standard. In the proof of the following proposition

we make good use of the stretched zigzags.



PROPOSITION7.3. Every finite connected irreducible poset P that admits a nul has a

prime P-zigzag (H, J) such that Range(f) = Ir(P). In particular, Re(P) = Ir(P).

PROOF: If P is lattice ordered the claim is obvious. So in the proof we assume that P is

not lattice ordered. This easily implies that every prime zigzag is monotone. First we note

that Re(P) = Ir(P) follows from Ir(P) ~ Re(P) and the previous corollary if we prove

the existence of a prime P-zigzag (H, J) with Range(f) = Ir(P). Let us suppose there is

no prime P-zigzag (H, f) with Range(f) = Ir(P). So every prime P-zigzag contains an

element colored from P \ Ir(P). Let us take a prime zigzag (Ho, fo). We can obviously

choose (Ho, fo) to be a stretched zigzag. Let hE C(Ho, fo) with fo(h) E P \ Ir(P). Since

(Ho'!o) is standard h is minimal or maximal in Ho. "Without loss of generality we can

assume that h is maximal. Since fo( h) E P \ I r(P), fo (h) is maximal or covered by at

least two elements. If fo (h) is maximal we define a new zigzag (H~, f~) as follows. We

delete the color of h in (Ho, fo) and put an element below h that is covered by only hand

is colored by fo(h). The resulting colored poset (H~,f{) clearly is a zigzag. If fo(h) is not

maximal, then it is covered by two elements a and b in P. Then we define the following

zigzag (H~, fn. We delete the color Of h in (Ho, fo) and we put an element below h that

is covered by only h and is colored by fo(h). We put two elements above h that cover only

h and are colored by a and b. Since (Ho,fo) is stretched, by Proposition 3.1 the resulting

colored poset (H~, n) is a P-zigzag. One can see that in both definitions (H~, f~) is prime

and standard. We define (HI, II) to be a stretched zigzag above (H~, fn in MN(H~,f~).

Note that (HI' fI) is prime.

We can iterate the above method to get an infinite sequence of prime, stretched zigzags

(Hi, Ii), i = 0,1,.... Let Ci be the number of colored elements in (Hi, Ii). Clearly,

Ci :::; Ci+1 for every i 2: O. Observe that Ci < Ci+1 holds for infinitely many i. For otherwise

there exists an io such that Ci = Cio if i 2: io. Hence, when we constructed (Hi+I, Ii+I)

from (Hi, fi) for i ~io we had to choose a colored element h of (Hi, fd that was colored

by a maximal or minimal element of P. This implies that for a large enough j 2: io, Hj



contains a fence F with the following properties. The fence F has a diameter greater than

the diameter of P. Moreover, if a and b denote the two endpoints of F, then none of

the elements of F \ {a} are comparable with any element of Hj \ F in Hj, and the only

colored element of Fin (Hj,lj) is b. Now, if we cancel F \ {a} in (Hj,/j) the resulting

colored poset is extendible. Let f' be an extension of this colored poset. Then I' can

easily be extended to (Hj, Ij) since F has a diameter larger than the diameter of P. This

contradicts the fact that (H j, Ij) is a zigzag. We can finish the proof by applying Remark

2.4. 0

We cannot prove the converse of Corollary 7.3. Namely, we do not know, if every finite

connected irreducible poset P which has a prime zigzag (H, I) with Range(f) = Ir(P)

admits a nuf.

PROPOSITION 7.4. The list of the finite, irreducible bounded posets admitting a 6-nuf is

the following: 1,1 + 1 with 3-nufs, S2+S~ with a 5-nuf, S2+Sg, S3+S~ with 6-nufs, where

Sn is the poset given by the Boolean lattice of n atoms without its top element and S~ is

the dual of Sn'

PROOF: Let P be a finite, irreducible bounded poset with a 6-nuf. We show that for a

monotone P-zigzag (H, I), jN(H,1)1 = 1. It suffices to show this for a standard zigzag.

So let us assume (H,J) is a standard zigzag and IN(H, 1)1 ~ 2. By Remark 2.4 we have

IC(H,I)I :::;5. By Claim 3.9 and 3.10 every maximal element of N(H, I) is covered by

at least two colored elements of (H, I) and every minimal element of N(H, I) covers at

least two colored elements of (H, I). These facts imply that N (H, I) has one maximal and

one minimal element. Since jN(H, 1)1 ~ 2 there is a noncolored element which covers the

bottom element of N(H,I). This noncolored element must also cover a colored element,

for otherwise it would be irreducible, which contradicts Claim 3.9. Dually, there is a

noncolored element covered by the top element of N(H, I) which is also covered by a

colored element. But then IC(H, /)1 ~ 6 which is a contradiction.



SO IN(H, 1)1 = 1 and by Proposition 2.3, P has the strong selection property. Now, we

can invoke a result of Nevermann and Wille in [20] which gives a complete list of the finite

irreducible posets having the strong selection property. By using this result and Remark

2.4 we get the list of posets mentioned in the claim. 0

We note that there are finite, irreducible bounded posets admitting a 7-nuf that do

not have the strong selection property. For example, the bounded posets in Figure 6 and

Figure 8 in Chapter 4 are easily shown to be irreducible by Proposition 6.6. Both posets

have a zigzag with two noncolored elements. So, by Proposition 2.3, they do not have the

strong selection property. We conjecture that there are infinitely many finite, irreducible

bounded posets which admit a 7-nu£.



the so called Jonsson identities given by

do(x,y,z) = dn(z,y,x) = di(x,y,x) = x for o:=; i :=;n,
d2i(X,x,y) = d2i+1(X,x,y) for o:=; i:=; (n -1)/2

and d2i+dx,y,y) = d2i+2(X,y,y) for 0 :=; i :=; (n - 2)/2.

As we mentioned in Chapter 1 an algebra has Jonsson operations among its term operations

(1) P admits a near unanimity function.

(2) P admits Jonsson operations.

(3) P admits ternary operations D1, .•. , Dn" for an n' ::: 1, satisfying

D1(x,x,y) = Dn,(y,x,x) = Di(x,y,x) = x
and Di(x,y,y) = Di+1(X,x,y)

for 1 :=; i :=; n'
for 1 :=; i :=; n' - 1.

(4) There exists a partially defined, monotone n-nuf for some n, which is fully defined

on the set ofn-tuplesAn ={(a, ... ,a, ~,c, ... ,c):a,b,cEP, 1 :=;i:=;n} .
..!.-

(5) There exists a finite m such that every P-zigzag has a diameter at most m.

(6) The number of P-zigzags is finite.



PROOF: (1) implies (2): This is well known. One can prove it easily as follows. Let

f: P$ ---7 P be a monotone nuf. Then we define d2i-dx,y,z) = f(z, ... ,z, y,x, ... ,x)
i-±J

and d2i(X,y,z) = d2i-1(X,Z,z) for 1 S; is; s -1. Let do(x,y,z) = x. So the operations

dj(x,y,z), 0 S; j S; 2(s - 2), are J6nsson operations.

(2) implies (3): In [14] McKenzie proves that P admits J6nsson operations if and only

if P admits operations bo(x, y), ... , bm, (x, y) which satisfy

x = bo(x, y) = bi(x, x) = bm,(y, x)
b2i(X,y) S; b2i+1(X,y)

and b2i+l(X,y) ;:: b2i+2(X,y)

for 0 S; i S; m',
for 0 S; i S; (m' - 1)/2
for 0 S; is; (m' - 2)/2.

For these operations the fir~t line of identities in (3) immediately follows from the J6nsson

identities, and the second line of identities in (3) follows from

Thus, if P admits J6nsson operations then P admits operations defined in (3).

(3) implies (4): Let Bi = {(a, ... ,a, ~ ,c, ... ,c): a,b, c E P} ~ pn'+2 for 1 S; i S; n' + 2.
-.!..-

Note B1 ~ B2 and Bn'+2 ~ Bn'+l' So An'+2 = u~tlBi. Let D1, ••• , Dn, be the ternary

operations given in (3). We define an (n' +2)-nuf f on An'+2. Let f( a, ... , a, ~ , c, ... , c) =
-.!..-

Di-1 (c, b, a) be defined on Bi for 2 S; i S; n' + 1. Observe, if d = (a, ... , a, b, c, ... , c) E

Bi n Bj, where 2 S; i < j S; n' + 1, then either d is a constant vector or a = b i= c

or a i= b = c. In the last two cases j has to be i + 1. Since f(a', ... , q,',b', ... ,b') =
-.!..-

Di-l(b',a',a') = Di(b',b',a') for 2 S; i S; n', f(d) is defined the same on Bi and Bi+l'



Thus f is a well defined function on An'+2. Also, f is a nuf on An'+2 because D1(x, x, y) =
Dn,(y,x,x) = Di(x,y,x) = x for 1 ~ i ~n'.

Lastly, we show that f is monotone on An'+2' Let d = (a, ... ,a, ~,c, ... ,c) < e =
~

(a', ... ,a', ~',c', ... ,c'), where d,e E An'+2' We want to show f(d) ~ f(e). Hi =j the
L

proof is obvious. The j < i case is the dual of the i < j case. So let i < j. Then

~ Di(c,a',a') = ... ~ Dj_2(c,a',a') = Dj_1(c,c,a') ~ Dj-dc',b',a') = f(e),

(H, I) which still has a diameter at least n + 2. Hence N(H, I) has a diameter d ~ n. Let

us select two points a, b E N(H, I) such that their distance is din N(H, I). We know that

cancelling a in (H, I) leaves a P-colored poset that is P-extendible. Let fa be such a mono-

Now, we make some observations. Since b has a distance d from a, Bi I: 0 for 1 ~ i ~do.

The sets B1, ••• , Bdo give a partition of N(H, I) with a E B1 and b E Bdo' For any

1 ~ i ~ do, Bi is a down set if i is odd and Bi is an up set if i is even. Moreover,

U;::; Bj and N(H, f) \ U)=l Bj span two subposets of N(H, f) which cannot be connected

We define a function 9i on H for every 1 ~ i ~do . Let 9i be !b on U;~; Bj and let 9i

be fa on N(H, I) \ U)=lBj. On Bi let 9i be equal to 0 if i is odd and 1 if i is even. Since

(H, I) is standard every element of C(H, f) is connected to N(H, f) by a single covering

edge. Depending on if i is odd or i is even we define 9i to be 0 or 1 on those elements of



C(H, J) which are connected to some element of Bi by covering edges. For the remaining

elements of C(H, J) the function gi is defined by the corresponding values of f. By the

previous observations gi, clearly, is a monotone function from H to P.

Since do 2: n, by the hypothesis there exists Mdo, a monotone partial do-nuf, which is

fully defined on Ado' Now, Mdo(gl(;Z:), ... ,gdo(;Z:)) is a monotone map from H to P which

extends f to H. This contradicts the fact that (H, J) is a zigzag.

(5) implies (6): For a finite poset Q let l(Q) denote the number of elements in a subchain

of maximum cardinality. For an a E Q let fQ(a) denote the maximum number of elements

in a subchain with a top element a. Of course, we always have lQ(a) :::;f(Q) for every

a E Q.

Let us suppose (5) is true and P has infinitely many zigzags. Let k be the cardinality

of P. Since P is finite there is P-zigzag (H, J) such that IH I 2: 2:::~1kik• By Proposition

3.15 we can assume that l(H) is at most k-l. The basic idea of the proof is simple. Starting

from (H,J) we create a sequence of zigzags (Hi,Ji), 1 :::;i:::; m+ 1, such that each (HiJd

has diameter at least i. The large size of IH I will guarantee that we can construct these

zigzags. The existence of (Hrn+1,frn+l) contradicts (5) and so we get the claim. In order

to create the (Hi, Ji), 1 :::;i :::;m + 1 we need to prove the follov;ing two claims.

CLAIM 1. Let P be a finite poset of cardinality k. Let (H,J) be a monotone P-zigzag and

let D be a down set ofR. Then there exist a P-zigzag (H',!'), a down set D' ofH' and

a monotone map 9 from (H',!') onto (H, J) such that the following hold.

(a) H' \ D' = H \ D, g(u) = u for every u E H' \ D' and g(D') = D.

(b) l{d'}.1 < klH(g(d'» for every d' ED'.

(c) f(H') :::;f(H).

PROOF OF CLAIM 1: Let (H, J) be a P-zigzag and let D be a down set of H. We prove

the claim by induction on IDI. If IDI = 0 there is nothing to prove. Let us suppose IDI ~ l.

Let d E D be maximal in the poset D spanned by the elements of D in H. We apply the



induction hypothesis for (H, 1) and D \ {d}. Thus, there exist a P zigzag (Ho, fo), a down

set Do of Ho and a monotone map go from (Ho, fo) to (H, f) such that the following hold.

(a') Ho \ Do = H \ (D \ {d}), go(u) = u for every u E Ho \ Do and go(Do) = D \ {d}.

(b') !{do}. I < klH(go(do)) for every do E Do.

Observe that the properties of go guarantee {d}. \ {d} ~ Do. Now, we create a new P-

colored poset (H1,fl) from (Ho,fo) by replacing din (Ho,fo) by elements d1, ••• ,dt as

follows. For each antichain in {d}. \ {d} with at most k elements we pick a new element

extension of h to HI. Since (HI, fd\{d1, ••• , dt} = (Ho, fo)\{d}, f~ IHo\{d} is a monotone

extension of fo to Ho \ {d}. Note that the colored poset (Ho,f~ IHo\{d}) is nonextendible

since (Ho, fo) is nonextendible. So it contains a zigzag (Q,g). Observe that dE Q. Also

(Q,g), when d is noncolored. By (1) and (2) of Claim 3.12, (Q,g) has its colored elements

in {d}. U {d}· and the elements of (Q,g) in {d}. \ {d} form an antichain with at most k

(HI, f~ IH1\{d1, ... ,dd) that is assumed to be extendible. Thus (HI, h) is nonextendible.

Hence it contains a zigzag (H', /') .•
There is a monotone map gl from (H1'/1) to (Ho, fo) that is the identity map on

HI \ {d1, ••• , dt} and sends the elements d1, ••• , dt to d. Observe that there does not exist

a nonempty set T of points and covering pairs in Ho such that (Ho,fo) \ T is a monotone

image of (H', /'), otherwise by composing an extension of fa to (Ho, fa) \ T with gl IHI we

would get a monotone extension of /' to H'. Hence H' \ {d1, .•• , dt} = HI \ {d1, ..• , dt}

and H' contains at least one of d1, ••• , dt. Let 9 = go 0 gl IHI and let D' = g-l(D). Now,

clearly, 9 is a monotone map onto (H,1) and D' is a down set of H'.



We want to show that (H',!'), D' and 9 satisfy (a), (b) and (c). First of all, by

H' \ {dl, ... ,dt} = HI \ {dl, ... ,dt} and (a'), (a) is satisfied. Let d' ED'. We show (b)

holds even in HI' If d' E Do, then by (b') we have the claim. If d' = di for some i and

d' is minimal in HI, then (b) is obvious. In the remaining case d' = di for some i, and

the number of elements covered by d' in HI is at least one and at most k. The elements

covered by d' are in Do. So by (b') we have l{d'}'1 < kklH(g(do)) for an element do E Do

covered by d'. Now, notice that fH(g(do)) ::; fH(9(d')) - 1 since g(do) E D \ {d} and 9

is monotone. Thus we have (b). Finally, (c) is obvious from (c') and the construction of

(H' ,!'). 0

Let Q be a connected poset. Let a E Q and B ~ Q. Then dQ(a, B) denotes the

minimum of dQ (a, b), b E B, where dQ (a, b) is the distance between a and b in Q.

CLAIM 2. Let P be a finite poset of cardinality k. Let (H, f) be a P-zigzag with W E H.

Let us suppose tbat (H, f) and w satisfy tbe following properties.

(A) H = AU B U C, wbere A, Band C are pairwise disjoint sets.

(B) Band C are not empty and B is an up set in H.

(0) For every a E A and e E C we have aile in H.

(D) wEAUB.

Then tbere exist a P-zigzag (H',!') and w' E H' witb the following properties.

(a) H' = A' u B' u C', wbere A', B' and C' are pairwise disjoint sets.

(b) B' is a non~mpty up set in H', IB'I ::; IBI and ICI ::; IC'I.
(c) For every a' E A' and e' E C' we bave a'lle' in H'.

(d) w' E A' u B'.

(e) dH,(w',B') 2: dH(w,B)

(f) f(H') ::; f(H}.

(g) The number of elements e' E C' with e' < b' for some b' E B' is at most kdlBI,

where d is tbe maximum of I{chi for c E C.



PROOF OF CLAIM 2: We note, if the number of covering pairs between Band C is at

most klBI, then there is nothing to do. In any case, we construct a nonextendible colored

poset (Q, g) from (H, I) as follows. Let C = H\ (A U B). For every monotone extension

t of f Ie to C there exists a zigzag in (H,fut). Let (Qt,gd be one such a zigzag for

each t. Observe that 0 =1= Qt n C ~ C(Qt,gt). IT (Qt,gd is monotone, then by Claim 3.3

every element of Q t nC is covered from Q t n(A UB), hence by property (C), from Q t n B.

Note, if (Qt, gd is nonmonotone we also have that every element of Qt nC is covered from

Qt n B. Let us take disjoint copies, one for C and one for each Qt. Then let us stick

together the copies of the Qt to the copy of C along the elements that were common in

Qt n C. In this way we get a poset Q. We refer to the copy of Qt in Q as Qt,O and to the

copy of C in Q as Co. The coloring 9 on Q inherits f Ie on Co and f IQt \C on Qt,O for

all t. Now, (Q,g) is not extendible since for every monotone extension t of 9 to Co there

exists a copy of (Qt,gt) contained in (Q,g).

Let (H', 1') be a zigzag contained in (Q, g). There is a monotone map h between the

colored posets (H', 1') and (H, I), where h maps an element u E H' to the element of

H from which u is copied. Observe that h must be onto, otherwise (H', 1') would be

extendible. We define w', A' , B' and C' as follows. Let w' be an element of H' with

h(w') = w. So there is an s with w' E Qs,o. Let A' be h-1(A) n Qs,o. Let B' be

h-1(B) n Qs,o. Finally, let C' = H' \ (A' U B').

Then we obviously have (a). Since h is onto we have Co ~ H'. So Co ~ C'. Hence

ICI :::;jC'I· By the definition, B' is an up set, and clearly IB'I :::; IBI. Since H' is connected

w' is connected by a fence to an element of Co in H' and this fence must use a copy of an

element of B by properties (C) and (D). Hence B' is not empty and (b) holds. By (C) we

get (c) and by the definition of w' we get (d). Since

dH,(w',B') 2 dQ"o(w',B') 2 dQ,(w,B n Qs) 2 dH(w,B),

(e) also holds. Clearly, £(H') :::;£(Q) :::;£(H), which gives (f). By Proposition 3.3 and

Proposition 3.5 every element of a P-zigzag covers at most k colored elements. Let us



apply this to the zigzag (Qs,gs)' By property (C) we get that the elements of B n Qs

together cover at most k IB nQsl colored elements of (Q s, 9s). So in Q the copy of B n Qs

covers at most k IB n Qsl elements of Co. Hence the number of elements of Co dominated

by some elements of B' is at most kdl B I, where d is the maximum of I{c}•.1 for e E C.

Thus (g) is satisfied in (H', /'). 0

With the help of the preceding two claims, for 0 ::; i ::;m + 1, we gIve a recursIve

definition of (Hi, Ji), Ai, Bi, Ci ~ Hi and ai E Hi that satisfy the following properties.

(ai) Hi = Ai U Bi U Ci, where Ai, Bi and Ci are pairwise disjoint sets.

(bi) If i is even then Bi is a nonempty up set of Hi. If i is odd then Bi is a nonempty

down set of Hi. In both cases IBil ::;kik and ICil ~ IHI- L~=o kik.

(Ci) For every a E Ai and e E Ci we have aile in Hi.

(di) ai E Ai UBi.

(ei) dHi(ai,Bd~i

(fi) f(Hi) ::; k - 1

We define (Ho,fo) = (H,!), Ao = 0, Bo = {ao} and Co = H\{ao}, where ao IS a

maximal element of H. Observe that (Ho,fo),Ao,Bo,Co and ao satisfy (ao)-(fo). We

define (Hi, Ji), Ai, Bi, Ci and ai for i ~ 1. We only do this for an odd i. For an even i one

can define and prove everything dually.

So let i ~1be odd. Then(Hi-llJi-l),Ai-I,Bi-I,Ci-1 and ai-l are defined already and

satisfy (ai-l )-(fi-l). Since i-1 is even Bi-l is an up set in Hi-I. Let us apply Claim 1to

(Hi-1,Ji-d with D = Ci-l. The resulting zigzag (H~-I,fLI) with Ai-I,Bi-I,D' = C~_l

and ai still satisfies (ai-l )-(fi-d, and we have gained the property that for every c E C~_ll

I{c}•.I ::; kk-l. Now we apply Claim 2 to (H~_ll 11-1) with A = Ai-I, B = Bi-l, C = CLI

and w = ai-I. Let (Hi, Ji) be the resulting zigzag. We define Ai = A' UB'. Let Bi be the

set of elements in C' that are dominated by some elements of B' and let Ci = Hi \(AiUBd.

Finally let ai = w'.

Let us check the properties (ad-(fi). First of all, (ai), (Ci), (di) and (fi) are obvious.



Moreover, (ei) is obvious, if we show Bi i= 0. So the property that really needs a proof is

(bd. By (f) and (g) of Claim 2 and (b) of Claim 1 we have IBd ~ ke-I k(i-I)k = kik. By

(b) of Claim 2 and (a) of Claim 1, IC'I ~ \CLII ~ ICi-II. Since Ci = 0' \ Bi and Bi ~ 0',

by (bi-I) we have

i-I

ICil = IC'I- IBil ~ ICi-II - IBd ~ IHI - L kjk - kik = IHI- L kjk.
j=O j=O

have (5) implies (6).

(6) implies (1): Use Remark 2.4.

PROPOSITION 8.2. Any finite poset P witb tbe strong selection property bas a partially

defined, monotone 4-nuf tbat is fully defined on A4•

Proposition 2.3 every P-zigzag has at most one non colored element. We show that there

is a monotone, partial 4-nuf t on P that is fully defined on A4 = {(a, ... , a, ~ , c, ... , c) :
L

a, b, c E P, 1 ~ j ~ 4} ~ p4• Suppose this is not true. This means that the colored

poset (A4,g), where 9 is given by g(a, ... ,a, ~ ,a, ... ,a) = a, 1 ~ j ~4, a,b E P, is not
L

P-extendible. So it contains a monotone P-zigzag (H, I). Let h be the only noncolored



EXAMPLE 8.3. Let P n=Sn +S~, where Sn is the poset given by the Boolean lattice of

n atoms without its top element and S~ is the dual of Sn' Let P = DiE! Pi, where

I = {2, 3, ... }. Then P admits Jonsson operations and P admits no nuf.

PROOF: By [20], each Pi, i E I, has the strong selection property. Then, by Proposition

8.2, for each i E I there exists a partial 4-nuf ii on Pi that is fully defined on Bi =

{(a, ... ,a, ~ ,c, ... ,c) : a,b,c E Pi, 1 ::;j ~4} ~ pr \Vith the help ofthe ii, i E I, we can
L

also define a monotone, partial 4-ary near unanimity operation on {(a, ... , a, ~ , c, ... , c) :
L

a, b,c E P,l ::; j ::;4} coordinatewise. So P admits Jonsson operations by the remark

following Theorem 8.1. After the proof of Claim 3.12 we noted that each Pi, i E I, has

a Pi-zigzag (Hi, Ii) with 2i colored elements. By Corollary 5.8, for each (Hi, Ii) we can

irreducible element. Since R is not a lattice it has a monotone R-zigzag (H, f). Similarly

as in Proposition 7.3, starting from (H, f) we can create an R-zigzag (H', 1') with an
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We can obviously choose (H, I) to be a stretched zigzag. Let h E C(H, I). Since (H, I)

is standard, h is minimal or maximal in H. Without loss of generality we can assume

that h is maximal. Since f( h) is reducible, f( h) is maximal or covered by at least two

elements. If f(h) is maximal we define a new R-zigzag (Ho, fo) as follows. We delete

the color of h in (H, I) and put an element below h that is covered by only h and is

colored by f(h). The resulting colored poset (Ho,fo) clearly is a zigzag. If f(h) is not

maximal, then it is covered by two elements a and b in R. Then we define the following

R-zigzag (Ho, fo). We delete the color of h in (H, I) and we put an element below h

that is covered by only h and is colored by f( h). We put two elements above h that

cover only h and are colored by a and b. Since (H, I) is stretched, by Proposition 3.1 the

resulting colored poset (Ho, fo) is an R-zigzag. Then we take a stretched R-zigzag above

(Ho,fo).

Obviously, as a result of iterating the above procedure sufficiently many times we can get

an R-zigzag (H', f') with an arbitrarily large diameter. Since R is an idempotent image of

Q, (H', f') is a Q-zigzag as well, see the remark following Proposition 5.5. We construct a

P-colored poset as follows. For every a E Q. we put a covering element colored by a above

each maximal element of N(H', f') and for every bE Q. we put a covered element colored

by b below each minimal element of N(H', f'). The resulting colored poset (H", f") is not

P-extendible, otherwise (H', f') would be Q-extendible. So (H", f") contains a P-zigzag

(G,g). The zigzag (G,g) must contain (H',f'), otherwise (G,g) would be extendible.

Hence (G,g) has the same diameter as (H',f'), which contradicts (5) in Theorem 8.1. 0

So by Proposition 8.4 it is enough to exhibit a nondismantlable convex subposet of a

finite bounded poset P in order to show that P does not admit Jonsson operations. To

prove that a poset is not dismantlable is easy, since for the dismantling of a poset the

greedy algorithm works, see [8]. For example, any locked crown, i.e., any poset of the

form P = 1 + 2+C+2 + 1, where C is a crown, admits no Jonsson operations since C is a

nondismantlable convex subposet of P. The converse of Proposition 8.4 may be true but



we are not able to prove it. It is easy to show that the class of finite bounded posets for

which all of their convex subposets are dismantlable is closed under taking retracts and

finite products.



In [26] Tardos proved that for the poset T = 1 + 2 + 2 + 2 + 1, the clone of monotone

operations is not finitely generated. In Theorem 9.10 we generalize his result by exhibiting

an infinite class of posets with monotone clones that are not finitely generated. We note

that each of these posets contains T as a retract.

One of the most intriguing problems on finite posets is the following. Is it true that if

the clone of all monotone operations on a finite bounded poset is finitely generated then it

contains a nuf? Since the property of admitting a nuf is preserved under retraction, if the

answer were yes we would have the following claim. If the clone of monotone operations

on a finite bounded poset is finitely generated, then the clone of monotone operations on

a retract of this poset is also finitely generated. This would imply that for every finite

bounded poset containing T as a retract, the clone of monotone operations is not finitely

generated. But to prove even the claim in the previous sentence seems very difficult.

It is known that the answer is no for the question at the beginning of the preceding

paragraph, if we allow unbounded posets. This was shown by Demetrovics and R6nyai

who proved that a crown admits no nuf although its clone of monotone operations is finitely

generated. In Lemma 9.1 through Theorem 9.4 we give our proof of this result.

LEMMA 9.1. Let A be a finite set with IAI = k ~ 3. Let f: An - A be an onto operation

that depends on at least two of its variables. Then there exist sets Ai ~ A, i = 1, ... ,n,

with a cardinality IAil = k -1 such that f IA1x ... xAn is onto.

PROPOSITION 9.2. Let en be the crown with 2n elements and let C be its clone of

monotone operations. Then C has no onto operation that depends on at least two of its

variables.



PROOF: Let f : C~ ----1 Cn be a monotone onto function which depends on at least

two of its variables. Then by the previous lemma there exist (2n - 1)-element subfences

AI,' .. , Am of Cn such that the restriction of f to Al X ••• x Am is a monotone map onto

Cn' Each Ai has an element Ci such that the distance between Ci and every (extremal)

element of Ai is at most n - 1. This implies that f (CI, ... , cm) has a distance at most

n - 1 from each extremal element in f(AI x ... x Am) = Cn' This contradicts the fact

that in Cn for every element there exists another element such that their distance is n. 0

PROPOSITION9.3. If!: C~ ----1 Cn is a monotone map depending on at least two of its

variables, then !(C~) is a fence with a diameter at most n.

PROOF: Observe that f(C~) ~ Cn is connected. Hence the previous proposition implies

that !(C~) is a fence. Observe that in Cn the distance between two arbitrary extremal

elements is at most n. This property is preserved for f(C~), which gives the claim. 0

By the use of Proposition 9.3 we can finish the proof in the same way as in [6].

THEOREM 9.4. Let Cn be the crown with 2n elements and let C be its clone of monotone

operation. Then C is Enitely generated.

PROOF: Observe that C = H U (UF~C" HF), where H is the set of essentially unary

operations in C, F is a subfence of Cn with diameter at most n, and HF is the set of all

functions in C which have range in F. So it is enough to show that HF is finitely generated.

Observe that each fence with a diameter at most n is a retract of Cn' Recall that every

fence admits a majority function. So for each F, the set HF is a clone that contains the

function !(XI,X2,X3) = m(r(xI),r(x2),r(x3)), where m is a majority function on F and

r is an idempotent monotone map from Cn onto F. Now, let us replace the majority

function by f in the well known argument, see [15]or [25], which shows that a clone with

a majority function is finitely generated. In this way we get a proof that HF is finitely

generated. 0

We note that in [6] it was shown that even the binary operations generate C.



are not finitely generated we begin with some claims that are valid for arbitrary finite

algebras and serve as the basis of Tardos's proof in [26'.

For an algebra A let Clo( A) be the set of finitary term operations on A and let Clorn( A)

be the set of m-ary term operations on A. For a set F of operations on A let Inv(F) be

the set of all finitary relations on A preserved by all operations from F and let Invrn(F)

be the set of m-ary relations on A preserved by all operations from F. We note that for

Now, let R be a set of n-tuples such that R = Ui=l~' where Ri E Invn(Clo(A)) and

every m-element subset of R is contained in some Ri. When applying any f E Clorn(A)



COROLLARY 9.7. Clo( A) is generated by the elements of Clom( A) if and only if for every

R = Ui=1 Ri, where {RI, ... , R,,} ~ Invn( Clo( A)) is an m-cover, R E Invn( Clo(A)).

PROOF: Clo(A) is generated by the elements of Clom(A) if and only if Inv(Clo(A))

Inv(Clom(A)). Hence the previous lemma gives the claim.

COROLLARY 9.8. Clo(A) is not finitely generated ifand only if for everym there exists an

m-cover {RI, •.• ,R"m} ~ Invn(Clo(A)) for somen such that R = U::::IRi rt Invn(Clo(A))

PROPOSITION 9.9. Let P = 1 + 2:~1 Ai+1, where n ~ 3 and each Ai, 1 ::; i ::;n, is a

finite antichain with at least two elements. Let (H, f) be a P-zigzag such that N(H, f)

is a fence. Then all the colored elements of (H, f) are of the form as follows. There exist

two elements a, b E C(H, f) which, together with the elements of N(H, f) form a colored

fence in (H,f). The values f(a) and f(b) are incomparable and so f(a),f(b) E Ai for

f(c)lIf(c') E Ai-I. Dually, each maximal element of N(H,f) is covered by exactly two

elements d,d' E C(H;f) and f(d)llf(d') E Ai+l.

PROOF: We proceed by induction on t = IN(H, f)1. If t = 1 then by Proposition 3.12,axa2
/ ' where adla2 E Aj+1 and bIllb2 E Aj for some 1 ::; j ::;n - 1.

bl~ 1>2
Thus we have the claim. Let t ~ 2 and let hI and h2 be the endpoints of N(H, f).

Let us apply Proposition 3.11. Then there exist monotone P-zigzags (Hj,jj), j = 1,2,

such that Hj ~ H, hl,h2 E Hh Ii IHj\{hj}= f IHj\{h
J
} and fj(hj) is defined such that



by Proposition 3.3 each Hj, j = 1,2, contains N(H, I). Now, we can apply the induction

hypothesis for (HI, fd. So we get that (HI' fd is of the form described in the claim for

some 1 S; i S; n. This and the above inequalities for h(h2) imply that h(h2) E Ai. So

applying the induction hypothesis to (H2, h) we get that (H21 f,) is of the form described

in the claim and it corresponds to the same i as (HI, fd· Let (Q,g) = (U~=I Hj, f IU;=lHj)'

Clearly, N(Q,g) = N(H,f) and (Q,g) S;;; (H,f). Observe that (Q,g) is nonextendible

PROOF: Let A be the algebra given on the universe P whose fundamental operations are

all the monotone operations on P. We define some sub algebras of A m+5 with the help of

Let Ro S;;; prn+5 be the set of those (m + 5)-tuples of the form (a, a', b, b', CI, .•• , Cm, c')

for which all the partial functions fi, 1 S; i S; m, given by



where the indices are considered by modulo m, are P-extendible when restricted to both

Qm \ {Y} and Qm \ {Y'}. Let Ri contain those elements of Ro, where Ii is P-extendible

to Qm. We note that in the case of P = T Tardos has the same definition in [26].

It is obvious that each Ri, 0 :s; i :s; m, is a subalgebra of A m+5. We show that the Ri,

1 :s; i :s; m, form an [(m -1)/2]-cover. To this end first we let u E Ri and Su = {I : u E R/}

and we prove that ISul ~ m - 2. Let us suppose that u (j. j for some j t= i. Then

the corresponding Ij is not P-extendible to Qm' So the colored poset (Qm,Ij) contains

a zigzag (H, I). Since N(H, I) is connected it must form a fence. Since P is bounded

and the restrictions of Ij to Qm \ {Y} and Qm \ {Y'} are extendible we get that H =

Qm \ {Zo, Zm-d and I = Ij IH. By Proposition 9.9 there exists 1 :s; t :s; n such that

The fact that u E Ro gives that Ij(Zo) and Ij(Zm-d are above all the elements of At

in P. One of Ij(Zo) and Ij(Zm-d is above !;(Z') otherwise both are incomparable with

Ij(Z') contradicting u E Ri• Hence u is in at least m - 2 of the R/, where 1 ::;1 :s; m.

Let R = U~lRi. Since any [(m-1)/2] elements of R avoid at most 2[(m-1)/2] :s; m-1

of the Ri, where 1 :s; i :s; m, there is at least one Ri which contains these [(m - 1)/2]

elements. So the Ri form an [(m - 1)/2]-cover. By Corollary 9.8, it remains to show that

R is not preserved by a monotone operation on P. Let us select a subposet T of P that is

isomorphic to 1 + 2 + 2 + 2 + 1. Observe that there exists an idempotent monotone map

r from Ponto T. By Lemma 5 in [26] there is a monotone function 9 : T2m
---? T that

does not preserve U~l r(Rd. But then g(r(xl)' .. " r(X2m)) does not preserve R. 0
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