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Introduction

The present thesis is based on publications [29], [31] and [49] of the
author. The first two of them are joint papers with Benoit Larose.
Section 1 of the thesis contains the basic algebraic definitions. Sections
2, 3 and 4 give an overview of the results in [29], [31] and [49], respec-
tively. The copies of the three papers are added in the Appendix and
form an essential part of the thesis.

In the past few years a new powerful tool has emerged in the inves-
tigations of constraint satisfaction problems: the theory of finite alge-
bras. In the present introduction we briefly delineate the connection
between these two areas of mathematics and discuss how our results
fit into those theories. The mathematical formulation of constraint
satisfaction problems was first introduced in artificial intelligence in
the 1960s. Since then research in constraint satisfaction has developed
rapidly, and today it has become a major area of interaction between
algebra, combinatorics, logic and computer science. Algorithms based
on solutions for constraint satisfaction problems are used routinely in
many areas of our daily life.

We adopt the following definition due to Feder and Vardi in [16]
and [17]. For a fixed finite relational structure T of finite signature the
constraint satisfaction problem over T is the following decision problem
denoted by CSP(T ): given a finite structure S similar to T , is there a
homomorphism from S to T?

The class CSP of problems of the form CSP(T ) where T is a finite
relational structure of finite signature is a vast subclass of NP . It
contains such problems as (Boolean) satisfiability, solvability of systems
of equations, graph colorability and scheduling.

Although numerous results dealing with CSP appeared in the litera-
ture prior to the seminal paper [17] of Feder and Vardi from 1993, this
was the first paper placing CSP in the algorithmic complexity context
in a non-trivial way. The authors formulated several conjectures in
the paper. The most important one is the dichotomy conjecture for
constraint satisfaction problems:

Conjecture 1. Each problem in CSP is either in P or is NP-complete.

In [17] Feder and Vardi introduced the class of bounded width prob-
lems in CSP . These are the problems that can be solved by a cer-
tain polynomial-time local consistency algorithm or equivalently are
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expressible in a logical programming language called Datalog. They
also introduced the problems with the ability to count, and proved
that those are not of bounded width. They went on to formulate their
bounded width conjecture.

Conjecture 2. A problem in CSP has bounded width if and only if it
simulates no problem with the ability to count.

Later it turned out that both conjectures of Feder and Vardi cor-
respond to certain well behaved classes of finite algebras. There is a
natural connection linking CSP and the theory of finite algebras, first
brought to light by Jeavons [22] in 1998. Given a finite structure T , let
A(T ) denote the algebra with the same underlying set as T and whose
basic operations are all those that preserve the basic relations of T .
Jeavons’s result states that if two finite structures T and T ′ of finite
signature are such that the algebras A(T ) and A(T ′) are term equiv-
alent, then the problems CSP(T ) and CSP(T ′) are polynomial-time
equivalent. In other words the clone of the term operations of A(T ) or
equivalently the variety generated by A(T ) determines the complexity
of the problem CSP(T ) modulo polynomial time.

It is not hard to show that we may restrict our attention to struc-
tures whose related algebra is idempotent. For every finite structure
T , there exists a finite structure T ′ such that CSP(T ) and CSP(T ′)
are polynomial-time equivalent, and the algebra A(T ′) is idempotent.

All known results which state that CSP(T ) is tractable has the fol-
lowing form: the existence of some particular term operations of the
algebra A(T ) guarantees that CSP(T ) is in P . In other words some
non-trivial set of identities over general terms determines a class of al-
gebras (or a class of varieties), and if A(T ) is in this class, then CSP(T )
is a polynomial-time problem. This suggests that the investigation of
such classes called Maltsev classes may play a role in characterizing
the complexity of the problems in CSP . The investigation of Maltsev
classes is a subject of study in the theory of finite algebras.

Tame congruence theory grew out of universal algebra, commutator
theory and lattice theory and was developed in the book [20] of Hobby
and McKenzie. In Chapter 9 of [20] they gave a description of the
locally finite varieties admitting a non-trivial idempotent Maltsev con-
dition. They located five other Maltsev subclasses of those varieties, as
well. These classes came in a natural way within the framework of their
new theory of finite algebras. In [20] Hobby and McKenzie introduced
the notion of the type set of a finite algebra and that of a variety. The
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type set which is a subset of the five element set {1, 2, 3, 4, 5} whose
elements are called types is shown to be an invariant of the algebra and
the variety. The discovery of types is especially important in the study
of varieties. Omittance of certain types led to Maltsev type characteri-
zations of classes of locally finite varieties in [20]. For example omitting
type 1 characterizes the locally finite varieties that admit a non-trivial
idempotent Maltsev condition.

In [29] we studied the shape of compatible finite posets of locally
finite varieties. Surprisingly these shapes are in close connection with
omitting types. We proved the following three omitting-types theorems
for a locally finite idempotent variety V :
V omits type 1 if and only if the homotopy groups of every finite

connected compatible poset of V are one element.
V omits types 1 and 5 if and only if every finite connected compatible

poset of V is dismantlable.
V omits types 1, 4 and 5 if and only if every finite connected com-

patible poset of V is one element.
In Section 2 of the present thesis we shall give an overview of the results
obtained in [29].

Suppose that T is a finite structure of finite signature. In [28] we
proved that if A(T ) is idempotent, and admits no non-trivial idem-
potent Maltsev condition (equivalently the variety generated by A(T )
admits type 1), then CSP(T ) is NP-complete. In [8] Bulatov, Jeavons
and Krokhin proved a similar result and they formulated the following
strong form of the dichotomy conjecture of Feder and Vardi.

Conjecture 3. Suppose that T is a finite structure for which the alge-
bra A(T ) is idempotent. Then CSP(T ) is in P if the variety generated
by A(T ) omits type 1, and CSP(T ) is NP-complete otherwise.

Numerous results in the literature give evidence that this conjecture
holds. E.g. in the cases when T is 2-element [38], when T is an undi-
rected graph [19], or when the algebra A(T ) is conservative [6] the
conjecture was confirmed. For further evidence see [17] for the case
when A(T ) has a near unanimity term, [7] for the case when A(T )
admits a Maltsev term, and [3] and [21] for the case when A(T ) is an
algebra with few subpowers.

In [17] it was shown that for any problem of the form CSP(T ) there
exists a finite poset whose retraction problem is polynomial-time equiv-
alent to CSP(T ). This implies, see [30], that it suffices to prove the
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dichotomy conjecture of Feder and Vardi for CSP over the finite struc-
tures whose relations are the one element subsets of their base sets
and a partial order. Our theorem that characterizes the locally finite
idempotent varieties omitting type 1 via compatible posets may be an
appropriate tool to attack this conjecture. Our other two omitting-
types theorems may yield good test cases on the way to handling the
conjecture.

We note that Feder and Vardi also showed that any problem of the
form CSP(T ) where T is an arbitrary finite structure is polynomial-
time equivalent to a CSP over a digraph. Hence it suffices to prove
the dichotomy conjecture for CSP over digraphs. By using a recent
characterization [32] of Maróti and McKenzie for the class of locally
finite varieties omitting type 1, Barto, Kozik and Niven managed to
prove a dichotomy theorem for CSP over a fairly large class of digraphs,
namely for the class of digraphs with no source and no sink, see [2].

In [31] we investigated the structure of bounded width problems and
established a theorem involving one of the above mentioned five Malt-
sev classes. Let T be a finite structure of finite signature. We proved
that if the algebra A(T ) is idempotent and CSP(T ) has bounded width,
then the variety generated by A(T ) omits types 1 and 2, and conjec-
tured the following.

Conjecture 4. Suppose that T is a finite structure for which the alge-
bra A(T ) is idempotent. Then CSP(T ) has bounded width if and only
if the variety generated by A(T ) omits types 1 and 2.

Our theorem yields a tool for proving that particular problems in CSP
are not of bounded width. In [31] we show several examples of its
application. We recently proved in [26] that in the idempotent case our
conjecture is equivalent to the bounded width conjecture of Feder and
Vardi. Partial results on the conjecture were obtained in the congruence
distributive case by Kiss and Valeriote in [24] and by Carvalho, Dalmau,
Marković and Maróti in [11]. In Section 3 of the thesis we shall give
an overview of the results obtained in [31].

For a finite algebra A of finite signature the solvability problem of
systems of polynomial equations over A is the following decision prob-
lem denoted by SysPol(A): given a finite system of polynomial equa-
tions S over A, is there a solution of S over A?
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Let SysPol denote the class of problems of the form SysPol(A)
where A is a finite algebra of finite signature. Several dichotomy re-
sults were proved for SysPol over restricted classes of algebras. For
example in [18] Goldmann and Russell proved that there is a dichotomy
for SysPol over groups. In [25] Klíma, Tesson and Thérien verified a
dichotomy for SysPol over monoids and other subclasses of finite semi-
groups.

We already mentioned that it suffices to prove the dichotomy conjec-
ture of Feder and Vardi for the subclass of CSP over digraphs or for the
class of retraction problems of posets. One more item to add to this list
is the class of solvability problems of systems of polynomial equations
over finite algebras. In [25] Klíma, Tesson and Thérien proved that for
every finite structure T , there exists an algebra A such that CSP(T )
is polynomial-time equivalent to SysPol(A).

It is not hard to prove, see [30], that for every finite algebra A of
finite signature SysPol(A) is polynomial-time equivalent to CSP(T )
where the base set of T coincides with that of A and the relations of T
are the graphs of the basic operations of A and the one element subsets
of its base set. In [30] we exploited this correspondence as follows.

It is well known, see [45], that a finite algebra admits a non-trivial
idempotent Maltsev condition if and only if it admits a specific idem-
potent term operation, a so called Taylor operation. Hence by a result
mentioned earlier if the algebra A(T ) is idempotent and has no Taylor
term operation, then the decision problem CSP(T ) is NP-complete.
So by the statement in the preceding paragraph we get that if an al-
gebra A has no compatible Taylor operation, then SysPol(A) is NP-
complete. This allows us to reformulate Conjecture 3 for SysPol as
follows.

Conjecture 5. Let A be a finite algebra of finite signature. Then
SysPol(A) is in P whenever A has a compatible Taylor operation,
and SysPol(A) is NP-complete otherwise.

In this conjecture the dividing line between the P and NP-complete
cases is lost however, as far as the type set of the variety V generated
by A is considered. The dividing line is shifted to the "dual" of the
algebra, the algebra determined by the compatible operations of the
original algebra. Interestingly enough if we put a restriction on the
typeset of A or of the variety generated by A, we are able to establish
a dichotomy theorem for SysPol. This was first achieved in [30] where
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we proved a dichotomy theorem for SysPol over the finite algebras
that generate a variety omitting types 1 and 5.

The ultimate dichotomy theorem involving restrictions on the type
set of the variety generated by an algebra was obtained in [49]. We
proved that there is a dichotomy for SysPol over the finite algebras
that generate a variety omitting type 1. Both of the last two theorems
encompass the cases of groups, rings, lattices, and the latter one does
the case of semilattices, too. In Section 4 of the thesis we shall give an
overview of the results obtained in [49].
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1. Algebraic background

In this section we present the algebraic concepts that we need to
state and explain the main results of the thesis. For more details we
refer the reader to [10], [20] and [34].

Let A be a set. An n-ary operation on A is a map f : An → A. If
n = 0, then f is called a constant. In some sense the simplest operations
are the projections. An n-ary operation f is called the i-th projection if
it satisfies the identity f(x1, . . . , xi, . . . , xn) = xi. An n-ary operation
f on A is idempotent if it satisfies the identity f(x, . . . , x) = x. A
subset ρ of Am is called an m-ary relation on A. We say that a binary
operation f has an identity element if there is an element e in its base
set such that f satisfies the following identities f(x, e) = f(e, x) = x.

Let A be a finite non-empty set, let ρ be an m-ary relation on A,
and let f be an n-ary operation on A; we say that f preserves ρ or
that ρ is closed under f , if, given any matrix of size m×n with entries
in A whose columns are elements of ρ, applying the operation f to the
rows of the matrix yields a column which is in ρ. For example the
projections preserve all relations on the base set.

Let f be an n-ary operation on A. The graph of f is defined to be
the following (n + 1)-ary relation:

f ◦ = {(a1, . . . , an, f(a1, . . . , an)) : a1 . . . , an ∈ A}.
If f is a constant, then f ◦ = {f}. It is a simple exercise to verify that an
operation g preserves the relation f ◦ if and only if f preserves g◦; if this
is the case we say that the operations f and g commute. Obviously, an
operation commutes with all the constants of the base set if and only
if it is idempotent.

An algebra is a pair A = (A, {fi : i ∈ I}) where A is a non-empty
set, I is a set and for each i ∈ I, fi is an operation of finite arity ni

on A. The set A is called the base set (or underlying set) of A and
I with the map i 7→ ni is called the signature of A. The operations
fi are called the basic operations of A. The algebra A is finite if A
is finite and A is of finite signature if I is finite. Two algebras are
similar if they have the same signature. An algebra is idempotent if
all of its basic operations are idempotent. In the thesis one encounters
the following special types of algebras: unary algebras, semigroups,
quasigroups, groups, monoids, semilattices, lattices, rings, modules,
fields, vector spaces, Boolean algebras. For their definitions see [10]
and [34].
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If we are given an algebra, by using composition of functions and
starting with the basic operations and the projections we can build
new operations on its base set. Let {x1, x2, . . . , xn} be a finite set
of variables. If A is an algebra, an A-term built from the variables
x1, x2, . . . , xn is defined as follows: (i) the variables x1, x2, . . . , xn are
A-terms and (ii) if f is an n-ary operation symbol and g1, . . . , gn are
A-terms, then f(g1, . . . , gn) is an A-term. Every A-term is interpreted
as a term operation on an algebra similar to A in the natural way.
A reduct of an algebra A is an algebra B such that B has the same
underlying set as A and the basic operations of B are term operations
of A. A full idempotent reduct of an algebra A is a reduct of A whose
term operations are the idempotent term operations of A.

Polynomials of A are defined in a similar fashion. Let C be the set
of operation symbols for the constants on A. By an A-polynomial built
from variables x1, x2, . . . , xn we mean an expression constructed as fol-
lows: (i) the variables x1, x2, . . . , xn are A-polynomials, (ii) for every
c ∈ C, c is an A-polynomial and (iii) if p is an n-ary operation symbol
and qj are A-polynomials, then p(q1, . . . , qn) is an A-polynomial. The
interpretation of a polynomial in the algebra A is defined in a straight-
forward manner. We shall feel free to use the polynomial expression to
denote its associated polynomial function.

Let A be an algebra. We say that a relation ρ on the base set of A
is a compatible relation of A if the basic operations (equivalently, the
term operations) of A preserve ρ. The compatible unary relations of A
are called subuniverses of A. The compatible equivalence relations of A
are called congruences of A. We say that an operation g is compatible
with the algebra A if the graph of g is compatible with A. Note that g
is a compatible operation of A if and only if it commutes with all term
operations of A. Moreover, g is an idempotent compatible operation of
A if and only if it commutes with all polynomial operations of A.

A set of finitary operations on a set is called a clone if it contains the
projections and is closed under composition. The set of all term opera-
tions or all polynomial operations of an algebra is a typical example of
a clone. A clone is idempotent if all of its operations are idempotent.

A relational structure is a pair T = (T, {rj : j ∈ J}) where T is
a non-empty set, J is a set and rj is a relation on T of finite arity
dj, j ∈ J. The set T is called the base set of T and J with the map
j 7→ dj is called the signature of T . The relations rj are called the basic
relations of T . The structure T is finite if T is finite and T is of finite
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signature if J is finite. Two structures are similar if they have the same
signature. Let I = (I, {sj : j ∈ J}) be a structure of signature J . A
function f : I → T is a homomorphism from I to T if f(sj) ⊆ rj for
each j ∈ J . Sometimes we call such a map relation preserving. For
any relational structure T the set of operations preserving the basic
relations of the structure form a clone that we call the clone of T . The
relational clone of T is the set of all relations on T preserved by all the
operations in the clone of T .

Let A and B be similar algebras. B is a subalgebra of A if the base
set of B is a subuniverse of A and the basic operations of B coincide
with the restrictions of those of A. If B is a subalgebra of A, then A
is called an extension of B. A homomorphism h from A to B is a map
from the base set of A to that of B such that h preserves the graphs
of the basic operations. We say that B is a homomorphic image of A
if there is a surjective homomorphism from A to B. Let Ai, i ∈ I, be
similar algebras. Their product is the algebra of the same signature
whose base set is the Cartesian product of the base sets of Ai, i ∈ I,
and whose basic operations act componentwise as the corresponding
basic operations of the Ai.

A variety is a class of similar algebras which is closed under tak-
ing subalgebras, homomorphic images and products. A variety V is
idempotent if the identity f(x, . . . , x) = x holds in V for every function
symbol in the language of V . A variety V is locally finite if every finitely
generated algebra in V is finite. For instance, the variety V(A) gener-
ated by a finite algebra A, wich consists of all homomorphic images of
subalgebras of powers of A, is locally finite. Tame congruence theory,
first developed by Hobby and McKenzie in [20], is a powerful tool to
study these varieties.

Let A be a finite algebra. If α and β are distinct congruences of
A such that α ⊂ β but no congruence lies properly between them,
then we say that the pair (α, β) is a prime quotient of congruences.
In tame congruence theory, to each prime quotient is associated a type
i ∈ {1, 2, 3, 4, 5}. We briefly sketch how this is done.

The starting point of the theory is to introduce a family of so-called
(α, β)-minimal sets for each prime quotient (α, β) of congruences of A.
A unary operation r on a set A is called a retraction, if r2 = r, in
which case r(A) is called a retract of A. We say that a subset U of A
separates the congruences α and β if α|U 6= β|U . It turns out that the
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(α, β)-minimal sets coincide with the minimal polynomial retracts of
A that separate α and β.

We call two algebras polynomially equivalent if they have the same
base set and the same polynomial operations. (Term equivalence of
algebras is defined in a similar manner.) Let U be an (α, β)-minimal
set of A. By restricting the polynomial operations of A that preserve U
to U we get a so called (α, β)-minimal algebra on U. For any fixed (α, β)
the corresponding (α, β)-minimal algebras turn out to be polynomially
equivalent up to isomorphism. It is a crucial fact that any (α, β)-
minimal algebra induces smaller fragmental algebras, so called minimal
algebras which have a very restrictive structure.

A finite algebra A is said to be minimal if every unary polynomial
operation of A is either a constant or a permutation. A description
of minimal algebras on more than two elements was given by Pálfy in
[36]. By extending this description to the two element case in [20],
Hobby and McKenzie proved that, up to polynomial equivalence and
isomorphism, the only minimal algebras are of the following 5 types:

(1) algebras whose basic operations are permutations or constants;
(2) vector spaces;
(3) the 2-element Boolean algebra;
(4) the 2-element lattice;
(5) the 2-element semilattice.

It turns out that the minimal algebras induced by the same (α, β)-
minimal algebra are polynomially equivalent up to isomorphism. Hence
every prime quotient (α, β) of congruences in a finite algebra A has
a unique type 1,2,3,4, or 5. The collection of all types of all prime
quotients (α, β) is called the type set of A. The typeset of a variety is
the union of all typesets of its finite members.

We say that an algebra A admits a non-trivial idempotent Maltsev
condition, if there exists a finite set of identities satisfied by some idem-
potent term operations of A that is not satisfied by projections of the
two element set. Most of the algebraic structures in classical algebra
have this property, such as, for example, algebras with a group or semi-
lattice term operation. The class of algebras that admit a non-trivial
idempotent Maltsev condition and certain subclasses of it play a crucial
role in the thesis. These classes were extensively studied in Chapter 9
of the book [20].
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An n-ary operation f is a Taylor operation if it is idempotent and
satisfies an identity of the form

f(x1, . . . , xi−1, x, xi+1, . . . , xn) = f(y1, . . . , yi−1, y, yi+1, . . . , yn)

where xj, yj ∈ {x, y}, 1 ≤ j ≤ n, for every 1 ≤ i ≤ n. For instance, a
binary operation is a Taylor operation if and only if it is idempotent
and commutative; in particular, semilattice operations are Taylor oper-
ations. Another common example of a Taylor operation is the ternary
term operation xy−1z of a group.

Let i be an element of {1, 2, 3, 4, 5}. A finite algebra (a variety) is
said to omit type i if its typeset does not contain type i. The connec-
tion between the typeset of a variety generated by a finite algebra and
identities satisfied by the term operations of the algebra is illustrated
in the following result, see Lemma 9.4 and Theorem 9.6 of [20].

Theorem 1.1. Let V(A) be the variety generated by a finite algebra
A. Then the following are equivalent:

(1) V(A) omits type 1;
(2) A admits a nontrivial idempotent Maltsev condition;
(3) A has a Taylor term operation.
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2. Finite posets and topological spaces in locally finite
varieties

We begin this section by reviewing some facts about finite posets and
topological spaces we shall require later. For basic notions of topology
and basic notions on partial order and order-preserving maps we refer
the reader to [39] and [13], respectively.

Let P be a poset. The ideal topology on P is the topology whose
open sets are exactly the order ideals (down-sets, initial segments) of
P , i.e. those subsets U that satisfy the following condition: if u ≤ v
and v ∈ U , then u ∈ U . We consider P as a topological space with the
ideal topology. It is easy to see that a map between posets is order-
preserving if and only if it is continuous when the posets are given the
ideal topology (see for example [40].) The space P is connected if and
only if it is arc-connected, if and only if P is connected as a poset.

We shall use the following definition of homotopy groups (see [39]).
Let In denote the n-fold product of the interval [0, 1] with itself, and as
usual let ∂In denote its boundary, i.e. all n-tuples from In that contain
the entry 0 or 1. Let P be a topological space and let p0 ∈ P . Let
S denote the collection of all continuous maps from the pair (In, ∂In)
to the pair (P, p0), i.e. maps f : In −→ P such that f(∂In) ⊆ {p0}.
Two maps f, g ∈ S are homotopic (relative to ∂In) if there exists a
continuous map φ : I×In −→ P such that φ(0, x) = f(x) and φ(1, x) =
g(x) for all x ∈ In, and φ(t, x) = p0 for all t and all x ∈ ∂In. This is
an equivalence relation on S; let [In, ∂In; P, p0] denote the collection of
equivalence classes. As usual, if f ∈ S we denote the homotopy class
of f by [f ].

For n ≥ 1, the n-th homotopy group of P with base point p0 is the set
[In, ∂In; P, p0] together with the following product: if f, g ∈ S define

(f ? g)(t1, . . . , tn) =

{
f(t1, . . . , tn−1, 2tn) if tn ≤ 1/2,
g(t1, . . . , tn−1, 2tn − 1) if tn ≥ 1/2.

the group operation is then (well) defined by [f ] · [g] = [f ? g]. The
n-th homotopy group of an arc-connected topological space P does
not depend on the base point (up to isomorphism), and is denoted
by πn(P ). The first homotopy group π1(P ) is called the fundamental
group of P . It is well known that apart from the fundamental group
all homotopy groups are Abelian.

Example. Let P be the 4-crown, i.e. P is the poset 2 + 2 where 2
stands for the two element antichain and + denotes the usual ordinal
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sum. Then P has the following homotopy groups: π1(P1) = Z and
πn(P1) = 0 for all n ≥ 2. Notice that the only idempotent operations
of the 4-crown are the projections.

A term f in the language of a variety V is called idempotent if the
identity f(x, . . . , x) = x holds in V . Recall that at the end of Section
1 we introduced the definition of a Taylor operation. In a similar
fashion, we say that a variety V admits a Taylor term if V has an
n-ary idempotent term f such that for every 1 ≤ i ≤ n there exists an
identity of the form

f(x1, . . . , xi−1, x, xi+1, . . . , xn) = f(y1, . . . , yi−1, y, yi+1, . . . , yn)

where xj, yj ∈ {x, y}, 1 ≤ j ≤ n, that holds in V . Such an f is called a
Taylor term for V .

Let V be a variety. A group G is called a compatible group of V , if
there is an algebra A in V such that the underlying sets of G and A
are the same and the operations of G commute with those of A. A
compatible poset of V is a poset P such that there exists an algebra in
V whose base set equals that of P and whose basic operations are order
preserving with respect to P . (In [29], following Taylor, we used the
terminology that P is poset in V rather than P is a compatible poset
of V .)

To prove the fundamental result of [29] we needed to use the following
theorem of Taylor from [45].

Theorem 2.1. Let V be a variety that admits a Taylor term. Then
every compatible group of V is Abelian.

It is not hard to show that the homotopy groups of a finite compatible
poset of a variety V are compatible groups of V . So by the preceding
theorem if V admits a Taylor term, then the homotopy groups of a
finite compatible poset of V are Abelian. More is true, as shown by
the fundamental result of [29].

Theorem 2.2 ([29]). Let V be a variety that admits a Taylor term.
Then the homotopy groups of every finite connected compatible poset of
V are one element.

The proof of this theorem is based on the observation that there is
a homomorphism from the clone of the order preserving operations of
P that fix a designated element of P to the clone of term operations of
the module M, where M coincides with πn(P ) considered as a module
over its endomorphism ring.
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A finite poset P has the fixed point property if every unary order pre-
serving operation on P has a fixed point. By a result of Baclawski and
Björner in [1] we get the following interesting corollary of the preceding
theorem.

Corollary 2.3 ([29]). If a finite connected poset admits a Taylor op-
eration, then it has the fixed point property.

We now present three omitting-types theorems for locally finite idem-
potent varieties. By the use of Theorem 2.2 we obtain our first omitting-
types theorem.

Theorem 2.4 ([29]). Let V be a locally finite idempotent variety. Then
the following statements are equivalent:

(1) 1 6∈ typ{V}.
(2) The homotopy groups of every finite connected compatible poset

of V are one element.

An element of a poset P is irreducible if it possesses either a unique
upper cover or a unique lower cover in P . Let Q be a subposet of P .
We say that P dismantles to Q if we can write P = {x1, . . . , xn} such
that for some j we have Q = {xj, . . . , xn} and for all i = 1, . . . , j−1, xi

is an irreducible element in the subposet of P induced by {xi, . . . , xn}.
A finite poset P is called dismantlable if P dismantles to a one element
subposet. It is a well known fact, see [40], that the homotopy groups
of finite dismantlable posets are one element. Dismantlable posets play
an important role in our second omitting-types theorem.

Theorem 2.5 ([29]). Let V be a locally finite idempotent variety. Then
the following statements are equivalent:

(1) typ{V} ∩ {1, 5} = ∅.
(2) Every finite connected compatible poset of V is dismantlable.

Our third omitting-types theorem is as follows.

Theorem 2.6 ([29]). Let V be a locally finite idempotent variety. Then
the following statements are equivalent:

(1) typ{V} ∩ {1, 4, 5} = ∅.
(2) Every finite connected compatible poset of V is one element.
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It is mentioned in Chapter 9 of [20] that there are six natural omitting-
types conditions for locally finite varieties. By using the notion of com-
patible posets we gave characterizations of three out of the six condi-
tions in the preceding theorems. By using the notions of compatible
groups and compatible posets we are able to complete the picture. The
following characterization handles the case of omitting types 1 and 2.
Since this result did not appear in print, we supply a short proof to it.

Theorem 2.7. Let V be a locally finite idempotent variety. Then the
following statements are equivalent:

(1) typ{V} ∩ {1, 2} = ∅.
(2) Every finite compatible group of V is one element.

Proof. In the proof we use the result from [31], see Theorem 3.6 in
the present thesis, which states that a locally finite idempotent variety
omits types 1 and 2 if and only if it does not interpret in any variety
generated by an affine algebra with at least two elements. The defini-
tions of affine algebras and interpretation of varieties can be found in
the next section prior to Theorem 3.6.

Suppose first that V admits type 1 or type 2. Then V interprets in
a variety generated by an affine algebra A with at least two elements.
Actually, by the proof of the above theorem in [31], we may assume
that A is finite. Hence there is a finite algebra B in V such that B is
a reduct of A. Since A is affine, x− y + z is a compatible operation of
A for some Abelian group operation x + y on the base set of A. Hence
x−y+z is a compatible operation of B, as well. Since B is idempotent
the constant 0 also is a compatible operation of B. Thus, x + y is a
compatible group operation of B and hence V has a finite compatible
group with at least two elements.

Suppose now that G is a finite compatible group of V with at least
two elements. Then there is an algebra A in V with the same underlying
set as G such that the group operation of G is a compatible operation
of A. Then by Theorem 1.1 either V admits type 1 or V admits a
Taylor term. In the latter case, by Theorem 2.1, the group operation
of G is commutative and hence A is a reduct of an affine algebra. It is
well known, see [20], that any such algebra A has a type set contained
in {1, 2}. So if V has a compatible group with at least two elements,
then V admits either type 1 or 2. �

Combining the preceding theorem and the two omitting-types theo-
rems prior to it, similar theorems can be given for the case of omitting
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types 1, 2 and 5 and for the case of omitting types 1, 2, 4 and 5. So
for all of the six Maltsev classes described by Hobby and McKenzie
in [20] there is a characterization in terms of compatible posets and
compatible groups.

Theorem 2.8. Let V be a locally finite idempotent variety. Then the
following statements are equivalent:

(1) typ{V} ∩ {1, 2, 5} = ∅.
(2) Every finite compatible group of V is one element, and every

finite compatible poset of V is dismantlable.

Theorem 2.9. Let V be a locally finite idempotent variety. Then the
following statements are equivalent:

(1) typ{V} ∩ {1, 2, 4, 5} = ∅.
(2) The finite compatible groups and compatible connected posets of

V are one element.

The full idempotent reduct of a variety V is the variety W whose
language has a function symbol for each idempotent term of V and no
others, and W consists of all algebras that satisfy all identities that
hold in V for the idempotent terms. For example, if V is generated by
an algebra A, then its full idempotent reduct W is generated by a full
idempotent reduct of A. Note that our six omitting-types theorem can
be formulated for arbitrary locally finite varieties by observing that a
locally finite variety omits any of the six type sets occuring in the above
theorems if and only if its full idempotent reduct does.

In the proof of Theorem 2.5, when type 1 or 5 occurs in typ{V}, we
needed to come up with a poset that admits a semilattice operation
but is not dismantlable. Such a poset is displayed in Figure 1. As
an instance of a general construction in [29], the poset S in Figure 1
admits a semilattice operation. It is easy to see that S dismantles down
onto the poset R in Figure 2. As R has no irreducible element, S is not
dismantlable. This example allowed us to answer an open question of
Taylor in [46].

A topological space X is an H-space if there exists a continuous
operation h : X2 −→ X and an element e ∈ X such that both the
maps x 7→ h(x, e) and x 7→ h(e, x) are homotopic to the identity on X.
It is well-known that H-spaces have an Abelian fundamental group.
In [46] (see also [47]) Taylor asked whether the existence of continuous
operations obeying non-trivial identities forces a space to be an H-
space.
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Consider for instance the following special case: for n ≥ 2, an n-ary
operation f is an n-mean if f obeys the identity

f(x1, . . . , xm) ≈ f(xσ(1), . . . , xσ(n))

for any permutation σ of the indices. Eckmann, Ganea and Hilton have
shown that if a CW-complex admits an n-mean, then it must be an
H-space [14].

The poset S shows that the answer to Taylor’s question is negative,
in general, and that the result of Eckmann, Ganea and Hilton above
cannot be extended to general spaces.

Indeed, as S admits a semilattice operation, it also admits an n-
mean for every n, in particular admits a Taylor operation. In [40] it is
shown that a finite connected poset is an H-space if and only if it is
dismantlable. We already saw that S is not dismantlable, hence S is
not an H-space.
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3. Bounded width problems and algebras

Following Feder and Vardi [17] we give a definition of bounded width
problems via a two player game. It turns out that these problems
in CSP are solvable by a particular local consistency algorithm (in
polynomial time).

Let I be a relational structure. As usual, if K is a non-empty subset
of I, the substructure induced by K is the structure with base set K
and whose relations are those of I restricted to K. Let k be a positive
integer. We call the subsets (substructures) of size at most k of I the
k-subsets (k-substructures) of I.

A two-player game: Let A be a finite relational structure of fi-
nite signature, and 1 ≤ l < k integers. Let I be a relational structure
similar to A. We present a two-player combinatorial game as in [17],
the (l, k)-game on I. The game is played by the Spoiler and the Du-
plicator in alternating turns. In each round of the game the Spoiler
selects a k-substructure K ′ such that |K ∩ K ′| ≤ l where K is the
k-subtructure selected by the Spoiler in the preceding round. In the
same round the Duplicator picks a homomorphism f ′ : K ′ → A such
that f |K∩K′ = f ′|K∩K′ where f : K → A is the homomorphism picked
by the Duplicator in the preceeding round. (In the first round the
Spoiler is allowed to select any k-substructure of I and the Duplicator
is allowed to pick any homomorphism from the k-substructure selected
by the Spoiler to A.) The Spoiler wins the game if at some point the
Duplicator is not able to pick a homomorphism in the way described
above. As usual, we say that the Spoiler has a winning strategy on I if
the Spoiler can play so that the Duplicator, whatever sequence of moves
it makes, is eventually unable to pick a homomorphism according to
the rules of the game.

A problem CSP(A) has width (l, k) if for any relational structure I
for which the Spoiler has no winning strategy in the (l, k)-game, there
exists a homomorphism from I to A. We say that CSP(A) has width
l if it has width (l, k) for some k, and that CSP(A) has bounded width
if it has width l for some l.

Given similar structures I and A and a subset K of I, we let Hom(K, A)
denote the set of homomorphisms from K to A where K is viewed as
a substructure of I.

We now present a local consistency algorithm that leads to an equiv-
alent definition of the bounded width problems. This definition is the
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one we used to prove the main results in [31]. Fix a structure A and
integers 1 ≤ l < k.

(l, k)-algorithm
Input: A structure I similar to A.
Initial step: To every k-subset K of I assign a relation ρK that
consists of all maps in Hom(K, A) viewed as |K|-tuples;
Iteration step: Choose, if they exist, two k-subsets H and K
of I with |H ∩ K| ≤ l such that there is a map in ρH whose
restriction to H ∩K is not equal to the restriction to H ∩K of
any map in ρK , and throw out from ρH all such maps. If no such
H and K are found, then stop and output the current relations
assigned to the k-subsets of I.

We refer to the relations ρK obtained at the end of the algorithm
as the output relations. Since the number of k-subsets of I is O(nk)
where n is the size of the instance, and in each iteration step the sum
of the sizes of the relations ρK is decreasing, the algorithm stops in
polynomial time in the size of the structure I.

Notice that the choice of the pair H and K in each iteration step of
the algorithm is arbitrary. So the (l, k)-algorithm has several different
versions depending on the method of the choice of the pair H and K.
However, in [31] we proved the following.

Proposition 3.1 ([31]). Let A and I be similar relational structures.
Then any two versions of the (l, k)-algorithm for I output the same
relations.

The notions of (l, k)-game and (l, k)-algorithm are connected by the
following proposition:

Proposition 3.2 ([31]). Let A and I be similar relational structures.
Then the (l, k)-algorithm for I yields empty output relations if and only
if the Spoiler has a winning strategy in the (l, k)-game for I.

Clearly, if the output relations of the (l, k)-algorithm for I are empty,
then there is no homomorphism from I to A; however, it might be that
the converse does not hold. By the last result, it follows that CSP(A)
has bounded width if for some choice of parameters l and k the (l, k)-
algorithm correctly decides the problem CSP(A): in particular, we
get that CSP(A) is a polynomial-time problem. For example, any
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relational structure of finite type whose relations are invariant under
a semilattice operation, or a near-unanimity operation, has bounded
width [17]. As an application of our main result we shall give several
examples of problems that do not have bounded width at the end of
the section.

Let l, k, l′, k′ be integers such that 1 ≤ l < k and 1 ≤ l′ < k′

with l′ ≥ l and k′ ≥ k. It can be easily verified that if CSP(A) has
width (l, k), then it has width (l′, k′). For convenience, we introduce
the following terminology: a relational structure A is called an (l, k)-
structure if CSP(A) has width (l, k).

In [31] we investigated the properties of the algebras associated to
structures of bounded width CSP , which prompted the following nat-
ural definition. We say that a finite algebra A has bounded width if for
every relational structure A of finite signature whose base set coincides
with the that of A and whose relations are subalgebras of finite powers
of A, the problem CSP(A) has bounded width.

Let T be a relational strucure and A an algebra. We say that A is
an algebra for T , or equivalently T is a structure for A, if the set of
term operations of A coincides with the set of operations preserving
the relations of T. We present a result that ensures that if A is an
algebra for an (l, k)-structure, then it is an algebra of bounded width.
Its proof, although much more involved, is similar in flavor to the proof
of the following result of Jeavons [22]: if B is a relational structure of
finite type whose base set coincides with the base set of A and whose
relations are in the relational clone of A, then CSP(B) is polynomial-
time reducible to CSP(A).

Lemma 3.3 ([31]). Let A be an (l, k)-structure. If B is a relational
structure whose base set coincides with the base set of A and whose
relations are in the relational clone of A, then B is an (l′, k′)-structure
for some l′ and k′.

A finite algebra A is called locally tractable if the problem CSP(A)
is in P for every relational structure A of finite signature whose base
set coincides with that of A and whose relations are subalgebras of
finite powers of A. It follows from results in [8] and [9] that if a finite
algebra A is locally tractable, then so is every finite algebra in V(A).
An analogous statement is valid for bounded width algebras:

Lemma 3.4 ([31]). Every finite algebra in the variety generated by a
bounded width algebra has bounded width.
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Our following result states that bounded width is preserved under
interpretation of varieties; this will be used to produce a criterion which
enables us to prove that certain problems in CSP do not have bounded
width. For the purposes of Theorem 3.5 we shall define interpretability
as follows: if B is an algebra, we say that a variety V interprets in V(B)
if B has a reduct in V . We note that this definition is equivalent to the
following. The variety V(A) interprets in the variety V(B) if and only
if there exists a clone homomorphism from the clone of term operations
of A to the clone of term operations of B, where a map between clones
is called a clone homomorphism if it preserves arity, maps projections
to projections and commutes with composition (see [20] page 131 for
details).

Theorem 3.5 ([31]). If A and B are finite algebras such that V(A)
interprets in V(B) and A has bounded width, then B also has bounded
width.

As the main result of this section we present a criterion to determine
if certain algebras are not of bounded width. This criterion is based
on the notion of the type set of an algebra and of a variety.

In the introduction we already mentioned the result, see [8], [28]: let
A be a finite, idempotent algebra such that V(A) admits type 1. If A
is a structure for A, then the problem CSP(A) is NP-complete.

In [31] Theorem 3.5 was used to prove a parallel result, namely that
the variety generated by an idempotent algebra of bounded width must
omit types 1 and 2. On the way towards this result we needed the next
lemma whose proof can be put together from results contained in [20]
and [44].

A congruence θ of an algebra A is Abelian if for any n-ary poly-
nomial f of A, and any u, v, x1, . . . , xn, y1, . . . , yn ∈ A, if uθv and
xiθyi for all i = 1, . . . , n, then f(u, x1, . . . , xn) = f(u, y1, . . . , yn) im-
plies f(v, x1, . . . , xn) = f(v, y1, . . . , yn). An algebra is Abelian if all its
congruences are Abelian. An algebra is affine if its clone of polyno-
mial operations coincides with the clone of polynomial operations of a
module on the same underlying set. Affine algebras are prototypical
examples of Abelian algebras.

Lemma 3.6 ([31]). For a locally finite idempotent variety V the fol-
lowing are equivalent:

(1) V omits types 1 and 2.
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(2) The only Abelian congruence of any algebra in V is the identity
relation.

(3) V does not interpret in any variety generated by an affine alge-
bra with at least two elements.

In [31] we used Theorem 3.5 and Lemma 3.6 to prove our main result.

Theorem 3.7 ([31]). If A is a finite idempotent algebra of bounded
width, then V(A) omits types 1 and 2.

The preceding theorem can be used to identify algebras that do not
have bounded width even if they are not idempotent, as the next lemma
shows. Given an algebra A and a subset B of its underlying set, let
A|B denote the algebra with underlying set B whose basic operations
are the restriction to B of every term operation of A that preserves B.

Lemma 3.8 ([31]).

(1) Let A be a finite algebra, and let r be a unary term of A such
that r2 = r. Let B = r(A). Then the algebra A|B has bounded
width if and only if A has bounded width.

(2) Let A be an algebra whose term operations are surjective and
let B be its full idempotent reduct. Then A has bounded width
if and only if B has bounded width.

Now we mention three applications of our bounded width criterion.
Consider the following situation. Given an NP-complete problem in
CSP , we would like to show that it is not of bounded width. The result
of course follows if we assume that P 6= NP , since the bounded width
problems are in P . It may be interesting to get a proof without using
the hypothesis that P 6= NP . This is what we did in our first two
applications.

Let H be a fixed irreflexive and symmetric digraph. In [19], Hell
and Nešetřil proved that CSP(H) is in P if H is bipartite, and it is
NP-complete otherwise. As the first application of Theorem 3.7 and
Lemma 3.8, by analyzing the proof of Hell and Nešetřil we showed in
[31] that the problem CSP(H) is not of bounded width when H is
non-bipartite. In [35], Nešetřil and Zhu gave a different proof of the
same result.

In [35] they also asked whether there exists a direct proof, without
assuming P 6= NP , that CSP(H) does not have bounded width, when
H is a oriented cycle and CSP(H) is NP-complete. We used our
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criterion to answer Nešetřil and Zhu’s question. Our result relies on
a proof of Feder that for a oriented cycle H the problem CSP(H) is
either in P or NP-complete [15].

Feder shows that every oriented graph H which is a path or an
unbalanced cycle admits a majority operation, and hence in this case
CSP(H) has bounded width. A relational structure is a core if all of
its endomorphims are automorphisms. Note that, if A is an algebra
for a core then the term operations of A are surjective. Obviously if an
oriented cycle H is not a core, then it retracts onto a path, and then
CSP(H) has bounded width by Lemma 3.8. It thus suffices to consider
the case where H is a core. In [31] we proved the following.

Proposition 3.9 ([31]). Let H be an irreflexive, oriented cycle which
is a core, and let A be an algebra for H.

(1) If V(A) admits type 1, then CSP(H) is NP-complete, and it
does not have bounded width.

(2) If V(A) omits type 1, then CSP(H) is in P, and in fact has
bounded width.

In our third application we gave an example of a finite order-primal
algebra that generates a variety omitting types 1 and 2. Such an ex-
ample had not been known before. Strangely enough we had to use
the hypothesis that P 6= NP to prove the existence of such an algebra.
We give a brief sketch of our construction below.

We define the retraction problem for a finite poset P , denoted by
Ret(P ): given a finite subposet Q of P , is there a retraction from P
onto Q? The proof of our third application was based on an analysis
of a construction in [17], where Feder and Vardi associate to every
relational structure B a poset P of depth 3, to prove that every problem
in CSP is polynomial-time equivalent to a poset retraction problem.
The resulting poset is called the Feder-Vardi poset P for the relational
structure B. In [31] we proved the following theorem.

Theorem 3.10 ([31]). Let B be a relational structure with a single
relation and B an algebra for B. Let P ′ be the relational structure
obtained from the Feder-Vardi poset P related to B by adding all one-
element subsets of P as unary relations. Let A be an algebra for P ′.
Then V(A) interprets in V(B).

The following corollary is a straightforward consequence of Theorems
3.5 and 3.10.
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Corollary 3.11 ([31]). Let B be a relational structure with a single
relation and let P be its Feder-Vardi poset. If Ret(P ) has bounded
width, then CSP(B) also has bounded width.

In [31] the preceding corollary was used to get an example of a poset
P such that the variety generated by an algebra for P admits type 2
but omits type 1.

Proposition 3.12 ([31]). Let P be the Feder-Vardi poset of the two
element structure B = ({0, 1}, {(x, y, z, 0) : x + y + z = 1}). The
variety generated by an algebra A for P admits type 2 and omits type
1, provided P 6= NP.
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4. Solvability of systems of polynomial equations over
finite algebras

In this section we investigate the complexity of determining if a given
system of polynomial equations over a finite algebra admits a solution.
Let A be a finite algebra of finite signature. Recall that the solvability
problem of systems of polynomial equations over A is the problem
denoted by SysPol(A): given a system S of polynomial equations over
A, is there a solution of S over A?

This problem has been studied and a dichotomy theorem has been
obtained in the special cases of groups [18], monoids and some other
subclasses of semigroups [25]. In [30] we adopted a new viewpoint of
investigation and this led to a dichotomy result which encompasses
the cases of lattices, rings, modules and quasigroups. The following
theorem from [30] makes it possible to study SysPol via CSP .

Theorem 4.1. Let A be a finite algebra of finite signature. Then
SysPol(A) is polynomial-time equivalent to the problem CSP(T ) where
the base set of the structure T equals that of A and the relations of T
are the graphs of the operations of A and the graphs of the constants
in the underlying set of A.

We note that it follows from a result of Klíma, Tesson and Thérien
[25] that for every finite structure T , CSP(T ) is polynomial-time equiv-
alent to some SysPol(A) where A is a semigroup. So establishing a
dichotomy for SysPol over the class of all finite algebras is equally
hard as proving that CSP has a dichotomy over the class of all finite
structures.

We saw in Section 1 that admitting an idempotent Maltsev condition
and admitting a Taylor term operation are equivalent concepts for finite
algebras. We also mentioned the following result from [9] and [28] in
the introduction.

Theorem 4.2. Let T be a finite relational structure of finite type whose
clone is idempotent and contains no Taylor operation. Then CSP(T )
is NP-complete.

Let A be a finite algebra of finite signature. By Theorem 4.1,
SysPol(A) is polynomial-time equivalent to CSP(T ) where the re-
lations of T are the graphs of the basic operations of A and the one
element subsets of the base set of T . Hence the clone of T consists
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of the idempotent operations that preserve the graphs of the basic op-
erations of A. So by Theorem 4.2, SysPol(A) is NP-complete if no
Taylor operation preserves the graphs of the basic operations of A. By
reformulating the preceding sentence we get to the following hardness
result for SysPol, see [30].

Theorem 4.3. Let A be a finite algebra of finite signature. If A has
no compatible Taylor operation, then SysPol(A) is NP-complete.

A dichotomy for SysPol over all finite algebras yields a dichotomy
for CSP over all finite structures and to decide the latter is considered
hard. Hence when we want to prove a dichotomy theorem with respect
to SysPol, we are compelled to make some assumption on the structure
of algebras we study. In [49] we investigated SysPol over the algebras
that have a Taylor term operation, or equivalently admit a nontrivial
idempotent Maltsev condition. This assumption on the algebras is
weaker than the one we had in [30]. For example, every semilattice has
a (binary) Taylor term operation but does not satisfy the requirements
of the main theorem in [30].

Our strategy for proving a dichotomy theorem for SysPol over finite
algebras with a Taylor term operation is as follows. We assume that
A is a finite algebra of finite signature with a Taylor term operation
and investigate the specific problem in CSP related to SysPol(A),
described in Theorem 4.1. When doing this, by Theorem 4.3, we may
consider only the case when A has a compatible Taylor operation. So
we can restrict ourselves to the investigation of the specific problem
in CSP related to SysPol(A) where A has a Taylor term operation
and a compatible Taylor operation. It turned out that algebras with
this latter property have a nice structure which allows us to solve the
specific problem in CSP in polynomial-time. Although the strategy
that we sketched here is similar to the one we followed in [30], the
proof of our main dichotomy theorem in [49] is quite different from
that of the main theorem in [30]. The following theorem states the
main result of [30].

Theorem 4.4. Let A be a finite algebra of finite signature and V(A)
the variety generated by A. Suppose that A omits type 5 and V(A)
omits type 1. Then SysPol(A) is in P if A is polynomially equivalent
to a module, and SysPol(A) is NP-complete otherwise.

In [49] we proved a similar but more sophisticated dichotomy theo-
rem under the only assumption that V(A) omits type 1, i.e., A has a
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Taylor term operation. Theorem 4.5 contains our fundamental result
leading to the proof of the new dichotomy theorem. It extends the
characterization of finite monoids with a compatible Taylor operation
obtained in [30]. Note that this characterization did not play a role in
the proof of the main theorem in [30].

A semigroup S is called a semilattice of Abelian groups if S has a
congruence θ such that S/θ is a semilattice and the blocks of θ are
Abelian subgroups of S. The exponent of S is the least common mul-
tiple of the exponents of its Abelian subgroups, provided there exists.
We note that any finite semilattice of Abelian groups S has a unique
idempotent term operation of the form xyn−1z, n > 1. Indeed, let us
take two such operations corresponding to m and n, respectively, then
by idempotency xm+1 = xn+1 for all x ∈ S. Hence the exponent of S
divides m−n, and ym−1 = yn−1, i.e., the operations xym−1z and xyn−1z
coincide. The fundamental theorem of this section is as follows.

Theorem 4.5 ([49]). Let M be a finite set. Let xy be a binary operation
with an identity element and t a Taylor operation on M such that xy
commutes with t. Then the following hold:

(1) xy is the multiplication of a semilattice of Abelian groups.
(2) The clone generated by t contains an idempotent ternary oper-

ation of the form xyn−1z.

The restriction of the following theorem to the class of monoids was
proved earlier by Klíma, Tesson and Thérien in [25]. Combining their
theorem with Theorem 4.3 and Theorem 4.5 we get the following result.

Theorem 4.6 ([49]). Let M be a finite groupoid with an identity ele-
ment. Then SysPol(M) is in P if M is a semilattice of Abelian groups,
and SysPol(M) is NP-complete otherwise.

A Taylor algebra is an algebra with a Taylor term operation. A doubly
Taylor algebra is a Taylor algebra with a compatible Taylor operation.
A characterization of the structure of doubly Taylor algebras in [49]
is a main ingredient in the proof of our dichotomy theorem. First we
state a result on idempotent doubly Taylor algebras.

Theorem 4.7 ([49]). Every finite idempotent doubly Taylor algebra is
a subalgebra of a finite idempotent Taylor algebra with a compatible
binary operation xy where xy is the multiplication of a semilattice of
Abelian groups.
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The proof of the characterization of doubly Taylor algebras is based
on the following results in tame congruence theory, see [20].

Theorem 4.8. For any two distinct elements a and b of a finite algebra
A there is a prime quotient (α, β) of congruences of A and a polynomial
retraction r of A such that (r(a), r(b)) ∈ β \ α and r(A) is an (α, β)-
minimal set.

Theorem 4.9. Let (α, β) be a prime quotient of congruences of an
algebra A where the type of (α, β) differs from 1. Then every (α, β)-
minimal algebra of A has a binary basic operation with an identity
element.

Now, by using Theorem 4.7 we get to the following characterization
of doubly Taylor algebras.

Theorem 4.10 ([49]). A finite Taylor algebra is a doubly Taylor alge-
bra if and only if it has a compatible idempotent ternary operation that
extends to an idempotent term operation xyn−1z of a finite semilattice
of Abelian groups.

This characterization of doubly Taylor algebras made it possible to
prove our dichotomy theorem. Our proof required a corollary of the
next two theorems. The first theorem is a reduction theorem from [9].

Theorem 4.11. Let A be a finite algebra such that for every finite
structure S of finite signature whose base set coincides with that of A
and whose relations are finite subpowers of A there is a polynomial-
time algorithm for solving CSP(S). Then for every finite member B
of the variety generated by A and every structure T of finite signa-
ture whose base set coincides with that of B and whose relations are
finite subpowers of B there is a polynomial-time algorithm for solving
CSP(T ).

In [12] Dalmau, Gavaldà, Tesson and Thérien describe a polynomial-
time algorithm for solving a special type of CSP . Their algorithm is
put together from a local (so called bounded width) algorithm and an
algorithm that solves CSP for coset structures of a group. In fact, the
following theorem that we require is a special case of their Theorem 3
in [12].

Theorem 4.12. Let M be a finite semilattice of Abelian groups, and
T a finite relational structure of finite signature whose base set equals
that of M. If the idempotent term operation xyn−1z of M preserves
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the base set and the relations of T , then there exists a polynomial-time
algorithm for solving CSP(T ).

By the previous two theorems we get the following corollary.

Theorem 4.13 ([49]). Let M be a finite semilattice of Abelian groups
and T a finite relational structure of finite signature with a base set con-
tained in M. If the idempotent term operation xyn−1z of M preserves
the base set and the relations of T , then there exists a polynomial-time
algorithm for solving CSP(T ).

Now, by putting together Theorems 4.3, 4.10 and 4.13 we get our
main result.

Theorem 4.14 ([49]). Let A be a finite algebra such that the variety
generated by A omits type 1. Then SysPol(A) is in P whenever A has
a compatible idempotent ternary operation that extends to the idempo-
tent term operation xyn−1z of a finite semilattice of Abelian groups,
and SysPol(A) is NP-complete otherwise.

We already mentioned the following result of Klíma, Tesson and
Thérien in [25], although not in its precise form: for any finite structure
T of finite signature there is a finite right normal band B such that
CSP(T ) is polynomial-time equivalent to SysPol(B). In this respect,
we note that apart from semilattices, every finite right normal band
generates a variety whose type set contains type 1. Hence Theorem
4.14 says nothing about SysPol over right normal bands different from
semilattices. Thus, it is not possible to combine the theorem of Klíma
et al. with Theorem 4.14 to prove that CSP has a dichotomy over
all finite structures. The following theorem suggested by B. Larose
generalizes Theorem 4.6 and covers some of the type 1 cases, not the
case of right normal bands though.

Theorem 4.15 ([49]). Let A be a finite algebra of finite signature
that has a binary polynomial operation xy with an identity element.
Then SysPol(A) is in P if xy is the multiplication of a semilattice
of Abelian groups and the idempotent ternary operation xyn−1z is a
compatible operation of A, and SysPol(A) is NP-complete otherwise.

Recently, the author has found a common generalization of Theorems
4.14 and 4.15. We say that a set of transformations F of a set A is
separating if for any two distinct elements a and b in A there exists a
map f ∈ F such that f(a) 6= f(b).
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Theorem 4.16. Let A be a finite algebra of finite signature which has
a separating set F of unary polynomial operations such that for every
f ∈ F there exists a binary polynomial operation gf of A whose re-
striction to the set f(A) is a binary operation with an identity element.
Then SysPol(A) is in P if A has a compatible idempotent ternary
operation that extends to the idempotent term operation xyn−1z of a
finite semilattice of Abelian groups, and SysPol(A) is NP-complete
otherwise.

Proof. Suppose first that A has a compatible Taylor operation t. Let
A denote the underlying set of A. Clearly, the operations of F are all
endomorphisms of the algebra (A, t) and for all f ∈ F the (f(A), t|f(A))
are subalgebras of (A, t). Since F is separating, (A, t) embeds into the
direct product B of the (f(A), t|f(A)), f ∈ F. The operation g acting
componentwise as gf , f ∈ F, on B is a compatible binary operation
of B which has an identity element. By invoking Theorem 4.5, xy =
g(x, y) is a multiplication of a semilattice of Abelian groups and xyn−1z
is in the clone generated by tB. So there is a finite semilattice of Abelian
groups on the base set of B whose idempotent term operation xyn−1z
restricts to a copy of A as a compatible idempotent operation. Then
by Theorem 4.13, SysPol(A) is in P .

If A has no compatible Taylor operation, then by Theorem 4.3,
SysPol(A) is NP-complete. �

By Theorems 4.8 and 4.9 the conditions of the preceding theorem
are satisfied for any finite algebra of finite signature that omits type 1.
So we get the following generalization of Theorem 4.14.

Corollary 4.17. Let A be a finite algebra of finite signature that
omits type 1. Then SysPol(A) is in P if A has a compatible idem-
potent ternary operation that extends to the idempotent term operation
xyn−1z of a finite semilattice of Abelian groups, and SysPol(A) is
NP-complete otherwise.

Note that the above generalization is proper since there are finite
algebras A omitting type 1 such that the variety generated by A admits
type 1, see [20] for examples.
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