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Abstract. An r-hyperconvex body is a set in the d-dimensional Euclidean

space Ed that is the intersection of a family of closed balls of radius r. We prove

the analogue of the classical Blaschke-Santaló inequality for r-hyperconvex
bodies, and we also establish a stability version of it. The other main result of

the paper is an r-hyperconvex version of the reverse isoperimetric inequality

in the plane.

1. Introduction and results

The concept of hyperconvexity may be consdiered as a generalization of the
notion of convexity. Let r > 0 be fixed, and let x,y be points in the d-dimensional
Euclidean space Ed. The closed r-spindle [x,y]r spanned by x and y is defined as
the intersection of all closed balls of radius r that contain both x and y, cf. for
example [5, Definition 2.1 on page 203]. If the distance of x and y is larger than
2r, then [x,y]r = Ed. A set H ⊆ Ed is called r-hyperconvex if it contains [x,y]r
for every pair of points x,y ∈ H. For instance, convex bodies of constant width r
are prominent examples of r-hyperconvex sets.

In his 1935 paper, Mayer [18] introduced the term ‘Überkonvexität’ for this
type of convexity (in the plane), although he defined the concept in Minkowski
planes. Following the early literature of the subject, we decided to use the English
translation of Mayer’s term. However, we note that other expressions such as
‘spindle convex’ and ‘r-convex’ have also been used for these sets.

Recently, there has been much renewed interest in r-hyperconvex sets. For
details on properties of r-hyperconvex sets, further references and a history of the
subject we refer, for example, to Bezdek et al. [5], Bezdek [2, 4], Fejes Tóth and
Fodor [13], Lángi et al. [19], and Kupitz et al. [16].

It is a characteristic property of closed convex sets that they are intersections
of closed half-spaces. It is known [5, Corollary 3.5 on page 205] that closed r-
hyperconvex sets can be represented as intersections of closed balls of radius r. We
use this important property of r-hyperconvex sets throughout the paper. With a
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slight abuse of notation, if one considers∞ radius closed balls as closed half-spaces
of Ed, then the closed ∞-convex sets are exactly the closed convex sets of Ed.
However, we exclude ∞ from the possible values of r in this paper. Occasionally,
we will refer to the classical notion of convexity as linear convexity in the text when
we want to emphasize its difference from hyperconvexity.

Note that the only unbounded r-hyperconvex set is the whole space Ed, and the
only r-hyperconvex sets with no interior points are the one-point sets. We restrict
our attention to compact r-hyperconvex sets, which we call r-hyperconvex bodies.
For technical reasons, the one-point sets are also considered r-hyperconvex bodies.
We use the term r-hyperconvex disc for a 2-dimensional r-hyperconvex body.

We denote the Euclidean scalar product in Ed by 〈·, ·〉, the (Euclidean) distance
of two points x,y ∈ Ed by d(x,y), the d-dimensional volume (Lebesgue measure) of
a compact set H ⊂ Ed by vol(H). In the case that d = 2, we also use the notation
area(H) for the area of the compact set H in E2. Let the d-dimensional closed unit
ball centred at the origin o be denoted by Bd, its boundary by bdBd = Sd−1, and
κd = vol(Bd). The interior of a set A is denoted by intA.

The notion of polar duality plays an essential role in the theory of convex bodies.
Let K ⊂ Ed be a convex body with z ∈ intK. The polar of K with respect to z is
defined as

Kz = {x ∈ Ed : 〈x− z,y − z〉 ≤ 1 for all y ∈ K}.
It is clear that for z ∈ intK the set Kz is also a convex body with z ∈ intKz, and
(Kz)z = K. The latter explains the use of the term ‘duality’. For basic properties
of polar duality we refer to [24, Section 1.6]. Clearly, Kz depends on the position
of z ∈ intK.

Santaló proved in [23] that for every convex body K, there exists a unique point
s ∈ intK such that vol(Ks) ≤ vol(Kz) for all z ∈ intK. This unique point s is
called the Santaló point of K. For a convex body K, the quantity vol(K) vol(Ks) is
usually called the volume product of K. The Blaschke–Santaló inequality (Blaschke
[7], Santaló [23], Saint-Raymond [22], Petty [21])

vol(K) vol(Ks) ≤ κ2
d,

provides the sharp upper bound κ2
d on the volume product for any convex body

K in Ed. Equality holds in the Blaschke–Santaló inequality if and only if K is an
ellipsoid. On the other hand, it was conjectured by Mahler [17] that the minimum
of the volume product is reached by simplices among general convex bodies and
by cubes among centrally symmetric convex bodies. Although there are some
important partial results in this direction, Mahler’s conjecture in its full generality
is still unproven. For a discussion and further references on the long and extensive
history of the Blaschke–Santaló inequality and the Mahler conjecture, we refer to
the survey paper by Lutwak [20], and to the paper by Böröczky [9].

Recently, Böröczky [9] established a stability version of the Blaschke–Santaló
inequality. Note that the volume product of a convex body is invariant with respect
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to nonsingular affine transformations. Thus, it is natural to measure the distance
of two convex bodies by the Banach–Mazur distance when dealing with the volume
product. Let GL(d) denote the group of nonsingular linear transformations of Rd.
The Banach–Mazur distance of convex bodies K1,K2 ⊂ Ed is defined as

δBM (K1,K2) = min{λ ≥ 1 : K1 − x ⊆M(K2 − y) ⊆ λ(K1 − x)

for M ∈ GL(d),x,y ∈ Ed}.

Theorem (Böröczky [9], Theorem 1.1). If K is a convex body in Ed, d ≥ 3, and
s is the Santaló point of K, and

vol(K) vol(Ks) > (1− ε)κ2
d

for ε ∈ (0, 1/2), then for some constant γ0, depending only on the dimension d, it
holds that

δBM (K,Bd) < 1 + γ0ε
1
6d | log ε| 16 .

A similar notion to the polar duality of convex sets can be introduced for r-
hyperconvex sets following Kupitz et al. [16] and M. Bezdek [6]: the r-hyperconvex
dual Hr of a set H ⊆ Ed consists of the centres of those closed balls of radius r
that contain H.

In Section 2 we have collected a number of simple properties of r-hyperconvex
duality.

Let S ⊂ Ed be an r-hyperconvex body. Note that the dual Sr does not depend on
the choice of the coordinate system. We define the r-hyperconvex volume product
of S as

(1) P(S) := vol(S) vol(Sr),

and observe immediately that

(2) P
(r

2
Bd
)

= vol2
(r

2
Bd
)
.

As P(rBd) = 0, there is no interesting r-hyperconvex version of the Mahler
conjecture. However, the r-hyperconvex version of the Blaschke–Santaló inequality
can be formulated in the following way.

Theorem 1.1. If S ⊂ Ed is an r-hyperconvex body, then

(3) P(S) ≤ P
(r

2
Bd
)
.

Equality holds if and only if S = r/2 ·Bd + z for some z ∈ Ed.

We establish also a stability version of inequality (3) as follows.
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Theorem 1.2. Let r > 0, then there exist constants cd,r > 0 and εd,r ∈ (0, 1
2 )

depending only on d and r, and a monotonically decreasing positive real function
µ(ε) with µ(ε)→ 0 as ε→ 0 such that an r-hyperconvex body S ⊂ Ed satisfies

(4) P(S) ≥ (1− ε)P
(r

2
Bd
)

for some ε ∈ [0, εd,r] if and only if there exists a vector z ∈ Ed such that

δH

(
S,
r

2
Bd + z

)
≤ cd,rµ(ε),

where δH( · , · ) denotes the Hausdorff distance of compact sets.

In Section 4, we prove an r-hyperconvex analogue of the reverse isoperimetric
inequality of Ball [1] in the plane. The r-hyperconvex analogue of the reverse
isoperimetric problem in the plane is concerned with finding the r-hyperconvex
discs of a given perimeter that minimize the area. To the best of our knowledge,
this problem was raised by K. Bezdek [3] who communicated it to one of the authors
in 2010. K. Bezdek [3] conjectured that among r-hyperconvex bodies of a given
surface area, the r-spindle is the unique body that has minimal volume. In our
next result, we verify this conjecture in the plane.

Theorem 1.3. The r-spindle has minimal area among r-hyperconvex discs of equal
perimeter.

The proof of Theorem 1.3 is given in Section 4. We note that our argument does
not yield that the r-spindle is the only minimal area r-hyperconvex disc among
the r-hyperconvex discs of equal perimeter. Since the unique minimizer of the
area is not known, we could not formulate a precise stability statement for the r-
hyperconvex reverse isoperimetric problem. However, we have proved with a long
and delicate calculation that if the area of an r-hyperconvex triangle is sufficiently
close to an r-spindle of the same perimeter, then it is also close to an r-spindle in
the Hausdorff metric. Since it is only a partial result, this proof is not included in
this paper. However, based on this fact, we formulate the following even stronger
conjecture.

Conjecture. If the volume of an r-hyperconvex body S is sufficiently close to that
of an r-spindle S′ of the same surface area, then S is close to S′ in the Hausdorff
metric of compact sets.

2. Some general properties of r-hyperconvex duality

It follows from the definition that the intersection of r-hyperconvex sets is r-
hyperconvex. Let S be an r-hyperconvex body, x ∈ bdS, and u ∈ Sd−1 an outer
unit normal vector to S at x. It is known that S ⊆ rBd+x− ru (see, for example,
[5, Corollary 3.4 on page 204]), and we say that the ball rBd + x − ru supports
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S at x (see [5, Definition 3.3 on page 205]). The following definition appears in
several papers in some form, for example, see [6] and [16].

Let H ⊆ Ed be a point set. We define the r-hyperconvex dual Hr of H as

(5) Hr =
{
y ∈ Ed | H ⊆ rBd + y

}
.

Reformulating this as Hr =
{
y ∈ Ed | d(x,y) ≤ r for every x ∈ H

}
yields for any

set H ⊆ Ed that

(6) Hr =
⋂
x∈H

(
rBd + x

)
.

It is immediate from (6) that for any set H the dual Hr is always an r-hyperconvex
body (or it is empty).

In the following theorem we summarize some basic properties of r-hyperconvex
duality. These properties (especially the first one) justify the use of the word ‘dual’
in view of the corresponding properties of classical polar duality of (linearly) convex
bodies (compare Theorems 1.6.1. and 1.6.2. on pages 33–34 in [24].). For a set
H ⊆ Ed, let convrH denote the r-hyperconvex hull of H, which is defined as the
intersection of all r-hyperconvex sets that contain H.

Theorem 2.1. For arbitrary sets H1, H2 ⊆ Ed, and for any r-hyperconvex bodies
S, S1 and S2 in Ed we have the following:

(i) Srr = S,
(ii) H1 ⊆ H2 ⇒ Hr

1 ⊇ Hr
2 ,

(iii) (H1 ∪H2)r = Hr
1 ∩Hr

2 ,

(iv) Hr = (convrH)r = (convrH)r,
(v) (S1 ∩ S2)r = convr(S

r
1 ∪ Sr2).

Furthermore, if S1 ∪ S2 is r-hyperconvex, then Sr1 ∪ Sr2 is also r-hyperconvex.

Proof. Part (i) is seen as follows.

Srr =
⋂

y∈Sr

(rBd + y) =
⋂

y:S⊆rBd+y

(rBd + y) = S.

The proofs of (ii)–(v) are completely analogous to those of the corresponding
statements in linear convexity (for details see, for example, Section 1.6 in [24]).

It remains to prove the last statement of Theorem 2.1. We claim that if S1 ∪S2

is r-hyperconvex, then Sr1 ∪ Sr2 = (S1 ∩ S2)r. The relation Sr1 ∪ Sr2 ⊆ (S1 ∩ S2)r is
evident. We need to prove that Sr1 ∪ Sr2 ⊇ (S1 ∩ S2)r. For a set A ⊆ Ed, let Ac

denote the complement of A. Suppose, on the contrary, that there exists a point
y ∈ (Sr1 ∪ Sr2)c for which y /∈ ((S1 ∩ S2)r)c, and seek a contradiction.

Since y /∈ Sr1 and y /∈ Sr2 , there exists x1 ∈ S1 with d(x1,y) > r and x2 ∈ S2

with d(x2,y) > r. From the assumption that y /∈ ((S1 ∩ S2)r)c, it follows that
x1 /∈ S2 and x2 /∈ S1. We may clearly assume that the points y,x1 and x2 are not
collinear and thus they span a 2-dimensional affine subspace L. We represented
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I

x1 x2

o
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z ∈ S1 ∩ S2
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z2

> r > r

≤ rr
r

Figure 1. The plane spanned by y, x1 and x2

L on Figure 1 such that the line through x1 and x2 is horizontal and y is in the
upper half-plane. As S1 ∪ S2 is r-hyperconvex, so is (S1 ∪ S2) ∩ L. Thus, we may
join x1 and x2 with a shorter circular arc I of radius r and centre o such that y
and I lie in different half-planes of L determined by the line through x1 and x2, as
shown in Figure 1.

By continuity, there exists a point z ∈ S1 ∩ S2 on the arc I with d(y, z) ≤ r.
Furthermore, there is a point z1 on the the arc between x1 and z with d(y, z1) = r,
and there is another point z2 on the arc between z and x2 such that d(y, z2) = r.
(Note that z1 or z2 (or both) may coincide with z.) Since it is assumed that y and
I are in different half-planes of L determined by the line through x1 and x2, y has
to coincide with o, a contradiction. This finishes the proof of Theorem 1. �

The support function of a nonempty closed convex set K ⊂ Ed is defined as
hK(x) := supy∈K〈x,y〉 for x ∈ Ed. For basic properties of the support function
we refer to [24, Section 1.7].

Note that a supporting hyperplane of an r-hyperconvex body S has exactly one
contact point with S. For u ∈ Sd−1, let x(u) denote the unique point of bdS at
which u is an outer unit normal vector. In the case that S is of constant width,
x(u) and x(−u) are called opposite points in the literature [8, page 135].

Let rBd + y be a supporting ball of S at x(u). Then, by definition, y ∈ Sr

and (6) implies that Sr ⊆ rBd + x. This fact can be summarized in the following
statement.

Proposition 2.2. For any u ∈ Sd−1 and any r-hyperconvex body S, we have that

hS(u) + hSr (−u) = r.
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The statement of Proposition 2.2 is well-known for convex bodies of constant
width [8, Section 63]. Proposition 2.2 has a useful consequence, namely, that

(7) S + (−Sr) = rBd + x

for some x ∈ Ed.
If for a set H it holds that H = Hr, then we say that H is self-dual with radius

r. A self-dual r-hyperconvex body S ⊂ Ed with radius r has the property that it
is equal to the intersection of all closed balls of radius r whose centre is contained
in S. Eggleston [12] called this the spherical intersection property of S. He proved
in [12] that a convex body has constant width r if and only if it has the spherical
intersection property, that is, it is self-dual with radius r. We state a somewhat
similar result that is a direct consequence of Proposition 2.2.

Lemma 2.3. Let S be an r-hyperconvex body and ε ≥ 0. If δH(S,−Sr + y) ≤ ε
for some y ∈ Ed, then

δH

(
S,
r

2
Bd + z

)
≤ ε

2

for some z ∈ Ed.

Proof. From (7) we have hS(u) + h−Sr (u) = r + 〈u , x〉 for some x, and by [24,
Theorem 1.8.11.]) we know that δH(S,−Sr+y) = supu∈Sd−1 |hS(u)−h−Sr+y(u)|.
Thus, the condition of the lemma implies∣∣∣∣hS(u)−

(
r

2
+

〈
u ,

x + y

2

〉)∣∣∣∣ ≤ ε

2

for every u ∈ Sd−1, which proves the lemma with z = (x + y)/2. �

The quermassintegrals Wi(·), i = 0, . . . , d are important geometric quantities
associated with convex bodies; for the precise definition and basic properties of
quermassintegrals see, for example, [24, Section 4.2]. Even though we will not need
this in the proof of Theorems 1.1, 1.2 and 1.3, we note that combining Proposi-
tion 2.2 with a result of Chakerian [11] (see also [10, Formula (6.7) on page 66])
one can express the quermassintegrals Wi(S

r), i = 0, . . . , d of Sr in terms of those
of the r-hyperconvex body S as follows

Wi(S
r) =

d−i∑
j=0

(−1)j
(
d− i
j

)
Wd−j(S)rd−i−j .

Let K ⊂ Ed be a convex body with C2 boundary and strictly positive Gaussian
curvature. Let r1(K,u) ≤ r2(K,u) ≤ . . . ≤ rd−1(K,u) denote the principal radii
of curvature of bdK at x. In the case that K is of constant width w, it is known
(see [8, page 136]) that for i = 1, 2, . . . , d− 1 it holds that

ri(K,u) + rd−i(K,−u) = w.
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Using Proposition 2.2, one can obtain a similar formula for r-hyperconvex bodies
as follows.

ri(S,u) + rd−i(S
r,−u) = r.

3. Proofs of Theorem 1.1 and Theorem 1.2

For the proof we need the classical Brunn–Minkowski inequality that states that
if C,D ⊂ Ed are compact convex sets, then

vol1/d(C +D) ≥ vol1/d(C) + vol1/d(D).

If C and D are both proper (full dimensional), then equality holds if and only if C
and D are (positive) homothetic copies (see [24, Theorem 6.1.1. on page 309]).

Proof of Theorem 1.1. Using Proposition 2.2, one obtains

vol(rBd) = vol(S + (−Sr))(8)

from which the Brunn–Minkowski inequality and the inequality between the arith-
metic and geometric means yield

vol1/d(rBd) = vol1/d(S + (−Sr)) ≥ vol1/d(S) + vol1/d(−Sr)

≥ 2

√
vol1/d(S) · vol1/d(−Sr).

(9)

This implies vol2(rBd) ≥ 22d vol(S) · vol(Sr) hence

P
(r

2
Bd
)
≥ P(S).(10)

In the above argument equality holds if and only if S and −Sr are positive
homothetic copies of each other having the same volume vol(r/2 ·Bd). This means
that S and −Sr are congruent, and hence Lemma 2.3 yields with ε = 0 that
S = r/2 ·Bd + x for some x ∈ Ed. �

For the proof of Theorem 1.2, we need the following stronger version of the
inequality between the arithmetic and geometric means (only for two terms).

Let a ≥ b be two positive numbers and write λ = a/b− 1. Then

a+ b

2
≥
√
ab+

bλ2

32
, if 0 ≤ λ ≤ 8,(11)

a+ b

2
≥ a

2
=
a

3
+
a

6
=

√
a · a

9
+
a

6
≥
√
ab+

a

6
, if 8 ≤ λ.(12)

Inequality (11) can be verified by a straightforward direct calculation which we
leave to the reader.

In order to prove Theorem 1.2, we use the stability version of the Brunn–
Minkowski inequality proved by Groemer [14, Theorem 3 on page 367] (see also
[15, pages 134–135]). We do not state Groemer’s theorem in its most general form,
we only formulate the following consequence of it which we use in our proof.
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Let K1 and K2 be proper convex bodies in Ed and let % > 0 be a real number

with the property that diam(Ki) ≤ % vol1/d(Ki), i = 1, 2, where diam(·) denotes the

diameter of a set. Let M denote the maximum and m the minimum of vol1/d(K1)

and vol1/d(K2). Furthermore, let K ′1 and K ′2 be homothetic copies of K1 and K2,
respectively, that share the same centroid and have unit volume. Then it holds
that

(13) vol1/d
(
K1 +K2

2

)
≥ 1

2
vol1/d(K1) +

1

2
vol1/d(K2) + ωδd+1

H (K ′1,K
′
2),

where

(14) ω =
m

2d+2

(
d(3 + 2−13)

31/d

(
2M

m
+ 2

)
%

)−(d+1)

.

Proof of Theorem 1.2. Since the ‘if’ part of the statement is evident, we only prove
the ‘only if’ part. Without loss of generality, we may assume vol(S) ≥ vol(Sr).
Then, using (2) we obtain from (4) and (3) that

vol(S) ≥
√
P(S) ≥ (1− ε) vol

(r
2
Bd
)
,(15)

vol(Sr) ≤
√
P(S) ≤ vol

(r
2
Bd
)
.(16)

Let a = vol1/d(S) and b = vol1/d(Sr) = vol1/d(−Sr).
Assume that λ ≥ 8. Similarly as before, inequality (12) yields

vol1/d
(r

2
Bd
)

=
vol1/d(rBd)

2
=

vol1/d(S + (−Sr))
2

≥ vol1/d(S) + vol1/d(−Sr)
2

≥
√
ab+

a

6
≥
√

(P(S))1/d +
vol1/d(S)

6
.

Raising both sides to the power 2d, then using (2) and (4), we obtain

P
(r

2
Bd
)
≥ P(S) +

vol2(S)

62d
≥ (1− ε)P

(r
2
Bd
)

+
vol2(S)

62d
,

which can be reformulated by (2) and (15) as

62dε ≥ vol2(S)

P
(
r
2B

d
) ≥ (1− ε)2P

(r
2
Bd
)
.

Therefore, there is an εd,r ∈ (0, 1/2) such that the above inequality cannot hold
for any ε ∈ (0, εd,r).

From now on we assume ε ∈ (0, εd,r), whence we have λ ∈ (0, 8).
First, we show that the volume of Sr is close to that of S. From the condition

on λ we get b ≥ a/9, thus

vol(Sr) = bd ≥ ad

9d
≥ 1− ε

9d
vol
(r

2
Bd
)
.
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Inequality (11) yields that

vol1/d
(r

2
Bd
)

=
vol1/d(rBd)

2
=

vol1/d(S + (−Sr))
2

≥ vol1/d(S) + vol1/d(−Sr)
2

≥
√
ab+

bλ2

32
≥
√

(P(S))1/d +
(1− ε)1/d

9
·

vol1/d( r2B
d)λ2

32
.

Raising both sides to the power 2d we obtain P
(
r
2B

d
)
− P(S) ≥ γ1λ

4d, where γ1

is a strictly positive constant depending only on d and r. Thus, according to (4),
we have

εP
(r

2
Bd
)
≥ P

(r
2
Bd
)
− P(S) ≥ γ1λ

4d.

Since P
(
r
2B

d
)

is bounded from above, we get λ ≤ γ2ε
1/4d, where γ2 is a constant

depending on d and r. As bλ+ b = a, this gives

(17) vol1/d(S)− vol1/d(Sr) ≤ γ3ε
1/4d.

for some positive constant γ3 that depends on d and r only.
Equations (15) and (16) with (17) give

vol1/d(S)− vol1/d
(r

2
Bd
)
≤ vol1/d(S)− vol1/d(Sr) ≤ γ3ε

1/4d, and

vol1/d
(r

2
Bd
)
− vol1/d(S) ≤ ε1/d vol1/d

(r
2
Bd
)
≤ ε1/4d vol1/d

(r
2
Bd
)
.

Thus, using (17), we can choose a positive constant γ4 that depends only on d and
r and satisfies

(18) max
(∣∣∣vol1/d(S)− vol1/d

(r
2
Bd
)∣∣∣ , ∣∣∣vol1/d(Sr)− vol1/d

(r
2
Bd
)∣∣∣) ≤ γ4ε

1/4d.

Having established (18), now we are ready to complete the proof using (13). Let

Ŝ and −Ŝr be (positive) homothetic copies of S and −Sr, respectively, that share
a common centroid and have unit volume. Applying (13) to S and −Sr, we get

vol1/d
(r

2
Bd
)
≥ 1

2
vol1/d(S) +

1

2
vol1/d(−Sr) + ωδd+1

H (Ŝ,−Ŝr),

where ω is defined in (14).
Inequality (18) implies that there exists v0 > 0 with the property that vol(−Sr) ≥

v0 for all S that satisfy the conditions of Theorem 1.2. Thus, m is bounded away
from 0, and M/m is bounded from above (as usual, the constants depend on r
and d). Moreover, there exists a ρ > 0 with % < ρ for all S that satisfies the
conditions of Theorem 1.2. Thus, it follows from (14) that there exists an ω0 > 0,
that depends only on d and r, such that ω > ω0.

Finally, comparing this to (18) leads to

γ4ε
1/4d ≥ vol1/d

(r
2
Bd
)
− 1

2
vol1/d(S)− 1

2
vol1/d(−Sr) ≥ ω0δ

d+1
H (Ŝ,−Ŝr),

This implies the statement of Theorem 1.2 by Lemma 2.3. �
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4. Proof of Theorem 1.3

Clearly, it is sufficient to prove Theorem 1.3 in the case that r = 1.
We recall that the intersection of a finite number of closed unit radius circular

discs is called a (convex) disc-polygon. The notion of side and vertex are self-
explanatory, for more details we refer to [6, Definition 1.1].

First, we prove Theorem 1.3 for disc-triangles.
Let xyz be a disc-triangle with vertices x,y and z, and with edge-lengths (cen-

tral angles) α, β and γ, and let xyz4 be the corresponding Euclidean triangle with
vertices x,y and z, and (Euclidean) edge-lengths a, b and c, as shown in Figure 2.
We will show that if one keeps x and y fixed and moves z such that the perimeter
of xyz remains constant, then area(xyz) becomes minimal precisely when xyz de-
generates into a spindle. We will prove this fact using a combination of elementary
geometry and basic calculus. Although the proof does not contain any deep tools,
it is quite intricate.

y
x

z

c

b
a

γ

β

α

Figure 2. The disc-triangle xyz with edge-lenghts α, β and γ,
where α+ β + γ = κ is the perimeter.

Let the perimeter of xyz be denoted by κ = α + β + γ. Let µ = (α + β)/2 =
(κ− γ)/2, and let ξ be such that α = µ+ ξ and β = µ− ξ. Clearly, the variable ξ
parametrizes the vertex z and makes area(xyz) a function of ξ. By symmetry, we
may assume that α ≥ β, so it is enough to consider ξ ∈ [0, γ/2].

With these notations, we have that

(19) area(xyz) =
α− sinα

2
+
β − sinβ

2
+
γ − sin γ

2
+ area(xyz4).

For the edges of xyz4 we have a = 2 sin α
2 , b = 2 sin β

2 and c = 2 sin γ
2 , whence

the half perimeter is s = a+b+c
2 = sin α

2 + sin β
2 + sin γ

2 . Applying Heron’s formula
yields

area(xyz4) =
√
s(s− a)(s− b)(s− c)

=

√(
− sin2 γ

2
+
(

sin
α

2
+ sin

β

2

)2)(
sin2 γ

2
−
(

sin
α

2
− sin

β

2

)2)
.
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Since sinα+sinβ = 2 sinµ cos ξ, sin α
2 +sin β

2 = 2 sin µ
2 cos ξ2 and sin α

2 − sin β
2 =

2 sin ξ
2 cos µ2 , (19) and the above formula imply

area(xyz) = µ− sinµ cos ξ +
γ − sin γ

2
+ area(xyz4),

area(xyz4) =

√(
4 sin2 µ

2
cos2

ξ

2
− sin2 γ

2

)(
sin2 γ

2
− 4 sin2 ξ

2
cos2

µ

2

)
.

(20)

To reduce clutter in the forthcoming calculations, we introduce the functions Â(ξ) =
area(xyz) and A(ξ) = area(xyz4).

Lemma 4.1. We have dÂ(ξ)
dξ ≤ 0 for ξ ∈ [0, γ2 ), and dÂ(ξ)

dξ = 0 if and only if ξ = 0.

Proof. Differentiation of Â(ξ) with respect to ξ yields

dÂ(ξ)

dξ
= sinµ sin ξ +

1

2A(ξ)

(
− 4 sin2 µ

2
cos

ξ

2
sin

ξ

2

(
sin2 γ

2
− 4 sin2 ξ

2
cos2 µ

2

)
−

− 4 sin
ξ

2
cos

ξ

2
cos2 µ

2

(
4 sin2 µ

2
cos2 ξ

2
− sin2 γ

2

))
= sinµ sin ξ − sin ξ

A(ξ)

(
sin2 µ

2

(
sin2 γ

2
− 4 sin2 ξ

2
cos2 µ

2

)
+

+ cos2 µ

2

(
4 sin2 µ

2
cos2 ξ

2
− sin2 γ

2

))
= sinµ sin ξ − sin ξ

A(ξ)

(
sin2 µ

(
cos2 ξ

2
− sin2 ξ

2

)
− sin2 γ

2

(
cos2 µ

2
− sin2 µ

2

))
=

sin ξ sinµ

A(ξ)

(
A(ξ)− sinµ cos ξ + sin2 γ

2
cotµ

)
.

Thus, dÂ(ξ)
dξ ≤ 0 if and only if

(21) A(ξ) ≤ sinµ cos ξ − sin2 γ

2
cotµ,

because ξ ∈ [0, γ2 ] ⊆ [0, π2 ] and µ ∈ [0, π).
To verify (21), we first prove that its right-hand side is positive, and then we

only have to show that

(22) A2(ξ)−
(

sinµ cos ξ − sin2 γ

2
cotµ

)2

≤ 0.

Observe that the right-hand side of (21) is positive if and and only if

sin2 µ cos ξ − sin2 γ

2
cosµ > 0.

If cosµ < 0, this is obvious, because ξ ∈ [0, γ2 ] ⊆ [0, π2 ]. If cosµ ≥ 0, then using

sin2 γ

2
− 4 sin2 µ

2
cos2 ξ

2
= s(c− s) < 0
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we obtain that

sin2µ cos ξ − sin2 γ

2
cosµ

> sin2 µ cos ξ − 4 sin2 µ

2
cos2 ξ

2
cosµ = 4 sin2 µ

2

(
cos2 µ

2
cos ξ − cos2 ξ

2
cosµ

)
= 4 sin2 µ

2

(
sin2 µ

2
cos2 ξ

2
− sin2 ξ

2
cos2 µ

2

)
= 4 sin2 µ

2
sin

µ+ ξ

2
sin

µ− ξ
2

> 0.

Thus, the right-hand side of (21) is indeed positive.
To prove (22), we first compute from (20) that

A2(ξ) =
(

4 sin2 µ

2
cos2 ξ

2
− sin2 γ

2

)(
sin2 γ

2
− 4 sin2 ξ

2
cos2 µ

2

)
=
((

4 sin2 µ

2
− sin2 γ

2

)
− 4 sin2 µ

2
sin2 ξ

2

)(
sin2 γ

2
− 4 sin2 ξ

2
cos2 µ

2

)
= 4 sin2 µ

2

(
sin2 γ

2
− 4 sin2 ξ

2
cos2 µ

2

)
− sin2 γ

2

(
sin2 γ

2
− 4 sin2 ξ

2
cos2 µ

2

)
−

− 4 sin2 µ

2
sin2 ξ

2
sin2 γ

2
+ 4 sin2 µ

2
sin2 ξ

2
4 sin2 ξ

2
cos2 µ

2

= 4 sin2 µ

2
sin2 γ

2
− 4 sin2 µ sin2 ξ

2
− sin4 γ

2
+ 4 sin2 γ

2
sin2 ξ

2
cos2 µ

2
−

− 4 sin2 µ

2
sin2 ξ

2
sin2 γ

2
+ 4 sin2 µ sin4 ξ

2

= 4 sin2 µ sin4 ξ

2
− 4 sin2 ξ

2

(
sin2 µ− sin2 γ

2
cos2 µ

2
+ sin2 µ

2
sin2 γ

2

)
+

+ 4 sin2 µ

2
sin2 γ

2
− sin4 γ

2

= 4 sin2 µ sin4 ξ

2
− 4 sin2 ξ

2

(
sin2 µ− sin2 γ

2
cosµ

)
+ 4 sin2 µ

2
sin2 γ

2
− sin4 γ

2
.

Substituting this into the left-hand side of (22), we obtain

A2(ξ)−
(

sinµ cos ξ − sin2 γ

2
cotµ

)2

= 4 sin2 µ sin4 ξ

2
− 4 sin2 ξ

2

(
sin2 µ− sin2 γ

2
cosµ

)
+ 4 sin2 µ

2
sin2 γ

2
− sin4 γ

2
−

− sin2 µ cos2 ξ − sin4 γ

2
cot2 µ+ 2 sinµ cos ξ sin2 γ

2
cotµ

= 4 sin2 µ sin4 ξ

2
− 4 sin2 ξ

2

(
sin2 µ− sin2 γ

2
cosµ

)
+ 4 sin2 µ

2
sin2 γ

2
− sin4 γ

2
−

− sin2 µ
(

1− 2 sin2 ξ

2

)2

− sin4 γ

2
cot2 µ+ 2 sinµ

(
1− 2 sin2 ξ

2

)
sin2 γ

2
cotµ

= −4 sin2 ξ

2

(
sin2 µ− sin2 γ

2
cosµ

)
+ 4 sin2 µ

2
sin2 γ

2
− sin4 γ

2
−
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− sin2 µ+ 4 sin2 µ sin2 ξ

2
− sin4 γ

2
cot2 µ+

+ 2 sinµ sin2 γ

2
cotµ− 4 sin2 ξ

2
sin2 γ

2
cosµ

= 4 sin2 µ

2
sin2 γ

2
− sin4 γ

2
− sin2 µ− sin4 γ

2
cot2 µ+ 2 sin2 γ

2
cosµ

= sin2 γ

2

(
4 sin2 µ

2
+ 2 cosµ

)
− sin4 γ

2

(
1 + cot2 µ

)
− sin2 µ

= sin2 γ

2

(
4 sin2 µ

2
+ 2
(

1− 2 sin2 µ

2

))
− sin4 γ

2

1

sin2 µ
− sin2 µ

= −
(sin2 µ− sin2 γ

2 )2

sin2 µ
.

This is clearly non-positive, hence (22) is proved.

If dÂ(ξ)
dξ = 0, then by the first formula of this proof, either ξ = 0, or µ = 0, or

sin2 µ = sin2(γ2 ) by our last formula. As 2µ = α + β, we can exclude the second
case.

If sinµ = sin(γ2 ) then µ = γ
2 , hence α + β = γ, which means that z is on the

reflection of the arc xy (side of xyz) to the straight line xy, i.e. xyz is not a proper
disc-triangle but a spindle.

This finishes the proof of Lemma 4.1. �

Now, we will proceed from disc-triangles to general disc-polygons with an arbi-
trary number of sides. Let D be a disc-polygon with vertices x1,x2, . . . ,xn (n ≥ 4).
Assume that the vertices are labeled in a cyclic order on the boundary of D such
that the side xn−2xn−1 is not shorter than the side xn−1xn. We apply Lemma 4.1
to the disc-triangle xn−2xn−1xn in such a way that xn−1 plays the role of the
vertex z. We continuously move xn−1 as described in Lemma 4.1 while all other
vertices of D remain fixed and the perimeter of D also remains fixed.

xn−1

xn

xn+1

xn−2

x′n−1
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The extreme position of xn−1 is when it is incident with the extension of
the arc of the side xnx1. Denote this new point by x′n−1. By Lemma 4.1,
area(xn−2x

′
n−1xn) < area(xn−2xn−1xn). The points x1, . . . ,x

′
n−1,xn determine

a new disc-polygon D′ with fewer vertices than D (xn is no longer a vertex), the
same perimeter, and with area(D′) < area(D).

Since a general hyperconvex disc may be approximated by disc n-gons arbitrarily
well with respect to Hausdorff distance, a simple continuity argument finishes the
proof of Theorem 1.3 for general hyperconvex discs.
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[3] Károly Bezdek, Personal communication (2010).
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Adv. Math. 225 (2010), no. 4, 1914–1928.

[10] G. D. Chakerian and H. Groemer, Convex bodies of constant width, Convexity and its appli-
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