Term minimal algebras

Agnes Szendrei

In [1] C. Bergman and R. McKenzie used a construction for strictly simple
algebras which is analogous to taking the induced minimal algebra that plays a
central role in tame congruence theory, however, polynomial operations are replaced
by term operations. We call the resulting algebra an induced minimal term algebra.
It follows that all induced minimal term algebras of a strictly simple algebra are
strictly simple (Proposition 1.1); furthermore, they are isomorphic, up to term
equivalence (Proposition 1.10), so their ‘equivalence type’ is a characteristic of the
algebra.

Strictly simple term minimal algebras are (up to term equivalence) the algebras
arising by this construction. According to the behaviour of their unary term op-
erations, they are naturally divided into four classes (Theorem 1.9). Interestingly,
the algebras belonging to three of these four classes were described earlier ([8], [10],
[11]), so it remains to investigate the fourth class.

This class consists of all strictly simple algebras A such that Clo; A = {0}UG
for an element 0 € A and for a permutation group G acting regularly on A — {0}.
We prove that for |A| > 2, either A is term equivalent to a one-dimensional vector
space, or the semilattice operation A with a Ab = 0 for all distinct elements a,b € A
is a term operation of A (Theorem 2.2). Consequently, all these algebras generate
minimal varieties (Corollary 2.6). Further, we characterize the algebras of types
3, 4, 5, respectively, within this class (Theorems 3.6-3.8), and find that for each
of these types, the clones of the corresponding algebras with a given unary part
form an interval in the lattice of clones. Finally, we show that these intervals
have cardinality 2% (Theorem 4.1) — a property indicating that this class differs
essentially from the other three classes.

A survey of all four classes of strictly simple term minimal algebras is presented
in Section 5.
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Technische Hochschule Darmstadt. The excellent circumstances provided by the fellowship and
by the THD are gratefully acknowledged. This research is partially supported also by Hungarian
National Foundation for Scientific Research grant no. 1813.
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1. Types of strictly simple term minimal algebras

If not stated otherwise, algebras are denoted by boldface capitals and their
universes by the corresponding letters in italics. Two algebras are called term
equivalent [polynomially equivalent], if they have the same clone of term [polyno-
mial] operations. The clone of term operations [the set of n-ary term operations] of
an algebra A is denoted by Clo A [resp., Clo, A]. Similarly, the clone of polynomial
operations [the set of n-ary polynomial operations] of A is denoted by Pol A [resp.,
Pol, A]. For a set F' of operations on A, [F] will stand for the clone generated by
F, that is, [F] = Clo(A; F). An operation g on A can be restricted to a subset B
of Aif and only if g(B,...,B) C B; in this case the restriction is denoted by g|s.

Recall that an operation f is called idempotent if it satisfies the identity
f(z,...,z) = x. The clone of all idempotent term operations of an algebra A
will be denoted by Clojg A. An algebra A is called idempotent if every operation
of A is idempotent (or, equivalently, {a} is a subalgebra of A for all a € A).

The set of non-negative integers is denoted by Ng. For a set A, let Ty, Sy,
and C4 denote the full transformation monoid on A, the full symmetric group on
A and the set of (unary) constant operations on A, respectively. It will cause no
confusion if the unary constant operation on A with value a will be denoted by a.
The identity mapping on A is denoted by id4 (or id if A is clear from the context).

A permutation group G acting on A is called transitive if the algebra (4; G) has
no proper subalgebras, and primitive if the algebra (4; G) is simple and |G| > 1 (if
|A| = 2). Clearly, primitivity implies transitivity. A transitive permutation group
G is called regular if the identity permutation is the only member of G having fixed
points. For an abstract group G, the unit of G will always be denoted by 1.

Recall that an algebra A is said to be strictly simple if |A| > 2, A is simple
and has no nontrivial proper subalgebras. By a trivial algebra we always mean a
one-element algebra. For an algebra A we denote by Za the set of all elements
u € A such that {u} is a trivial subalgebra of A.

For a set A and for k¥ > 1, the nonvoid subsets of A* will be called k-ary
relations (on A), and for an algebra A the universes of subalgebras of A* will also
be called compatible relations of A. If p is a compatible relation of the algebra
(A4; f), then we also say that f preserves p. It is easy to see that for a relation p
on A, the operations on A preserving p form a clone, which will be denoted by P,.
The composition of binary relations p, o on A is denoted by po, and the converse
of p is denoted by p~!.

For k > 1 and for a subset I = {ig,...,4—1} of k with 39 < ... < ij_1, we
denote the projection mapping A*¥ — AL, (z¢,...,25-1) = (Tig,---,Ti,_,) by DIJ -

Now we introduce a construction analogous to the one used in tame congruence
theory, however, polynomial operations are replaced by term operations. Let A be
an algebra and B a subset of A. The induced term algebra of A on B is defined as
follows:

A|lp = (B; {g|B: g€ CloA, g(B,...,B) C B}).

Furthermore, we use the following notation:

TEA = {e € Clo; A: e = e},
TUa = {e(A): e € TEa, |e(4)| > 1},
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and we let TMa be the set of all elements of TUA that are minimal with respect
to inclusion.

Clearly, for a finite algebra A, TM4 is nonempty. We will repeatedly use the
well-known fact that if A is finite, then for every unary term operation f of A,
some power f¥ (k> 1) of f belongs to TEA. Since each e € TE4 acts identically
on e(A), therefore for every set B = e(A) € TUa, A||p can also be given in the
form

Alls = (B; {egls: g € CloA}).

For strictly simple algebras A and for B € TMja, the construction A||p was
first used by C. Bergman and R. McKenzie [1], and it proved also useful in [12] in
studying simple Abelian algebras. If B € TMa, then A||p will be called an induced
minimal term algebra of A.

Some elementary properties of induced minimal term algebras are the following.

Proposition 1.1. ([1], [12]) Let A be a finite algebra, and let B € TMa, .
(i) Every element h € TEy||, is either the identity or constant.

(ii) If A has no nontrivial proper subalgebras, then Zx = Zp||,-

(iii) If A is strictly simple, then so is A||p.

Definition 1.2.  An algebra A will be called term minimal if |A| > 2, A is
finite, and every element e € TE, is either the identity or constant.

Thus Proposition 1.1 (i) states that for every finite algebra A, the induced
minimal term algebras of A are term minimal. The aim of this paper is to start a
systematic study of term minimal algebras. As we shall see later (Proposition 1.10),
for every finite strictly simple algebra A, the “type”, up to term equivalence, of its
induced minimal term algebras does not depend on the choice of B, and hence it is
a characteristic of A.

Lemma 1.3. If A is a term minimal algebra such that |Za| > 2 and A has
no nontrivial proper subalgebras, then A is idempotent.

Proof. Since f(u) = w for all f € Clo; A and u € Za, therefore by term
minimality, every element e € TE, is the identity. However, by the finiteness,
each f € Clo; A has some power in TEa, implying that f is a permutation. Thus
A—Z4 is closed under all unary term operations of A, implying that every element
a € A — Za generates a proper subalgebra of A. By our assumptions on A, this is
impossible unless A = Za. Hence A is idempotent.

Lemma 1.4. If A is a simple term minimal algebra having no proper sub-
algebras, then one of the following conditions holds:

(1.4) Clo; A is a transitive permutation group on A,

(1.4)" Cloy A = C4 UG for some permutation group G on A.

Proof. If Clo; A contains no constant, then by term minimality the identity
is the only element of TEAx. As in the previous proof, we get that Clo; A is a
permutation group. It is transitive, since A has no proper subalgebras.

Now assume Clo; A contains at least one constant, say ¢ (¢ € A). Since
{f(e): f € Clo; A} is a subalgebra of A, it must be equal to A, implying that
every constant belongs to Clo; A. Thus Pol A = Clo A, and hence by tame con-
gruence theory (see [5; 1.9(1), 2.11, 2.13(1)]), (1.4)" holds.
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Lemma 1.5. If A is a term minimal algebra with no nontrivial proper
subalgebras and a unique trivial subalgebra {0}, then Cloy A = {0} U G for some
permutation group G on A which acts transitively on A — {0}. Moreover, if A is
simple, then G acts regularly on A — {0}.

Proof. Clearly, f(0) =0 for all f € Clo; A. Thus Clo; A contains at most one
constant, namely 0. Suppose Clo; A contains an operation f which is neither a per-
mutation nor the constant 0. Let a € A be such that f(a) # 0. By assumption the
element f(a) generates A, therefore there exists an h € Clo; A such that hf(a) = a.
Thus hf € Clo; A is not a permutation, however, hf(0) = 0 and hf(a) = a (a # 0).
So the appropriate power of hf in TE, is neither constant nor the identity. This
contradiction shows that Clo; A C S4 U {0}. The inclusion Clo; A C S4 cannot
hold, since then we would get (as in Lemma 1.3) that A = Za, which is impossible.
Thus 0 € Cloy A, proving that Clo; A = {0} UG for some permutation group G on
A. Clearly, g(0) = 0 for all g € G. Since every element a € A — {0} generates A,
therefore G is transitive on A — {0}.

To verify the second claim, consider the relations

Tap = {(f(a), f(b)): f € Cloi A} (a,b€ A).

It is straightforward to check that they are compatible relations of A.

Assume that Clo; A has the form described in the first claim of the lemma,
and G is not regular on A — {0}. Let g be a nonidentity permutation from G fixing
some element a € A — {0}, and let b € A be such that g(b) # b (hence b # 0,a).
We use the binary relation p = 7, 3. Clearly, (a,b), (a,g(b)) are distinct pairs in p.
Further, (¢,0) € p= ¢ =0« (0,¢) € p, as f(b) =0 [f(a) = 0] implies f = 0. Thus
the relation o = p~!p is symmetric, distinct from the equality relation, and is also
reflexive. (For the latter we need that pry;y p = {f(b): f € Cloy A} = A, which is
ensured by the assumption on Clo; A.) Moreover, for d € A, (0,d) € o if and only
if d = 0. Thus the transitive closure of ¢ is a congruence of A, distinct from the
equality relation, such that {0} forms a block. Hence A is not simple.

It will be more convenient to present the algebras discussed in the second claim
of Lemma 1.5 in a different form. Let G be an (abstract) group. For an element
0¢ G we set G° = {0} UG. For g € G we define mappings ,,7,: G° = G° by

l,(z) = 0 ifz=0 ro(z) = 0 ifzxz=0
I T Vg ifreG@’ YT \zg ifreG’
and we put
Lg={ly: g€ G}, Rg=A{ry: g€ G}.
Clearly, Lg and Rg are permutation groups on G, acting regularly on G.

Lemma 1.6.  For arbitrary group G, a transformation f: G° = G° commutes
with all members of {0}U L¢ if and only if it belongs to {0}URg, and symmetrically,
a transformation f:G® — G° commutes with all members of {0} U R if and only
if it belongs to {0} U L.

The straightforward proof is omitted.
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Corollary 1.7 Let G be a group, and let A be an algebra on A = G°
0¢QG).
(1.7) If{0}ULg C Clo; A, then Aut A C Rg.
(1.7)" If Rg C Aut A and {0} is a subalgebra of A, then Clo; A C {0} U L.
(1.7)"  The following conditions are equivalent:
(1) ClOl A= {0} U Lg,
(i) {0}U Lg C Clo; A, {0} is a subalgebra of A, and Rg C Aut A.

Proof. Obviously, a transformation f: G° — G°® commutes with the constant 0
if and only if £(0) = 0. Thus (1.7) and (1.7)" are immediate consequences of Lemma
1.6.

To see (i)=(ii) in (1.7)"”, we use the relations 7, introduced in the proof of
Lemma 1.5. Suppose (i) holds, and let a € G. Then

T1,0 = {(f(1), f(a)): f € Clo; A}
={(0,0)} U {(g,90a): g € G},

that is 71,4 is 74, considered as a binary relation. Since 7y 4 is a compatible relation
of A, we get that r, € Aut A. This proves Rg C Aut A.
(ii)=(i) is immediate from (1.7)".

Lemma 1.8. If A is a strictly simple term minimal algebra with a unique
trivial subalgebra {0}, then there exists a group G with A = G°, 0 ¢ G, such that
the equivalent conditions in (1.7)" are satisfied.

Conversely, for every finite group G and 0 ¢ G, each simple algebra A on
A = G° having the equivalent properties in (1.7)"" is a strictly simple term minimal
algebra with a unique trivial subalgebra {0}.

Proof. Assume A is a strictly simple term minimal algebra with a unique trivial
subalgebra {0}. By Lemma 1.5 Clo; A = {0} UG’ for some permutation group G’
on A such that G' acts regularly on A—{0}. Set G = A—{0}. It is well known that
there is a group G = (G, ) such that the regular permutation group G'|g coincides
with the group of left translations z — gz (g € G) of G. Thus G' = Lg, and hence
(1.7)" (i) holds. The converse statement is obvious, using (1.7)" (i).

Summarizing Lemmas 1.3-1.8 we get four basic types of strictly simple term
minimal algebras.

Theorem 1.9. Let A be a strictly simple term minimal algebra.
If Zyo = 0 and A has no constant term operations, then
(O)(a) Clo1 A is a transitive permutation group on A.
If Zpo = 0 and A has a constant term operation, then
(0)(b) Ca C Cloy A and Cloy A — C4 is a permutation group on A.
If Za = {0}, then
(I) there exists a group G with A = G°, 0 ¢ G, such that Clo; A = {0}U Lg.
If |Za| > 2, then
(II) Cloq A = {id}, that is, A is an idempotent algebra.

All strictly simple term minimal algebras of types (O)(a), (O)(b), and (II) are
known, up to term equivalence (see [11], [8], [10], respectively). In the survey in
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Section 5 we present an explicit list of them. Hence it remains to study the strictly
simple term minimal algebras of type (I). This is done in Sections 2-4.

We close this section by proving that the induced minimal term algebras of a
strictly simple algebra A are term equivalent (up to isomorphism), so their “equiv-
alence type” is a characteristic of the algebra A.

For an algebra A and for subsets B,C C A, we say that B and C are term
isomorphic if A has unary term operations f, g such that

f(B)=C, ¢(C)=B, g¢flp=idp, and fg|c =idc.

Note that in this case the restriction of f to a mapping 7: B — C induces a natural
bijection between the term operations of A||p and A||¢ such that m becomes an
isomorphism; namely this bijection is

CIOA”B — C]OA“C7 h(.’EO, . ,.’En,1) — 7Th(7T_1($0), . ,71'_1(.%'”,1)).

Proposition 1.10.  For a strictly simple algebra A, any two sets in TMa
are term isomorphic.

Proof. If |Za| > 2, then by Proposition 1.1 (ii) and Lemma 1.3 we have
TMa = {Za}, so the claim is trivial. If Za = () and A has a constant term
operation ¢, then every constant is a term operation of A, since {f(c): f € Clo; A}
is a subalgebra of A and hence it must be equal to A. Thus CloA = Pol A, and
the claim follows from tame congruence theory ([5; 2.8]).

Assume Zp = () and A has no constant term operation. Let B,C € TMju
with B = e(A), C = f(A), e,f € TEA. Consider arbitrary elements b € B,
¢ € C. Since ¢ generates A, there exists a g € Clo; A with g(c) = b. Clearly,
egf(A) C B, and egf|p € Clo; A||g. By Proposition 1.1, A||p is a strictly simple
term minimal algebra with no proper subalgebras. Furthermore, A||p inherits the
property of having no constant term operations; indeed, were eh|p constant for
some h € Clo; A, then ehe would be a constant term operation of A. Thus Lemma
1.4 for A||p yields that egf|p is a permutation of B, implying egf(A) = B, whence
eg(C) = B. Interchanging the roles of B and C we get a ¢’ € Clo; A such that
fg'(B) = C. Thus, for h = egfg' € Clo; A we have h(B) = B. By the finiteness,
(h|g)* = idp for some k > 2, proving that B and C are term isomorphic via fg'
and hFleg.

Finally, assume |Za| = 1, say {0} is the unique trivial subalgebra of A. Again,
let B,C € TMa with B = ¢(4), C = f(A), e,f € TEa. Obviously, 0 € B,C.
Now select b € B, ¢ € C so that b,c # 0. Since b,c generate A, there exist
9,9 € Clog A with g(c¢) = b, g(b) = c¢. Clearly, egfg(A) C B, egfg(b) = b, and
egfgls € Cloys A||g. By Proposition 1.1, A||p is a strictly simple term minimal
algebra with a unique trivial subalgebra {0}. Since egfg|p is not the constant 0 (as
it fixes b # 0), Lemma 1.5 for A||p yields that egfg|p is a permutation of B. Thus
B =egfg(A) C eg(C) C B, whence eg(C) = B. From now on we can repeat the
foregoing argument.

2. Simple G%-algebras

In what follows, G always denotes a finite group. We will call an algebra A a
GP-algebraif 0 ¢ G, A = G°, and Clo; A = {0}ULg (as in condition (I) in Theorem
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1.9). Clearly, if A is a G%-algebra, then A is term minimal, has no nontrivial proper
subalgebras, and Za = {0}; moreover, Aut A = Rg. We do not assume simplicity
unless explicitly stated otherwise. We use the equivalence of conditions (i)—(ii) in
(1.7)" without further reference, as alternative characterizations of G°-algebras.

An operation f on A will be called absorptive if the value of f is 0 whenever
at least one of its arguments is 0. It is easy to see that for every n > 1, an n-ary
absorptive operation is either constantly 0 or depends on all of its variables. We
will call an absorptive operation nontrivial if it is not constantly 0.

Important role will be played by the binary absorptive operation A defined as

follows: i
_Jz ifz=y
TNy = { 7.
y 0 otherwise
Clearly, A is a semilattice operation: 0 is the least element and any two distinct
z,y € G are incomparable.

Proposition 2.1. (4; 0,Lg,A) is a simple G°-algebra.

Proof. Since A admits the members of Rg as automorphisms, (4; 0, Lg, A) is
a GO-algebra. Its simplicity follows from Lemma 2.5 below.

The principal result of this section is that this algebra is a reduct of almost all
simple G%-algebras, provided |A| > 3.

Theorem 2.2.  For every simple G°-algebra A with at least three elements,
A is a term operation of A unless A is term equivalent to a one-dimensional vector
space.

An algebra is called surjective if its fundamental operations are surjective.

Corollary 2.3.  Every simple G°-algebra with at least three elements is term
equivalent to a surjective algebra.

Proof. Let A be a simple G°-algebra with at least three elements. Since {0} is
a subalgebra of A and Rg C Aut A, therefore the constant operations with value
0 are the only nonsurjective term operations of A. It suffices to prove that the
unary constant 0 is expressible from the surjective term operations of A. If A is
term equivalent to a one-dimensional vector space, then 0 = z — x; otherwise, by
Theorem 2.2, A is a term operation of A, and 0 = zAly(x) for arbitrary g € G—{1}.

Theorem 2.2 and Proposition 2.1 imply that for every finite group G with at
least two elements, the clones of simple G°-algebras that are not term equivalent
to one-dimensional vector spaces form an interval in the lattice of clones. Let
Ro(Rg) denote the clone of all operations f on G° such that f(0,...,0) =0 and f
admits each member of Rg as an automorphism. (Equivalently, Ro(Rg) = P} N

ngEG P"y )

Corollary 2.4. A finite algebra A with at least three elements is a simple
GP-algebra if and only if

[Lg, /\] C CloA C Ro(Rg),
or A is term equivalent to a one-dimensional vector space.

7



For an algebra A, V(A) denotes the variety generated by A. A variety V is
called minimal if it has exactly two subvarieties: V and the trivial variety consisting
of one-element algebras.

Lemma 2.5. Let A be a G°-algebra such that A is a term operation of A.
Then

(i) A is simple;

(ii) every nontrivial algebra in V(A) has a subalgebra isomorphic to A;

(iii) V(A) is a minimal variety.

Proof. It suffices to prove (ii), as (iii) is an immediate consequence of it, and
(i) follows from (ii) since A is finite.

We may assume without loss of generality that 0, [, (9 € G) and A are funda-
mental operations of A. Clearly, A satisfies the following identities:

23) L0 =0, L@ o L@@ ={] ) {971 @heo),

moreover, since Clo; A = {0} U Lg, therefore for every n > 1, every n-ary funda-

mental operation f of A and for arbitrary fo,..., fn_1 € {0} U Lg, there exists a
unique f, € {0} U Lg such that the following identity holds:

(2.5) f(fo(@),- -, fn1(@)) = fu().

Obviously, f, =0if fo =...= fn_1 = 0.

Let B be a nontrivial algebra in V(A). Since B satisfies the identities (2.5)
and l1(z) = z, therefore for any element b € B with b # 0, the subalgebra of B
generated by b is

{0} U{ly(b): g €G}.

Supposing 0 = [,(b) for some g € G, we would get by the identities (2.5) that
0 =1,-1(0) = ;-1 (l4(b)) = b, a contradiction. Similarly, I,(b) = I5(b) for some
distinct g,h € G would imply 0 = [,(b) Al (b) = I,(b) Aly(b) = 14(b), leading, as
before, to a contradiction. Hence the elements 0 and l,(b) (9 € G) are pairwise
distinct, so for any a € A — {0}, the assignment

A= B, 00, l(a)~ () (9€G)

defines an injective mapping, which by the identities (2.5)' is an embedding A — B.

Corollary 2.6.  Every simple G°-algebra with at least three elements gen-
erates a minimal variety.

Proof. Let A be a simple G%-algebra with at least three elements. If A is
term equivalent to a one-dimensional vector space, then the minimality of V(A) is
well known. Otherwise, by Theorem 2.2, A is a term operation of A, and the claim
follows from Lemma 2.5.

The rest of this section is devoted to the proof of Theorem 2.2, which consists
of two main steps: first we show that every simple G%-algebra A with at least three
elements, which is not term equivalent to a one-dimensional vector space, has a
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nontrivial binary absorptive term operation (Lemma 2.15), and then we prove that
A is a term operation of A (Lemma 2.16).

Throughout Lemmas 2.7-2.16 G is a finite group with at least two elements,
and A = G° (0 ¢ G). For convenience, we extend the multiplication of G to G° so
that 0 be a zero element of (G%;-).

We will say that two n-ary operations f, f' on A are similar if there exist g € G
and go,.-.,gn—1 € G such that

fl(a“Oa s Ja“n*l) = lg(f(lgo (1'0)7 s 7lgn—1 (xnfl)))

It is clear that similarity is an equivalence relation, and a number of properties of
operations are invariant under similarity; such properties are the following: being
absorptive, depending on a variable z;, being a quasigroup operation, etc. (cf. also
Lemma 2.7). If A is a GC-algebra, then Clo A obviously contains all operations
that are similar to its members. Furthermore, for every binary term operation e of
A we have z ¢ 0,00 2 € {0} U Lg, so e is similar to one of the following kinds of
binary term operations o of A:

(0) 0 is a zero element for o (i.e. o is absorptive);

(1) 0 is a left unit and right zero for o (i.e. the identities oz =2, 200 =10
hold), or dually

(1)" 0 is a right unit and left zero for o;

(2) 0 is a unit element for o (i.e. the identities 0 o z = £ 0 0 = z hold).

For a binary operation * on A we denote

X(x) ={a€G: 1xa=0}.

Lemma 2.7.  For arbitrary binary operations e,0 on A, if
(i) o is similar to e, or
(ii) o arises from e by interchanging variables,

then |X(o)| = |X(o)|

Proof. In case (i), if z oy = 14(lg, (z) @ Iy, (y)), then it is easy to check that

loa=g(goegia) = g(rg,(1) e g, (g1ag5 ")) = g(re, (1 ® grag; ")),

0
a€X() & loa=0&legagy' =0& ac€ g ' X(e)go.

In case (ii), if z oy = y @ , then a similar easy computation yields that
a€X(o)&ealeX(e).

For a subgroup H of G we denote the equivalence relation on A with blocks
aH (a € A) by eg. (In accordance with the extension of multiplication to G°,
0H = {0}.) Clearly, each permutation /, (9 € G) in Lg induces a permutation of
the blocks of ey by ly(aH) = gaH (a € A). (Note that distinct permutations in
Lg may induce the same permutation on the blocks.) So Lg induces a permutation
group on the blocks of eg. If this induced permutation group is regular on the set
{aH: a € G}, we will say that Lg acts regularly on the blocks of ey distinct from
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{0}. The claims in the following lemma are immediate consequences of well-known
facts for regular permutation groups.

Lemma 2.8. (i) An equivalence relation p on A, distinct from the full
relation, is a congruence of the algebra (A;Lg) if and only if p = ey for some
subgroup H of G.

(ii) Lg acts regularly on the blocks of ey distinct from {0} if and only if H
is a normal subgroup of G.

Lemma 2.9. Let A be aG®-algebra. If A has a binary term operation which
is a quasigroup operation, then A is term equivalent either to a one-dimensional
vector space, or to the algebra (A;Ro(Rg))-

Proof. By Lemma 2.8, every congruence of A, distinct from the full relation
is of the form ey for some subgroup H of G. However, it is well known (and easy
to verify) that quasigroups have uniform congruences. Since g is uniform if and
only if |H| = 1, we conclude that A is simple (and hence strictly simple). Now
by McKenzie’s theorem [7], A is affine or quasiprimal. If A is affine, then the
description of simple affine algebras, up to term equivalence (Clark—Krauss [2]),
and the assumption on Clo; A yield that A is a one-dimensional vector space. If A
is quasiprimal, then the term operations of A are exactly the operations preserving
the subalgebra {0} of A and the automorphisms of A (as A has no nontrivial
proper subalgebras). As the automorphism group of A is Rg, we get that A is
term equivalent to (4; Ro(Rg)).

Lemma 2.10. Let A be a G°-algebra, and H a subgroup of G. If e is not
a congruence of A, then A has a binary term operation o such that (1oa,1ob) ¢ eg
for some (a,b) € eg.

Proof. As ep is not a congruence of A, A has a unary polynomial operation
p(z) = flz,e1,...,¢n—1) (f € Clo, A, ¢1,...,¢h—1 € A) not preserving ep, say,
(p(a),p(b)) ¢ em for some (a,b) € eg. Since f(zo,--.,%i-1,0,Zit1,..-,Tp-1) is a
term operation of A for all 1 < i < n —1, we can assume that ¢1,...,c,_1 € G.
Thus zoy = f(y,l, (x),...,l.,_,(x)) is a binary term operation of A satisfying the
requirements.

Lemma 2.11. Let A be a G°-algebra. If A has a binary term operation o
such that | X (o)| > 1, o is not constantly 0, and 0 is a one-sided zero with respect
to o, then A has a nontrivial binary absorptive term operation.

Proof. Let, say, 0 be a left zero for o. (By Lemma 2.7, the assumptions of
the lemma are left-right symmetric.) If 0 is also a right zero, then o is a nontrivial
absorptive operation, and we are done. Otherwise we can assume (by similarity)
that 0 is a right unit. Let a € X (o), and consider the term operation

zxy=1xo (lo(z)oy).

Clearly, 0 is a left zero for . Further, 1%x0 = 10 (a00) = 10a = 0, implying
by the automorphisms in Rg that 0 is a right zero for x. Thus * is absorptive. As

a'xa=alo(loa)=a"1o0=a"!#0,  is nontrivial.

The next three lemmas are concerned with term operations o satisfying the
following condition for some integer m > 1:
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(fm(e)) m <|X(o)| < |G| and 0 is a unit element for o.

Lemma 2.12. Let A be a G®-algebra. If A has a binary term operation o
with property (f1(o)) such that aob = a (= ao0) for some a,b € G, then A has a
nontrivial binary absorptive term operation.

Proof. Let ¢ € X (o), and consider the term operation
zxy=1xo(l(r)oy).
We have
1x0=10(co0)=10c=0,

lxba 'c=10(coba'c) =lors.(aob)=1or,1.(a) =1oc=0,
Lec = To(cod) = Lon(loc) =100 =1

Hence 0 is a right zero for x and 1 < |X (x)| < |G|, therefore the claim follows from
Lemma 2.11.

Lemma 2.13. Let A be a G%-algebra. If A has a binary term operation o
with property (11(o)) such that a ob = a o ¢ for some a,b,c € G, b # ¢, then A has
either a nontrivial binary absorptive term operation, or a binary term operation e
satistying (f2(e)).

Proof. Let e =aob=aocand d € X (o). If e= 0, then ba~',ca! € X (o), so
o is appropriate for . Assume e # 0, and consider the term operation

zxy=1l,(x) oly(la(x) oy) with u=dae "

We have
lxb=aou(aob) =aocue=aoda=r,(lod) =0,
lxc=aou(aoc)=aoue=0,

lxda=aou(aoda) =aou(r,(lod)) =aol=a,

proving that 2 < | X (x)| < |G|. If 0 is a one-sided zero for , then by Lemma 2.11,
A has a nontrivial binary absorptive term operation. Otherwise, by Lemma 2.7, an
operation e similar to * satisfies (2(e)).

Lemma 2.14. Let A be a G%-algebra, and assume A has a binary term
operation o with property (f2(o)). If every binary absorptive term operation of A
of the form

(2.14)  lw(zoy)o(lu(z)olu(y)) or lu(zoy)o(lu(y)ol(z)) (u,v,weq)

is constantly zero, then

(i) X (o) = Nt for some normal subgroup N of G and for some element t € G
such that t2 € N and the coset Nt is also closed under conjugation;

(ii) en is a congruence of the algebra (A;o);

(iii) if ey is not a congruence of A, then A has a term operation * with
1xa=20,1%b#0 for some (a,b) € en.

11



Proof. (i) The value of both term operations in (2.14) for (z,y) = (1,0) and
(z,y) = (0,1) iswov =r,(lovw ) and wou = 7y (1 ouw 1), respectively. Thus
these operations are absorptive if and only if vw~!,uw=! € X (o). For (z,y) = (1, a)
(a € G), the two term operations in (2.14) take the values

w(loa)o (voua) =w(loa)o (louav ),
w(loa)o (uaov) =w(loa)o (1owv(ua) !ua,

respectively. Assume all term operations in (2.14) with vw=!, uw=! € X(o) are
constantly zero. Putting w = 1 we get that

(2.14), (loa)o(louav ™ )v=0 forall a€ G, u,v€ X(o),

while for a € X (o), this assumption means that

(2.14)5 a,vw Huw T € X(0) =  wav ' waluT' € X(o).

In particular, for w =1,

(2.14)3 a,v,u € X(0) = wav Hva lu"! € X(o).

Putting a = u = v in (2.14)3 shows that X (o) is closed under taking inverses, and
hence the following modified version of (2.14)3 also holds:

(2.14),. a,v,u € X(0) = wa've X(o).

By (2.14)4, X (o) is a coset Nt of a subgroup N of G (t € G). Since X (o) is closed
under taking inverses, we have t "' N = Nt, or equivalently, N = tNt. Hence t> € N
and Nt =tN.
Choose any a € X (o) and w € G. Applying (2.14)2 with u = v = aw we get
that (aw)a(aw)™ € X (o). Now (2.14)3 implies that
waw ! = a1 ((aw)a(aw) 1)a € X (o),
that is, X (o) = Nt is closed under conjugation. Consequently, for arbitrary w € G,

wNw ™! = wtN)t lw ! = tN)wt tw C (tN)(w(Nt)w ') = (tN)(Nt) = N,

showing that N is a normal subgroup of G.
(ii) Observe that for arbitrary a,b € G and v € Nt = X (o),

(a,b) €en & ba'e€a(Ntha'=Nt & lobva'=0 <« aobv=0.

Now assume (a,b) € ey, and let ¢ € A be an arbitrary element. We have to show
that (coa,cob) € ey and (aoc¢,boc) € en. This is trivial if at least one of a,b, ¢
is 0, so assume a,b,c € G. Since

(coa,cobd) €een loac™)e,(1obc™te) €Een
oac”!,1obc™!) €en

oac ') o (lobc )t =0,
loca™')a,(locb™)b) €en
oca ™, (1och ™ ba™') €en

oca™)o(loch ™ ba"'t =0,

(aoc,boc) €een
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and (ac t,bc7!) € en, (ca™t,cb!) € en, t € Nt, ba—'t € Nt, therefore it suffices
to show that
(a,b) €en, veNt = (loa)o(lobw=0.

However, here b = an for some n € N, and in view of nv € Nt = a~*(Nt)a, we
have nv = a~!ua for some u € Nt, implying that b = an = a(a"tua)v™! = uav™!,
and now the equality to be proved follows from (2.14);.

(iii) Since ey is not a congruence of A, therefore by Lemma 2.10, A has a
binary term operation e such that (1 ea,1eb) ¢ en for some (a,b) € ey. Clearly,
a#b,soa,beG. If 1eag=0, we are done, so assume 1 e a € G, and define

2y =lu(@) o (z ey)
where w € G is selected so that 1 ea € Ntw. Clearly, then 1 eb ¢ Ntw, so

lxa=wo(lea)=(lo(lea)w Hw =0,

lxb=wo(leb)=(lo(leb)w Hw#0,

completing the proof.

Lemma 2.15. Let A be a simple G%-algebra. If A is not term equivalent
to a one-dimensional vector space, then A has a nontrivial binary absorptive term
operation.

Proof. Suppose that A is a simple G%-algebra such that A has no nontrivial
binary absorptive term operation. By Lemma 2.10 for H = G, A has a binary
term operation o with 1 < |X(o)| < |G|. By Lemma 2.11, 0 cannot be a one-sided
zero element for o, so by similarity (and Lemma 2.7) we can assume that 0 is a
unit element for o. If o is a quasigroup operation, then by Lemma 2.9 A is term
equivalent to a one-dimensional vector space. (It cannot be term equivalent to
the algebra (A4;Ro(Rg)), since the latter has a nontrivial binary absorptive term
operation.) So we are done if o is a quasigroup operation.

Assume now that o is not a quasigroup operation. Taking the operation arising
from o by interchanging its variables if necessary (and using Lemma, 2.7) we see that
there is no loss of generality in assuming that a o b = a o ¢ for some a,b,c € A with
b # c. Clearly, a # 0, and since the hypotheses of Lemma 2.12 cannot hold, we have
b,c # 0. Thus, by Lemma 2.13, A has a binary term operation e with property
(t2(e)). By Lemma 2.14 (i), (ii), there exists a normal subgroup N of G such that
X (o) is a coset of N and ey is a congruence of the algebra (A4;e).

However, ey is not a congruence of A, therefore by Lemma 2.14 (iii), A has a
term operation * with 1xa = 0, 1 x b # 0 for some (a,b) € en. Clearly a # b, so
a,b € G. Consider now the following term operation of A:

zOy = (zoy)*lo(zels-1p(y))-
As a~'b € N, we have
1ov=(lev)*a(lea ) =0x0=0 forall ve X(e),
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yielding X (¢) C X(®), whence | X (®)| > 1. Furthermore,

100=(1e0)*a(le0)=1%xa=0,
0©1=(0el)*a(0ea b)) =1xb#0,
showing that 0 is a right zero and not a left zero for ®. By Lemma 2.11, A has

a nontrivial binary absorptive term operation. This contradiction completes the
proof of the lemma.

For the proof of the last lemma we require some notation. Let A be a set,
n > 1, and p C A™ an n-ary relation on A. For arbitrary permutations 7; € Sy
(0 <i<n—1), we define an n-ary relation p[rg,...,m,—1] on A by

plmo, - -, mn—1] = {(z0,- .-, Tn—1) € A™: (m0(20),---,Tn-1(Tn-1)) € p}.

Furthermore, for 1 <! <n and ay,...,a, 1 € A, we define the [-ary relation arising
from p by ‘fixing the jth component at a; for j =1,...,n — 1’ as follows:
p(To,-- -, Ti—1,a1, -, Qn-1)

= {(xO;' "awl—l) € Al: ($0;' s L1005 - - - aan—l) € p}

It is straightforward to check that if for some algebra A, p is a compatible relation
of A (i.e. the universe of a subalgebra of A™), 7; (0 < ¢ < n—1) are automorphisms
of A and {a;} (I < i < n) are trivial subalgebras of A, then p[m,...,mp—1] and
p(xo,---,ZT1—1,a1,--.,a,—1) are also compatible relations of A.

Lemma 2.16. The following conditions are equivalent for a simple G°-
algebra A:

(i) A has a nontrivial binary absorptive term operation;

(ii) for every k > 2, A has a k-ary idempotent absorptive term operation;

(iii) A preserves every compatible relation of A;

(iv) A is a term operation of A.

Proof. (i)=(ii). Let e be a nontrivial binary absorptive term operation of A.
Since e is not constantly 0, there exist elements a,b € A such that aeb € G. Clearly,
a,b € G. For the term operation zoy = l(;ep)-1(lo(z) ®l3(y)) of A we have 101 =1,
therefore o is idempotent. For I > 1 define 2!-ary term operations f; of A as follows:
fi(zo,z1) =z 0 21, and for I > 1,

Jir1(@o, -+ s w1 _1) = fi(@o, .- 2ar_q) © fi(Tar, ..o, Torr1_q).

Obviously, each f; (I > 1) is idempotent and absorptive. Identifying variables in
them we get the term operations required in (ii).

(ii)=-(iii). Assume (ii) holds for A, and let p be a k-ary compatible relation of
A (k > 1). Note first that (0,...,0) € p since 0 is a term operation of A. We have
to prove that A preserves p. This is trivial for £ = 1, so we show it first for k£ = 2.
Let (a,b),(c,d) € p. We want to prove that (a A ¢,b A d) € p. We may assume
a=c#0,b#d, bd# 0, since otherwise the claim is trivial, or symmetric to
this case. Taking p[id, r4] in place of p for appropriate r, € Aut A, we may assume
¢ = d. (Note that since A admits r, as an automorphism, therefore A preserves p if
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and only if it preserves p[id,r,].) As p is closed under the operations in {0} U Lg,
we get that p is reflexive. Further, it contains a pair (a,b) with a # b, a,b # 0.
Suppose p(z,0) = {0}. For the transitive closure p of p we have (z,0) € p if and
only if z = 0, moreover, for g = ba™! € G (g # 1) we have

(17(a),17(b)) = (17'(a), 17t (a)) € p forall m >0,

implying (I7*(a),l}(a)) € p for all n > m > 0. Since l|gG‘ =id, therefore pNp—1!is a

nontrivial equivalence relation such that {0} is a block and {I;"(a):m > 0} belongs
to one block. This contradicts the simplicity of A. Thus p(z,0) = A, implying
(a,0) € p, what was to be proved.

Now let k£ > 3, and let (ag,-..,ax_1), (bo,---,bx_1) € p. Assume without loss of
generality that there exist 0 <1 <m < n < k such that b; =0, a; # 0 for 0 <i <,
a; =0,b; #0for I < i <m,a; # b, a;j,b; # 0 for m < i < n, and a; = b; for
n < i < k. We need to prove that (agAbg,...,ak—1 Abg—1) = (0,...,0,0n,...,a5—1)
belongs to p. If, say, ax—1 = bg—1 = 0, then we can take p(xo,...,Zr—2,0) instead
of p. So we may assume without loss of generality that a,,,...,ar_1 7# 0. It is easy
to check that

o ={(xo,--sTn-1,%n): (T0s--,Tn—1,Tn,Ty=1, . (Tn),---s7,-1,,  (Tn)) € p}
is a compatible relation of A and

(agy-..,a1-1,0,...,0,am,...,an_1,an) € o,
(0,...,O,bl,...,bm_l,bm,...,bn_l,an) € o.

Using the case k = 2 for the binary compatible relations pry; .3 o of A with m <
i < n, we see that o has elements of the form

ith component
N A
(..., 0 yeeay) for m<i<mn.

Now applying to these n — m + 2 elements of ¢ an (n — m + 2)-ary idempo-
tent absorptive term operation of A, we get that (0,...,0,a,) € o, whence
0,...,0,an,...,a5—1) € p. (If n = k, then of course the last component of o
is missing, and we have to take pry;, o instead of pry; 3 0.)

(iii)=(iv) follows from the well-known fact that every operation f defined on
the base set of a finite algebra A such that f preserves all compatible relations of
A, is a term operation of A.

(iv)=(i) is obvious.

3. Characterizing types 3,4, and 5

As in the previous section, G always denotes a finite group having at least two
elements, and A = G® with 0 ¢ G. Our aim in this section is to describe simple G°-
algebras according to their types 1 up to 5, assigned to them by tame congruence
theory. It is clear that for a simple G%-algebra A, if A is term equivalent to a
one-dimensional vector space, then A is of type 2; otherwise, by Theorem 2.2, A is
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a term operation of A, so A has type 3, 4, or 5. We will need some results from
tame congruence theory establishing properties that distinguish these three types.
Recall that a minimal set of a simple algebra A is a set N C A such that |N| > 1,
N = f(A) for some f € Pol; A, and N is minimal (with respect to inclusion) among
the subsets of A satisfying these conditions.

Theorem 3.1. ([5; 1.9(1), 2.11; 5.26(1); 2.13(3), 4.10]) Let A be a non-
Abelian simple algebra (that is, A is of type 3,4, or 5).

(i) A is of type 4 or 5 if and only if it has a connected compatible partial
order.

(ii) A is of type 3 or 4 if and only if it has a two-element minimal set N =
{0,1} and binary polynomial operations p;, ps such that p;|n and p|n are the two
distinct semilattice operations on N.

Lemma 3.2. Let A be a G%-algebra. If A has a connected compatible
partial order <, then < is the semilattice order corresponding to A, or its dual.

1

Proof. Assume a < b for some a,b € G. Then for g = ba™" we have

a S b= lg(a) S lg(b) = lgz(a) S lg2(b) S . S lgk_1(a) S lg)c—l(b) S lgk(a) S [

Since G is finite, g* = 1 for some k > 1, proving a = b. Thus, in every pair of
distinct comparable elements, one member is 0. Connectedness implies that 0 is
comparable to each element in G. Clearly, there are no elements a,b € G with
a < 0<b,so < isone of the orders described in the lemma.

From now on, < will always denote the semilattice order corresponding to A,
and we call a G%-algebra ordered if the operations of A are monotone with respect
to <. The following claim is straightforward to prove.

Lemma 3.3. Every absorptive operation on A is monotone with respect to
<.

The next lemma is an easy necessary and sufficient condition for a G°-algebra
to be ordered.

Lemma 3.4. A GP-algebra A is ordered if and only if every binary term
operation of A is either essentially unary or absorptive.

Proof. Suppose first that A is ordered, and let o be a non-absorptive binary
term operation of A. By similarity we can assume that 0 is a one-sided unit element
for o, say a right unit. Then for arbitrary elements a,b € A, we have aob > ao0 = a,
implying aob=aifa# 0. Fora=0and b € A we have 0o b < cob = ¢ for all
¢ € G, so since |G| > 1, we conclude that 00 b = 0. Thus o does not depend on its
second variable.

Conversely, suppose A is not ordered. Then A has a unary polynomial opera-
tion which is not monotone with respect to <. As in the proof of Lemma 2.10, we
get a binary term operation o of A such that 1oa € 10b for some a < b in A.
Clearly, a # b, 80 a =0. Thus 100 £ 10 b, implying 1 00 # 0. This shows that o
is not absorptive. It has to depend on both variables, as all unary term operations
of A (i.e. all operations in {0} U Lg) are monotone with respect to <.
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Now we are in a position to characterize simple G°-algebras of types 3, 4, and
5. For this purpose we will need two operations ¢, hg, and a relation ug on A:

_Jy ifz=0 A :{z ifz=xo0rz=y
Ty { 0 otherwise’ o(@y,7) 0 otherwise ’
and

Mo = {(G,G,0,0), (a707a70)7 (a707070)7 (aaaaaaa): ac€ A}

The claims in the next proposition are easy consequences of the definitions and
Proposition 2.1. (Here |G| =1 is also allowed.)

Proposition 3.5. (i) (4; 0,Lg,A,o) is a simple G°-algebra.

(ii) (4; 0,Lg,ho) is a simple ordered G°-algebra with ho(y,y,z) = = A y.

(iii) Every absorptive operation on A preserves po; in particular, po is a
compatible relation of (A4; 0,Lg, ).

We show that among simple G-algebras, those of type 3 are characterized by
the property of having the algebra in (i) as a reduct. Furthermore, among ordered
simple G-algebras, those of type 4 are characterized by the property of having the
algebra in (ii) as a reduct, and those of type 5 by the property of admitting uo as
a compatible relation.

Theorem 3.6. Let A be a simple G-algebra. The following conditions are
equivalent:

(i) A is of type 3;

(ii) A has a binary term operation * satisfying the identities

zx0=0, Oxx=z, zxzx=070

(iii) o is a term operation of A.

Proof. (i)=(ii). Suppose A is of type 3. By Theorem 2.2, A is a term operation
of A. Furthermore, by Theorem 3.1, A has no connected compatible partial order.
Thus A is not ordered, and hence, as we have seen in the proof of Lemma 3.4, A
has a binary term operation o such that 0 # 100 # 1 o b for some element b € G.
Let a = (100)~1, and consider the term operation

zxy=yANla(yoly(z))

Clearly,
1x0=0Aa(0ob) =0,

0x1=1Aa(lo0)=1A1=1,
1x1=1Aa(lob)=0,

as a(lob) = (100)~1(10b) # 1. By the automorphisms in Rg this implies that *
satisfies the identities required in (ii).

(ii)=-(iii). Suppose A has a binary term operation * described in (ii). Obvi-
ously, * cannot be the term operation of a one-dimensional vector space, therefore
by Theorem 2.2, A is a term operation of A. We prove (iii) by showing that ¢
preserves all compatible relations of A.

Let p be an n-ary compatible relation of A for some n > 1, and let a,b € p.
The ith component of a will be denoted by a;, and similarly for . We may assume
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without loss of generality that there exist integers 0 < j < k < n such that a; = b;
for0<i<j—1,0=a;#b;forj<i<k—1l,and0#a; #b;for k<i<mn-—1.
Put

bo,-.-,b;-1,0,...,0,0,...,0),

(

0,...,0,bj,...,bp_1,0,...,0),
(b07"'7bj—17bj7"'5bk—1705"'70)3
a=(0,...,0,0,...,0,a5,...,an_1)-

bl
bl !
b

We have to verify that a o b = b" belongs to p. Since p is closed under A and *, we
have ) =aAbepanda=b xa € p. Asag,...,an_1 #0,foreachk<i<n-—1

the n-tuple
C(l) — {lbiai_l(&) xb if bz 750
b ifb; =0

has ith component 0, while the first k& components coincide with those of b. Further,
since p is closed under the operations in Lg, these n-tuples belong to p. Thus
b= A e® € p, whence it follows that b" =b' % b € p.

(iii)=-(i). Assume (iii) holds for A. As in the previous step, we get that A is a
term operation of A. Thus A is of type 3, 4, or 5. By Theorem 3.1, if it were of
type 4 or 5, then it would have a connected compatible partial order, and hence by
Lemma 3.2 it would be ordered. However, this is excluded by the term operation ©.

Theorem 3.7. Let A be an ordered simple G°-algebra. The following
conditions are equivalent:

(i) A is of type 4;

(ii) A has a ternary term operation h satisfying the identities

h(z,y,y) = h(y,z,y) =y, h0,0,2) = h(z,z,0) = 0;

(iii) ho is a term operation of A.

Proof. Note in advance that since A is simple and ordered, therefore by The-
orem 2.2, A is a term operation of A.

(i)=(ii). Assume A is of type 4. The range {0,1} of the unary polynomial
operation A 1 is a minimal set, and Ao 1} is the meet operation on {0,1}. Since
A is of type 4, by Theorem 3.1 it has a polynomial operation p(z,y) € Pols A such
that

p(0,0) =0, p(0,1) =p(1,0) =p(1,1) = 1.

For some n > 2, some f € Clo, A and some elements asz,...,a,-1 € A we have
p(z,y) = f(z,y,az2,...,an—1). Since f(zo,...,Ti-1,0,Tit1,...,Tn—1) is a term
operation of A for all 2 <i <mn — 1, we may assume as,...,a,—1 € G. Let

h@,y,2) = [(@,Y:las(2); - - -, lan_y (2))-
Clearly, p(z,y) = h(z,y,1). Hence
(3.7) h(0,0,1) =0, h(0,1,1)=1, h(1,0,1)=1.
By the second equality in (3.7),

h(z,1,1) > h(0,1,1) =1 forall z€ A,
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implying h(z,1,1) = 1 for all z € A. Using that Rg is the automorphism group of
A, we get that
h(z,y,y) =y foral ze€ A, yed.

Now
h(z,0,0) < h(z,y,y) =y forall z€ A, yeq,

implying h(z,0,0) = 0 for all z € A (as |G| > 2). Thus h satisfies the identity
h(z,y,y) = y. Similarly, from the third equality in (3.7) we derive the identity
h(y,z,y) = y.

Now consider the binary term operation x oy = h(y,y,z) of A. By Lemma
3.4, o is essentially unary or absorptive. If it is absorptive, then all identities in (ii)
hold. Suppose o is essentialy unary. Since it is idempotent and by the first equality
in (3.7) 100 = 0, therefore o satisfies the identity z oy = y, and h is a majority
operation. It is easy to check that the term operation

W (z,y,z) = h(h(z,y,2),2 A2,y A z)

of A satisfies all identities in (ii).

(ii)=-(iii). Suppose A has a term operation h satisfying the identities in (ii).
It will follow that hg is a term operation of A, if we show that ho preserves every
compatible relation of A.

Let p be an n-ary compatible relation of A for some n > 1, and let a,b,c € p.
The ith component of a will be denoted by a;, and similarly for b, c. We may assume
without loss of generality that there exist integers 0 < j < k < < n such that
a,-=bi=cif0r0§i§j—1,ai7ébi=c,-f0rjSigk—l,bi#ai:cifor
k<i<l-1,and a;,b; #¢; for | <i<n-—1. Put

!

c = (C(),...,C]’_l,o,...,O,Ck,...,Cl_l,O,...,O),
"o__
c = (Co,...,ijl,Cj,...,Ckfl,o,...,o,o,...,(]),
c= (Co,...,ijl,Cj,...,Ckfl,ck,...,6171,0,...,0).

We have to verify that hg(a, b, c) = ¢ belongs to p. However, since p is closed under
A, we have  =aAc € pand ¢’ =bAc € p, implying ¢ = h(c',c",¢c) € p.

(iii)=-(i). Suppose hg is a term operation of A. As we have seen before,
{0,1} is a minimal set. Clearly, Al;o,1}, ho(%, ¥, 1)|{0,1} are two distinct semilattice
operations on {0,1}. Since A has a connected compatible partial order, it is of type
4 by Theorem 3.1.

Theorem 3.8. Let A be an ordered simple G°-algebra. The following
conditions are equivalent:
(i) A is of type 5;
(ii) A has a quaternary reflexive compatible relation p such that
(1) (a,qa,0,0), (a,0,a,0) € p forall ac€ A,
(2) (a,a,a,0) € u ifand onlyif a=0.

(iii) o is a compatible relation of A.

Proof. Note in advance that since A is simple and ordered, therefore by The-
orem 2.2, A is a term operation of A.
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(i)=(ii). Assume A is of type 5. By Theorem 3.7, hg is not a term operation
of A, so for some n > 1, A has an n-ary compatible relation p not preserved by hg.
Select elements a, b, ¢ € p such that hg(a,b,c) ¢ p. We use the same notation as in
part (ii)=(iii) of the proof of Theorem 3.7. Thus ¢ ¢ p, while as p is closed under
A, we have ¢, " € p.

Taking p(xg,---,%i—1,0,%iy1,---,%,_1) instead of p if some ¢; = 0, we can
assume that cg,...,c,_1 # 0. Define

n= {(:L',y,z,u) € A% (TCO (.’E), R JTCj—l(‘Z.)’TCj (y)7 s ’Tck—l(y)7
Ter (2), ey Te_ 1 (2), e, (1), ..y 7e._ (1)) € p}.

Clearly, p is a compatible relation of A. Moreover, since ¢’,¢/,c € p and ¢ ¢ p, we
have

(]‘717070)€H7 (1707170)6/1’7 (1717171)€/’t7 (1717170)¢u'

Since p is closed under the unary operations in {0} U Lg, therefore it has the
properties required in (ii).

(ii)=>(iii). Let o be the subalgebra of A* generated by the quadruples
(a,a,0,0), (a,0,a,0), (a,a,a,a) (a € A). Clearly, 0 C p. Since A is a term op-
eration of A, therefore (a,0,0,0) = (a,a,0,0) A (a,0,a,0) € o for all a € A, and
hence pp C o. Observe that for every element (a,b,c,d) € o we have a > b > d
and a > ¢ > d, since this holds for all the generating elements of o (and since the
term operations of A are monotone with respect to <). It is easy to check that the
quadruples satisfying this condition are exactly the elements of po and (a,a,a,0)
for a € G. Since the latter do not belong to u, therefore ¢ = pg, completing the
proof of (iii).

(iii)=(i). Assume pg is a compatible relation of A. Again, the range {0, 1}
of the unary polynomial operation x A 1 is a minimal set, and Al 1} is the meet
operation on {0,1}. Therefore by Theorem 3.1 it suffices to exclude the existence
of a binary polynomial operation p(z,y) € Poly A with

p(0,0) =0, p(oa 1) = p(]-ao) :p(]-a 1) =1L

As pyp is reflexive, it is preserved by every polynomial operation of A. So if a
polynomial p described above existed, then we would get

p((]-a 17070)7 (1707 170)) = (17 ]-7 170) € Mo,

a contradiction.

Theorems 3.6, 3.7, and 3.8 show that within the interval described in Corollary
2.4, the clones of simple algebras of types 3, 4, and 5 form three disjoint subintervals.

Corollary 3.9. Let A be a G°-algebra.
(i) A is a simple algebra of type 3 if and only if

[LG7/\JO] g Clo A g RO(RG)a
(ii) A is a simple algebra of type 4 if and only if
[Lg, ho] C CloA C Ry (R(;) n 'Ps,
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and
(iii) A is a simple algebra of type 5 if and only if

[Lg,/\] C CloA C Ro(Rg) ﬂpﬂ«o‘

For the bounds of these intervals we have

Ro(Ra) NPy € Ro(Rg)NP< C TRo(Ra)
U ul ul .
[LG':/\] c [LGahO] c [LG,/\,O]

Proof. The claims in (i)—(iii) are immediate consequences of Corollary 2.4,
Theorems 3.6-3.8, Theorem 3.1, and the inclusions in the last statement.

In view of Proposition 3.5 and the equality >= pry 1} fo, the only nontrivial
inclusion in the last statement is the right one at the bottom. To prove this, observe
that for the ternary operation f(z,y,z) = ((z ¢y) ¢ (z ¢ 2)) ¢ 2 we have

0 ifz=y=0
z otherwise,

o= |

and hence ho(z,y,2) = f(x A 2,y A 2, 2).

Corollary 3.10.  Every simple G°-algebra of type 3 or 4 generates a con-
gruence distributive variety.

Proof. Let A be a simple G%-algebra of type 3 or 4. By the preceding corollary,
ho is a term operation of A. It is easy to verify that the term operations

dl(waya ) h'O(z: )

d2($3y7 ) hO(z Yy, x )/\hO(xayaz)a
d3(m7y7 ) ho(.’lf Y,z )
satisfy the identities d;(z,y,z) = i = 1,2,3), v = di(z,z,y), di(z,y,y) =

ds(z,y,y), do(z, z,y) = d3(z,z,y), dg(x,y,y) = y. Hence by Jénsson’s theorem [6],
V(A) is congruence distributive.

Corollary 3.11.  Every simple G°-algebra of type 3 generates a congruence
3-permutable variety.

Proof. Let A be a simple G%-algebra of type 3. By Corollary 3.9, A and ¢ are
term operation of A. It is easy to verify that the term operations
pl(xayaz) = ((Z/\y) Oy) o
pz(x,y,z) :pl(z7y7$)
satisfy the identities z = p1(z,y,y), p1(z,z,y) = p2(x,y,y), p2(z,z,y) = y. Hence
by the theorem of Hagemann and Mitschke [4], V' (A) is congruence 3-permutable.

In this claim congruence 3-permutability cannot be replaced by congruence
permutability. To see this, observe that for the simple G%-algebra A = (4; Lg, A, ¢)
of type 3 (A x {0}) U ({0} x A) is a compatible relation of A.
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4. 2% inequivalent G'-algebras

We show that all three intervals in Corollary 3.9 contain 2%° clones.

Theorem 4.1.  For arbitrary finite group G with at least two elements and
for every typei € 3,4,5, there exist simple G°-algebras A%, (J C Ny) of type i such
that for distinct sets I, J C Ng, the algebras A} and AY; are not term equivalent.

It was observed by R. McKenzie that on each finite set with at least three
elements, there are 2%° pairwise nonequivalent algebras generating congruence dis-
tributive varieties. In view of Corollary 3.10, Theorem 4.1 also implies this fact.

To construct algebras satisfying the requirements in Theorem 4.1, fix an ele-
ment a € G —{1},and forn >2,0<i<n-—1, put

ith component

~~
nti={(g,--..9, Tag> .,9,...,9): g€G},

R __ R
m= U ak
0<i<n—1

ith component

N~
nﬁ,i:{(gr":g: ga 797"'79): gEG},

L __ L
= nk
0<i<n—1

and
x2 = {(ao,...,an_1) € A™: a; =0 for at least one i, 0 <i <n —1}.

Clearly, each 777}3,1' is an orbit of Rg acting on G", and each n,Lm- is an orbit of Lg
acting on G™. For n > 3 define an n-ary operation f, and an n-ary relation £,, on
A = GO as follows:

_Jzi if (zo,..., 70 1) €ENE, for some 0 <i<n—1
TQy-ryTp_1) = ,
fnl@0,- s En) {0 otherwise,
and
B = Xp Uy -

We note that a similar construction was used in Demetrovics-Hanndk [3].
The following properties of f, and f,, are clear from the definitions.

Lemma 4.2. (i) [, is preserved by the operations 0, l; € Lg (g9 € G), A,
hg, and <.
(ii) f. admits the members of Rg as automorphisms.

Lemma 4.3. For k,n > 5, f, preserves i if and only if k # n.

Proof. Clearly, the property ‘f,, preserves 85’ means that for every n X k matrix
whose rows belong to fj, the k-tuple of column values of f,, also belongs to 3. For
an n x k matrix C' = (¢;j)nxx the rows and columns of C' will be denoted by c¢;_
andc_; (0<i<n-—1,0<j<k-—1), respectively. The transpose of a vector will
be denoted by T.
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The rows of the matrix

a 1 1 1
1 a 1 1
1 1 a 1
1 1 1 ... a
belong to B, while the row of column values of f,,, namely (a,a,a,...,a), does not,

therefore f,, does not preserve f3,.

Now let k # n, and consider an arbitrary n x k matrix C' = (¢;j)nxr Whose
rows belong to B, and let d = (fn(cLy),..., falct,_,)). We have to prove that
d € Bi. If at least one component of d is 0, then d € x} C B and we are done.
Therefore we may assume

(4.3) cTyenfforallj(0<j<k-—1),
so C' has no entries equal to 0. Hence by the assumption on the rows
(4.3)" ¢ enfforalli (0<i<n—1).
Since By is invariant under permuting its components and f,, is invariant un-

der permuting its variables, we can permute the columns and rows of C' without
restricting generality. In particular, we can assume that

Co— = (ga,g,-..,g)

for some g € G. Then by (4.3) each ch (1 <j<k-—1)is one of the following:

(1) v"=(g,a'g,...,a'g), or

ith component

=~ .
2) w =(9,9,---,9, ag ,9y---,9) forsome 1<i<n-—1.

Ifc_j=wvforalll<j<k—1,then C is of the form

ga g ... g
alg ... alyg
alg a~lg |,
a~lg ... a7ly

implying by (4.3)' that c;o = a~'ga for all 1 <i <n — 1, whence d = cq_ € fs.

If at least two of the columns c_; (1 < j < k — 1) are of type (1) and at least
one of them is of type (2), then we may assume without loss of generality that
ci1=co=vandc_j 1 =wi. Nowfor2<i<mn-—1,

_ _ -1 _
Ci1=Ci2=a g#g=Cir_1,
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yielding by (4.3)' that a~!ga = g, or equivalently, ga = ag, and
cio =(atg,...,atg,9) for 2<i<n-—1.

Further, c11 = c12 = a 'g and ¢1 1 = ag. However, (a 'g)a = g # ag, therefore
by (4.3) we must have a~'g = ag, that is, a> = 1. Thus C is of the form

ga g g9 g cee g g
a”'g a'g ag
alg a9 alg alg ... alg ¢ : — a1 -
with a=a" ", ga = ag.
alg alg atlg atlg ... alg ¢

So, looking at the columns c_; (3 < j < k —2) we get from (4.3) and (4.3) that
c1— must be the row (a~'ga,a'g,...,a 'g). Thus d = (a 'ga,g,...,9,a9) =

(gaga R 7g7ga) € IBk
Assume v occurs among the columns c_; (1 < j < k —1) exactly once. If there

is a repetition among the columns of type (2), then we can assume without loss of
generality that ¢ 1 =vandc 3 =c_3=w;. Nowfor 2<i<n-—1,

cii =a 'g#g=ci=cis,
implying by (4.3)' that a~'g = ga. Further,

c11 = a_lg and ¢ = ¢i3 = ag.

Since (ga =)a~'g = (ag)a is now impossible, we must have a~'g = ag. Thus
ag = ga and a? = 1. Hence

ci. =(g,a7g,g,...,9) forall 2<i<n-—1,

yielding that C is of the form

ga g 9 g g ... g
a’ig ag ag

g a9 g9 9 g9 ... g with a=a"', ga = ag.

g alg g g g ... g

Now looking at the columns c_; (4 < j < k — 1) and using (4.3), (4.3)" we see
that ¢, = (aga,a"'g,ag,ag,...,ag) = (g9,9a ',ga ', ga"t,...,ga"'), whence
d=(ga,g,ag,...,a9) = (9a"',g,9a"",...,9a"") € B

If there is no repetition among the columns of type (2) inc_; (1 <j <k-1),
then n — 1 > k — 2 and we can assume without loss of generality that ¢_; = v and

c—j =wj_1 for 2 < j <k —1. Now for the components of ¢;_ we have
cn=a"lgFg=ciz=...=cC141 =g #ag = cia.
In view of k > 5 there are at least two g¢’s, so this contradicts (4.3)".
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Finally, suppose every column c¢_; (1 < j < k — 1) is of type (2). If there is
a repetition among these columns , then we can assume without loss of generality
that c_; = c_s = wy. By symmetry there are two essentially different possibilities
for ¢1_:

¢ = (aga,ag,ag,...,ag) or ci_ = (ag,ag,--.,ag,aga).

In the first case the assumptions on the columns imply c_; = wy forall1 < j < k-1,
that is, C' is of the form

ga g g9 g9 ... g
aga ag ag ag ... ag
g 9 9 --- g
g 9 9 ... g

Thus by (4.3)" we conclude that ¢T, = (ga,aga, ga,...,ga). Nowd =c¢;_ € B. In
the second case we can conclude c_; = wy for 1 < j < k—2 only, so C has the form

ga g g ... g g
ag ag ag ... ag aga
9 9 -.. g
g g ... g
Since ¢_ 1 € {w1,...,wn_1} and aga # ag, therefore we have aga = g, and we

may assume c_j_; = we. Thus, applying (4.3)', we see from co_ that ga = ag
(whence also a? = 1) and

Ca— = (g7g7g7"'agaga)7
ci_=(ga,g,g,...,g,g) for 3Sl§n—1

Thus d = (giagi .. "ag,ga) = (g7ga717 e Jga717ga71) e IBk'

If there is no repetition among the columns c_; (1 < j < k—1), then n > k,
and since n # k, we have n > k. So we may assume without loss of generality that
C is of the form

ga g9 9 g 9
ag g9 g 9
g ag g 9
9 9 ag 9
9 9 9 ag
9 9 9 9
9 9 9 9

By (4.3)' we have ag = ga and ¢;o = g for 1 < i < k—1 and ¢ = ga for
k <i<n—1. Thus c_¢ ¢ nZ, contradicting (4.3).
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This completes the proof of the lemma.
Proof of Theorem 4.1. For arbitrary set J C Np, let

Aj = (G% L, A {fnisin € T}),
A = (G% La,ho,{fnis:n € J}),
A-3] = (G07 LGa/\;o; {fn+5:n € J})

By Lemmas 4.2 (i) and 4.3, Bx15 (k € No) is a compatible relation of Al if and only
if k ¢ J, proving the claim on non-equivalence. The other claims of the theorem
follow from Corollary 3.9, Lemma 4.2 (ii), Lemma 3.3, and Proposition 3.5 (iii).

5. Survey of strictly simple term minimal algebras

We need some more notation, in addition to what was introduced at the be-
ginning of Sections 1 and 2, and before Proposition 3.5.

Let A be a finite set. For a permutation group G acting on A, let R(G) denote
the clone of all operations f on A such that f admits each member of G as an
automorphism, and R;q(G) its subclone consisting of all idempotent operations in
R(G). If |A] = 2 and G = {id}, then we write R, Riq instead of R(G), Ria(G),
respectively. Similarly, if A = G° for the one-element group G (and hence Rg =
{id}), then we write Ro instead of Ro(Rg) (see Section 2).

For an element 0 € A and for n > 2, let F2 denote the clone of all operations
f on A preserving the relation X% (introduced in Section 4). Furthermore, we put
Fo= n;i2 F) IE:) :

For a vector space xA = (4;+,K) over a field K, End KA stands for the
endomorphism ring of x A and T(A) for the group {z + a: a € A} of translations
of A.

In case |A| = 2, the two distinct semilattice operations on A will be denoted
by A and V.

By Theorem 1.9, there are four basic types of strictly simple term minimal
algebras. In the discussion below we follow this classification. Within each class,
we list the algebras according to their types 1-5 by tame congruence theory.

(0O)(a) A is a strictly simple term minimal algebra such that Clo; A is a transitive
permutation group on A

These algebras were determined, up to term equivalence, in [11]. There are the
following possibilities:

(1) Clo A = [G] for a primitive permutation group G on A;

(2) CloA = [Clog ( A), T(X)] for some vector space x A = (A; +, K)
over a finite field K;

(8) CloA = R(G) for a regular permutation group G on A.

(End x A)

In this class, there are no algebras of type 4 or 5.
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(0)(b) A is a strictly simple term minimal algebra such that C4 C Clog A and
Cloy A — C4 is a permutation group on A

These are the so-called minimal algebras (with CloA = Pol A) that play a
central role in tame congruence theory. We have the following cases:

(1) CloA =[G U Cy] for a permutation group G on A which is primitive if
|A] > 2;

(2) CloA = Pol kA for a one-dimensional vector space x A over some finite
field K;

(3) |A| =2 and CloA =TR;

(4) |A| =2 and CloA =Pg;

(5) |A|=2and CloA =[A, C4]or [V, Cy4].

The fact that for |A| > 2 every algebra A in class (O)(b) is as decribed in (1)
or (2) above, follows from a more general theorem of P. P. Pélfy [8]. For |A| = 2,
the possibilities can be seen by inspecting Post’s description [9] of all clones on a
two-element set. (For another proof, cf. [5; 4.7, 4.8].) It is worth noting here that
Hobby and McKenzie [5; 4.32, 13.9] described all term minimal algebras A of type
2-5 with C4 C Clo; A, whether simple or not.

(I) A is a strictly simple term minimal algebra such that Clo; A = {0} U Lg for
some group G with A=G°, 0¢ G

The investigation of these algebras occupied Sections 2—4 of this paper. The
main results are that for |A| > 2 and for a fixed finite group G (|G| > 1), in class
(I) there is no algebra of type 1, and an algebra is of type 2 if and only if it is term
equivalent to a one-dimensional vector space (therefore such an algebra exists if and
only if [A| = |G|+ 1 is a prime power and G is cyclic); furthermore, the clones of
algebras of types 3, 4, and 5 form intervals in the lattice of clones of all algebras
on A = G° with unary part {0} U Lg, as shown in Figure 1. Each of the intervals
corresponding to types 3, 4, 5 have cardinality 2%°.
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Figure 1

Remarks. (1) Every G%-algebra A which is not simple, has a congruence
en where N is a normal subgroup of G with |N| > 1. Indeed, by Lemma 2.8 (i),
e is a congruence of A for some subgroup H of G such that |H| > 1. Selecting H
so that |H| be maximal, we see that A /eq is a simple term minimal algebra having
no nontrivial proper subalgebra and a single trivial subalgebra. Thus, by Lemmas
1.5 and 2.8 (ii) we conclude that H is a normal subgroup of G.

This implies that for every G°-algebra A which is not simple, CloA C
Ro(Rg) N Pey for some normal subgroup N of G with |[N| > 1. It can be proved
that each of these clones Ro(Rg) N Pey is covered by Ro(Rg).

(2) It is easy to see that the operations in Lg are automorphisms of the
semilattice (A;A), therefore every operation in [Lg,A] is either constantly 0 or of
the form Iy (zi0) A ... Alg,_, (24,_,) for some go,...,g9xk—1 € G and some pairwise
distinct variables z;,, ..., 2;,_,. Thus [Lg,A] covers [0, L] in the lattice of clones.

(3) Among the six bounds of the intervals of clones of simple G°-algebras of
types 3, 4, 5, respectively, there are no other inclusions than those suggested by
Figure 1 (and established in Corollary 3.9). In view of Theorems 3.6-3.8, the only
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inclusion to be excluded is Ro(Ra) NPy, C [La, A, ©]. As we have seen in the proof
of Lemma 4.3, the absorptive operation f3 € Ro(Rg) does not preserve the relation
Bs. By Proposition 3.5 (iii), we have f3 € Ro(Rg)NP,,, while by Lemma 4.2 (i), 83
is a compatible relation of the algebra (4; Lg, A, ¢), whence f3 ¢ [Lg, A, ©]. Thus

Ro(Rg) n PNO Z [L(;,/\,O].

(4) Let Vectg denote the family of all one-dimensional vector spaces that are
Go—algebras. Clearly, if K,Z € Vectg, then {0} U Lg = Clog K,Z is the set of scalar
multiplications of kA. This shows that such a vector space exists if and only if
|A| = |G0| is a prime power and G is a cyclic group. In this case, it follows that for
each kA € Vectg, we have kA= (4;®,0, Lg) for some Abelian group operation @,
and hence Clo g A = [L¢, ®]. Now an argument similar to that used in (2) implies
that [0, Lg] is a lower cover of Clo kA, and by Lemma 2.9 we get that Ro(Rg) is
an upper cover of Clo K]l\.

(5) Let G be a cyclic group of order ¢ — 1 (¢ = p*, p prime, k& > 1) and
A= GP. It is not hard to determine the exact number of distinct clones Clo KA\ with
kA € Vectg. Obviously K is the g-element field. So we can assume without loss of
generality that A = K and G is the multiplicative group of K. The addition of K
will be denoted by +, and a generator of G by a. Obviously, KK = (K;+,0,Lg) €
Vectg.

Now let xA = (K ®,0,Lg) be an arbitrary vector space in Vectg. Clearly,
KA is isomorphic to KK Moreover, if 7: KK — KA is an isomorphism, then the
unary operation of KA corresponding to the operation [, of KK belongs to Lg,
that is,

g t=1(1ad® ... a1t = (x(1) w(a) 7(a?) ... 7(a??)) € Lg.
Hence 7 is one of the polynomial functions of K in
P={cx’ c€eG,1<i<q-2, ged(i,q—1) =1}.
It is easy to see that P is a permutation group on K, and the converse of the above

claim also holds: each permutation w € P yields a vector space g A € Vectg with
addition

@y =n(r""(z) + 7))

Two permutations m, 7' € P yield the same operation @ exactly when aln' €
Aut (K;+). For o(x) = cz' € P we have

o € Aut (K;+) iff 7(z) =2' € Aut(K;+) iff 7€ Aut(K;+,),
and the latter is well known to be true if and only if 7 is a power of p. Thus
PnAut(K;+) ={c:c’”l: ceG, 0<I<k—-1}.

So the number of distinct operations @ yielding vector spaces Kﬁ € Vectg is the
index of P N Aut (K;+) in P, namely r¢(p* — 1) (¢ is Euler’s function). Since
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ClogxA = [La,®] and @ is the only Abelian group operation in Clo K A, therefore
the number of clones Clo kA in question is also 3¢ (p* — 1).

Using Post’s result [9], one can easily draw the corresponding lattice for |[A| = 2,
see Figure 2. Of course, in case |A| = 2 we have |G| = 1, Lg = {id}, and every
algebra is simple; however, since the analogue of Corollary 2.3 is not true, therefore
the constant 0 cannot be omitted from the fundamental operations. Furthermore,
there are only countably many clones. In addition, there are two essential differences
between the cases |[A| > 2 and |4| = 2:

(a) In case |A| = 2 the interval corresponding to type 5 collapses into one
element, implying Ro NPy, C [0, ho] (cf. Remark (3) for |A| > 2).

(b) However, there is another clone of type 5, namely [0, V], which has no
counterpart in case |[A| > 2.

Figure 2

Now we can summarize the possibilities as follows:

(1) |A| =2 and Clo A = [0,id];

(2) CloA = Clo gA for a one-dimensional vector space xA over some finite
field K;
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(8) [0,Lg,A,o] C CloA C Ro(Rg) for a finite group G with A = G%, 0 ¢ G;
for |A| > 2, this interval has cardinality 2%, while for |A| = 2, it is a descending
w + 1-chain with elements

Ro, RoNFY (2<k<w), RoNF2=][0,A,0];

(4) [0,Lg,ho] C CloA C Ro(Rg) N P< for a finite group G with A = G,
0 ¢ G; for |A| > 2, this interval has cardinality 2%, while for |[4| = 2, it is a
descending w + 1-chain with elements

RoNP<, RoNP<NF (2<k<w), RoNP<NF)=0,ho];

(5) |A|=2and CloA =][0,V], or
[0,Lg,A] C CloA C Ro(Rg) NP, for a finite group G with 4 = G°,
0 ¢ G; for |A| > 2, this interval has cardinality 2%°, while for |A| = 2, it has exactly
one element.

(II) A is an idempotent strictly simple term minimal algebra

For |A| > 2 these algebras were determined in [10], up to term equivalence.
Again, the case |A| = 2 can be settled by referring to Post’s lattice [9]. Thus we get
the following possibilities:

(1) |A| =2 and Clo A = [id];
(2) CloA = Cloyg ((EndKX);D for some vector space kA = (A;+, K) over a
finite field K;
(8) CloA = Ry(G) for a permutation group G on A such that every non-
identity member of G has at most one fixed point; or
CloA = Rig(G) N Fp for some k (2 < k < w), some element 0 € A, and
some permutation group G on A such that 0 is the unique fixed point of every
nonidentity member of Gj
(4) |A| =2 and CloA = R;a(G) N P< for a permutation group G on A; or
|A] = 2 and CloA = Rig N P< N Fp for some k (2 < k < w) and some
element 0 € A;
(5) |A|=2and CloA = [A] or [V].
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Ro(Ra) NPuy Ro(Rg) NP< Ro(Ra)

[La, N [La,ho] [La,A, 9]

|G| >2 Ro(Rg)NP-y [0,Lg] ClogxA
(N<G, |N|>1) (for appropriate G)

1 2 3 4 5 =5 = = = =

IG|=1 RoNPu =[0,A] RoNP< Ry
[0, 0] [0,A,] [0,V] [0] [0,+]

1 2 3 4 5 -5 5 =5 =5 -

Ro(Re) NPuy Ro(Re)NP< Ro(Rg)

[La, A [La,ho] [Lag,A, 9]

|G| >2 Ro(Rg)NP-y [0,Lg] ClogxA
(N<G, |N|>1) (for appropriate @)

1 2 3 4 5 - =5 —»5 = =

IGl=1 RoNP, =1[0,A] RoNP< Ro
[0, ho] [0,A,0] [0,V] [0] [0,+]

1 2 3 4 5 - = = = =

33



