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1. Introduction and statement of main results

Homogeneous algebras, that is algebras A = (A; F') whose automorphism group Aut A
is the full symmetric group on A, were first investigated by E. Marczewski [6]. B. Csdkény,
T. Gavalcova [2] and S. S. Marchenkov [4] described all homogeneous algebras, up to term
equivalence. For an n-element set A with n > 5 the lattice of clones of homogeneous algebras

on A turned out to be
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(with n “levels”). It is easy to see that if A is a finite homogeneous algebra, then the family
Iso A of internal isomorphisms (i.e., isomorphisms between subalgebras) of A is either the set
Iy of all bijections B — C with B,C C A, |B| =|C|, or the set I of all such bijections with
|B| # |A|—1. In Figure 1 the encircled points correspond to the largest clones of algebras with
these sets of internal isomorphisms. Thus the possible clones of homogeneous algebras A with
a given set Iso A of internal isomorphisms form two chains. On closer examination one can
see that the left one of these chains consists of the clones containing the dual discriminator

if x =
d ) ) = { ./L‘ l y M b)) A )
(2.9, 2) z otherwise (9,2 € 4)

while the right one of those not containing d. Moreover, the “levels” correspond to the
existence of crosses of various sizes among the subalgebras of A2. Recall that for k,l > 2 a

k x| cross on A is a subset of A2 of the form
X(Bl, B2, bl,bg) = (Bl X {bg}) U ({bl} X Bz)

with by € Bl,bz € Bg, ‘B1| = k, ‘B2| = l,

and the size of X is max{k,}.

The aim of this paper is to show that, apart from a few exceptional algebras which occur
also among the homogeneous algebras provided the base set is small, the situation is similar
under much weaker symmetry conditions than homogeneity. It suffices to require that

(S1) for every subalgebra B = (B; F) of A, the automorphism group of B acts primi-
tively on B, and

(S2) for every subalgebra B = (B; F') of A and for any set C C A with |C| = |B|, C
supports a subalgebra of A isomorphic to B.

Thus our results generalize also S. S. Marchenkov’s theorem [5] on finite algebras A
with Aut A the alternating group on A (|A| > 4), and some results of S. S. Marchenkov,
J. Demetrovics, L. Hannék [3] concerning the case |A| = 3. (See Section 5.)

In this paper we call an algebra A symmetric if (S1) and (S2) are satisfied. Clearly, (52)
implies that

(S3) if B = (B;F) is a proper subalgebra of A, then (C;F) is a subalgebra of A
whenever C' is a subset of A with |C| < |B|.

Therefore, to every finite symmetric algebra A there corresponds a natural number
v(A), 0 <v(A) <|A| -1, such that a proper subset B of A is the universe of a subalgebra
of A if and only if |[B| < v(A). Obviously, »(A) > 1 if and only if A is idempotent.

For the description of symmetric algebras we need some notation. We write Clo A for

the clone of (term operations of) A. If I is a family of bijections between subsets of A, let Qj



denote the clone of all operations on A admitting the members of I as internal isomorphisms.
Let D; denote the clone of all idempotent operations on A, and &; the subclone of D,

consisting of all operations preserving every set
Loy ={(a,a,a), (a,b,b), (b,a,b), (b,;b,a)} (a,be A,a#b).

For 2 < m < |A| let D,, be the clone of all operations in D; preserving every m X 2 cross,
and &, the clone consisting of all operations f € D; for which there exists a projection p
agreeing with f on every m-element subset B of A. If A= (A;+) is an Abelian group and
RA = (A;+, R) is an R-module, we write I(A\), resp. I(RA\), for the clone of all idempotent
term operations (or, what is the same, the clone of all idempotent polynomial operations) of
A, resp. pA, ’P(A\), resp. P( R;l\), for the clone of all polynomial operations of A, resp. gA,
and T(A) for the group of all translations z + a (a € A) of A.

The first observation is that almost all symmetric algebras are idempotent.

1.1. Proposition. Let A = (A;F) be a finite symmetric algebra which is not idem-
potent. Then |A| is prime and there is a (cyclic) group A= (A;+) such that one of the
ollowing holds:
following hold,

(L11) CloA=Q 2 X X

(1.1.2) CloA = QT(X) NP(A), which is generated by T(A) UT(A);

(1.1.3) CloA is generated by T(A).

Thus we can concentrate on idempotent symmetric algebras. The main result of the

paper is

1.2. Theorem. For every finite idempotent symmetric algebra A = (A; F') one of the
following conditions are satisfied:

(1.2.1) Clo A = Qis0a N Dy, for some m with 1 < m < v(A) orm = |A|;

(1.2.2) CloA = Qis0a NEp, for some m with 1 < m < v(A) or m = |Al;

(1.2.3) CloA = I(Kzzl\) for a 1-dimensional vector space kA = (A;+, K) over a finite
field K;

(1.24) CloA = I(A\) for a 4-element abelian group A = (A;+) of exponent 2.

The proofs will be given in Section 3, following some preparations in Section 2. The
short Section 4 is devoted to the question of the existence of the various types of symmetric
algebras with given internal isomorphisms. Finally, in Section 5 we present some applications;

in particular, we derive the results of [2], [3], [4], [5] mentioned above.



2. Preliminaries

We follow the convention that algebras are denoted by boldface capitals, and their uni-
verses by the corresponding letters in italics. The universes of subalgebras of an algebra are
called subuniverses. Let A be a nonempty set. We write |A| for the cardinality of A. Recall
that an operation f on A is said to preserve a subset B of A* (k > 1) if B is a subuniverse
of the algebra (4; f)*. It is well known that the clone Clo A of term operations of a finite

algebra A is determined by the subuniverses of finite powers of A in the following sense.

2.1. Theorem. Let A be a finite algebra. For an operation f on A we have f € Clo A

if and only if f preserves the subuniverses of A¥ for all integers k > 1.

We now introduce some notation for constructions that will be used to produce sub-
universes from subuniverses of finite powers of arbitrary, or in the last case for idempotent,
algebras A. As usual, for C,C’ C A%, C o' denotes the relation product of C,C’, and C~1
the converse of C. Let B be a subset of A* (k > 1). We will write k for the set {1,...,k}
indexing the components of B. For an [-tuple (i1,...,4;) € k! the projection of B onto its
components iy, ...,% is denoted by pr; , B. If I = {i1,...,4;} is a nonvoid subset of k
with 43 < ... <4, we let pr; B stand for pr;  ; B. The symbol B X By x ... x By will be
used to designate that pr; B = B; for all 1 € k. For B < B; X ... X By and for arbitrary
bijections m;: B; — C; (C; C A, i € k) we set

B(my, ..., 7] = {(x171, ..., 2k7k): (21,...,25) € B}

If 1 <I<kand (a41,...,ar) € A¥7!, then we define the subset of A’ arising from B by

substituting the constants a;41, ..., ag for the (I+1)-st up to the k-th components as follows:
B(:cl,...,:vl,al+1,...,ak) = {(1'1,...,1]) € Al (:cl,...,:vl,aHl,...,ak) € B}

For arbitrary bijection m: C — C’ (C,C" C A) the set {(c, cm): ¢ € C} will also be called a
bijection. We say that a subset B of A* (k > 1) is directly decomposable if, for some partition
{I, T} of k, B coincides with (pr; B)x (prj B) up to the order of its components. Recall that B
is said to be reduced if it is directly indecomposable and no projection pr; ; B 1<i<j<k)
of B is a bijection. The size of B is max{|pr; B|:1 < i < k}. In describing the idempotent
symmetric algebras we will need the following result from [11] (see Theorem 4.3 and the

remark on p. 98).

2.2. Theorem. [11] Let A be a finite idempotent algebra. For any integer k > 2 and
for arbitrary reduced subuniverse B < By x ... x By, of A* one of the following conditions
holds:



(2.2.1)  AZ? has a reduced subuniverse of the same size as B;

(2.2.2) the subalgebras B; (1 < i < k) of A are pairwise isomorphic, moreover, there
exist a finite field K and a vector space K§1 = (B1;+, K) such that CloB; = I((Enngl)gl).
For arbitrary isomorphisms m;: B; — By (1 < i < k), the subuniverse B[ry, ..., m] of AF is,

up to the order of its components, of the form

{(yla' "7yl—lagl(y17 .- 'ayl—l)a .. '7gk(y17 .- '7yl—1)):y17 - Y1-1 € Bl}
with2 <1<k and g,...,qx € P(Kﬁl).

In this paper an algebra is called trivial if all its basic operations (hence all term op-
erations) are projections. By a result of I. G. Rosenberg [9] every nontrivial algebra has a
term operation of one of five well-determined types. Recall that a majority, resp. minority,

operation is a ternary operation f satisfying the identities

fz,y,y)=fly,z,y) = f(y,y,7) =,

or
fz,y,y) = fly,z,y) = f(y,y,x) =z,

respectively, and for n > 3, 1 < ¢ < n, an n-ary operation g is called an ¢-th n-ary semipro-

jection if it satisfies all identities

9(xjy, ..., x,) =z with ji,...,5, €{1,...,n—1}.

2.3. Theorem. [9] For every nontrivial algebra A, Clo A contains either

(2.3.1) a nontrivial unary operation, or

(2.3.2) a binary idempotent operation distinct from the projections, or

(2.3.3) a magority operation, or

(2.3.4) for some n > 3, an n-ary semiprojection which is not a projection, or

(2.3.5) a minority operation of the form x + y + z for some Abelian group (A;+) of

exponent 2.

K. A. Baker and A. F. Pixley [1] have shown that the condition in Theorem 2.1 can be

considerably simplified if Clo A contains a majority operation.

2.4. Theorem. [1] Let A be a finite algebra such that Clo A contains a majority
operation. For an operation f on A we have f € CloA if and only if f preserves the

subuniverses of AZ2.



In order not to have to interrupt some arguments in the next section we mention two

additional results.

2.5. Proposition. Let A be a 4-element algebra such that every equivalence on A
with two 2-element blocks is a congruence of A. Then Clo A C ’P(A\) for an Abelian group
A= (A;+) of exponent 2.

Proof. Let C denote the clone of all operations on A preserving the three equivalences
with two 2-element blocks. Clearly, C contains the constants, and every nonconstant unary
operation in C is a permutation. Furthermore, C contains the minority operation ¢ on A
with ¢(a, b, c) the unique element of A — {a, b, c} whenever a,b,c € A are distinct. Thus, by
the theorem of P. P. Palfy [7], C = P( szl\) for a vector space x A over a finite field K. By
the assumptions A must be 2-dimensional with |K| = 2, whence A is of exponent 2 and
C = P(A), as required.

A direct proof could be based on the observation that for n > 2 and for ev-
ery n-ary operation f € C depending on all of its variables the unary operations
f(z,z,a3,...,a,) (as,...,a, € A) are constant. The details are left to the reader. Note
also that in Proposition 2.5 the clone ”P(A\) does not depend on the choice of A\, and the
operation ¢ occurring in the proof, which is sometimes called Swierczkowski’s operation, is

q(x,y,z) =+ y+ =

2.6. Proposition. For a 2-element idempotent homogeneous algebra A, either Clo A
contains the (unique) majority operation on A, or Clo A is contained in the clone generated

by the (unique) minority operation on A.

Proof. Assume A is nontrivial. Applying the assumptions on A and the fact that
the projections are the only semiprojections on a 2-element set, we see from Theorem 2.3
that Clo A contains either the unique majority operation d or the unique minority operation
p(z,y,2) = x4+ y+ z (which is independent of the choice of A\) Supposing d ¢ Clo A we get
from Theorem 2.1 that some finite power A* of A contains a subuniverse B not preserved
by d. Select B so that k£ be minimal. Then, clearly, £ > 2, B is reduced, it is of size 2, and
hence B < AF. Since p € Clo A and p preserves none of the reduced subsets of A2, therefore
by Theorem 2.2 Clo A = I((EHEKZ)A\) for a vector space xA = /(\A; +,K).AAS |Al = 2, we
have |K| = 2, yielding that g A is 1-dimensional and I((EndKZ)A) =TI(gA) =ZI(A). It is

-~

well known and easy to see that Z(A) is generated by p. This completes the proof.

The claim of Proposition 2.6 could also be checked by making use of E. L. Post’s de-

scription of all clones on a 2-element set [8] (see e.g. [11]).



Recall that a permutation group G acting on a finite set A is called primitive if, for
arbitrary subset S of A with 1 < |S] < |A|, there exists a @ € G such that ) # SN Sw C S,
moreover, |G| > 1 if |[A| = 2. It is easy to see that every primitive permutation group G
on A is transitive, that is, for arbitrary elements a,b € A there is a m € G with ar = b. A
transitive permutation group G on A is said to be regular if no nonidentity permutation in
G has fixed points.

In addition to (S3), the following consequences of (S1)—(S2) will be frequently used.

(S1);  For every 2-element subuniverse B = {a,b} of A, the transposition (a b) on B
is an internal isomorphism of A.

(S1)s  For every 3-element subuniverse B = {a, b, c} of A, the cycle (a b ¢) on B is an
internal isomorphism of A.

(S1)*  For every subuniverse B of A and for every subset By of B with 1 < |By| < |B],

there exists a set H of internal isomorphisms B — B of A such that

| ﬂ Bo7'('| =1.
TeH
(This follows by induction on |Bp| from the definition of primitivity.)
(S2)*  For arbitrary subuniverses B,C of A with |B| = |C|, and for any elements
b€ B, ¢ € C, there exists an internal isomorphism m: B — C of A such that bwr = ¢. (This

is an immediate consequence of (S2) and the transitivity of Aut C.)

3. Proofs

Proof of Proposition 1.1. By assumption v(A) = 0, that is A has no proper subalgebras.
By (S1) Aut A is primitive. Furthermore, since the fixed points of each automorphism of
A form a subuniverse in A, we get that the nonidentity automorphisms of A have no fixed
points. Thus Aut A is a regular permutation group of prime degree, whence |A| is prime and
there exists a cyclic group A = (A4;+) such that Aut A = T(A). Now the claim follows from
the Corollary to Theorem 1 in [10].

The rest of this section is devoted to the proof of Theorem 1.2. From now on A denotes
a finite idempotent symmetric algebra. In Lemmas 3.1-3.4 we show that there are a lot of

crosses among the subuniverses of A2.

3.1. Lemma. If there is a k x | cross among the subuniverses of A2, then every k x I

cross is a subuniverse of AZ2.



Proof. Let B = X (B, Ba,b1,by) and B’ = X (B7, B}, b,b5) be two k x I crosses on A
such that B is a subuniverse of A2, Then for : = 1,2, B; = pr; B is a subuniverse of A,
hence by (S3) and (S2)* there exists an internal isomorphism =;: B; — B, of A such that

b;m; = bi. Now, clearly, B’ = B[my, m3], therefore B’ is a subuniverse of AZ.

3.2. Lemma. If A% has a 2 x 2 cross among its subuniverses as well as a reduced
subuniverse of size m (2 < m < |A|), then there is an m X 2 cross among the subuniverses of
A2,

Proof. We proceed by induction. Suppose 2 < k < m and there is a k X 2 cross among
the subuniverses of A2. We prove that for some n (k < n < m), there is also an n x 2 cross
among the subuniverses of AZ.

Let B < By X By be a reduced subuniverse of A% with |By| = m, m > |Bs| > 2.
Since B is not a bijection and |B;| = m > k, therefore there exist pairwise distinct elements
ai,...,ar € A such that .

| U B(z,a;)| > k.
i=1

(Note that B(z,a;) is empty if a; ¢ Bs.) Moreover, since B # B; X Bs, we can select

ai,...,ak so that not all nonempty sets B(x,a;) (1 <i < k) are equal, say
k
(321) U B("I;a ai) 2 B("Ea al) (7é (Z))
i=1

Let C; and Cy denote the left and right hand sides of (3.2.1), respectively, and let n = |C4].

Then we have n > k, furthermore, by assumption and by Lemma 3.1, the cross

X = {(a1,v), (a1,v), (a2,v), ..., (ar,v)}

is a subuniverse of A? for arbitrary elements v,v’ € A, v # v'. Thus C = Bo X is a

subuniverse of A2. It is easy to see that
C=(Cox {v'}HU(Cy x{v}), Cy=pr,C,

so by property (S1)* applied to the subuniverse C; of A and its subset Cy we conclude that
an intersection of subuniverses of A2 of the form C|o,id] for some internal isomorphisms

0:C; — Cy of A is an n X 2 cross.

3.3. Lemma. If A? has a reduced subuniverse of size m (2 < m < |A|), then
(3.3.1) v(A)>2 or|A|l =2 (i.e., every 2-element subset of A is a subuniverse of A ),

and



(3.3.2) either there is an m x 2 cross among the subuniverses of A2, or |A| = m = 4

and A has a congruence with two 2-element blocks.

Proof. Let B <X By x By be a reduced subuniverse of A? with |B;| =m, m > |By| > 2.
In view of (S3), if m < |A| or some of the subuniverses B(z, bs), B(b1,x) (b1 € B1,bs € B3)
are neither 1-element nor equal to A, then (3.3.1) is evident. Otherwise B is an |A| X |A]
cross, say B = X(A, A,a1,az2). Using (S1) we get that there exist 71,72 € Aut A with

a17m1 # a1, a9m2 # az. Then
{a1,a1m} = pry (B N B[my, m3))

is a subuniverse of A, whence (3.3.1) follows.

To verify (3.3.2), it suffices to show by the previous lemma that A? has a 2 x 2 cross
among its subuniverses unless |[A| = m = 4 and A has a congruence with two 2-element
blocks. Since B is reduced and |B;| > |Bz|, the subuniverses B(z,bs) (b2 € By) of A are
neither all equal to By, nor all singletons. We distinguish two cases.

If there exist two distinct sets B(z, be) and B(z, b)) (b2, b, € Bs) which are not disjoint,
say b1 € B(z,b2) N B(z,b5) and b} € B(x,by) — B(x,bh), then BN ({b1,b)} x {ba,b4}) is a
2 x 2 cross and a subuniverse of A? by (3.3.1).

If any two distinct sets of the form B(z, bs) (b2 € Bs) are disjoint, then B has a partition
{Uy,...,Us} and Bs has a partition {V1, ..., V,} such that

S

B=JWixW).

i=1
We may assume that |Uy| > |Us| > ... > |Us|. Since B is reduced and |Uy |+ |Us|+...+|Us| =
|B1| > |Ba| = |V1| + |Va| + ...+ |Vs|, we have s > 2 and |Uy| > 2.

We show that either A has a 3-element subuniverse, or
(3.3.3) |Al=m=4, s=2, |U|=|Uz=2, and |V4]=|Va]=1o0r2.

Observe first that U; and V; (1 <4 < s) are subuniverses of A, since U; = B(z, by) for by € V;,
and similarly V; = B(by, z) for by € U;. Moreover, they are proper since s > 2. Therefore,
if |U;| > 3 or |V;| > 3 for some 1 < i < s, we are done by property (S3). Suppose now
that |U;| < 2 and |V;| < 2 for all 1 <14 < s. Making use of (3.3.1) we get that for arbitrary
by e Vi, b€V, (1<i<j<s) the set

Ui U Uj = pr; (B N (A X {b2a bl2}))

is a subuniverse of A, and similarly for V; U V;. This together with (S3) again yields a

3-element subuniverse unless (3.3.3) holds.



Assume that A has a 3-element subuniverse, that is, v(A) > 3 or |A| = 3. Select
elements uy,u) € Uy (u1 # u}), ug € Us, v1 € Vi, vy € Vi, and let U = {uy,u}, uz}. Then

C=Bn (U X {’1)1,’[)2})

is a subuniverse of A2. Clearly, C = {(uy,v1), (u},v1), (u2,v2)}, so E = C o C~! is the
equivalence relation with blocks {u1, u}}, {ua}. By (S1)s the cycle v = (uy uj u2):U — U is

an internal isomorphism of A. Thus

E[’Y”Y] ok = Uz - {(’Uq,Uz)}

is a subuniverse of A? for which we can apply the first case settled above, yielding the
existence of a 2 x 2 cross among the subuniverses of A2.

Finally, assume that we have (3.3.3). Select v, € Vi, vy € Va. Then
D=BnN (A X {’1)1,’1)2})

is a subuniverse of A2, whence the equivalence relation D o D! with blocks Uy, Us is a

congruence of A.

3.4. Lemma. Assume there is a cross of size m (m > 2) among the subuniverses of
AZ

(3.4.1) If m < |A|, then every cross of size at most m is a subuniverse of A2.

(3.4.2) If m = |A|, then every k x | cross such that k,l # v(A)+1,...,|A| —1 is a

subuniverse of A2.

Proof. Let B = X (B, Ba,b1,b2) be an m xn (m > n > 2) cross among the subuniverses
of A2, What we have to show is that every k x [ cross with k,! < m such that A has both
k-element and l-element subuniverses is a subuniverse of A2. A k x 2 cross can be constructed
from B as follows: C = BN (Cy x Cg) where C is a k-element subset of By with b; € C;
while Cs is a 2-element subset of By with by € Cy. By (S3) and Lemma 3.3 Cy and Cy are
subuniverses of A, whence C is a subuniverse of A2. Now Lemma 3.1 implies that every
k x 2 cross is a subuniverse of A%. Similarly for [ x 2 crosses. Finally, for arbitrary k x [
cross D = X (D1, Do, dy,ds) we have D = D o D~ where D = X(Dy,{c,d},dy,c)isa k x2
cross and D = X (D, {c,c},da, ') is an I x 2 cross (¢, are arbitrary distinct elements of

A). Hence D is a subuniverse of A2

The next lemma reveals the structure of the exceptional 4-element algebras occurring in
(3.3.2).



3.5. Lemma. If |A| =4 and A has a congruence with two 2-element blocks, then either
A is trivial, or it satisfies (1.2.4).

Note that for a 4-element Abelian group A = (A;+) of exponent 2, Z(A) is generated by

the ternary minority operation x + y + z, which does not depend on the choice of the group

-~

A.

Proof. Since by (S1) Aut A is primitive, it contains the alternating group on A. Therefore
all three equivalences with two 2-element blocks are congruences of A. Proposition 2.5 implies
now that Clo A is a subclone of 7 (A\) for an Abelian group A= (A;+) of exponent 2. Hence

-~

the claim of the lemma follows from the well-known fact that Z(A) is minimal.

Now we will see that the 2-element subalgebras of A already determine whether the dual

discriminator is a term operation of A.

3.6. Lemma. Assume v(A) > 2 or |A| = 2. Then the following conditions are
equivalent:

(3.6.1) the discriminator d on A is a term operation of A,

(3.6.2) A has a majority term operation, and

(3.6.3) for some (or equivalently, for arbitrary) 2-element subalgebra S of A, CloS

contains the (unique) majority operation on S.

Proof. The claim is trivial if |A| = 2, so assume |A| > 3. Since d is a majority oper-
ation, (3.6.1)=(3.6.2)=(3.6.3) is obvious. The equivalence of the two claims in (3.6.3) and
(3.6.3)=-(3.6.2) are immediate consequences of the fact that the two-element subalgebras of
A are isomorphic. To prove (3.6.2)=(3.6.1), suppose Clo A contains a majority operation
f,and d ¢ CloA. By Theorem 2.4 A? has a subuniverse B < B; x By not preserved by
d. Since d does not preserve B, interchanging the components of B if necessary we get that
there exist distinct elements aq,b; € By and pairwise distinct elements aq, ay, ba € By such
that

(a1,a2), (a1, a5), (b1,b2) € B and (ai,b2) ¢ B.

Consider the subuniverse C = B N ({a1,b1} x A) of A% Clearly, C(a1,z) = B(a1,z),
C(b1,x) = B(b1,x), and d does not preserve C. If |[A| = 4 and C has the form
C = {(a1,a2), (a1, a3), (b1, b2), (b1, b5)}

with {as,ab, bs, by} = A, then the equivalence C~! o C with blocks {as,a}}, {bs,b)} is a
congruence of A. Hence the previous lemma yields that f ¢ Clo A, contradicting our as-

sumption.



We prove that in all other cases A has a 3-element subuniverse, and hence v(A) > 3 or
|A| = 3. Let |A| > 3. In view of (S3) our claim is obvious if |C(a1,z)| > 2 (as b2 ¢ C(a1,x)),
or 2 < |C(by,z)| < |A], or |pry C| < |A] (as asg,ab, by € pry C). If none of these conditions
holds, then

C ={(a1,a2), (a1,a5)} U{(b1,7):x € A}.

Applying (S1)2 we get that the transposition 7 = (a; b1) is an internal isomorphism of A.

By (S1) A has an automorphism 7 such that {as, a4} N {aa7, a7} is a 1-element set. Thus
pry, (C N C[r, 7)) = {az, ay, asm, asm}

is a 3-element subuniverse of A.
Now it follows that
D=Bn ({al7b1} X {a2aal27 b2})

is a subuniverse of A? such that
(a1,a2), (a1,as), (b1,b2) € D and (ay,bs) ¢ D.

Hence
(0’13 f(a% a,2a b2)) = f((ala 0'2), (0,1, al2), (bl? b2)) €D

implies f(asg,ah, ba) # by. Similarly, f(ah,az,bs) # ba, f(b2,as,ay) # be, and so on. Since
{ag, a},ba} is a subuniverse of A, and the roles of ay and a}, are symmetric, we may assume
that f(aq, ah, ba) = as. However, by (S1)3 the cycle v = (ag by af) is an internal isomorphism
of A, whence

f(b2a a2, al2) - f(G/Q’Y, 0,12’)/, b2’)/) =agy = b2’

a contradiction. This completes the proof of the lemma.

3.7. Lemma. If the dual discriminator d is not a term operation of A, then either
(1.2.3) holds, or

(3.7.1)  for arbitrary distinct elements a,b € A, L,y is a subuniverse of A3.

Proof. Since d ¢ Clo A, therefore by Theorem 2.1 some finite power A* of A has a
subuniverse B < B; X ... X By not preserved by d. Selecting B so that k£ be minimal one
can easily see that £ > 2 and B is reduced. By Theorem 2.2 and Lemma 3.3 there are
two possibilities: either all 2-element subsets of A are subuniverses of A (this holds also
when |By| = 2), or |By| > 2 and there exist a finite field K and a vector space xB; =
(B1;+, K) such that CloB; = Z( = ﬁl) In the latter case B; has no nonsingleton

(End x By) - "~
proper subalgebras, therefore by (S3) By = A and B; = A; accordingly, we write g A for x Bj.



Also, by (S1), Aut A is primitive, hence xA is 1-dimensional and Z( A) = I(x A).

(End x A)

-~

Thus Clo A =Z(x A).

Now suppose that the 2-element subsets of A are subuniverses of A, and let a,b €
A, a#b, S={a,b}. By the previous lemma Clo S does not contain the majority operation.
However, S is obviously an idempotent algebra; moreover, by (S1)2 S is homogeneous. Thus
we see from Proposition 2.6 that CloS must be contained in the clone generated by the
minority operation on S. Since this operation preserves L, p, La p is a subuniverse of S, and

hence of A3, too.

3.8. Lemma. If a set of the form Lo (a,b € A, a #b) as well as an |A| X 2 cross is

among the subuniverses of A3 and A2, respectively, then A is trivial.

Proof. Suppose Clo A is nontrivial. Then by Theorem 2.3 it contains an operation f of
one of the types (2.3.1)—(2.3.5). Since A is idempotent, case (2.3.1) cannot occur.
Assume (2.3.2) holds for f. Since L, is a subuniverse of A3, {a, b} is a subuniverse of
A. Hence f(a,b) € {a,b}, say f(a,b) = a. Now for arbitrary c,d € A, ¢ # d, (S2)* implies
the existence of an internal isomorphism =: {a,b} — {c,d} of A such that ar = ¢, br = d.
Thus
fle,d) = f(am,br) = f(a,b)m = am = c.

Taking into account the idempotency of f we get that f is a projection, which was excluded.

If f were a majority operation, we would have

(b,6,0) = f((a,b,b), (b,a,b),(b,b,a)),

contradicting the assumption that L, ; is a subuniverse of A3.

Assume now f is an n-ary (n > 3), say first semiprojection, and let
C =X (4, {az,a3},a1,02) (a2 # a3)
be an |A| x 2 cross among the subuniverses of A2. Then, for arbitrary elements bs, ..., b, € A,
(f(a,ba,...,by),a5) = f((a1,ah), (ba,a2),. .., (bn,as)) € C,

implying f(a1,ba,...,b,) = a;. Since Aut A is transitive, it follows that f is a projection,
hence f does not satisfy (2.3.4).
Finally, if f were of type (2.3.5), then for arbitrary element ¢ € A we would get

(Ca al2) = f((C, 0'2)’ (ala 0'2)’ (a17 aIZ)) €,

a contradiction.



After these preparations we are in a position to conclude the proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose first the dual discriminator d is a term operation of
A. Tt is well known and straightforward to check (see B. Csdkany and T. Gavalcova [2])
that d preserves only three types of subsets of A%: By x By (Bi,By C A), bijections
B; — By (B1,By C A, |By| = |Bs]), and crosses. On the other hand, by Theorem 2.4, Clo A
is determined by the subuniverses of A2. Let m denote the maximum of the sizes of crosses
among the subuniverses of A2 if such crosses exist, and let m = 1 otherwise. Combining the
preceding facts with Lemma 3.4 we see that (1.2.1) holds.

Assume from now on that d is not a term operation of A, and apply Lemma 3.7. If A
satisfies (1.2.3), we are done. Suppose therefore that (3.7.1) holds for A, and let m denote the
maximum of the sizes of reduced subuniverses of A2 if such subuniverses exist, and let m = 1
otherwise. If m > 1, then one of the two possibilities in (3.3.2) holds for A. If |A] = m = 4,
A has a congruence with two 2-element blocks, and A is nontrivial, then by Lemma 3.5 A
is of type (1.2.4). Otherwise, there is an m x 2 cross among the subuniverses of A% and
hence by Lemma 3.8 every m-element subalgebra of A is trivial. Since by (S2) all m-element

subalgebras of A are isomorphic, we conclude that
Clo A g QIsoA N Em

This obviously holds for m =1 as well.

To prove the reverse inclusion it suffices to show that every operation f € Qioa NEm
preserves the reduced subuniverses of finite powers of A. Let B < B X ... X By be a reduced
subuniverse of A¥ (k > 1). If k = 1, then B is a subuniverse of A, hence the identity
mapping B — B in Iso A is preserved by f. Thus f preserves B as well. In case k > 2
we apply Theorem 2.2. In case (2.2.2) the subalgebra B; of A has no nonsingleton proper
subalgebras. Hence |B;| = 2. For arbitrary internal isomorphisms 7;: B; — By (i=1,...,k)
of A, the description of B|m,..., 7] immediately shows that all operations in £; preserve
B[y, ..., 7). (Note that L, p = {(z,y,2+ y):z,y € {a,b}} if ({a,b};+) is the group with
neutral element a.) Thus f preserves B. Consider now the case (2.2.1). By the choice of
m we have m > 2 and |B;| < m for all i = 1,...,k. Let, say, |B1| > |Ba|,...,|Bk|, and
using (S2) select internal isomorphisms m;: B; — C; of A with C; C By (i =1,...,k). Then
B[ry,...,m) is a subset of BF |B;| < m, hence it is preserved by f. Thus f preserves B as

well, concluding the proof.



4. Existence

Let A be a finite set. Now we look at the question: For which monoids T of partial
bijective transformations of A do there exist the various types of symmetric algebras A such
that T = Iso A. Obvious necessary conditions for 7' are the following. As the set of fixed
points of each automorphism of an algebra is a subuniverse, we have to require that

(TO0) idp € T whenever B is the set of fixed points of a permutation in T’
furthermore, we need the analogues of (S1) and (S2):

(T1) for every subset B of A with idg € T the permutations of B in T form a primitive
permutation group on B,

(T2) for every subset B of A with idp € T and for every set C C A with |C| = |B|, T
contains a bijection B — C.

Again, (T1)—(T2) imply that there exists a natural number vy, 0 < vp < |A| — 1, such
that for a proper subset B of A, idp € T if and only if |B| < vp. Moreover, by (T0), every
nonidentity permutation in 7" has at most vy fixed points.

Clearly, every algebra A on A with Iso A = T is symmetric, and we have v(A) = vy.
For the exceptional types (i.e., (1.1.1)—(1.1.3) and (1.2.3)-(1.2.4)), the possible monoids T' =
Iso A are determined by Proposition 1.1 and Theorem 1.2, respectively. In these cases the

-~

corresponding algebras do exist. For example, if T = T'(A) as in Proposition 1.1, then
Iso (4;Qr) =T,

hence the symmetric algebra A of type (1.1.1) with Iso A = T exists; the other cases are
similar and even more trivial.

So we can concentrate on types (1.2.1) and (1.2.2). Let T' be a monoid of bijective partial
transformations of A such that (T0)—(T2) hold and vy > 1. The problem of existence now

stands in determining those T and m (1 < m < vp or m = |A|) for which
Iso (A;Qr NDy,) =T, resp.,, Iso(4;QrNé&,)=T.

Since these equalities are trivial if |A| = 2, we will assume |A| > 3.

We construct some operations. Let |A| = n, A = {a1,...,a,}; for 1 < k < n we set
Ak ={a1,...,a;}. For B,C C A, |B| = |C|, we denote by Tg ¢ the set of mappings B — C
in T'; for brevity we write T instead of T p.

For every natural number k£ > 3 with k£ < vy or k = n, we define

d($13$33$2) if (-’El,...,fﬂk) = (Cl]_O',...,(lkO')
Arg(z1,...,zE) = for some o € T4, ¢, |C| =k,
d(z1,z9,23) otherwise,



for some 0 € Ta, ¢, |C| =k,
z7 otherwise

xo if (z1,...,2k) = (a10,...,a;0)
AT7k(:E1,...,SCk) :{

(1,...,25 € A).

Incase 2 <wvp <n—1,resp. 1 < vy <n—1, we define two operations of arity k = vp+1

as follows:

— k410 if (z1,...,2k) = (a10,...,ar0) for some o € Ty,

AT(.’L‘l,...,.’L‘k)Z .

d(z1, 2, z3) otherwise,
Ap(zr,... 25) = ag+10 if (zq, 5 Tk) = (a10,...,a,0) for some o € Ty,
T otherwise
(1,...,25 € A).

Note that Az and Ar are well defined, since if (ai0,...,ar0) = (a10’,...,arc’) for some

0,0 € Ty, then 0’0~ € T4 has at least k > vy fixed points, hence by our assumptions on
T it must be the identity, implying agy10 = agi10”’.

We will also need the ternary discriminator operation and the so-called switching oper-
ation:

z ifrx=y z Hz=y,
te,y,2) = {a: otherwise, s@y,2) =y 1f£ =% (@,y,2 € A).
xz otherwise

4.1. Lemma. The operations defined above have the following properties:
(4.1.1) all of them belong to Qr;

( ) Aty and Aty preserve none of the permutations of Ay outside Ta,;
( ) Ar and At do not preserve the identity mapping of Ay.41;

(4.1.4) Aryg, Ar €Dy forl =n and all 1 <1 < vp;

( ) A7k € Dx—1— Dy if k <wvp, and AT’n,j_XT € Dy, — Dp;

( ) Ari €&—1—& ifk<vr, and AT,n,]\T €&, —Enifvr > 2

( ) t€D1—Dy and se€& —E&s.

The proof is straightforward, the details are left to the reader.

4.2. Proposition. Let A be an n-element set (n > 3), and T a monoid of bijective
partial transformations of A such that vy > 1 and (T0)—(T2) hold. Then

(4.2.1) Iso(A;QrNDp,) =T

if and only if eitherm =vp =1, orvp > 2 and m € {1,2,...,vp,n}. Moreover, for distinct

indices m the clones Qr N D,, are pairwise distinct.



Proof. In the first claim the necessity is obvious if v > 2, while if vy = 1, then it follows
by applying Lemma 3.3 for the algebra A = (A; Q7 ND,,). For the sufficiency assume T and
m are as described in the proposition, and observe that O obviously holds in (4.2.1). To prove
the equality, we have to exhibit operations in Q7 N D,, ensuring that no partial bijection of
A outside T is an internal isomorphism. Since (T1)-(T2) are satisfied by T, it suffices to
exclude the identity mapping of the set A, 1 (if v < n —1) and, for every positive integer
k > 3 with k < vp or k = n, every permutation of A outside Ty4,. (Note that for £ < 2
such permutations cannot exist.) Using Lemma 4.1 one can easily see that for vp = m =1
the operations A, A7, while in the remaining cases the operations Ar, Aty (k> 3, and
k < wvr or k =n) do the job.

For T and m as above with vy > 2, the algebras (4; Qr N D,,) are symmetric, hence by

Lemma 3.4 we have
OrND, COrND,, C...COrNDpy+1 C O ND,, C...C OrNDy C Q7 ND;.

By Lemma 4.1 the operations A7, Armi1 (m = 2,...,vp — 1), ¢, resp., show that the

inclusions are proper, proving the second claim.

4.3. Proposition. Let A be an n-element set (n > 3), and T a monoid of bijective
partial transformations of A such that vy > 1 and (T0)—(T2) hold. Then

(4.3.1) Iso(A;QrN&ER) =T

if and only if vp > 2, either m =n=vr+1 orm < vy, and Tg is the full symmetric group
on B whenever |B| < m (B C A). Moreover, for distinct indices m the clones Qr N &, are

pairwise distinct.

Proof. In the first claim the necessity is trivial from the definition of &,, and from
Lemma 3.3. For the sufficiency assume T and m satisfy the conditions described in the
proposition. In case m = n = vp + 1 (4.3.1) is obvious, therefore let m < vp. As before,
it suffices to exhibit operations in Q7 N &, ensuring that neither the identity mapping of
Ayr41 (if v < n — 1) nor any permutation of Ay outside T4, for £ > max{3,m + 1} with
k < vp or k = n, is an internal isomorphism. (Note that by our assumptions on T such
permutations cannot exist if £ < 2 or k¥ < m.) Thus, by Lemma 4.1, the operations Az and
At (k> max{3,m+ 1}, and k < vy or kK =n) do the job.

By Lemma 4.1 the operations At ,, A7 mi1 (m=2,...,v7—1), s, resp., show also that

the obvious inclusions
OrNéE,COrNéE, C...COrN&ER+1 COATNELC...COrNE CArNé

are proper, completing the proof.



5. Applications

5.1. Finite algebras having all even permutations as automorphisms [2], [4], [5]. Let A
be a finite set with |A| = n > 4. It is straightforward to check that if A is an algebra on A
such that the alternating group Alt A on A is contained in Aut A, then A is symmetric. Thus
the results of the previous section yield that a monoid T of bijective partial transformations
of A equals Iso A for some algebra A of this kind if and only if T satisfies (T0)—(T2) and
Alt A C T. To determine these monoids T' let us denote by Bij; A the set of all bijections
B — C with B,C C A, |B| =|C| <k (1 <k <n), and by Sym A the full symmetric
group on A. Noticing that by (T0) and Alt A C T we have idp € T for every B C A with
|B| < n— 3, we get that Bij,,_5 A C T. Thus, there are the following six possibilities for 7"

T, = Bij, s AUALA, Tp=Bij,_,AUAltA,
T3 = To U {7 € Bij,,_; A — Bij,,_ A: 7 is the restriction of a permutation in Alt A},
T, =Bij, ;AUAltA, Ts=Bij, ,AUSymA, Ts= Bij, A.

The lattice they form is shown in Figure 2.

Figure 2

Obviously, vy, =n -3, vy, =vy, =n—2,and vy, =vp, =vp, =n — 1.

Now, using Theorem 1.2 and the results of the previous section we can easily draw the
lattice of clones of all algebras A on A such that Alt A C Aut A. The diagrams are presented
in Figures 3 and 4 for n > 4 and n = 4, respectively. Notice that for n > 4 no algebras of
exceptional types exist, while for n = 4 both of types (1.2.3) and (1.2.4) occur.



Figure 4

5.2. Finite symmetric algebras in which every bijection between proper subsets is an
internal isomorphism. Let A be a finite set with |[A| = n > 3, and let Ty = Bij,,_; A U Gy
where G is a primitive permutation group on A. As in the previous case, every algebra A on
A with T C Iso A is symmetric. Moreover, a monoid T of bijective partial transformations

of A equals Iso A for an algebra A of this kind if and only if
T = Bij,,_; AUG =T, UG for some permutation group G with Go C G C Sym A.

Clearly, v = n — 1 for all such T.

Thus, by Theorem 1.2 and by the results in Section 4 the lattice of clones of algebras A
on A with Ty C Iso A is as shown in Figure 5. The intervals [Q7nusyma N &, Qr, N X] for
X =D4,...,Dy,&1,...,Eq—1 are all isomorphic to the dual of the interval [Gg, Sym A] in the
subgroup lattice of Sym A.



Figure 5

5.3. Some 3-element algebras admitting a cyclic automorphism [3]. Let A = {0,1,2}
and A = (A;+) with + denoting addition modulo 3. Furthermore, let v be the translation
x4+ 1, ie,v=(012). We consider those algebras A on A for which v € Aut A. Clearly, if
A has a 2-element subuniverse, then every 2-element subset of A is a subuniverse of A, and
all 2-element subalgebras of A are isomorphic.

Thus, A is a symmetric algebra if and only if either

(a) A has no 2-element subalgebras, or

(b) the transposition (0 1) on {0,1} is an internal isomorphism of A.

In case (a), if »(A) = 0, then by Proposition 1.1 Iso A = T(A) and CloA is one of the

-~ -~ -~

clones QT(X)’ QT(X) NP(A), and [T'(A)] (the clone generated by T'(A)). If v(A) = 1, then l/)\y

Theorem 1.2 and by the results in Section 4 we have two possibilities for Iso A: Bij; AUT(A)

and Bij; A U Sym A; hence Clo A equals one of the clones QT(X) N D1, Qsyma N Dy, and



I(x A) = I(A) (as |K| = 3). If (b) holds, then we have Bij, A U T(A) C Iso A, which is
a special case of the problem settled in 5.2. Thus Iso A equals one of the monoids Ty =
Bij, AU T(A\), T, = Bij, AU Sym A, and hence the clones of 3-element algebras A of this
kind form a lattice like the one in Figure 5 with 3 “levels” and 11 elements. (See Figure 6
showing part of the lattice of all clones of algebras A on A with v € Aut A.)

Suppose now that A is not symmetric. Then every 2-element subset of A is a subuniverse
of A, any two 2-element subalgebras of A are isomorphic, and the 2-element subalgebras
have no nontrivial automorphisms. This implies that Aut A = T(A\), and that for arbitrary
2-element subsets B, C of A there is a unique internal isomorphism B — C of A.

If A2 has no reduced subuniverse of size 3, then Theorem 2.2 and the latter property
of the internal isomorphisms yields that for all & > 1, every reduced subuniverse of A*
can be uniquely written in the form D[my,..., 7] where D is a subuniverse of A* with
D C {0,1}*, and my,..., T are internal isomorphisms between 2-element subalgebras of A.
Thus, by Theorem 2.1, an operation belongs to Clo A if and only if it preserves the internal

isomorphisms of A and all such D. Consequently,
CloA={f€ QT(A\) NDy: f preserves {0,1}, and f|ro13 € T}

for some idempotent clone 7 on {0,1} (here f|{ 1} denotes the restriction of f to {0,1}).
Our assumptions on A yield that 7 must contain an operation not preserving (0 1). These
clones are known from Post’s description [8] (cf. [11]), hence the clones on A satisfying the

above conditions are

Ci={f¢€ QT(;{) ND;: f preserves {0,1}},

O1 = {f € C1: f preserves the natural order 0 < 1 on {0,1}},

Ci ={f € fpreserves {0,1}* —{(1 —4,...,1—4)}} (G €{0,1}, k=2,3,...),

k=1

Le1=1{f €0.L: fpreserves {(0,0,0), (1 —4,1,i), (4,1 —4,4), (i,4,1 — i), (1,1,1)}}

(1 € {0,1}).

It is straightforward to check (by constructing operations) that these clones are pairwise
distinct. Furthermore, since Qr, N &2 is contained in all these clones and the square of the
symmetric algebra (A4; Qr, N &) has no reduced subuniverse of size 3, therefore the same
property holds for the larger clones as well. Thus the possibilities for Clo A in this case are

exactly the clones listed above.



Note that these clones, together with Qr, N Dy, Qr, N Da, Qp, N &1, Qr, N Ey (which
correspond to the symmetric algebras A with Aut A = T(A\) such that A% has no reduced
subuniverse of size 3), form a lattice isomorphic to the lattice of all idempotent clones on
{0,1}.

Finally, assume A2 has a reduced subuniverse of size 3. Then the argument in the proof
of Lemma 3.3 can be repeated, with some simplifications due to |A| = 3, implying that there
is a 2 x 2 cross among the subuniverses of A2. A slight modification of the proof of Lemma, 3.2
yields also that there is a 3 x 2 cross among the subuniverses of A2. Indeed, using the notation
of the proof of Lemma 3.2 we see that if for the subuniverse B of size 3 and for the elements
a1, ay selected as said we have |B(z,aq)| = 3, then BN (A x {a1,a2}) is already of the same
form as C, while in the opposite case the role of a;, as is symmetric, and the construction of
C works independently of the choice of the 2 x 2 cross X with pr; X = {ay,as}.

Taking into account the internal isomorphisms of A we conclude that one of the crosses
X; =X (A,{0,1},0,49) (i€ {0,1})
is a subuniverse of A2. If X; is a subuniverse of A2, then
X, n{0,1}% ={(0,0),(0,1),(1,1)} and Xi[y,id] N {0,1}* = {(1,0),(1,1),(0,1)}

are also subuniverses of A2, whence Clo A C ). Similarly, if X; is a subuniverse of A2
then Clo A C 09. (Since all operations in O3 N O} preserve the transposition (0 1) on {0, 1},
Xy and X; cannot simultaneously be subuniverses of A2.) Thus Clo A is contained in one of

the clones
t ={f €O fpreserves X;} (i€{0,1}, k=2,3,...,w,w+1).

It is not hard to check (by constructing operations) that these clones are pairwise distinct.
This implies that for each ¢ € {0,1} and k = 2,3,...,w,w + 1, O% covers Mt in the lattice
of clones on A.

Applying Theorem 2.4 one can easily verify that both of M9 and M3} cover the clone
9Qr, N D3. In addition, it is shown in [3] that for i € {0,1}, every proper subclone of M}
not contained in Qg, N D3 is contained in M%. This completes the description of the part,

illustrated in Figure 6, of the lattice of subclones of QT A
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