A SURVEY OF CLONES CLOSED UNDER CONJUGATION
AGNES SZENDREI

ABSTRACT. There is a Galois connection between the lattice of clones on a set
A and the group of permutations on A that is determined by the relation that a
permutation conjugates a clone onto itself. The Galois-closed sets on the clone side
are the lattices Lg of all clones that are closed under conjugation by all members
of some permutation group G. In this paper we discuss the coarse structure of the
lattice Lg when A is finite and G is a 2-homogeneous permutation group, describe
L completely for the case when G is the group of all permutations, and discuss
for which groups G the lattice Lg is finite.

1. INTRODUCTION

Many important symmetries of algebras are not automorphisms. For example,
inversion v: G — G, g — ¢ ! is an antiautomorphism of a group, and this is a
type of symmetry that is not an automorphism (unless G is abelian). Transpose
v: M,(R) — M,(R), A+~ AT is an antiautomorphism of a matrix ring, which is a
symmetry that is not an automorphism (unless n = 1). Complementation v: B — B,
b — b in a Boolean algebra is a symmetry that is not an automorphism. If K is a
field and o is an automorphism of K, then the coordinatewise action of o defines
a symmetry v: K" — K" (ki,...,kn) — {(o(k1),...,0(ky)) of the n-dimensional
K-vector space K™ that is not an automorphism (unless o = id).

The kind of symmetry exhibited by these examples is the focus of this paper. For
the general concept, let A be a set and v be a permutation of A. If f: A" — A is an
operation on A, we define the conjugate of f by v to be

(@1, oo xn) = q/f(q/_l(xl), ... ,y_l(xn)).

The conjugate of a set F' of operations by v is "F = {?f : f € F'}, and the conju-
gate of an algebra A = (A4; fi, fa,...) by ~v is the algebra "TA = (A;"f1,fs,...). It
is easy to see that v is an automorphism of A if and only if "f; = f; for all fun-
damental operations f; of A. The common feature of the symmetries mentioned in
the preceding paragraph is that they are permutations 7y of the underlying set of an
algebra A = (A; fi, fo,...) such that A and 7A have the same term operations. Such
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a permutation 7y is called a weak automorphism of A. In other words, v is a weak
automorphism of A if and only if the clone € of term operations of A satisfies the
equality 7€ = €.

For any fixed permutation v on a set A, conjugation by  yields an automorphism
¢ +— 7€ of the lattice of all clones on A. The condition "€ = € defines a Galois
connection between clones on A and permutations on A as follows: we assign to
every set of clones the collection of all permutations that fix every clone in the
set, and to every set of permutations the collection of all clones that are fixed by
every permutation in the set.! It is easy to see that the Galois-closed sets of clones
are complete sublattices of the lattice of all clones, while the Galois-closed sets of
permutations are subgroups of the symmetric group on A. For a permutation group
G, the members of the Galois-closed set {€ : 7€ = € for all v € G} of clones
corresponding to G' will be called G-closed clones. It is easy to see from the definitions
that the family of G-closed clones includes all clones € that contain GG, and also all
clones € for which G is a group of automorphisms of the algebra (4; €).

Our aim in this paper is to give an overview of some results on the lattice of G-
closed clones on a finite set when G is a large permutation group. In Section 3 we
discuss Szabd’s theorem [38] which can be used to determine the coarse structure
of the lattice of G-closed clones, including all coatoms of the lattice, when G is a
2-homogeneous permutation group (a property slightly weaker than 2-transitivity).
In Section 4 we present a complete description of all S4-closed clones where Sy is
the symmetric group on A. This description is a modified version of results obtained
earlier by Hoa [15] and Marchenkov [28]. In Section 5 we briefly discuss a recent
result [20] which lists all groups G such that the family of G-closed clones that contain
all constants is finite. For each major theorem mentioned above we outline a proof
which, in some cases, differs essentially from the proofs published earlier. Our goal is
to emphasize the advantages of combining different methods: using operational and
relational arguments simultaneously, which is facilitated by the Galois connection
between operations and relations?, and applying localization and globalization from
tame congruence theory in combination with these arguments.

Finiteness of the base set is crucial in these results and methods. For the case when
the base set A is infinite, Goldstern and Shelah [10] obtained interesting results on a
special class of S4-closed clones. They studied the lattice of all clones that contain
the full transformation monoid on A, and found that the structure of this lattice
depends heavily on partition (Ramsey) properties of the cardinality |A| of the base
set. Specifically, if |A| is a weakly compact cardinal, then this lattice has exactly 2
coatoms, while if |A] is, say, the successor of an uncountable regular cardinal, then

this lattice has 22 coatoms.

1This Galois connection is discussed in detail in the paper [8] in this volume.
2For more details about this Galois connection, see [34] in this volume.
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2. PRELIMINARIES AND EXAMPLES

For any set A, a clone on A is a collection of finitary operations on A that contains
the projection operations and is closed under composition. For any set F' of operations
on A, [F] will denote the clone generated by F. In other words, [F] is the collection
of all term operations of the algebra A = (A; F'), which is called the clone of A, and
is also denoted by Clo(A). If A = (A;F) is an algebra, then A° will denote the
algebra that arises from A by adding all constants as fundamental operations. The
clone of A that is, the clone generated by F' and all constants, is called the clone
of polynomial operations of A, and is denoted by Pol(A). For n > 1, Clo,(A) and
Pol,,(A) will denote the set of n-ary term operations, and the set of n-ary polynomial
operations of A, respectively. A finite algebra A is called primal if Clo(A) is the
clone of all operations on A, and functionally complete if A€ is primal. We will call
A a projection algebra if Clo(A) is the clone of projections. Two algebras are said to
be term equivalent if they have the same clones, and they are said to be polynomially
equivalent if they have the same clones of polynomial operations.

An operation f on A is idempotent if it satisfies the identity f(z,...,z) = z. An
algebra A is idempotent if all fundamental operations (and hence all term operations)
of A are idempotent. A clone € is idempotent if all operations in € are idempotent.
A ternary operation f is a Mal’tsev operation if it satisfies the identities f(z,y,y) =
fly,y,z) = z; f is a minority operation if it satisfies the identities f(z,y,y) =
fly,z,y) = fly,y,x) = x; and [ is a majority operation if it satisfies the identities
f@,y,9) = fly,z,9) = f(y,y,2) = y.

We will use the notation T4, C4, Sa, and A4 for the full transformation monoid,
its subsemigroup of all constants, the symmetric group, and the alternating group on
A, respectively. For |A| =4, V4 will denote the Klein group on A.

Let v € S§4. For an n-ary operation f on A the conjugate of f by +y is the operation

Tz, ey X)) = yf(’y_l(xl), . ,’y_l(xn)).

The conjugate of a set F' of operations by <y is defined as "F = {'f : f € F}. It is
straightforward to check that 7€ is a clone for every clone € and permutation v, and
the mapping € — 7€ defines an inner automorphism of the lattice of clones on A for
every v € S4. If the clone of an algebra A is fixed by this automorphism, that is, if
7Clo(A) = Clo(A) holds, then 7 is called a weak automorphism of A (see [8] or [9]).
The weak automorphisms of A form a group, which is called the weak automorphism
group of A, and is denoted by WAut(A). It follows immediately from the definitions
that for any algebra A, the automorphisms of A as well as the permutations g with
g,9”" € Cloj(A) are weak automorphisms of A. In fact, it is easy to check that the
automorphism group Aut(A) of A is a normal subgroup of the weak automorphism
group WAut(A), and so is the largest subgroup {g € Ss : g,97! € Clo;(A)} of
Clo;(A). If A is finite, then the latter group is S4 N Cloy(A).
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FIGURE 1. S4-closed clones on A = {0, 1}

For a group G C S, and a set F' of operations on A we will say that F' is G-closed
if "F = F for all ¥ € G. In particular, it follows that a clone € on A is G-closed if and
only if it is fixed by every inner automorphism of the clone lattice that is induced by
a permutation from G, or equivalently, € is G-closed if and only if GG is a subgroup of
the weak automorphism group of the algebra (A; €). Clearly, if G is the one-element
group, then every clone is G-closed.

Example 2.1. On a 2-element set A = {0,1} the only nontrivial group is G = Sa,
and the Ss-closed clones can be easily determined, using Post’s description [36] of
all clones. Figure 1 shows the lattice of all these clones. In the diagram 0,1, A, V,~
denote the Boolean algebra operations, p(z,y, 2) =  + y + z is the unique minority
operation, and m(z,y, z) = (x Ay)V (£ Az)V (yAz) is the unique majority operation
on A ={0,1}.

From now on we will assume that A is a finite set with at least three elements,
and A is the underlying set of all algebras and clones considered. A relation p C A™
is called a compatible relation of an algebra A = (A; F) if p is (the underlying set)
of a subalgebra of the m-th direct power A™ of A. Examples of compatible binary
relations include congruences and the graphs of automorphisms. (The graph of an
n-ary partial function A is defined to be the (n + 1)-ary relation consisting of all
tuples (a1, ..., a,,h(ay,...,a,)) such that {(ay,...,a,) is in the domain of h.) If p is
a compatible relation of the algebra (A; f), we will also say that f preserves p.

It is well known (see e.g. [34, 35]) that for finite A, clones on A can be characterized
as the Galois-closed sets of operations in the Galois connection between operations
on A and relations on A that is defined by the condition “f preserves p”. This Galois
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connection assigns to every set of operations the collection of all relations that are
preserved by every operation in the set, and to every set of relations the collection
of all operations that preserve every relation in the set. It is easy to see that Galois-
closed sets of operations are clones. The fact that all clones are in fact Galois-closed
provided the base set is finite, can be expressed as follows.

Claim 2.2. [34, 35] On a finite base set A, an operation f belongs to a clone € if
and only if f preserves all compatible relations of the algebra (A; €).

For any fixed permutation group G C S4 one can modify this Galois connection
so that the Galois-closed sets of operations are exactly the G-closed clones (cf. e.g.
[11]). For any v € S4 and any relation p C A™ let

o=75(p) = {{(v(x1), ..., v(Tm)) : (21, ..., Zm) € p}.

Since 7f preserves p for all v € G if and only if f preserves 7p for all v € GG, these two
conditions define the same Galois connection, and it follows that the Galois-closed
sets of operations in this Galois connection are exactly the G-closed clones. In other
words:

Claim 2.3. [11] On a finite base set A, either one of the following conditions char-
acterizes G-closed clones €:

(1) 'f € € for every f € € and v € G}
(2) "p is a compatible relation of the algebra A = (A; &) for every compatible relation
p of A and for every v € G.

The same argument that proves that clones on a finite set form an atomic and
dually atomic, algebraic and dually algebraic lattice, also proves that G-closed clones
form an atomic and dually atomic, algebraic and dually algebraic lattice for all G. In
fact, the lattice of G-closed clones is a complete sublattice of the lattice of H-closed
clones whenever H C G C Sy, and in all these lattices the smallest element is the
clone of projections, and the largest element is the clone of all operations.®> One
cannot expect that the lattice of G-closed clones is much simpler than the lattice of
all clones, unless the permutation group G is fairly large.

Next we summarize the notions and basic facts about permutation groups that
we will need in this survey. A permutation group G C Sy is called primitive if
the unary algebra (A;G) is simple, and |G| > 1 when |A| = 2. For 1 < k£ < |4],
G is said to be k-transitive if for any two lists b1,...,b; and cq,...,c; of pairwise
distinct elements of A there exists v € G such that ¢; = (b;) for all 4; G is said

3This is a consequence of general facts on Galois-closed subrelations that are discussed in the
paper [7] in this volume, because the following is true for arbitrary permutation groups G, H C Sa:
if H C G, then the relation between operations and relations on A that is defined by the condition
“7f preserves p for all v € G” is a Galois-closed subrelation of the relation defined by the condition
“7f preserves p for all y € H”.
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to be k-homogeneous if for any two k-element subsets B,C of A there exists v € G
such that C' = v(B). A 1-transitive (or equivalently, 1-homogeneous) group is briefly
called transitive. Clearly, primitive permutation groups are transitive, k-transitive
permutation groups are k-homogeneous, and k-homogeneous permutation groups are
also (|A| — k)-homogeneous. It is also easy to see that 2-homogeneous permutation
groups are primitive.

The two most well known infinite families of 2-transitive groups are the affine
linear groups and the projective linear groups. Let xA be a finite vector space with
underlying set A. The automorphism group of x A is the general linear group GL(x A),
and its subgroup consisting of all automorphisms with determinant 1 is the special
linear group SL(xA). The affine general linear group AGL(xA) is the subgroup of Sy
generated by GL(xA) and by the group of translations TR(xkA) = {z +a: a € A};
AGL(kA) is a 2-transitive group on A for every vector space xA. We note that the
permutation group AGL(xA) determines the vector space g A up to the choice of 0;
equivalently, AGL(xA) uniquely determines the affine space x A (see Example 2.11).
The projective general linear group PGL(k A) is the quotient of GL(xA) by its center
consisting of all scalar multiplications in A, and PSL(xA) is its subgroup that arises
from SL(xA) in a similar way; both act 2-transitively on the set of one-dimensional
subspaces of A (the points of a projective geometry). If we identify the base set A
of the vector space A with K (d = dim g A), then each automorphism of the field
K yields a weak automorphism of ;A by acting coordinatewise on A = K™ (see the
Introduction), and this weak automorphism has a natural permutation action on the
set of one-dimensional subspaces of A as well. The permutation group generated by
AGL(gA), resp. PGL(xA), and the corresponding permutations induced by the field
automorphisms is denoted by AT'L(xA), resp. PTL(xA). We will omit the subscript
K if K is a prime field, because then the vector space g A is term equivalent to its
underlying elementary abelian group A. Clearly, we have A'L(A4) = AGL(A) and
PTL(A) = PGL(A) in this case. Moreover, AI'L(xA) C AGL(A) for every vector
space x A with underlying abelian group A. In statements where the vector space x A
is relevant up to isomorphism only and dim(xA) = d, |K| = ¢, we write GL(d, q),
AGL(d, q), PGL(d, q), etc., in place of GL(xA), AGL(xA), PGL(xA), etc.

The 2-homogeneous permutation groups (on a finite set) are completely classified:
a description of 2-homogeneous groups that are not 2-transitive can be found e.g. in
[18], Chapter XII, Section 6; the classification of 2-transitive groups, which is based
on the classification of finite simple groups, is summarized e.g. in [4]. There are two
types of 2-homogeneous groups:

e Affine 2-homogeneous groups: these are 2-homogeneous groups G such that
TR(A) C G C AGL(A) for some elementary abelian p-group A (p prime);
TR(A) is the unique minimal normal subgroup of G.
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o Almost simple 2-transitive groups: these are 2-transitive permutation groups
G C S84 such that G has a unique minimal normal subgroup N, N is a nonabelian
simple group, and — with one exception when N is primitive but not 2-transitive
(JA] = 28) — N is 2-transitive on A.
After these preparations we will look at some examples of clones that are G-closed
for fairly large permutation groups G.

Example 2.4. Let A = (A4;T) be a unary algebra. Since we are interested in the
clone of A, we may assume without loss of generality that 7" is a submonoid of
Ta, and hence T = Clo;(A). Clearly, Clo(A) is G-closed if and only if the group
P = T N8, of permutations in T as well as the subsemigroup U = T \ Sy of
nonsurjective transformations in 7" are G-closed. It is easy to see that P is G-closed
if and only if P is a normal subgroup of a group H C §4 with G C H (H can be
chosen to be WAut(A)). G-closed semigroups U of nonsurjective transformations are
not so easy to characterize. However, it is easy to verify that if G is 2-homogeneous
and U is a (nonempty) G-closed subsemigroup of T4 \ S, then C4 C U.

These observations apply to the monoid 7' = €() of unary operations of any G-
closed clone €. Thus we get the following.

Corollary 2.5. If € is a G-closed clone and G is 2-homogeneous, then one of the
following conditions holds:
o ¢ = {id}, that is, € is a clone of idempotent operations;
e & contains all constants;
o ¢ s a transitive permutation group; in fact, €Y is a nontrivial normal sub-
group of the 2-homogeneous group WAut({4; €)) containing G.

In the special case G = S, there is a transparent characterization for the G-closed
transformation monoids. To describe these monoids, define the type of an equivalence
relation f on A to be the increasing sequence k = (ki, ka, .. ., k) of positive integers
that lists the sizes of the #-classes (hence ky + ko +-- -+ k&, = |A]). A transformation
f € Ta issaid to have kernel type k if k is the type of ker(f). There is a natural partial
ordering of kernel types induced by the inclusion ordering of equivalence relations: if
k and X are kernel types, then x < A exactly when there are equivalence relations 6,
and 6@, of types k and A respectively for which 6, C 6.

Theorem 2.6. [21] Let A be a finite set, and let U be a subsemigroup of Ta \ Sa.
The following conditions are equivalent:
(i) U is Sa-closed;
(i) there is a filter F of kernel types on A such that the members of U are ezactly
the transformations whose kernel types belong to F.

Combining this theorem with some observations made in Example 2.4 we get the
following corollary.
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Corollary 2.7. For a finite set A, a submonoid T of Ta is Sa-closed if and only if
T = PUU, where P is one of the permutation groups {id}, Va (|A| = 4), Aa, Sa,
and either U = 0 or U is a subsemigroup of Ta \ Sa that satisfies condition (ii) of
Theorem 2.6.

Example 2.8. For 2 < m < |A| let R,,, denote the clone consisting of the projections
and all operations whose range has size at most m. An important subclone of R, is
the following clone ‘B: it consists of the projections and all operations of the form

(2.1) p(er(@) +--+onlza))  (n21)

where ¢1,...,p, are mappings A — {0,1}, + is addition modulo 2, and ¢ is any
mapping {0,1} — A. If |A] is even, then the projections and all operations of the
form (2.1) where the kernel of each ¢; (i = 1,...,n) has two even size blocks form a
proper subclone in ®B; this clone will be denoted by B*. It is easy to check that all
the clones fR,,, B, and B* are Sy-closed.

It is well known [3, 22, 37] that the clones containing 74 form a chain whose
members are exactly the clones [T4], B U [T4], and Ry, U[T4] (m =2,...,|A|). The
coatom R4 —1 U [T4] of this chain is called the Stupecki clone. The description of
all clones containing 74 was extended in [12] to all clones containing S4. Since all
clones that contain &4 are Ss-closed, these results will be covered by the description
of Ss-closed clones discussed in Section 4.

Example 2.9. Another rich class of Ss-closed clones is the class consisting of the
clones Clo(A) where A is a homogeneous algebra, that is, A has S4 as its auto-
morphism group. These clones were described in [6] and [23]. The description was
extended in [25] to the case when the automorphism group of A is A (JA| > 3);
interestingly, these clones are also S4-closed.

Examples of homogeneous algebras include the algebras (A;t), (A;d), (A;s), and
(A;¢;) (1 =3,...,|A|) whose operations are defined as follows:

. " z itz =y,
z ifz=uy, r ifx=y, .
oy ) =9" 0V dwy ) =" TV ey =y ife=,
r itz #y, z ifzx#uy, )
r otherwise,
and
x; if xq,...,x; are pairwise distinct,
Ei(xla ,xz) = .
z; otherwise.

The operation ¢ is called the ternary discriminator, and d is called the dual discrim-
inator. Note that on the 2-element set A = {0,1}, s coincides with the operation
x4+ y + z and d coincides with the majority operation m from Example 2.1.
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Example 2.10. Let A be a quasiprimal algebra, that is, a finite algebra such that
t is a term operation of A. Equivalently, A is quasiprimal if and only if every op-
eration on A that preserves the isomorphisms between subalgebras of A is a term
operation of A. Isomorphisms between subalgebras are briefly called internal iso-
morphisms. Suppose that WAut(A) is 2-homogeneous and A is not idempotent. If
Clo(A) contains all constants, then A has no proper subalgebras and no nontrivial
automorphisms, therefore A is primal and WAut(A) = S4. In view of Corollary 2.5
the only remaining possibility is that Clo;(A) is a transitive normal subgroup of
WAut(A). The transitivity of Clo;(A) implies that A has no proper subalgebras,
therefore the only internal isomorphisms of A are its automorphisms. The automor-
phism group Aut(A) of A cannot be trivial, because A is not primal. Therefore
Aut(A) is also a transitive normal subgroup of WAut(A). Hence the classification of
2-homogeneous groups shows that, for some elementary abelian p-group (p prime),
we have Clo;(A) = TR(A) = Aut(A) and WAut(A) C AGL(A). It follows that A
is term equivalent to (A;¢, TR(A)), because both algebras are quasiprimal and they
have the same internal isomorphisms. Thus every permutation from AGL(A) is a
weak automorphism of A, so WAut(A) = AGL(A) holds in this case.

Example 2.11. An algebra A is called affine if for some ring R there exists a module
rA on the universe A of A such that A is polynomially equivalent to pA. It can be
proved that in this case A has the same idempotent term operations as the affine
module gAY = (A;x —y+ 2, {rz + (1 —r)y : r € R}). In particular, z — y + z is a
term operation of A. Now we will look at two important classes of affine algebras,
and determine the weak automorphism groups of these algebras. One class consists
of those finite affine algebras that are polynomially equivalent to some vector space
kA, and the other consists of all finite simple affine algebras. If A is a finite simple
affine algebra, then A is polynomially equivalent to a finite simple module; up to
term equivalence, a finite simple module is of the form pA where R = End(xA) and
kA is a vector space.

Thus, let us assume that A is polynomially equivalent to a module gk A where R = K
or R = End(gA) for a finite vector space gA. Since x — y + z is the only Mal’tsev
operation in the clone of A, it must be conjugated to itself by every v € WAut(A).
Thus WAut(A) C Aut((A;z — y + 2)) = Aut(4'9) = AGL(A). In the case when
R = K, the set of binary idempotent term operations of A is {gx : £ € K} where
gk(z,y) = kx + (1 — k)y; this set is closed under conjugation by all v € WAut(A),
therefore we get that WAut(A) C AT'L(xA). In the case when R = End(xA), those
ternary compatible relations of A that are graphs of binary idempotent operations
on A are exactly the graphs of the operations g (k € K); by Claim 2.3 this set
of compatible relations is closed under conjugation by all v € WAut(A), hence we
conclude again that WAut(A) C ATL(xA).
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Now suppose that the weak automorphism group of A is 2-homogeneous. If A is
idempotent, then it follows from our general remarks about affine algebras that A
is term equivalent to A, If Clo(A) contains all constants, then by definition A is
term equivalent to pA°. According to Corollary 2.5, there is only one more possibility,
namely that Clo;(A) is a transitive permutation group. Since uz + a € Clo;(A)
implies r(uz +a) + (1 —r)z = (1 — r(1 — u))z + ra € Clo;(A) for all r € R and
some of these operations are not permutations unless v = 1, we get that Clo;(A) C
TR(A). As Clo;(A) is transitive, equality holds. Hence A is term equivalent to the
algebra rA™ that we get from A by adding all translations from TR(A) as basic
operations. It is straightforward to check that whether A is term equivalent to pA™

or gA® or RA", every permutation from AI'L(xA) is a weak automorphism. Thus
WAut(A) = ATL(xA).

Example 2.12. The m-th matriz power of an algebra B, denoted BI™, is the algebra
on the underlying set B™ whose operations are the following: (i) all term operations
of the m-~th direct power of B, (ii) the diagonal operation A defined by

A(<$1i>;115 SRR <xmz>;11) = (xlla <. axmm>a

and (iii) for each permutation 7 € S,,, the unary operation u,: B™ — B™ that
permutes the coordinates of B™ according to 7.

If B is a nontrivial unary algebra, then every term operation of BI™ depends on
at most m variables, and the m-ary idempotent term operations of B[™ that depend
on all variables are exactly the operations that arise from A by permuting variables.
Therefore this set of operations is closed under conjugation by all permutations v €
WAut(BI™). This implies that WAut(BI™) C Sgp Wr S,,, the wreath product of Sg
and S, (with the product action), which is the subgroup of Sgm generated by all
permutations y; X --- X v, (i € Sp) acting coordinatewise, and all u, (7 € Sy;,)
that permute the coordinates. It is not hard to show that the permutation group
Sp Wr S, is not 2-homogeneous on B™ if |B| > 2 and m > 2. Thus, for a nontrivial
unary algebra B, WAut(B[™) is not 2-homogeneous unless m = 1.

3. (G-CLOSED CLONES WHEN (G IS 2-HOMOGENEOUS

In [38] L. Szabé classified all finite algebras A such that A expanded with its
weak automorphisms is simple. This class includes every algebra whose weak auto-
morphism group is primitive. The classification is more transparent when the weak
automorphism group is assumed to be 2-transitive (Theorem 5.6 in [38]). In this
section we discuss this result and sketch its proof which nicely combines methods
from clone theory and tame congruence theory. The extraction of a direct proof for
the 2-transitive case reveals that for the classification in Theorem 5.6 of [38] it suf-
fices to assume the slightly weaker condition that the weak automorphism group is
2-homogeneous.
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A remarkable consequence of this classification is an explicit description of all max-
imal G-closed clones when G is 2-homogeneous. In particular, we will see that for
all 2-homogeneous permutation groups G' that are not contained in an affine group
AGL(d, p), there are exactly two maximal G-closed clones: the clone of idempotent
operations and the Stupecki clone. The maximal G-closed clones were determined
earlier by Hoa [16] and Marchenkov [26] under much stronger transitivity assump-
tions on G; their assumptions imply k-homogeneity for every k£ (1 < k < |A]); cf.
Theorem 5.2.

Theorem 3.1. [38] Let A be a finite algebra with at least three elements. If the weak
automorphism group of A is 2-homogeneous, then one of the following conditions
holds for A.:

(O) A is a primal algebra;

(I) A is a simple idempotent algebra that is not affine;

(U) A is an essentially unary algebra that is term equivalent to (A; M) or (A; M)¢
where M is a normal subgroup of a 2-homogeneous permutation group on A;

(S) A is a simple algebra such that Clo(A) is contained in the Stupecki clone, and
contains a unary operation that is neither constant nor a permutation;

(A) A is an affine algebra; namely A is term equivalent to one of the algebras rRA',
rA", or RA° (see Example 2.11) where A is an elementary abelian group on A
and for a subfield K of End(A), either R= K or R = End(xA);

(Q) A is a quasiprimal algebra that is term equivalent to (A;t, TR(A)) for some
elementary abelian group A.

This theorem allows us to determine the coarse structure of the lattice of G-closed
clones for any 2-homogeneous permutation group G. For a given 2-homogeneous
permutation group G, the lattice of G-closed clones consists of all clones € = Clo(A)
where A is one of the algebras listed in the theorem such that G C WAut(A). Figure 2
displays this lattice, and indicates the types of the clones according to Theorem 3.1.
In Figure 2 clones of types (A) and (Q) are denoted by circles, and all other clones
by bullets. This distinction is made to emphasize that G-closed clones of types (A)
and (Q) exist if and only if G C AGL(d,p) for some prime p. This follows from
Examples 2.10 and 2.11, because if A is as in (A), then WAut(A) C AGL(A), and
equality holds for at least one A in (A), while if A is as in (Q), then WAut(A) =
AGL(A).

Therefore, if G is not contained in any affine linear group AGL(d,p) (p prime),
then the lattice of G-closed clones looks much simpler than Figure 2: all circles and
adjacent lines can be deleted. In particular, we see that there are exactly two maximal
G-closed clones: the clone of idempotent operations and the Stupecki clone.

Next assume that G is a subgroup of an affine linear group AGL(d, p) and contains
the translation subgroup TR(d,p) of AGL(d,p). Then, up to the choice of 0, there
is a unique elementary abelian p-group A such that TR(A) C G C AGL(A). Hence
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clone of all operations (O)

clone of
idempotent
operations

Stupecki
clone

clone of projections

FIGURE 2. G-closed clones on A (|A| > 3) for 2-homogeneous G

there is a unique G-closed clone of type (Q), and a unique family of G-closed clones
of type (A), which form three disjoint intervals

(3.1)  [Clo(A'Y), Clo(gAY)], [Clo(A™),Clo(gA™)], [Clo(A°), Clo(gA°)]
(E =End(4))

as depicted in Figure 2, and each interval is isomorphic to the lattice of all subrings
R of End(A) such that either R = K or R = End(xA) for a subfield K of End(A)
with G C ATL(kA). So, in this case, there are exactly four maximal G-closed clones.

Finally, it remains to consider the case when G is a 2-homogeneous permutation
group such that G C AGL(d,p) for some d and some prime p, but the normal
subgroup G N TR(d, p) of G is trivial. T am indebted to P. P. Pélfy for pointing out
that in this case G cannot be of affine type, and if G an almost simple 2-transitive
permutation group, then the classification of these groups can be used to show that
the only possibility for G and AGL(d, p) is the following: |A| = 8, G = PSL(2,7),
and d = 3, p = 2. It is not hard to check that if we are given a 2-homogeneous
group G = PSL(2,7) on an 8-element set A, then there are two essentially different
elementary 2-groups A on A such that G C AGL(A). Hence there are two G-closed
clones of type (Q), and two disjoint families of G-closed clones of type (A). It follows,
in particular, that there are exactly six maximal G-closed clones.
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Sketch of proof of Theorem 3.1. Let A be a finite algebra such that |A| > 3 and
G = WAut(A) is 2-homogeneous. Assume first that A is not simple, and let 6(u, v)
(u # v) be a minimal congruence of A. Since G = WAut(A) is 2-homogeneous, every
nontrivial principal congruence of A is of the form 6(v(u), y(v)) = /(6(u,v)) for some
v € G, and is therefore a minimal congruence. Suppose A has a unary polynomial
operation f € Pol;(A) which is neither a permutation nor a constant. Let B be a
nonsingleton kernel class of f, b € B a fixed element, and let C = A\ B. Then for
any b' € B\ {b} and ¢ € C we have 0(f(b), f(c)) = 8(f(¥'), f(c)) C 8(b,c) N O, c)
and 0(b,b') C 6(b,c) V 8(V,c); hence the minimality of the principal congruences
implies first that 0(b, c) = (', ¢) and then that 6(b,c) = 6(b,'). Since this equality
holds for all ¥ € B\ {b} and ¢ € C, we see that the minimal congruence (b, x)
(x € A\ {b}) is independent of z, and is therefore the full relation. Thus A is
simple, which contradicts our assumption. This proves that every unary polynomial
operation of A is a permutation or a constant. Hence we can apply Pélfy’s Theorem:

Theorem 3.2. [33] If A is a finite algebra with at least three elements such that
every unary polynomial operation of A is a permutation or a constant, then either A
15 essentially unary or A is polynomually equivalent to a vector space.

Thus, A satisfies condition (U) (see Example 2.4) or condition (A) with R = K
(see Example 2.11).

From now on we will assume that A is simple. If A is an idempotent algebra,
then either (I) holds, or A is a simple idempotent affine algebra. Applying again
the facts established in Example 2.11 we get that A is term equivalent to A with
R =End(xA) as in (A).

Assume now that A is simple and not idempotent. Let € = Clo(A). It follows
from Corollary 2.5 that either €1 is a transitive permutation group, or €I contains
all constants. In either case, A has no proper subalgebras, therefore we can apply the
following strengthening of Rosenberg’s Primal Algebra Characterization Theorem:

Theorem 3.3. [40, 41] Let A be a finite simple algebra with no proper subalgebras.
Then one of the following conditions holds for A:

(a) A is quasiprimal;

(b) A is affine;

(c) A is isomorphic to an algebra term equivalent to U™ for some 2-element unary
algebra U and some integer m > 1;

(d) A has a compatible k-regular relation (k > 3);

(e) A has a k-ary compatible central relation (k > 2);

(f) A has a compatible bounded partial order.

Moreover, if all fundamental operations of A are surjective, then (a), (b), or the
following condition holds for A:
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(c) A is isomorphic to an algebra term equivalent to (U;T)™ for some finite set
U (|U| > 2), some m > 1, and for some permutation group T' on U which acts
primitively on U.

For the precise definition of a k-regular relation the reader is referred to [40, 41] or
[35]. To be able to follow the rest of the proof it suffices to know that every k-regular
relation is a k-ary totally reflexive, totally symmetric relation p which is distinct from
the full relation A*; here totally reflexive means that p contains all n-tuples whose
coordinates are not pairwise distinct, and totally symmetric means that p is invariant
under permuting coordinates. A k-ary central relation is a totally reflexive, totally
symmetric relation p # A* such that {c} x A" ! C p for at least one ¢ € A.

Now we apply Theorem 3.3. In the case when ¢V is a transitive permutation
group, every term operation of A is surjective. Therefore condition (a), (b), or (c)’
holds for A. In fact, (c)’ can hold only if m = 1, because otherwise WAut(A) is not 2-
homogeneous by Example 2.12. If (¢)’ holds with m = 1, then A is essentially unary,
so A satisfies condition (U) by Example 2.4. If (b) holds, then by Example 2.11, A
must be term equivalent to pA" with R = End(xA) as in (A). If (a) holds, then by
Example 2.10, A must satisfy condition (Q).

It remains to consider the case when A is simple and ) contains all constants.
The latter condition means that A is term equivalent to A°. This is a perfect setting
for applying tame congruence theory. In fact, we need only a very small portion of
the theory which we summarize now.

For a finite algebra A and for e € Pol; (A) we call e an idempotent unary polynomial
of A if €2 = e, and we call e a minimal idempotent polynomial of A if it is an
idempotent unary polynomial which is not constant, and has minimal range (with
respect to inclusion) among the nonconstant idempotent unary polynomials of A.*
The range e(A) of a minimal idempotent of A is called a minimal set; if A is simple,
then it can also be called a trace. For any idempotent unary polynomial e of A we
define the induced algebra on the range N = e(A) of e as follows:

Aly = (N;{ep|n : p € Pol(A)}).
If e,e’ are idempotent unary polynomials of A, we say that the sets N = e(A)
and N’ = €'(A) are polynomially isomorphic if there exist unary polynomials g, h €
Pol;(A) such that g maps N onto N’, h maps N’ onto N, and hg|y = idy, gh|y =
idys; g, h are called polynomial isomorphisms.

Theorem 3.4. [17] Let A be a finite simple algebra.
(1) For every minimal idempotent polynomial e of A, the induced algebra Aly on
N = e(A) is polynomially equivalent to one of the following algebras:

4Notice that in this context the word ‘idempotent’ is applied to unary operations only, and has a
different meaning than in the definition of an idempotent operation, as introduced at the beginning
of Section 2.
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1. a simple unary algebra (N;T') where I' C Sy is a group:
2. a one-dimensional vector space on N;
3. a 2-element Boolean algebra (|N| = 2);
4. a 2-element lattice (|N| = 2);
5. a 2-element semilattice (|N| = 2).
(2) Any two traces of A are polynomially isomorphic.

It is easy to see that if for two idempotent unary polynomials e, e’ of A the sets
N = e(A) and N’ = €¢/(A) are polynomially isomorphic, then the induced algebras
A|y and Ay have isomorphic clones. Therefore the type 1-5 of A|y (N = e(A))
in Theorem 3.4 is independent of the choice of the minimal idempotent polynomial
e of A; this number is called the type of the finite simple algebra A.

Now let us return to the proof of Theorem 3.1 in the case when A is simple and
¢ contains all constants. We can apply Theorem 3.3 to A. We will look at cases
(a)—(f) separately. If A is quasiprimal, then A must be primal as €} contains all
constants; hence (O) holds for A. If A is affine, then € = Clo(A) = Pol(A) is the
polynomial clone of a finite simple module; therefore, by Example 2.11, A must be
term equivalent to pA° with R = End(xA) as in (A). Case (c) cannot hold for A;
otherwise our assumption that |A| > 3 would imply m > 1, but then by Example 2.12
the weak automorphism group of U™ is not 2-homogeneous. Hence we are left with
the cases when one of conditions (d), (e), or (f) holds for A. Note that in these cases
A cannot be affine or quasiprimal.

Next we show that A cannot have a binary compatible central relation or a non-
trivial compatible partial order. Suppose first that p is a binary compatible central
relation of A, and select ¢ € A so that {c} x A C p. Let e = €2 € ¢V) be a minimal
idempotent polynomial of A, and let N = e(A). Then e(p) = p|y is a compatible
relation of the induced algebra A|y such that e(p) is reflexive and symmetric. More-
over, since {c} x A C p, an application of e shows that {e(c)} x e(A) C e(p). Thus
e(p) is either the full relation or it is a compatible central relation of A|y. However,
none of the algebras listed in Theorem 3.4 (1) admit compatible central relations.
Therefore e(p) is the full relation for every minimal idempotent polynomial e of A.
Since the weak automorphism group G of A is 2-homogeneous and every conjugate
%e (7 € G) of a minimal idempotent polynomial e of A is again a minimal idempotent
polynomial of A, we conclude that p contains every pair from A. This contradicts
our assumption that p is central, and hence proves that A does not have a compatible
binary central relation.

Suppose now that A has a nontrivial compatible partial order, and let p be a
minimal such order. As before, for every minimal idempotent polynomial e of A,
e(p) = p|n is a compatible relation of the induced algebra A|y. Clearly, e(p) = p|n
is a partial order on N. Assume e(p) = p|y is trivial (i.e., the equality relation). Then
p C ker(e); hence the symmetric transitive closure of p is a nontrivial congruence of
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A, which is impossible, as A is simple. Thus e(p) is a nontrivial compatible partial
order of A|y. Among the algebras listed in Theorem 3.4 (1) only some of the 2-
element algebras admit nontrivial compatible partial orders. Hence N is a 2-element
set, and the two elements of N are comparable with respect to p. Since the weak
automorphism group G of A is 2-homogeneous and every conjugate % (y € G) of a
minimal idempotent polynomial e of A is again a minimal idempotent polynomial of
A, we conclude that any two elements of A are comparable with respect to p. Thus
(A; p) is a chain. As p was chosen to be a minimal nontrivial compatible partial order
of A, every " (v € G) is a minimal nontrivial compatible partial order of A. This
implies that 7o = p or 7p = p ! holds for all v € G. Since (A4; p) is a chain with more
than two elements, G cannot be transitive. This contradiction proves that A has no
nontrivial compatible partial order.

Thus A has a compatible k-ary regular or central relation p with £ > 3. Let
o= :v € Q). Clearly, o is a k-ary totally reflexive, totally symmetric com-
patible relation of A. Moreover, by construction, %o = o for all v € G. Let A*
denote the algebra with underlying set A whose operations are the surjective term
operations of A and the permutations from G. The properties of ¢ ensure that o
is a compatible relation of A*. Moreover, by definition, the fundamental operations
of A are surjective, and because of G C Clo(A*), the algebra A* is simple and has
no proper subalgebras. Therefore conditions (a), (b), or (c)’ from Theorem 3.3 hold
for A* in place of A. Since A* has a totally reflexive, totally symmetric compatible
relation of arity > 3, A* is neither quasiprimal nor affine. Thus (c¢)’ must hold for
A*. Since the permutations from G are weak automorphisms of A*, it follows from
Example 2.12 that m = 1, that is, the algebra A* is essentially unary. The definition
of A* shows now that every surjective term operation of A is essentially unary, that
is, the clone of A is contained in the Stupecki clone. Since all constants are term
operations of A and A is simple, we get that (S) holds for A unless every unary
term operation of A is constant or a permutation. In the latter case Theorem 3.2,
combined with the fact that A is not affine, yields that A satisfies condition (U) (cf.
also Example 2.4). This completes the proof of Theorem 3.1. O

Remark 3.5. (1) Every algebra A that satisfies the assumptions of Theorem 3.1
and condition (I) is functionally complete, and hence is simple of type 3. To verify
that A is functionally complete, observe that every weak automorphism of A is a
weak automorphism of the algebra A° as well; now, if we apply Theorem 3.1 to the
algebra A°, we see that none of the conditions can hold for A¢ except (O), hence A°
is primal.

(2) Every algebra A that satisfies the assumptions of Theorem 3.1 and condition
(S) is of type 1, 2, or 3. This follows from the fact that every simple algebra of
type 4 or 5 has a connected compatible partial order (see Theorem 5.26 in [17]);
however, in the course of proving Theorem 3.1 we saw that if an algebra A satisfies
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the assumptions of the theorem and the additional conditions that A is simple and
Ca C Clo(A), then A has no nontrivial compatible partial order.

4. S4-CLOSED CLONES

In this section we give a complete description of the S4-closed clones on a finite
set A. The case |A| = 2 was discussed in Example 2.1, so we will assume throughout
this section that A has at least three elements. The description of S4-closed clones
for |A| = 3 was first published in [13]. As regards the case |A| > 4, in [14] Hoa found
the maximal S4-closed clones and described all S4-closed clones that are contained
in the Stupecki clone; in [15] he announced the completion of the description of
all Sy-closed clones. Later Marchenkov [27, 28] used a purely relational approach
to describe all Ss-closed clones that are not contained in the Stupecki clone. The
description we present here is similar to Hoa’s and Marchenkov’s. However, the proof
we will outline differs essentially from the earlier proofs: we will combine arguments
with operations and relations, and will make essential use of some ideas and results
of tame congruence theory.

Clearly, $4 is a 2-homogeneous group. Therefore we can start our search for all S4-
closed clones by applying Theorem 3.1 and the subsequent discussion on the lattice
of G-closed clones to the case G = S§4. It follows from Corollary 2.7 that the two
disjoint intervals of clones of type (U) are 3- or 4-element chains corresponding to
the chain of normal subgroups of S4. For |A| > 5 the group S4 is not an affine
general linear group, therefore there exist no Ss-closed clones of type (A) or (Q).
For |A| = 4 we have §4 = AGL(2,2), and up to the choice of 0, there is a unique
2-group A such that Sy = AGL(A). In this case the intervals in (3.1) are 3-element
chains. Therefore there are nine Ss-closed clones of type (A) and one of type (Q).
For |A| = 3 we have §4 = AGL(1,3), and up to the choice of 0, there is a unique
group A such that Sy = AGL(A). In this case each interval in (3.1) is a singleton.
Therefore there are three Sy-closed clones of type (A) and one of type (Q). In either
case, the following two classes of S4-closed clones € remain to be described:

(S) € is the clone of a simple algebra (A; €) such that € is contained in the Stupecki
clone, and contains at least one transformation that is neither constant nor a
permutation; and

(I) € is an idempotent clone such that (A4;€) is a simple algebra, but not affine.

Theorem 4.1. [14] Let A be a finite set with |A| > 3. The Sa-closed clones € on A
that satisfy condition (S) are the following:
(1) [T] where T is an Sa-closed transformation monoid on A (see Corollary 2.7)
such that CAo CT € Sy UCy;
(2) BU[T] where T is as in (1);
(2)* B*U|[T] if |A| is even, where T is as in (1) and the kernel type of each nonsur-
jective member of T consists of even numbers;
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(3) Ry U[T] where 2 < m < |A| and T is as in (1).

The representation of each Sy-closed clone of type (S) described in Theorem 4.1
will be unique if we require 7" to be the unary part of the clone, or equivalently, if we
require

e in case (2) that T contains all transformations with range of size at most 2;

e in case (2)* that T contains all transformations with range of size at most 2 and
with kernel type consisting of even numbers; and

e in case (3) that T contains all transformations with range of size at most m.

It is easy to see that for two S4-closed clones of type (S) which are given in this unique
form as XU [T] and X' U [T"] (X =0, B, B*, or R,,) we have XU [T] C X' U [T"] if
and only if X C X' and T C T".

Sketch of proof of Theorem 4.1. ([20]) It is easy to see that all clones listed in the
theorem are Sy-closed and satisfy condition (S). Conversely, let € be an Sa-closed
clone satisfying condition (S), and let A = (A;€). Since € is Sy-closed, so is the
transformation monoid 7 = €. Therefore Corollary 2.7 applies, and shows in
particular that 7" contains all constants. Hence € = Pol(A) and 7' = Pol;(A). If € is
an essentially unary clone, then there is nothing more to prove to see that (1) holds.

From now on we will assume that € is not essentially unary. Let r denote the
maximum of the cardinalities of ranges of operations p € € that depend on more
than one variable. Since € is contained in the Stupecki clone and has an operation
that depends on more than one variable we have 2 < r < |A|. We know from
condition (S) that A is simple. Corollary 2.7 implies that for some positive integers
ki and ko, T = Pol;(A) contains all transformations of kernel type (k1, k2). Thus the
minimal idempotent polynomials of A have 2-element ranges, and every 2-element
subset of A is a trace. Remark 3.5 implies that A is of type 1, 2, or 3.

Now let us fix a trace N of A, and following [19] let us call a set of the form
M = f(N,N,...,N) with f € Pol(A) = € a multitrace of A. Furthermore, let
m denote the size of the largest multitrace in A. It is easy to see that m < r.
Indeed, if m = 2 then this is clear since r > 2. If m > 2 and M = f(N,N,...,N)
is a multitrace with |M| = m, then f must depend on more than one variable, so
m=I|f(N,N,...,N)| <|f(4,A4,....,4) <r.

We will now show that m = r and every r-element subset of A is a multitrace. First
we argue that every m-element subset of A is a multitrace. Let M = f(N,...,N)
(f € €) be a multitrace of A such that m = |M]|, and let 7 € S4. Then "M =
f("N,...,™N). Since "N has size 2 it is a trace, so there is a polynomial isomorphism
g: N — "™N. The polynomial f'(z1,...,z,) = "f(g(x1),...,9(z,)) witnesses the fact
that "M = f'(N,...,N) is a multitrace. This shows how to express any subset of
size m as a multitrace. It remains to prove that m £ r. Our argument is based on
Yablonskii’s Lemma:
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Lemma 4.2. [42] Let A be a finite set and let f(x1,...,x,) be an operation on A that
depends on more than one variable. If |f(A, A,..., A)| > m for some m > 1, then
there exist m-element subsets My, ..., M, C A for which |f(My, My, ..., M,)| > m.

If m < r, then A has a polynomial f such that f depends on more than one variable,
and |f(A4,...,A)| =7 > m. By Lemma 4.2 there are m-element subsets Mj,..., M,
such that |f(Mi, Ma, ..., M,)| > m. But all m-element subsets are multitraces, so
each M; equals f;(N,...,N) for some f; € €. Hence

f(Ml,MQ,...,Mn) == f(fl(N; ..,N),. . -;fn(N;- ,N))
is a multitrace of size larger than m, which is impossible. This proves our claim that
m = r and every r-element subset of A is a multitrace.

Now we are in a position to use the structure theorem for multitraces of types 1,
2, and 3.

Theorem 4.3. [19] If N is a trace of the simple algebra A of type 1,2, or 3, and
M = f(N,...,N) is a multitrace, then
(1) M =e(A) for some idempotent unary polynomial e € Pol;(A), and
(2) the induced algebra Alys is term equivalent to
(i) a matriz power (A|x)* if A is of type 1 or 2;
(ii) a primal algebra if A is of type 3.

Suppose first that A is of type 1 or 2. By Theorem 4.3 the size of every multitrace of
A is a power of |[N| = 2. On the other hand, it is easy to see that if M = f(N,..., N)
is a multitrace of A, then so is every subset M’ of M. Indeed, Corollary 2.7 and
part (1) of Theorem 4.3 yield that T'= Pol;(A) contains a unary polynomial A with
h(M) = M', and hence M' = hf(N,...,N) is a multitrace. Thus A cannot have a
multitrace of size > 2. Hence m = 2. This means that every operation f € € that
depends on more than one variable has 2-element range, and hence the range is a
trace. If A is of type 1, then such an f cannot exist by [17], Theorem 5.6, Claim 3.

Hence A is of type 2. The arguments in the preceding paragraph imply that
¢ = (CNNRy) U[T]. We will prove that € N MRy equals B or B*, and hence € is
one of the clones described in (2) or (2)*. Let N = {0,1}, and let  + y denote a
polynomial of A whose restriction to /N is the vector space addition on N. Since
traces are polynomially isomorphic, every operation f’ € €N, with range in a trace
N' has the form pf for an operation f € €N PRy with range in N and a polynomial
isomorphism p: N — N', p € T. Furthermore, in the fourth paragraph of the proof
of Theorem 13.5 of [17] it is shown that any polynomial operation of a type 2 simple
algebra A that has range in a trace NN is constructible from unary polynomials of A
and from x + y; in fact, any polynomial is a sum of unary polynomials. Therefore we
have to determine the unary operations in € N R, whose range is contained in N.

A unary operation f: A — N = {0,1} from € N MR, can be thought of as a
characteristic function on A which may be identified with its support Uy = {a € A :
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f(a) = 1}. The family S of subsets of A that are supports of unary operations
f: A— N =1{0,1} from €N R, has the following properties:

(i) S contains (), A, and at least one nonempty proper subset of A.
(ii) S is closed under symmetric difference, &.
(iii) If U is in S, then every subset V C A with |V| = |U| is also in S.
To verify these properties one can use the following facts: the constant polynomials
into N and a minimal idempotent polynomial e with e(4) = N belong to €; the
support of f + g is Uy ® Uy; and € is S4-closed.

It follows easily from these properties that S contains a set of size 2; moreover,

e if S contains a 1-element set, then S is the set of all subsets of A, while
e if S contains a 2-element set but no 1-element set, then |A| is even and S is the
set of all subsets of A of even cardinality.

Thus, in the first case, € N R, contains every unary operation f: A — N, and the
description of € given above yields that € N 2Ry = B, and hence € is one of the
clones in (2). In the second case, a unary operation f: A — N belongs to € N Ry
if and only if f has kernel type (k1, k2) where both k; and ky are even, whence we
get that €N Ry, = B*. It follows also from Theorem 2.6 that the kernel type of
each nonsurjective member of €(!) consists of even numbers, therefore € is one of the
clones in (2)*.

Finally, we prove that if A is of type 3, then € is as described in (3). We established
earlier that every operation from € that depends on more than one variable has range
in a multitrace of size m. Thus € C R,,,U[T]. What remains to show is that R,, C €,
which is the assertion that any operation f: A™ — A whose range is of size at most m
isin €. Let M be a multitrace of A of size m such that M contains the range of f, and
let N’ C M be a trace of A. Choose polynomials py,...,p; € Pol;(A) with range in
N’ which separate the points of A. (The existence of these polynomials is guaranteed
by Theorem 2.8(4) of [17].) View p = (p1,...,pr): A — MP* as a polynomial injection
of A into M*. Since f: A" — M, we can try to find h € Poly,(A|,) that allows us
to factor f as

A 2 (MR s
The existence of such a factorization depends on the ability to interpolate the partial
operation f - (p")7': (M*)® — M by a total operation h: (M*)* — M that is a
polynomial of A|,;. We can do this since Al is primal (see Theorem 4.3). Thus, f
agrees with some polynomial operation of A of the form A - p". This concludes the
proof of Theorem 4.1. 0

Now we turn to the description of S4-closed clones € that satisfy condition (I).
These clones are most conveniently described by data that involve compatible rela-
tions as well as information on how the operations from € restrict to certain subalge-
bras. Accordingly, the proof that is outlined here uses arguments with operations as
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well as arguments with relations. This combination of methods seems more effective
than restricting to a purely operational or purely relational approach.
We will call a binary relation on A a cross if it has the form

kb, B;c,C] = ({b} x C)U (B x {c}) (be B, ce ()

for some B,C C A with |B|,|C| > 2. An r X s cross is a cross kb, B; ¢, C] such that
|B| =r and |C| = s.

For an algebra A, Iso(A) will denote the family of all internal isomorphisms of
A (see Example 2.10 for the definition). It is easy to see that a subset B of A is a
subalgebra of A if and only if idg € Iso(A). For convenience we will allow the empty
bijection idy as an internal isomorphism, and hence the empty set () as a subalgebra
of A. We will say that Iso(A) is m-complete if all bijections between subsets of A of
size < m are internal isomorphisms of A (in particular, all subsets of A of size < m
are subalgebras of A). Clearly, Iso(A) is 0-complete for every algebra A, and Iso(A)
is 1-complete if and only if A is idempotent.

Now let € be an idempotent Sy-closed clone on a finite set A (4| > 3), and let
A = (A4;¢). It is easy to see that in this case

(4.4) T=Tso(A) is a family of bijections between subsets of A (considered as binary
relations) such that
(0) T contains idy, id 4, and all bijections between 1-element subsets of A,
(1) IL'is closed under intersection,
(2) Tis closed under multiplication and inversion, and
(3) I'is closed under conjugation by permutations from Sj4.

Applying properties (1) and (3) to idg € I (B C A) one can see that

(4.5) if A has a proper subalgebra B of size |B| = k, then every subset of A of size
< k supports a subalgebra of A.

Moreover,

(4.6) if B, C are k-element subalgebras of A, then conjugation by any permutation
v € S84 such that y(B) = C yields an isomorphism Clo(B) — Clo(C); in
particular, it follows that Clo(B) is Sg-closed.

We will use the following two parameters associated to A: subyp is the maximum
size of a proper subalgebra of A; crop is the largest number r such that A has a
compatible r x 2 cross, if A has such a compatible cross, and croa = 1 otherwise.
Clearly, we have 1 < suba < |A|. It is also easy to see that crop = |A| or croa <
suba. The next theorem shows that if € = Clo(A) satisfies condition (I), then it
is determined by the following data: the internal isomorphisms of A, the parameter
croa, and the clone of a 2-element subalgebra of A (if any). In particular, it follows
that there are only finitely many Sa-closed clones that satisfy condition (I).
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Theorem 4.7. [20] (cf. [15, 28]) Let A be a finite set with |A| > 3, and let A = (A; €)
where € is an Sa-closed clone on A that satisfies condition (I). Then one of the
following conditions holds for A:

(Q) A is quasiprimal;

(P) suba > 2, the 2-element subalgebras of A are term equivalent to 2-element affine
spaces, and an operation f is a term operation of A if and only if f preserves
the internal isomorphisms of A and f|g € Clo(B) for all 2-element subalgebras
B of A;

(D) r = croa > 2, Iso(A) is 2-complete if r > 2, and an operation f is a term
operation of A if and only if f preserves the internal isomorphisms of A and
— all r X 2 crosses if r > 2,

— all reflexive 2 X 2 crosses if r = 2.

(E) r = crop > 2, Iso(A) is r-complete if r > 2, and an operation f is a term
operation of A if and only if f preserves the internal isomorphisms of A and
f|B is a projection for all r-element subalgebras B of A.

This classification shows, in particular, that if A satisfies the assumptions of The-
orem 4.7, then A has the dual discriminator (see Example 2.9) as a term operation
if and only if A is of type (Q) or (D), and A is paraprimal (see [5]) if and only if A
is of type (Q) or (P).

Before outlining the proof of Theorem 4.7 we will show how this theorem can be
transformed into an explicit description of all Ss-closed clones satisfying condition
(I). First we have to determine all possible sets Iso(A) of internal isomorphisms, and
then list for each such set I all Ss-closed clones € that satisfy conditions (I) and
I = Iso((4; T)).

The next lemma explicitly describes all families I of bijections that satisfy condi-
tions (4.4)(0)—(3) above. The description uses the following notation. Bij,,(A) de-
notes the collection of all bijections between m-element subsets of A (0 < m < |A]).
For even |A|, Bijjy2(A) denotes the set of all bijections B — C' between |A|/2-
element subsets B, C of A such that either B = C or B, C are complements of each
other. Finally, for a nontrivial normal subgroup N of S4, Restr,,(N) denotes the set
of bijections between m-element subsets of A that are restrictions of members of N.
Clearly, Restry(V4) = Bijo(A) if |A| = 4, Restr,,,(A4) = Bij,,(4) if 1 <m < |4]| — 2,
and Restr,,(S4) = Bij,,(4) if 1 <m < |4| — L.

Lemma 4.8. Let A be a finite set with |A| > 3 and let 1 be a family of bijections
between subsets of A such that 1 satisfies conditions (4.4)(0)—(3). Then I is one of
the following families:
(1) Jey =UBijs(A) : 0 < s < k)U{idg : BC A, |B| <1}U{ida} for some integers
kol with 1<k <1< |Al;
(ii) (a) J5,UU(VB : B C A, |B| =4) for somel with 3 <1 < |A],
(b) Jey UU(AB : BC A, |B|=k+1) for some k,l with2 <k <1< |A],
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(¢) JkyUU(Ss : BC A,|B|=k+1) for some k,l with1 <k <1< |A;
(iii) Jjaj/2-140U Bijjaj0(A) for some I with [A[/2 <1 < |A], if |A] is even,
(iv) (a) Jaj—2,4-1U Restr|4_1(A4),
(b) Ja3 U Restrs(Va), if |A| = 4,
(¢) J1,3 U Bijs(A) U Restrs(Va), z'f |A| = 4;
(v) (a) Jgx UN for some k > 1 with |A| —3 < k < |A| and for some nontrivial
normal subgroup N of Sa such that k > |A| — 2 if N = Sg,
(b) Jaj-2,4/—1 U Restra—1(Aa) UN for a nontrivial normal subgroup N of Sa
with N C Ay,
) J2’3 U Restrg(VA) U Vy, if ‘A‘ =4,
) Ji3U Bij;(A) U Restrg(VA) U Vy, if |A| =4,
e) J12UBIj3(A) U Vy, if |A] = 4.

AA/—\

These families of bijections between subsets of A are naturally ordered by inclusion,
and form a lattice. Figures 3-5 show these lattices for |A| > 5, |A| = 4, and |A| = 3,
respectively. In the diagrams the triangular array of large bullets represents the
families Ji; (1 < k <[ < |A|) from (i); in particular, the top bullet corresponds to
Jja/-1,Ja]-1, the bottom rightmost bullet to J; i, and the bottom leftmost bullet (at
the right angle of the triangle) to Ji,4—1. The small bullets and the circles represent
the families listed in (ii) and (iii), respectively (type (iii) exists only if |A]| is even);
for each pair k,! with & < [ these form a chain between J;; and Jx1;1;. The families
in (iv) are denoted by diamonds in Figures 3-5. Finally, the families in (v), which
are distinguished from those in (i)-(iv) by the property that they contain nonidentity
permutations from Sy, are denoted in Figures 3-5 by squares.

The main ingredient of the proof of Lemma 4.8 is to show that if I is a family
of bijections between m-element subsets of A for a fixed integer 1 < m < |A| such
that I satisfies conditions (4.4)(2)—(3) and I contains a bijection between two distinct
m-element subsets of A, then the following holds for I:

o If m < |A| — 1 then either I = Bij,,(A), or |A] is even, m = |A|/2, and
I = Bijjy;5(A). In both cases Sp C I for all m-element subsets B of A.

o If m = |A| — 1, then there exists a nontrivial normal subgroup N in S4 such
that / = Restr|4_1(N).

The next theorem will show that for every family I of bijections from Lemma 4.8
there exists an S4-closed clone € that satisfies conditions (I) and I = Iso({4;€)).
An explicit list of all such clones is also given in the theorem. We will use the
following notation. If I = J;U ... is one of the families listed in Lemma 4.8, then
we define () to be the set of all operations on A that preserve all members of I (as
binary relations). Clearly, Q(I) is the clone of an idempotent quasiprimal algebra.
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FIGURE 3. Lattice of possible families of internal isomorphisms, |A| > 5

Furthermore, let

(I): f|g € Clo({(B; A, V)) for all 2-element subsets B of A}
(I) : f preserves all reflexive crosses on 2-element subsets of A},
D,.(I) ={fe€Q(): f preserves all  x 2 crosses} (3 <r <A,
(I): f|g € Clo({B;x 4+ y + z)) for all 2-element subsets B of A},
(I) : f|p is a projection for all r-element subsets B of A}
(2 <r<|Al).
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FIGURE 4. Lattice of possible families of internal isomorphisms, |A| = 4

The two descriptions of D(I) are equivalent, because a reflexive 2 x 2 cross is a
partial order on a 2-element subset of A. Note that if £ > 2, then there is a third
description as well, namely

Dy(I)={f € Q) : f preserves all 2 x 2 crosses},

because every 2 x 2 cross is a relational product of a reflexive 2 x 2 cross and a
bijection from Bij,(A) C I. This means that in the case when £ > 2, 5(I) can be
defined by a condition analogous to the condition defining D, (I) for r > 3.

Theorem 4.9. [15, 28, 20] Let A be a finite set with |A| > 3, and let I = J;,U. .. be
a family of bijections from Lemma 4.8. The Sa-closed clones € that satisfy condition
(I) and have the property that T = Iso({A; €)) are the following.
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FIGURE 5. Lattice of possible families of internal isomorphisms, |A| = 3

(1) If k > 2, then there are exactly k+1+1 such clones €, namely Q(I), D,(1) (r =
2,...,lorr=|A]), B), and & (I) (s =2,...,k).

(2) If l > k=1, and Sg C I for all 2-element subsets B of A, then € is one of the
four clones Q(T), Do(L), P(L), or E(T).

(3) Ifl > k=1, and INSp = {idg} for all 2-element subsets B of A, then € equals
Q(I) or Do(I).

(4) Finally, if k =1 =1, then € must be the clone Q(I).

The clones listed above are pairwise distinct.

In Figures 3-5 the four cases for I that are distinguished in Theorem 4.9 are
indicated as follows. The families I with k£ > 2 are those that appear in the triangular
region. The families [ with [ > k = 1 are inside the rectangular region, and the two
subclasses distinguished by the property “Sg C I for all 2-element subsets B of A”
and by the complementary property “INSp = {idg} for all 2-element subsets B of A”
are separated by a dashed line. The remaining families I are those with parameters
k =1 =1. Figure 6 shows the clones listed in Theorem 4.9 for four typical families
I=1;(j=1,2,3,4). For each j the family I = I, represents the case when I satisfies
the assumptions of part (j) of Theorem 4.9, and the corresponding clones are ordered
by inclusion.

The fact that every Sa-closed clone satisfying condition (I) is one of the clones
listed in Theorem 4.9 is immediate from Theorem 4.7. What is new in Theorem 4.9
is the statement that the clones X(I) (X = Q, B, D, or &) appearing in the theorem
are pairwise distinct, and that for every such clone we have I = Iso((A4; X(I))). Both
of these statements can be proved by finding enough operations in the given clones
that witness the required properties; for example, the operations in Example 2.9 can
be used to show that X(I) # X'(I) if X # X'. In this way we can also prove that for
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FIGURE 6
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two clones X(I) and X'(I') appearing in the theorem we have X(I) C X'(I') if and only
if I O I' — whence X'(I) C X'(I') where X'(I), too, is one of the clones appearing in
the theorem — and X(I) C X'(I) holds by Figure 6.

This completes the description of S4-closed clones. From the discussions at the
beginning of Section 4, after Theorem 4.1, and in the preceding paragraph we also
know the comparability relation between S4-closed clones that are of the same type
(U), (A), (Q), (S), or (I). The comparabilities between S4-closed clones of different
types are easy to determine form the descriptions of the clones. Putting all this
information together, and using Figure 2 as a ‘skeleton’ one can get a full description
of the lattice of Sx-closed clones for each finite set A with |A| > 3.

Outline of proof of Theorem 4.7. ([20]) It is well known and easy to check that the
collection of all compatible relations of an algebra is closed under the following con-
structions: intersection, direct product, permutation of coordinates, and projection
onto some of the coordinates. If A is an idempotent algebra, then the family of
compatible relations of A is also closed under substituting an element a € A into a
relation p = p(z1,...,2,) C A" to yield an (n — 1)-ary relation

p(xla s L1, 0, T4,y - - - 7xn—1) = {<.’E1, s 7xn—1> : <.T1, s L1, G, Tgy - - - 7xn—1> € /0}
Furthermore, if Clo(A) is an S4-closed clone, then the collection of compatible rela-
tions of A is closed under conjugation by all permutations from Sy (cf. Claim 2.3).
Therefore, if A satisfies the assumptions of Theorem 4.7, then the collection of com-
patible relations of A is closed under all these constructions. We use this fact through-
out the proof when we construct new compatible relations from given ones. For a
relation p C A™ and I C {1,...,n}, pr;p will denote the projection of p onto its
coordinates in I. The size of p is the number max(|pr; p| : 1 <i < n).
We will call a relation reduced if no permutation of coordinates transforms it into
a direct product of relations of smaller arity, and no projection onto two coordinates
is a bijection between two sets. In particular, a binary compatible relation of an
algebra is reduced if and only if it is neither a direct product of two subalgebras, nor
an internal isomorphism. It follows easily from Claim 2.2 that
(4.10) an operation belongs to the clone of A if and only if it preserves the internal
isomorphisms of A and the reduced compatible relations of A.
Therefore, to prove Theorem 4.7, we have to understand the reduced compatible
relations of the algebras A = (A; €) where € is an S4-closed clone satisfying condition
(I). The following theorem helps reduce most of our considerations to binary relations.

Theorem 4.11. [39] Let A be a finite idempotent algebra, let n > 2, and let o be an
n-ary reduced compatible relation of A. For 1 <1 < n let B; denote the subalgebra
of A whose universe is pr;o. Then one of the following conditions holds:

(i) A has a reduced binary compatible relation p of the same size as o;

(ii) By, ..., B, are isomorphic simple affine subalgebras of A.
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Now we outline the main steps of the proof of Theorem 4.7, describing the key
ideas for each step. Let A = (A;€) where € is an Sy-closed clone on a finite set A
(JA] > 3) and € satisfies condition (I). Combining property (4.5) with the assumption
that A is not affine, and then Theorem 4.11 with statements (4.6) and (4.10) we get
the following.

(4.12) If B is an affine subalgebra of A, then |B| < 2; hence,
(4.13) if A has no binary reduced compatible relation, then (Q) or (P) holds.

Therefore, from now on, we assume that A has a binary reduced compatible rela-
tion. Using the existence of such a relation p and the constructions described at the
beginning of the proof along with some of the properties of A established earlier, one
can prove the following preparatory claims on subalgebras, compatible crosses, and
internal isomorphisms of A.

(4.14) suba > 2.

(4.15) If a subalgebra B of A is not simple, then B is a projection algebra.

(4.16) croa > 2.

(4.17) If k[b, B; ¢, C] with B = {b,b'} and C = {c, '} is a 2 x 2 compatible cross of A,
then the bijection ¢: B — C, b+ ¢, b’ — ¢ belongs to Iso(A).

(4.18) Every 2-element subset of A is a subalgebra, and either every 2-element subal-
gebra B of A is term equivalent to the unique lattice on B, or every 2-element
subalgebra B of A is term equivalent to the unique majority algebra on B, or
every 2-element subalgebra B of A is a projection algebra (cf. Figure 1).

(4.19) If croa > 3, then Iso(A) is 2-complete.

(4.20) If Iso(A) is 2-complete and A has a compatible 7 x 2 cross, then all 7 x 2 crosses
are compatible relations of A.

For the proof of (4.14) it suffices to look at the relations p(a, x), p(z,a) (a € A) and
pN% (v € Sa). To show (4.15) one can apply Theorem 3.1 and claim (4.12) to
the subalgebra B whose clone is Sg-closed by (4.6). (4.16) follows by arguing that
either pN (B x C) is a 2 x 2 cross for some 2-element subsets B, C of A, or one of
the relations po p~!, p~! o p is a nontrivial equivalence relation on a subset of A and
hence (4.15) applies. Thus A has a compatible 2 x 2 cross in both cases. The proof
of (4.17) requires slightly different arguments for the cases B =C, |[BNC| =1, and
BNC = (. To prove (4.18) we consider a compatible 2 x 2 cross k = k[b, B; ¢, C]
of A, which exists by (4.16) and (4.5). With the internal isomorphism ¢ provided by
(4.17) we get that ko ! is a reflexive compatible cross of the 2-element subalgebra B
of A. This fact, combined with (4.5), (4.6), and Example 2.1, implies (4.18). (4.19)
can be derived from (4.17) by observing that if k[b, B; ¢, C] is a compatible 7 x 2 cross
of A, then the 2 x 2 crosses of the form pN (B’ x C) with b € B' C B, |B'| = 2, yield
enough bijections between 2-element subsets to conclude by properties (4.4)(2)—(3)
that I = Iso(A) is 2-complete. Finally, (4.20) is a special case of the following more
general fact:
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(4.21) If Iso(A) is 2-complete and 7 is a binary compatible relation of A such that
pry, 7 is a 2-element set, then

0 = {(y(2),(y)) : (z,y) € T}

is a compatible relation of A for all 7,0 € S4.

Indeed, %97 = 7 o, for some bijection ¢ between 2-element subsets of A.

The next two claims are the core of the proof of Theorem 4.7; they are crucial in
proving that the family Iso(A), the parameter croa, and the 2-element subalgebras
of A completely determine the reduced compatible relations of A.

(4.22) If p is a reduced binary compatible relation of A then the size of p is at most
crop; moreover, if p is not a cross, then crop > 3 and the 2-element subalgebras
of A are projection algebras.

(4.23) If r = croa > 3 and the 2-element subalgebras of A are projection algebras,
then the r-element subalgebras of A are also projection algebras and Iso(A) is
r-complete.

For the proof of (4.22) let B = pry p, C = pryp, and r = croa. We can assume
without loss of generality that |B| > |C|. For any compatible r x 2 cross k|d, D; v, V]
(de C,V ={v,v'}) of A, pok[d, D;v,V] is a compatible relation of A of the form

A=(Ex{v})U(E' x{v'}) with EDE #£0

where E = |J(p(z,d') : d € C N D) and E' = p(x,d). Were |B| > r, we could
select k[d, D;v, V] (using conjugation) so that |E| > r and 1 < |E’| < |E|. Therefore
the same argument as in the proof of (4.19) would imply that Iso(A) is 2-complete.
Hence, by (4.21), an intersection of some relations of the form ") with v(E) = E
(v € Sa) would be a compatible |E| x 2 cross of A. This contradiction proves the
statement on the size of p. If p is not a cross then, after replacing p with p! if
necessary, we can select a compatible cross k[d, D;v, V] (using conjugation) so that
d € C, D D C, and for the compatible relation A we have 2 < |E'| < |E| (< |B]). The
size of A is |E| > 3, therefore r = crop > |E| > 3 by the first part of (4.22). Thus
(4.19)—(4.20) imply that every r x 2 cross is a compatible relation of A. Hence for
any r X 2 cross kle, E";v', V]| with e € E\ E' and E'U{e} C E", 7 = ANkle, E";v', V]
is a compatible relation of A such that 7 o7~ ! is a nontrivial equivalence relation on
the set E'U{e}. Thus, by (4.15) and (4.5)—(4.6), all subalgebras of A of size |E’'|+1
are projection algebras.

To establish (4.23) let us fix a 2-element subalgebra C of A. It suffices to prove that
for every term operation f = f(x1,...,z,) of A such that f is projection onto the first
variable in C, f is projection onto the first variable in every r-element subalgebra B
of A; thus the r-element subalgebras of A are projection algebras, and any bijection
between them or between smaller subalgebras is an internal isomorphism of A. Let
C = {c¢,c} and let by,...,b, be arbitrary elements of B. Since k[by, B;¢,C] is a
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compatible relation of A by (4.19)-(4.20), and since f(c,¢c,...,c) = ¢, it follows
that f(bl, bg, ey bn) = bl.
Now we can complete the proof of Theorem 4.7 through the following three claims:

(4.24) If crop > 2 and the 2-element subalgebras of A are not projection algebras,
then (D) holds.

(4.25) If crop > 2 and the 2-element subalgebras of A are projection algebras, then
(E) holds.

(4.26) (D) or (E) holds also if croa = 2.

Let 7 = croa. In all three claims (4.24)—(4.26), the statements in (D) or (E), respec-
tively, about croa and Iso(A), and the necessity of the conditions for f to be a term
operation of A follow from (4.16), (4.19), (4.23), and (4.18), (4.20), (4.23). It remains
to check in each case that every operation f satisfying the conditions described in
(D) or (E), respectively, is a term operation of A. First assume that r > 3 and that
the 2-element subalgebras of A are not projection algebras. Then A has a term op-
eration ¢ that is a majority operation on some 2-element subalgebra of A. By (4.19)
Iso(A) is 2-complete, therefore g is a majority operation throughout A. (4.22) shows
that every reduced binary compatible relation of A is a cross. Combining this with
statements (4.19)—(4.20) and the fact that every 71 X 75 cross is a relational product
of an m; X 2 and a 2 X ry cross one can see that every operation f that satisfies the
conditions described in (D) preserves all reduced binary compatible relation of A.
The following theorem of Baker and Pixley, modified in the spirit of claim (4.10),
shows that f is a term operation of A:

Theorem 4.27. [1] If a finite algebra A has a magority term operation, then an
operation on A is a term operation of A if and only if it preserves the internal
tsomorphisms of A and the binary reduced compatible relations of A.

If » > 3 and the 2-element subalgebras of A are projection algebras, then Theo-
rem 4.11 and (4.22) yield that every reduced compatible relation of A has size < r.
All such relations are preserved by every operation f that satisfies the conditions
described in (E). Thus it follows immediately from (4.10) that f is a term operation
of A. Finally, if r = 2, then we know from Theorem 4.11 and (4.22) that every
reduced compatible relation o of A has size < 2. It is not hard to prove by induc-
tion on the arity n of o, and using (4.17), that for any indices 1 < i < j < n there
exist internal isomorphisms ¢;;: pr; 0 — pr; 0. Therefore o arises from a compatible
relation o’ of the 2-element subalgebra B of A on B = pr, o by applying the internal
isomorphisms t19, ..., t1, in the 2nd, ..., n-th coordinates. Thus every operation f
that satisfies the conditions described in (D) or (E), respectively, for r = 2 preserves
o. This holds for every reduced compatible relation o, so we get from (4.10) that f
is a term operation of A. O
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In conclusion we note that the description of Ss-closed clones was extended by
Marchenkov to Ag-closed clones. For |A| = 3 there are 2% A ,-closed clones (see
[24]), but for |A| > 4 there are only finitely many (see [29, 30, 31, 32]), and their
description is very similar to the description of the S4-closed clones. In fact, it turns
out that if | A| is not divisible by 4, then every .4 4-closed clone is in fact S4-closed. If
|A| is divisible by 4, then there exist A4-closed clones € satisfying condition (I) that
are not Sy-closed, because there exist Aj-closed families of internal isomorphisms
that are not Ss-closed. Such families of internal isomorphisms exist for the following
reason: if [A] is divisible by 4, then Bij’y  5(A4) can be partitioned into two subsets of
equal size so that both families are A4-closed and satisfy (4.4)(2), but they are not
S4-closed.

5. FINITENESS OF THE LATTICE OF (G-CLOSED CLONES

The results discussed in the preceding section show that the lattice of G-closed
clones on a finite universe A is finite if G = S4 or if |A| > 4 and G = A4. One
wonders: Are there any other permutation groups G for which the lattice of G-
closed clones is finite? At the present time the answer to this question is not known.
However, the main theorem of this section shows that there are very few possible
candidates for such a GG. This theorem determines all groups G for which the number
of G-closed clones that contain all constants is finite.

Theorem 5.1. [20] For a permutation group G C Sa where A is finite, |A| > 3, the
following conditions are equivalent:

(i) The lattice of G-closed clones that contain all constants is finite.
(ii) G satisfies the following combinatorial condition:

(x) for every integer k (2 < k < |A|), for every (k + 1)-element subset B of A,
and for every k-element subset C' of B, there exists a k-element subset C'
of B such that C' # C and C' = ~(C) for some v € G.

(iii) G is one of the following groups: Sa, Aa, AGL(1,5) (|A] = 5), PSL(2,5)
(IA] = 6), PGL(2,5) (|A] = 6), PGL(2,7) (|A[ = 8), PGL(2,8) (|A] = 9),
PT'L(2,8) (JA] =9).

Outline of proof. To prove the implication (i)=-(ii) we assume that (ii) fails, and
construct infinitely many G-closed clones that contain all constants. To witness the
failure of (ii) we fix an integer k£ (2 < k < |AJ), a k-element subset C of A, and
a (k + 1)-element subset B = C U {0} of A so that v(C) # C' for every v € G
and for every k-element subset C' of B that contains 0. For notational simplicity
let us assume that C' = {1,2,...,k}. Using these sets we construct an infinite
sequence p, (n = 2,3,....) of relations and an infinite sequence f, (n = 3,4,...) of
operations on A as follows: p, is the (n + k — 1)-ary relation consisting of all tuples
(T, Ty Y1y Yp—1) € A"PE L such that [{z1,..., 20, 91, .-, Ys—1}] < k+1 and
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if {z1,...,2n,y1,...,yk—1} = v(C) for some v € G then {z1,...,z,} > 2; f, is
the n-ary operation on A such that f,(1,...,1,0,1,...,1) = 1 (with 0 occurring in
the j-th position) for every j (1 < j < n), fu(c,...,c) =cforallc=2,... k, and
falz1,...,2,) = 0 for all remaining arguments. It is not hard to check that
e every p, is reflexive and satisfies 'p, = p, for all v € G; therefore the clone
&(pn) consisting of all operations that preserve the relation p, is G-closed and
contains all constants;
e C(p,—1) 2 €(p,) for all n > 3;
e the inclusions are proper, as f, € €(p,_1) \ €(p,) for all n > 3.

The proof of the implication (ii)=-(iii) is purely group theoretical. It is clear that
condition (ii) holds for G if G is k-homogeneous for every k£ (1 < k < |A|). Therefore
the implication (ii)=-(iii) generalizes the following classical theorem:

Theorem 5.2. [2] The permutation groups on a finite set A (|A| > 3) that are
k-homogeneous for every k (1 < k < |A|) are the following: Sa, Aas, AGL(1,5)
(141 =5), PGL(2,5) (|A| = 6), PGL(2,8) (|A| =9), and PTL(2,8) (|A[ =9).

If G satisfies the weaker assumption (*), then condition () for £ = 2 immediately
implies that G must be 2-homogeneous. It is not hard to argue that condition (x) fails
for the group AGL(d, p) unless p? < 5. This implies that every affine 2-homogeneous
group G that satisfies (x) is listed in (iii). For almost simple 2-transitive groups G
we use the classification theorem to prove that (x) fails unless G is listed in (iii).

Finally, to establish the implication (iii)=(i) we extend the method of proof of
Theorem 4.1 presented in the previous section from the case G = &4 to all groups G
listed in (iii). O
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