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The investigation of minimal varieties (or equationally complete varieties) started in the
fifties with the works of Kalicki and Scott [40], [41], [74], and it became clear already at the
very beginning that while in a number of classical varieties the minimal subvarieties are locally
finite (hence generated by a finite algebra) and can be explicitly determined, this is far from
being the case in general (i.e. in similarity classes). During the decade 1970-1980, great progress
was made in understanding the structure of locally finite minimal varieties. Around 1976, a
number of authors (Caine [9], Clark and Krauss [10], Quackenbush [68], Smith [75]) came close
to revealing the structure of finite strictly simple algebras in congruence permutable varieties;
the most transparent description was given in the unpublished paper by McKenzie [46], yield-
ing also explicitly all locally finite, minimal, congruence permutable varieties. That the locally
finite, minimal, congruence distributive varieties are exactly the congruence distributive varieties
generated by a finite strictly simple algebra, has been known from Jénsson’s lemma [38]. With
the rapid development of commutator theory for congruence modular varieties it became possible
to combine these two results and get a full description for locally finite, minimal, congruence
modular varieties; the result is due to Herrmann (cf. [24]). In contrast, Pigozzi [61] constructed
a finite strictly simple algebra generating a non-finitely based minimal variety, and in [62] he
proved among other things that there exists a locally finite minimal variety which is residually
large, showing how ‘bad’ locally finite minimal varieties can behave. Tame congruence theory,
developed by McKenzie and his students opened up new perspectives in the study of locally finite

varieties; its efficient tools may lead to the complete solution of the most fundamental problem on
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locally finite minimal varieties (Problem 10 in the book by Hobby and McKenzie [25]): describe
all finite, strictly simple algebras that generate minimal varieties.

The aim of this paper is to give a fairly broad survey on locally finite minimal varieties, and is
not intended to include all known results on minimal varieties. As the emphasis is put on locally
finite minimal varieties and their strictly simple generators, we do not deal with their equational
theories beyond the question whether they are finitely based. Furthermore, the results stating
that some variety has ‘a lot of” minimal subvarieties are touched upon in Section 1 only in order
to justify the restriction to the locally finite case.

Following Section 2 which is a short introduction into the main problems on locally finite
minimal varieties, in Section 3 we collect a number of theorems describing all minimal varieties
in classical varieties (e.g. groups, rings, semigroups, relation algebras) and some generalizations
thereof (e.g. n-groups, medial quasigroups, semirings, etc.). Section 4 is, in part, a preparation for
the last two sections, listing some examples of finite strictly simple algebras generating minimal
varieties, that are already typically of universal algebraic character, and include as special cases
many of the algebras appearing in the preceding section. Section 5 is rather short, although it
contains the deepest results achieved so far in the topic: the characterization of locally finite,
minimal, congruence modular varieties. Finally, in Section 6 some recent results of the author
are presented, that concern finite strictly simple algebras in which all fundamental operations
are surjective. These algebras include all finite strictly simple algebras with a single nonconstant
fundamental operation.

Except for some references to the types 1 up to 5 assigned by tame congruence theory to
finite simple algebras, and some other results in the theory, for which the reader is referred to
[25], only some basic notions and facts of universal algebra are used, which can be found in [22],
[8] or [51]. The reader not familiar with the elements of tame congruence theory can skip those
parts, without loosing much of the content.

We remark that the expressions term operation, polynomial operation are used as in [51].
Throughout the paper, by a trivial algebra we mean a one-element algebra.

For simplicity of notation we identify every natural number n with the set n = {0,...,n—1}.
The full symmetric group on n is denoted by S,,. The identity mapping on each set is denoted
by id.

1. General facts

For a type 7 (that is a sequence of operation symbols with given arities), the class of all
algebras of type 7 will be denoted by V. Clearly, V, is a variety, defined by the empty set of

identities; it is often called the similarity class of type 7. As is well known, the subvarieties of
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V; form a lattice which is dually isomorphic to the lattice of equational theories of type 7 (or,
what is essentially the same, the lattice of fully invariant congruences of the free algebra in V,
on N free generators). The least element of this lattice is the trivial variety consisting of trivial
algebras only. Clearly, it is defined by the identity x = y. A variety V is called minimal, if it has
exactly two subvarieties: V and the trivial variety. Since the trivial variety is a dually compact

element in the lattice of subvarieties of V., therefore it follows
Theorem 1.1.  Every nontrivial subvariety of V. contains a minimal variety.

The first result giving the exact number of minimal varieties in a similarity class concerns

groupoids.
Theorem 1.2. (Kalicki [40]) There are 280 minimal varieties of groupoids.

The proof is a nice application of Theorem 1.1: 2% varieties W; (i < 2%°) are defined in terms
of identities so that W;NW; is the trivial variety for all distinct indices %, j, and hence they contain
pairwise distinct minimal varieties. In this way the proof yields no minimal variety of groupoids
explicitly. Later Bol'bot [6] and Quackenbush [69] constructed 2%° countable groupoids generating
pairwise distinct minimal varieties. Bol’bot’s groupoids satisfy the identities xy = yz, (xy)y =
x, and hence are in fact totally symmetric quasigroups (see Section 3), while Quackenbush’s
groupoids have the discriminator function (see Section 4) among their term operations.

Applying Kalicki’s method Burris [7] and Jezek [28] proved independently the analogue of
Theorem 1.2 for almost all types.

Theorem 1.3. (Burris [7], Jezek [28]) Let T be a type.

(i) If T contains at least one operation symbol of arity > 2, then V, has 2% |7l minimal
subvarieties, where |7| is the number of operation symbols in T.

(ii) If T consists of operation symbols of arity < 1 and contains at least two unary operation
symbols, then V, has 2%0t™~ minimal subvarieties, where m, is the number of unary operation

symbols in T.

It remains to consider the types containing a single (or no) unary operation symbol and
a number of nullary operation symbols. For these types all varieties can be explicitly de-
scribed; for the type consisting of a single unary operation symbol this was done by Jacobs
and Schwabauer [26], and the general case was solved by Jezek [27]. In particular, for minimal

varieties we have

Theorem 1.4. (Kalicki-Scott [41]) For the type T consisting of a single unary operation symbol

f, Vi has two minimal subvarieties, one defined by the identity f(z) = x, and the other one defined
by the identity f(x) = f(y).
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Clearly, a minimal variety is generated by any of its nontrivial members. The two minimal
varieties in Theorem 1.4 can also be given as follows: they are the varieties generated by the
unary algebras

(1.4) (2;id), and

(L4 (2 f) with £(0) = f(1) =0,

respectively.

Theorem 1.5. (Jezek [27]) Let 7 be a type consisting of at most one unary operation symbol
and some nullary operation symbols c¢; (i € I).

(i) If 7 contains a unary operation symbol f, then V, has two minimal subvarieties, one
defined by the identities f(x) = x, ¢; = ¢; (4,j € I), and the other one defined by the identities
fl@)=f(y)=c (ie€l).

(ii) If T contains nullary operation symbols only, then V, has a unique minimal subvariety,
the one defined by the identities ¢; = c; (i, € I).

The reader will easily find two-element algebras, analogous to (1.4), (1.4), generating these
minimal varieties.

The similarity classes V;. for 7 as in Theorem 1.3 (i) have “a lot of” minimal subvarieties not
only as regards their numbers, but also in the sense that V, has no proper subvariety containing

all minimal varieties in V.

Theorem 1.6. (Bol'bot [5], Jezek [28]) Let 7 be a type.

(i) If T contains at least one operation symbol of arity > 2, then the least subvariety of V.
containing all minimal subvarieties of V. is V. itself.

(ii) If T consists of operation symbols of arity < 1 and contains at least two unary operation
symbols, then the least subvariety of V, containing all minimal subvarieties of V, is the variety
defined by all constant identities (i.e. all identities ¢; = c¢; with ¢;, c; nullary operation symbols

in 7).

We shall see later that in many classical varieties V' the situation is different: V has only
“a few” minimal subvarieties, they can be explicitly described, and the least subvariety of V'
containing all of them is much smaller than V.

From the algebraic point of view, the most important would be to know more about the
structure of minimal varieties. However, without imposing further restrictions, this is a hopeless
task. Pigozzi [62] has some results which, loosely speaking, state that the structure of a minimal
variety can be as complicated as that of almost any variety, unless it is locally finite and satisfies
further special conditions like for instance congruence distributivity or congruence permutability

(see Section 5). Therefore we restrict our attention to locally finite minimal varieties.
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2. Locally finite minimal varieties

A variety V is said to be locally finite if every finitely generated algebra in V' is finite. For
an algebra A we denote by V(A) the variety generated by A. Following [46], [19], [25] we call an
algebra A strictly simple * if |A| > 2, A is simple, and A has no proper, nontrivial subalgebra.
It is easy to see that every nontrivial locally finite variety contains a finite strictly simple algebra;
in fact, every nontrivial algebra of minimal cardinality in the variety is strictly simple. Thus
every locally finite minimal variety is generated by a finite strictly simple algebra. However, not
every finite strictly simple algebra generates a minimal variety. The most trivial example is the
2-element mono-unary algebra whose operation is the transposition. So the following problem

arises naturally:

Problem 2.1.  Determine all finite strictly simple algebras A such that the variety V(A) is

minimal.

Most results known so far, which are related to Problem 2.1, are full lists of (locally finite)
minimal subvarieties of certain varieties (see Sections 3 and 5). For finitely generated varieties

we have

Theorem 2.2. (Scott [74]) For any finite algebra A, the variety V(A) has only finitely many

minimal subvarieties.

Moreover, as it is pointed out in [74], the proof yields an algorithm deciding for every finite
algebra A whether the variety V(A) is minimal (or more generally, determining for every finite
algebra A the minimal subvarieties of V(A)). Of course, from the algebraic point of view, this is
not a satisfactory solution to Problem 2.1.

Since 1954, when Lyndon [45] constructed the first example of a finite algebra A (in fact,
a groupoid with constant) which is not finitely based (i. e. V(A) has no finite basis for its
identities), much effort has been devoted to investigating under what conditions a finite algebra
of finite similarity type is finitely based. The question is not settled even for strictly simple

algebras generating minimal varieties. So we can supplement Problem 2.1 with

Problem 2.3. For which finite, strictly simple algebras A of finite type such that V(A) is a

minimal variety is A finitely based?

To this day, the algebras constructed by Pigozzi [61] are the only known strictly simple
algebras of finite type that generate minimal varieties and are not finitely based. Recall that an

identity is called variable uniform if every variable that occurs on the left-hand side of the identity

* In [75] and in a number of subsequent papers, the name ‘plain’ is used.
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occurs also on the on the right-hand side, and vice-versa. An algebra is variable uniform if each

of its identities is such. **

Example 2.4. (Pigozzi [61]) Let G = (G;0) be a variable-uniform groupoid that fails to be
finitely based (e.g. G can be chosen to be Murskii’s 3-element groupoid [52]). Let A(G) denote
the set obtained from G by adjoining 4 new elements b, [, o, 0o, and define binary operations o
and Q, (a € A(G) — {oc}) on A(G) as follows: o is the extension of the operation of G indicated
by the table

** In the early sixties Plonka initiated a general theory for these algebras and varieties (see [65]), which was
developed further by him and many of his students. His school uses the term ‘regular’ instead of ‘variable uniform’.

Another name appearing in the literature (especially in semigroup theory) is ‘homogeneous’.
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o | G | b I a
| | 1 1 a o
| |
G | | :
| | :
| | I 1l a o~
b | 1 I | b I a o
I | 1 I ] 1 1 a o
a | « a | a a a o
oo | oo oo | oo oo oo ®©

and for a € A(G) — {0},
Qulwy)={¥ 1T=0 " (5ycA@)).

oo otherwise

Pigozzi’s result is the following.

If G = (G} 0) is a variable-uniform groupoid that fails to be finitely based, then the algebra
A(G) = (A(G); 0,Qa,a)aeA(G)—{oo0}

generates a minimal variety and is not finitely based.

For later comparison several properties of A(G) are worth mentioning.

(2.4) All constants a € A(G) —{oc} are fundamental operations of A(G), and the constant
oo is a term operation of A(G).

(2.4)" A(G) is simple and has no proper subalgebra.

(2.4)" V(A(G)) satisfies no nontrivial congruence identity.
The last assertion follows from the fact that of the five types assigned by tame congruence theory
[25] to finite simple algebras, A(G) has type 5. (For the definition and basic properties of types,
the reader is referred to [25].) To show this, call co an absorbing element for an operation f on
A(G) if the value of f is co whenever at least one of the elements substituted in f is co. Now, the
range {a, 0o} of the unary polynomial operation z o & of A(G) is a minimal set, and is of type
5 since co is an absorbing element for every nonconstant fundamental operation of A(G), and

hence also for every nonconstant polynomial operation of A(G) depending on all of its variables.

3. Minimal varieties of classical algebras and some generalizations

Unlike in similarity classes, in most varieties of classical algebras (such as groups, rings,

lattices, semigroups) it turns out that there are only countably many minimal subvarieties, all of
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them locally finite; moreover, the minimal varieties can be explicitly described. As a rule, the
main steps of the proof are the following:

— showing that every nontrivial subvariety of the given variety V' contains a nontrivial finite
algebra,

— finding all finite strictly simple algebras in V', and

— selecting those generating minimal varieties.

Each locally finite minimal variety presented below is finitely based, and hence could also
be described via a finite set of defining identities rather than by a generating algebra. However,

these identities will not be discussed here; in most cases they can be found in the papers cited.

GROUPS. Groups form a variety if inversion is considered a unary fundamental operation. The

three steps in the argument sketched above are now easy to carry out (cf. [41]).

Theorem 3.1. The minimal varieties of groups are exactly the varieties generated by

(3.1) the cyclic groups of prime order.

RINGS. A zero ring is a ring in which the product of any two elements is 0.

Theorem 3.2. (Tarski [84]) The minimal varieties of rings are exactly the varieties generated
by
(3.2) the finite fields of prime order, and

(3.2)" the zero rings of prime order.

MODULES. It is easy to see that for a fixed ring R with 1, the subvarieties of the variety
of unitary R-modules are in one-to-one correspondence with the ideals of R. This immediately

implies

Theorem 3.3. For a fixed ring R with 1, the minimal varieties of unitary R-modules are
exactly the varieties generated by the modules

(3.3) gr(R/I) (i.e. the ring R/I considered as an R-module), where I runs over the maximal
ideals of R.

MEDIAL QUASIGROUPS. Quasigroups, considered as algebras (A4;-,\, /) with -, \, / being the
multiplication, left division, and right division, respectively, form a variety. Since both divisions
are uniquely determined by the multiplication, when presenting a quasigroup, it suffices to describe
its multiplication.

A quasigroup is called totally symmetric if its operations -, \, / coincide and - is commutative.
Bol’bot [4], [6] proved that the variety of totally symmetric quasigroups has 2% minimal subva-

rieties, and hence the variety of commutative quasigroups and the variety of all quasigroups have
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the same property. However, there is a nice variety of quasigroups, whose minimal subvarieties

can be explicitly described. A quasigroup is called medial *** if it satisfies the identity

(MED) (zy)(zu) = (z2)(yu).

Theorem 3.4. (Jezek—Kepka [32]) The minimal varieties of medial quasigroups are exactly the

varieties generated by the quasigroups

(3.4) (K; ax + by) where K is a finite field and a,b € K are nonzero elements generating
K.

The same result was proved also by Smith [76], under the assumption that the minimal
varieties are locally finite. The varieties of idempotent medial quasigroups (that is, in which

zz = x also holds), and in particular the minimal ones, were described earlier in [13].

Corollary 3.5. (Csdkiany—-Megyesi [13]) The minimal varieties of idempotent medial quasi-

groups are exactly the varieties generated by the quasigroups

(3.5) (K; axz+ (1 —a)y) where K is a finite field and a € K — {0, 1} generates K.

In [33] Jezek and Kepka investigated various properties of the quasigroup varieties defined by
so-called strictly balanced identities of length < 6, that is, by identities of length < 6 containing
the operation symbol - only and such that every variable occurs exactly once on each side. There

are 11 such varieties; the poset they form under inclusion is shown in Figure 1.

**% This property is called by several authors ‘Abelian’ (e.g. [32]) or ‘entropic’ (e.g. [76]); in [76] furhter names
are also listed. Idempotent entropic algebras (not necessarily groupoids) have been investigated in detail by

Romanowska and Smith [71].
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Figure 1

Here @, C, G, A denote the variety of all quasigroups, the variety of commutative quasigroups,
the variety of groups, and the variety of Abelian groups, respectively; D; [Ds] is the variety of
left [right] permutable quasigroups, defined by the identity

(PER) z(yz) =y(zz)  [(zy)z = (z2)y];
E; [FE5] is the variety of left [right] modular quasigroups, defined by the identity
(MOD) x(yz) = z(yz)  [(zy)z = (zy)z];

furthermore, Fy = D1 N Ey, Fs = DN E,, H=FE,N Es.

It is shown in [33] that Dy, Do have 2% minimal subvarieties. Thus all four varieties above
the dotted line in the diagram have uncountably many minimal subvarieties. The remaining ones,
however, turn out to contain only countably many minimal subvarieties. In fact, it follows that
FE,, FE5 are subvarieties of the variety of medial quasigroups, so an application of Theorem 3.4
yields

Corollary 3.6. The minimal subvarieties of F1, Fs, and H, respectively, are exactly the
varieties generated by the following quasigroups:

(3.6)g, (K; a’x + ay) where K is a finite field and a € K is a nonzero element generating

(3.6)r, (K; x+ ay) where K is a finite field, a € K generates K, and a® = 1;
(3.6)g (K; a?z + ay) where K is a finite field, a € K generates K, and a3 = 1.
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n-GROUPS.  An n-group is an algebra (A; f, f1,-.., fn) with n+1 n-ary operations f, f1,..., fn

such that f is associative, i.e.

F(f(@1, ., %n), Tngt, - - Tan—1)
(n_ASS) = f(xla <oy Ti—1, f(x’u KRR xi+n—1)7$i+n7 RRE -7;271,—1)
forall i (2 <1 <n),

and the following identities are satisfied:

f(mla <o Ti—1, fi(mla <o s Li—1, Ty Tt 1y - - - ,$n),$i+1, .- '7$n) = Zy,
(’I’L—INV) fi(xh -y Ti—1, f(xla ey Lj—1,Tqy Ti41, - - - ,$n),$i+1, DRI :L.n) =T;

for all i (1 <i<mn).
An n-group is commutative if the identity

f('rlv"'ax’n) :f(xlﬂ',"'vmnﬂ')

holds in it for all permutations © € §,,.
Clearly, 2-groups are exactly classical groups, and commutative 2-groups are exactly Abelian
groups. Like in groups or quasigroups, for an n-group (4; f, f1,..., fn), the operations fq,..., fn

are uniquely determined by f, so an n-group can be given merely by describing its operation f.

Theorem 3.7. (Artamonov [1]) The minimal varieties of n-groups are exactly the varieties
generated by the n-groups
(3.7) (K; z1 +axy + ...+ a" 1z,) where K is a finite field, a € K generates K, and

a1 =1.

Special cases of Theorem 3.7, in particular for commutative n-groups, were obtained earlier
in Page-Butson [56] and Page [55].

(m,n)-RINGS. An (m,n)-ring is an algebra (A; f, fo, ..., fn, g) such that (A4; f, fo,..., fn) isa
commutative (m+1)-group, g is an (n—+1)-ary associative operation, and the following distributive
laws hold:

9(Toy s Tic1, [(Y0s -y Ym), Titly- -y Tn)
= f(g(Z0y -y Tim1, Y0y Tidt1y-«-sTn)s - -
((m,n)-DISTR) 9(Z0y - oy L1y Yms Tit 1y« -5 Tpy))
for all 4 (0 <i < n).
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Again, it is sufficient to give an (m, n)-ring via its addition f and multiplication g.

Theorem 3.8. (Artamonov [1]) The minimal varieties of (m,n)-rings are exactly the varieties
generated by the (m,n)-rings

(3.8) (K;xo+...+xm,azq...2,) where K is a finite field and a € K generates K over its
prime field,

(3.8) (K;xo+ ...+ Tm,x0 + ax1 + a’xs + ... + a"x,) where K is a finite field whose
characteristic divides m, a € K generates K, and a™ = 1, and

(3.8)" (K;zo+...+Tm,g;) with g;(xo,...,x,) = x; for all zg,...,z, € K, wherei € {0,n}

and K is a finite prime field whose characteristic divides m.

MEDIAL n-QUASIGROUPS.  An n-quasigroup is an algebra (A; f, f1,..., fn) with n + 1 n-
ary operations satisfying the identities (n-INV). Clearly, 2-quasigroups are exactly quasigroups.
Again, fq,..., fn are uniquely determined by f, so for an n-quasigroup it suffices to describe its

multiplication f. An n-quasigroup is called medial if it satisfies the identity

f(f(fl?n, Z12,-- -,371n), f(3721, Z22, - - -7$2n)7 <y f(-rnlanga ) fﬁnn))

= f(f($117$217 - -,37n1),f(3712;$22, .- '7$n2)7 <y f(-rlna$2na .- -;fﬁnn)),

and idempotent if it satisfies the identity

Theorem 3.9. (Csdkdny—Megyesi [14]) The minimal varieties of idempotent medial n-
quasigroups are exactly the varieties generated by the n-quasigroups
(3.9) (K;a1z1+ ...+ anzy,) where K is a finite field, a1, ..., a, € K are nonzero elements

generating K, and a1 + ...+ a, = 1.

It seems very plausible that the analogue of Theorem 3.4 is also true for n-quasigroups,
though I have not found it in the literature. However, since n-quasigroups form a congruence
permutable variety (see Section 5), therefore applying Theorem 5.2 one can show that the locally
finite minimal varieties of medial n-quasigroups are exactly the varieties generated by the n-

quasigroups

(K; a1x1+...4anxy,) where K is a finite field and a1, . . ., a,, are nonzero elements generating
K.

So what remains to verify is that every minimal variety of medial n-quasigroups is locally finite.
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LATTICES AND BOOLEAN ALGEBRAS. Consider the following operations on the set 2 =
{0,1}:

v | 0 1 Al 01
o | 0 1’ 0 | 0 0’
R T | 1 | 0 1

and let ~ be the unary operation defined by 0 = 1, 1 = 0. The following facts are well known (cf.
[41]).

Theorem 3.10. The only minimal variety of lattices is the variety of distributive lattices,
which is generated by
(3.10) the two-element lattice (2;V, A).

Theorem 3.11. The variety of Boolean algebras, which is generated by
(3.11) the two-element Boolean algebra (2;V,A,~,0,1),

1S minimal.

DISTRIBUTIVE PSEUDOCOMPLEMENTED LATTICES. A distributive pseudocomple-
mented lattice is an algebra (A4;V,A,*,0,1) such that (4;V,A,0,1) is a distributive lattice with
least and greatest elements 0, 1, respectively, and for every a € A, a* is a pseudocomplement of
a; that is,

c<a* ifandonlyif ¢cAa=0 foranyce A.
Lee [44] proved that distributive pseudocomplemented lattices form a variety, namely, in addition
to the identities for bounded distributive lattices the following identities are required:

xAx* =0, zvz™ =z 0"=1,

(xVy) =z*Ny*, (zAy)*™ =z ANy*™.

It is easy to see that in each distributive pseudocomplemented lattice (A4; V, A,*,0,1), {0, 1} forms

a subalgebra. This implies

Theorem 3.12.  The only minimal variety of distributive pseudocomplemented lattices is the

variety of Boolean algebras, generated by (3.11).
Lee [44] proved that the varieties of distributive pseudocomplemented lattices form an (w+1)-

chain.

RELATION ALGEBRAS. A relation algebra is an algebra (A;V,A,”,0,1,0,1,V) such that

(A;V,A,7,0,1) is a Boolean algebra, (A4;0,1') is a monoid, ¥ is an involution (i.e. (zV)YV =z
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for all z € A) which is an automorphism of (A4;V,A,~,0,1) and an antiautomorphism of (A4;o),

moreover, the following condition is satisfied:
(roy)ANz<zo(yA(zYoz)) forall my,z€ A,

where < is the natural order of the underlying Boolean algebra (see [84], [39]). Clearly, the last
condition is equivalent to an identity, so relation algebras form a variety.

Typical examples are the relation algebras of binary relations on a fixed set, where the
Boolean operations are the set theoretic operations, o is the composition, and v is the inversion
of binary relations. For a set N, let Ay, VN denote the diagonal relation and the full relation

on N, respectively, and put oy = Vy — An.

Theorem 3.13. (Tarski [84]) The minimal varieties of relation algebras are exactly the three
varieties generated by the following relation algebras of binary relations:
(3.13) ({0,An,on,VnN}; U,N,~,0,VN,0,AN,Y) where N =1,2,0r 3.

Note that for N = 1 this is a 2-element algebra, since Ay = Vy and ) = oy

SEMIGROUPS. In addition to V, introduced earlier, consider the following operations on the
set 2 ={0,1}:

o | 0 1 x | 0 1 . | 0 1
0 | 0 0 0o | 0 0 o | 0 1°
1 | 0 0 1 ] 1 1 1 | o0 1

The semigroups (2; V), (2;0), (2; %), (2; *,) are called the two-element semilattice, zero semigroup,

left zero semigroup, right zero semigroup, respectively.

Theorem 3.14. (Kalicki-Scott [41]) The minimal varieties of semigroups are exactly the vari-
eties generated by

(3.14) the groups in (3.1) (considered as semigroups), and

(3.14)" (25V), (Z0), (2%), (2%).

Corollary 3.15.  The minimal varieties of commutative semigroups are exactly the varieties
generated by

(3.15) the groups in (3.1) (considered as semigroups), and

(3.15)"  (2;V), (2;0).

n-SEMIGROUPS. An n-semigroup is an algebra (A; f) with a single n-ary operation f satisfying
the identities (n-ASS).
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Theorem 3.16. (Artamonov [1]) The minimal varieties of n-semigroups are exactly the vari-
eties generated by

(3.16) the n-groups in (3.7) (considered as n-semigroups), and

(3.16)" (2521 V... Vxy), (Z5z10...02yp), (2521 % ... % Tp), (2,21 *p ... %y Tp).

Some precursors of this theorem can be found in [56], [55] (cf. the section on n-groups).

SEMIRINGS. A semiring is an algebra (A;+,-) such that (A;+) is a commutative semigroup,
(A;-) is a semigroup, and - is distributive over +. We use the operations V, A, o, %, %, defined

earlier.

Theorem 3.17. (Polin [66]) The minimal varieties of semirings are exactly the varieties gener-
ated by

(3.17) the rings in (3.2), (3.2)" (considered as semirings), and

(3.17) (2;V, %), (2;V, %), (2;V,0), (2;A,0), (2;V,A), (2;V,V), (2;0,0), (2;0,A).

In their results on semirings, Pastijn and Romanowska do not assume the commutativity of
(A;+), however, they assume that both semigroups (A4;+) and (A;-) are idempotent. They have
a complete description for all varieties, and hence all minimal varieties, of such semirings

— with both (A4;+) and (A4;-) rectangular ([60]),

— with (A4;+) a semilattice ([70]), or

— with both (A4;+) and (A4;-) normal ([59]).

MEDIAL GROUPOIDS. Similarly to quasigroups, a groupoid is called medial if it satisfies the
identity (MED). Unlike in the case of quasigroups, not all minimal varieties of medial groupoids are
known. In [34] the authors give a full list of minimal varieties of commutative medial groupoids,
and using their description of finite simple medial groupoids, one can determine also all locally

finite minimal varieties of medial groupoids.

Theorem 3.18 (Jezek-Kepka [34]) The locally finite minimal varieties of medial groupoids are
exactly the varieties generated by
(3.18) the quasigroups in (3.4) (considered as groupoids),
(3.18)" the semigroups in (3.14)', and
(3.18)"  the groupoids ({0, ag,-..,an-1};-) (n > 2) with
a; ifr=y=a;
W= {0 " otherw%se

(in the subscript addition is modulo n).

Theorem 3.19 (Jezek—Kepka [34]) The minimal varieties of commutative medial groupoids are

exactly the varieties generated by the following groupoids:
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(3.19) (K;ax+ ay) where K is a finite field and a € K is a nonzero element generating K,
(3.19)"  the semigroups in (3.15)', and
(3.19)"” the groupoids in (3.18)".

DISTRIBUTIVE, PERMUTABLE, AND MODULAR GROUPOIDS. In some other varieties

of groupoids all minimal varieties are known.
A groupoid (A;-) is called distributive if it satisfies the identities

z(yz) = (zy)(zz) and (zy)z = (22)(y2),

that is, - is distributive over itself.

Theorem 3.20. (Jezek-Kepka [31]) The minimal varieties of distributive groupoids are exactly
the varieties generated by

(3.20) the quasigroups in (3.5) (considered as groupoids), and

(3.20)"  the semigroups in (3.14).

Similarly to quasigroups, a groupoid (A;-) is called left [right] permutable if it satisfies the
respective identity in (PER), and bi-permutable if both of them are satisfied.

Theorem 3.21. (Jezek—Kepka [35]) The minimal varieties of bi-permutable groupoids are

exactly the minimal varieties of commutative semigroups (see Corollary 3.15).

Note that for quasigroups the corresponding result is trivial, as D1NDy = A. In [35] it remains
open whether there are uncountably many minimal varieties of left permutable groupoids.

A groupoid (A4;-) is called left [right] modular if it satisfies the respective identity in (MOD),
and bi-modular if both of them are satisfied. It is not hard to show that the variety of left modular

groupoids is a subvariety of the variety of medial groupoids.

Theorem 3.22. (Jezek—Kepka [36]) The minimal varieties of left modular groupoids are exactly
the varieties generated by

(3.22) the quasigroups in (3.6)g, (considered as groupoids), and

(3.22)"  the semigroups in (3.15)'.

Corollary 3.23. The minimal varieties of bi-modular groupoids are exactly the varieties
generated by

(3.23) the quasigroups in (3.6)g (considered as groupoids), and

(3.23)"  the semigroups in (3.15)’.
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SEMIGROUPS WITH INVOLUTION. An algebra (A;-, f) is called a semigroup with involution

if (A;-) is a semigroup and f is an involutive antiautomorphism of (A;-), that is, the identities

fAa) =z, f(zy) = fy)f(z)
are satisfied.

Theorem 3.24. (Fajtlowicz [17]) The minimal varieties of semigroups with involution are the
varieties generated by
(3.24) the semigroups in (3.15), (3.15)" augmented with the identity mapping as involution,
(3.24)" (3;-, f) where f(0) =0, f(1) =2, f(2) =1, and

=17 ifr=y
Y=0 otherwise,

(3.24)" (2 x 2;-, f) where (a,b)(c,d) = (a,d) and f((a,b)) = (b,a) for all a,b,c,d € 2.

SEMILATTICES WITH TWO COMMUTING ENDOMORPHISMS. The last variety we con-
sider in this section differs interestingly from the pattern we got used to up till now: though it
has countably many minimal subvarieties, each generated by a strictly simple algebra, some of
the minimal varieties fail to be locally finite.

A semilattice with two commuting endomorphisms is an algebra (A; A, f, g) where (4;A) is a
semilattice (i.e. a commutative idempotent semigroup) and f, g are endomorphisms of (A; A) such
that fg = gf. Clearly, these algebras form a variety. In [29] Jezek described all simple algebras
in this variety. From this description it is not hard to see that if a semilattice A = (A; A, f,9)
with two commuting endomorphisms is simple, then

(i) up to isomorphism, A is the only simple algebra in V(A), provided (A;A) has a least
element, and

(i) V(A) contains the minimal variety generated by (2;A,id,id), provided (A;A) has no
least element.

This yields all minimal varieties of semilattices with two commuting endomorphisms. For
the explicit statement of the result we need some notation. In the theorem below each algebra
has 0 in its base set, and A is defined as follows:

r ifxr=
TAY= { 0 otherwfgse '
For arbitrary set A and element a € A, we denote by ¢, the unary constant operation on A with
value a. Finally, for a group G (which is always assumed to be disjoint from {0}) and for a € G,
let I, denote the unary operation on {0} U G defined by

_J0 ifx=0
la(w)_{ax ifreG’
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Theorem 3.25 (Jezek [29]) The minimal varieties of semilattices with two commuting endo-
morphisms are exactly the varieties generated by the following algebras:

(3.25) (2;A,id, c1), (257, ¢1,1d), (25 A, co, o), (2N, c1,¢1);

(3.25)" ({0} UG; A, co,ls) and ({0} U G; A,l,,co) where G is a finite cyclic group with
generator a;

(3.25)" ({0} U G; A,l4,ly) where G is the (finite) Abelian group given by the defining
relations G = [a,b| ab = ba, a™ = b"? = 1, aP = b%%], and the integers p,q,r,s satisfy the
conditions p,q,r > 1,0 < s <r, ged(r,s) = 1;

(3.25)"" ({0} UG; A,la,lp) where G is the (infinite) Abelian group given by the defining

relations G = [a, b| ab = ba, a™b™ = 1], and n,m > 1.

4. Further examples of minimal varieties

Recall that two algebras are said to be term equivalent (polynomially equivalent) if they
have the same base set and the same set of term (polynomial) operations. Having the same term
operations is equivalent to requiring that the fundamental operations of the algebras are mutually
expressible from each other. A well-known, classical example is the two-element Boolean algebra
(2;V,A,7,0,1) and the two-element Boolean ring (2;+,-,0, 1) with unit.

Let 7 = (fi:i € I) and 0 = (g;:j € J) be any types with f; n;-ary and g; mj-ary (i € I,
j € J). A variety V of type 7 is said to be equivalent to a variety W of type o, if for every
1 € I and j € J there exist an n;-ary term F; of type o and an m;-ary term G; of type 7 such
that for arbitrary algebras A = (A;(fi:i € I)) € V, B = (B;(g5:4 € J)) € W, the algebra
A% = (A;(Gj:j € J)) belongs to W, the algebra B” = (B; (Fj:¢ € I)) belongs to V, and the
mappings

VoW, A—A° and W -V, B~ B’

are inverses of each other. For example, the variety of Boolean algebras and the variety of
Boolean rings with unit are equivalent. More generally, it is not hard to see that for arbitrary
term equivalent algebras A and A’, the varieties V(A) and V(A’) are equivalent.

A finite family Vg,...,V,_1 (n > 2) of varieties of the same type 7 are called independent
if there exists an n-ary term T of type 7 in the variables xzg,...,z,_1 such that for every
(0 <i<n-—1),the identity T' = x; holds in V;. (This implies also the more general property that
for arbitrary terms Ty, ..., T,_1 of type 7, there exists a term T of type 7 such that for every 4
(0 <4 < mn—1), the identity T = T; holds in V;.)

Primal algebras, introduced and investigated by Foster [18], constitute the first set of ex-

amples for finite algebras generating minimal varieties, that are typically of universal algebraic
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character. A finite algebra A is called primal if every operation on A is a term operation of A.
Thus primal algebras are the most natural generalizations of the two-element Boolean algebra,
and the structure of the varieties they generate is very similar to that of the variety of Boolean
algebras. (For more details on this similarity, see e.g. [22; Appendix 5], and the references given
there.) There is, however, one important difference. While in the two-element Boolean algebra
the operations are more or less fixed: V, A, , 0,1 (though some of them can be omitted), in primal
algebras there is a large freedom in choosing the fundamental operations. By the preceding re-
marks on equivalent varieties it is clear that the choice of the fundamental operations of a primal
algebra is irrelevant if we are interested only in the variety it generates.

However, by a result of O’Keefe [54], for arbitrary n > 2, and for arbitrary pairwise non-
isomorphic primal algebras Ag,..., A,_1 of the same type with a single fundamental operation,
the varieties V(Ayg),...,V(A,_1) are independent. This shows that the equational theories of
term equivalent algebras can be quite different. Nevertheless, there are properties of equational
theories that are invariant under equivalence, the most important being the property of having a
finite basis provided both similarity types are finite.

Since equational theories are not a central topic in this survey, we will not distinguish between
term equivalent algebras; that is to say, whenever we consider algebras that are determined up

to term equivalence only, we leave it implicit how their fundamental operations are selected.

QUASIPRIMAL ALGEBRAS. A finite algebra A is called quasiprimal if every operation on
A preserving the internal isomorphisms (i.e. isomorphisms between subalgebras) of A is a term
operation of A. The concept as well as the following characterization of quasiprimal algebras is
due to Pixley [63], [64].

A finite algebra A is quasiprimal if and only if the ternary discriminator
ifz =y
t(x, ,z:{z ! . r,y,z€ A
(z,9,2) x otherwise (z.y )

on A is a term operation of A.

Strictly simple quasiprimal algebras are easy to describe up to term equivalence. Indeed, let
A be a strictly simple quasiprimal algebra, and let U denote the set of those elements u € A for
which {u} is a trivial subalgebra of A. Then the term operations of A are exactly the operations
preserving the trivial subalgebras and the automorphisms of A (as A has no nontrivial proper
subalgebra). Since the fixed points of each automorphism of A form a subalgebra, we conclude
that every nonidentity automorphism of A has at most one fixed point, and the fixed point (if
any) belongs to U.

For a subset U of A and a permutation group G acting on A let Ry (G) denote the clone

of all operations f on A such that f(u,...,u) = u for all w € U, and f admits each member of
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G as an automorphism. Combining the facts mentioned above we get the necessity part of the

following claim. The verification of the sufficiency is straightforward.

A finite algebra A is a strictly simple quasiprimal algebra if and only if it is term equivalent
to (A;Ru(Q)) for a subset U of A and for some permutation group G on A such that every
nonidentity permutation in G has at most one fixed point, and the fixed point (if any) belongs to
U.

It is easy to see that in a quasiprimal algebra A, t(x, t(x, y, z), z) is a majority term operation.
Therefore every quasiprimal algebra can be defined by finitely many fundamental operations, and

as a special case of Theorem 5.1 discussed in the next section we have

Theorem 4.1. If A is a strictly simple quasiprimal algebra, then A generates a minimal
variety, and A has a finite basis for its identities provided it is of finite type.

AFFINE ALGEBRAS. With a terminology introduced in [46], an algebra A is said to be affine
with respect to an Abelian group A= (A;+,—,0) if A and A have the same universe, £ —y + z

is a term operation of A, and the quaternary relation
QA\: {(a”bacad) € A45 a—b+c:d}

is a subuniverse of A* (i.e., the fundamental operations of A commute with z — y + z). The

algebras that are affine with respect to A are well known to be related to the module (End X)A\

(i.e. A considered as a module over its endomorphism ring End 2)

Let A be an algebra and A an Abelian group on its universe. The algebra A is affine with
respect to A if and only if A is polynomially equivalent to a module RA\ for some subring R of
End A.

For brevity, we shall call an algebra affine if it is affine with respect to some Abelian group.
It is not hard to see that for an affine algebra the corresponding Abelian group is uniquely
determined, up to the choice of its neutral element 0.

There is a more explicit description, up to term equivalence, for finite simple affine algebras,
due to Clark and Krauss [12] (cf. [77; Chapter 2] for a direct proof). For a vector space kA, let
T( KA\) denote the group {z + a: a € A} of translations of xA, and C( K;{) the set of all binary
operations 7z + (1 — r)y with r € End g A.

A finite algebra A is a simple affine algebra if and only if there exist a finite field K, a vector
space Kﬁ = (A4;+, K), and an endomorphism e ofK;l\ with e? = e such that A is term equivalent

to
(A; z—y+ 2, C(KA\), e) or (A; xz—y+z, C(KA\), e, T(KA\))
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Clearly, the second algebra has no proper subalgebra, while in the first one the proper
subalgebras are exactly the singletons {u} with u € e(A). Thus every finite simple affine algebra

is strictly simple.

Theorem 4.2. (McKenzie [46], Clark—Krauss [10]) If A is a finite simple affine algebra, then
(i) A generates a minimal variety if and only if A has a trivial subalgebra, and

(ii) A has a finite basis for its identities provided it is of finite type.

We note that a common generalization of quasiprimal algebras and affine algebras (called
paraprimal algebras), and the varieties they generate were investigated by Clark and Krauss [10],
[11], [12] and McKenzie [47].

PREPRIMAL ALGEBRAS. A finite algebra A is called preprimal if its clone is a maximal
(proper) subclone of the clone O4 of all operations on A. The maximal subclones of O4 were
described by Rosenberg [72], in terms of invariant relations. For an n-ary operation f on A and
a k-ary relation B on A (i.e. B C AF), f is said to preserve B if B is a subuniverse of the algebra
(A; f)k. For a k-ary relation B on A we denote by Pp the clone consisting of all operations on A
preserving B.

A k-ary relation B on A is called totally reflexive if it contains each k-tuple from A* whose
components are not pairwise distinct. Further, B is called totally symmetric if it is closed under
permuting the components. A totally reflexive, totally symmetric relation B C A* is called
central if B # AF and there exists an element ¢ € A such that (c,ai,...,ax_1) € B for all
a1,...,a5_1 € A. The set of these elements c is called the center of B. Observe that every
unary relation is totally reflexive and symmetric, hence the unary central relations are exactly
the nonvoid proper subsets of A. Now let £ > 3. A family T = {Oy,..., 01} (m > 1) of
equivalence relations on A is called k-regular if each ©; (0 < ¢ < m — 1) has exactly k blocks and
Or =0gN...NO,,_1 has exactly £™ blocks. The relation determined by T is

Ar = {(ao,...,ax—1) € AF: for all 4 (0 <i<m-—1), the elements

ao, - - ., Gg—1 are not pairwise incongruent modulo ©;}.

These relations Ar are called k-regular relations.

Now we can state Rosenberg’s theorem ([72]):

For a finite set A (|A| > 2), the maximal subclones of O 4 are exactly the clones Pp where B
is one of the following relations:

(i) bounded partial orders on A,
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(ii) permutations of A (considered as binary relations) having cycles of equal prime length
and no fixed points,
(iii) equivalence relations on A distinct from the full relation and the diagonal relation,

(iv) quaternary relations of the form
QX: {(a’bacad) S A4: a—b+c:d}

for some elementary Abelian p-group A= (A;+) (p prime),
(v) k-ary central relations on A (k > 1),
(vi) k-regular relations on A (k > 3).

This description determines preprimal algebras up to term equivalence. Note that the prepri-
mal algebras of type (ii) or of type (v) with k¥ = 1 are quasiprimal, while those of type (iv) are

affine.

Theorem 4.3. (Knoebel [42]) A preprimal algebra generates a minimal variety if and only if
it is of one of the types (i), (ii), or of type (v) with k > 2.

It is worth noting that the preprimal algebras of types (ii)—(vi) are all term equivalent to
algebras with finitely many fundamental operations, or equivalently, their clones are finitely gen-
erated (see Lau [43]). However, this is not the case for type (i), though many of them (e.g. those
corresponding to a lattice order) have this property; in fact, the only preprimal algebra whose
clone is proved to be not finitely generated is the one corresponding to the partial order

(Tardos [83]).

Another striking difference between type (i) and the remaining types is that for preprimal
algebras of types (ii)—(vi) the generated varieties are residually finite (see [42]), while, for instance,
for the partial order displayed above the corresponding preprimal algebra of type (i) generates a
residually large variety (cf. [25; Exercise 10.5]). Recently, McKenzie [50] proved that the variety
generated by a preprimal algebra of type (i) is residually small if and only if it is congruence

distributive.
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MATRIX POWERS OF ALGEBRAS. Let A = (A;F) be an arbitrary algebra, and m an
integer, mn > 1. The mth matrix power of A, denoted Al™, is the algebra (A™; F,d,p) where

(A™; F) is the mth direct power of A, and d is an m-ary while p is a unary operation on A™

defined as follows: for a; = (af,...,a" ') € A™ (0<i<m—1)and a=(a’...,am" 1) € A™,
d(ao, A1y -y am_l) = ((18, a,%, ceey aﬁ:}),

pla) = (a',...,a™ 1, a").

d is often called the diagonal operation.

Note that the algebra in (3.24)" is (2;0)!2], which is term equivalent to (2;id)[?!.

One can check directly that for algebras A and B of the same type, a mapping @: A™ — B™
is a homomorphism Al™ — BI™ if and only if there exists a homomorphism ¢: A — B such
that (a%...,a™ 1)@ = (a,...,a™ Lp) for all (a°,...,a™ 1) € A™. Now it follows that for
any variety V and for any fixed integer m > 1, the algebras isomorphic to AI™ with A € V again
form a variety, which is called the mth matrix power of V, and is denoted by V™. Furthermore,

it follows

Theorem 4.4. For any algebra A and integer m > 1, Al™ generates a minimal variety if and
only if A does.

For any variety V' and integer m > 1, one can extend every basis for the identities of V' with
some additional identities involving d and p to get a basis for the identities of VI™ (cf. [85]). The

explicit form of this extension immediately yields

Theorem 4.5. IfV is a finitely based variety of finite type and m > 1, then V1™ is also
finitely based.

Matrix powers of algebras or varieties (under different names) were considered e.g. by
Evans [15], Saade [73], Neumann [53], and Fajtlowicz [16]. The present name is justified by
the fact that for arbitrary unitary R-module RE and integer m > 1, ( R]l\) [m] is term equivalent
to the module Rmxm(zzl\m), that is, A™ considered in a natural way as a module over the ring
R, xm of m x m matrices with entries in R. For a more detailed history of the notion, consult
Taylor [85].

Later on we will primarily be interested in matrix powers of unary algebras, or algebras term
equivalent to them, so it is useful to describe their term operations. Let C be a set and let m,n > 1.
For arbitrary mappings py:m — n, o:m — m and for arbitrary transformations gg, ..., gm—1 of
C let us define an operation hf[go,- - -,gm—1] on C™ as follows: for z; = (z9,...,2" )y e C™
0<i<n-1),

he g0, Gm-1)(0; - Tn-1) = (90(202), -, Gm-1(zm_1)0)).
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For a unary algebra C = (C;F) and for an integer m > 1, the term operations of clml
are exactly the operations h[go,...,gm—1] where n > 1, pzm — n, o:m — m are arbitrary

mappings, and gg,...,gm_1 are unary term operations of C.

Clearly, every term operation of C™ depends on at most m variables. We will need the

following fact which is an easy application of Theorem 4.4.

Corollary 4.6. Let N be a finite set, G a permutation group on N, and let m > 1. The
algebra (N; G)!"™ generates a minimal variety if and only if |G| = 1.

BOUNDED VARIETIES. A variety V of finite similarity type is said to be bounded, if there
exists a natural number m such that every term in the language of V is equivalent, with respect
to V, to a term of length at most m. The equational theories of bounded varieties were studied
in detail by Jezek and McNulty [37]. In particular, they determined all equational theories
corresponding to minimal bounded varieties whose type contains a single fundamental operation.
The varieties themselves were described by Jezek [30]. A mapping u:m — n will be called
reducible if there is a divisor d of m such that iy = ju whenever i =j (mod d) (i,7 € m);

otherwise, p is called irreducible.

Theorem 4.7. (Jezek [30]) The minimal bounded varieties whose type contains a single k-ary
fundamental operation (k > 2), are exactly the varieties generated by

(4.7)  the algebras (2™; h][id, . ..,id]) where m > 1, vy is the cyclic permutation (01 ... m—
1), and p:m — k is an arbitrary irreducible mapping, and

(4.7)"  the two-element algebra with constant operation.

The algebras in (4.7) are easily seen to be term equivalent to (2;id) [m]. However, similarly
to the result of O’Keefe on primal algebras mentioned at the beginning of this section, it is
shown in [30] that for every fixed k¥ (> 2) and for arbitrary finite family of pairwise distinct
irreducible mappings p;: m; — k (¢ = 0,...,n — 1), the varieties generated by the algebras
(2™i; b [id, .. .,id]) (i = 0,...,n — 1) are independent.

w-CATEGORICAL VARIETIES. Let A be a cardinal. A class of algebras is called A-categorical
if it contains exactly one algebra of cardinality A, up to isomorphism. Varieties and quasivarieties
A-categorical for some infinite A > the cardinality of the similarity type were determined indepen-
dently by Givant [20], [21] and Palyutin [57], [58]. Using tame congruence theory, McKenzie [49)]
found a nice algebraic proof for the case A = w. It is relatively easy to see (cf. [49; Theorem 1.3])

that an w-categorical variety of countable type has to be a locally finite minimal variety.

Theorem 4.8 (Givant [20], [21], Palyutin [57], [58], McKenzie [49]) A variety of countable type

is w-categorical if and only if it is generated by one of the following algebras:
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(4.8) a finite simple affine algebra having a trivial subalgebra,

(4.8) an algebra term equivalent to (2;id)l"™ or (2;id, 0)"™ for some m > 1.

5. The congruence modular case

The deepest and most general result concerning locally finite minimal varieties solves Prob-
lems 2.1 and 2.3 under the assumption that A belongs to a congruence modular variety. Recall
that a variety is said to be congruence modular [congruence distributive] if every algebra in the
variety has a modular [distributive] congruence lattice. Similarly, a variety is called congruence
permutable if any two congruences of each algebra in the variety permute.

Theorem 5.1. (J6nsson [38], Baker [2]) Let A be a finite strictly simple algebra. If A belongs
to a congruence distributive variety, then V(A) is a minimal variety, and A has a finite basis for

its identities provided it is of finite type.

Theorem 5.2. (McKenzie [46], Smith [75], Gumm [23]) Let A be a finite strictly simple
algebra. If A belongs to a congruence permutable variety, then A is either quasiprimal (and
hence generates a congruence distributive variety) or affine; the variety V(A) is minimal if and
only if A is not an affine algebra without any trivial subalgebra; furthermore, A is finitely based

if it is of finite type.

Theorem 5.3. (C. Herrmann, cf. [24, Corollary 4.2]) Let A be a finite strictly simple algebra.
If A belongs to a congruence modular variety, then either V(A) is congruence distributive or A

is an affine algebra; hence Theorem 5.1 or 5.2 applies.

The proof of Theorem 5.3 depends heavily on commutator theory for congruence modular
varieties (see Freese-McKenzie [19]).

Theorems 3.1-3.13 provide a large collection of illustrations to the above results, although
those theorems are not special cases of Theorem 5.3 as they involve also the claim that every
minimal subvariety of the classical variety in question is locally finite. Only Artamonov’s proof
of Theorem 3.8 and Smith’ version of Theorem 3.4 makes use of Theorem 5.2, the other results
were found either earlier than, or independently of the corresponding theorems in this section.

We mention here a theorem of Quackenbush [68] which is closely related to Theorem 5.2.

Theorem 5.4 (Quackenbush [68]) Let A be a finite algebra of cardinality k. If every subalgebra
of a finite power of A has cardinality a power of k, then A is a strictly simple algebra generating

a congruence permutable variety.
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The case k = 2 was considered earlier by Taylor [85]. In [48] McKenzie gives an elegant and
relatively simple proof for Theorem 5.4.

It is well known that for every finite strictly simple algebra A generating a minimal, congru-
ence modular variety, A is the only subdirectly irreducible algebra in V(A). Recently Bergman

and McKenzie [3] proved the following stronger result.

Theorem 5.5 (Bergman-McKenzie [3]) Every locally finite, minimal, congruence modular va-

riety is minimal as a quasivariety.

6. Surjective strictly simple algebras

To step beyond the congruence modular case, D. Hobby and R. McKenzie [25] list Problem
2.1 in their book among the questions they suggest for investigation by making use of tame
congruence theory.

In this section we present several recent results on finite strictly simple algebras, which were
obtained by a combination of the techniques of clone theory and tame congruence theory. We
do not make any assumption on the generated variety, however, we assume that the algebras
are surjective, that is, all their fundamental operations are surjective. As we shall see, in some
cases surjective strictly simple algebras have much nicer structure than strictly simple algebras
in general. On the other hand, it is easy to see that every strictly simple algebra with a single
fundamental operation is surjective unless it is a two-element algebra whose operation is constant.
Thus the class of surjective algebras is wide enough to include many algebras for which Problems
2.1 and 2.3 are still open.

Clearly, surjectivity of algebras is not invariant under term equivalence, however, every re-
sult on surjective algebras carries over in a natural way to algebras that are term equivalent to
surjective algebras. In this way each result discussed below can be considered a generalization of
the corresponding known result for the congruence permutable case. Indeed, every algebra gen-
erating a congruence permutable variety is term equivalent to a surjective algebra: if the algebra
(A;{fi:i € I}) with f; ns-ary (i € I) has a Mal’tsev operation p among its term operations, then
it is term equivalent to the algebra (A;p, {g;:¢ € I'}) with

gi($07 SRR mni+1) = p(fz(-TOa .- '7xni—1)7$'ni7 mni—}-l) (7' € I)a

whose fundamental operations are surjective. The analogous claim fails for the algebras generating

congruence distributive varieties.

IDEMPOTENT ALGEBRAS. I became interested in Problems 2.1 and 2.3 while investigating

idempotent algebras. Recall that an operation f is said to be idempotent if it satisfies the identity
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f(z,...,z) = z, while an algebra A is idempotent if every fundamental operation (and hence every
term operation) of A is idempotent. In other words, A is idempotent if and only if every singleton
{a} (a € A) is a subalgebra of A. It turns out that for a finite idempotent algebra, having no
nontrivial proper subalgebra (or equivalently, being strictly simple) is a rather strong constraint;
there are only a few such algebras, up to term equivalence, and they can be described explicitly.

To state the result we need some preparation. For a € A and for an integer k£ > 2 we define

a k-ary relation on A as follows:
X2 ={(ag,...,ar_1) € A*: a; = a for at least one i, 0 < i <k —1}.

For a € A and k > 2 let 7 denote the clone of all operations f on A such that X} is a subuniverse
of (A; f)¥. Furthermore, we put F2 = ﬂzoz2 Jy. For a permutation group G acting on A we will
write Z(G) for R4(G) (see Section 4).

Theorem 6.1. [78] Let A be a finite, idempotent, strictly simple algebra with at least 3
elements. Then one of the following conditions holds:

(a) A is quasiprimal;

(b) A is affine;

(c) A is term equivalent to the algebra (A; F; N Z(G)) for some k (2 < k < w), some
element a € A, and for some permutation group G acting on A such that a is the unique fixed

point of each nonidentity permutation in G.

The proof of Theorem 6.1 yields that the algebras A in (c) are functionally complete (i.e.
every operation on A is a polynomial operation of A), and the same is well known to hold for
quasiprimal algebras as well. Hence in cases (a) and (c) A is of type 3, while in case (b) it is of

type 2. Thus in the context of tame congruence theory Theorem 6.1 means the following:

Let A be a finite, idempotent, strictly simple algebra with at least 3 elements. If A is of type
2, then A is affine, while if A is of type 3, then A is either quasiprimal or term equivalent to the
algebra (A; F2NI(G)) for some k (2 < k < w), some element a € A, and for some permutation
group G acting on A such that a is the unique fixed point of each nonidentity permutation in G.
A cannot be of type 1, 4 or 5.

The 2-element algebras were determined, up to term equivalence, by E. Post [67]. Combining
this with Theorem 6.1 and the observation that all algebras in (c¢) generate congruence distributive

varieties, we get

Corollary 6.2. [79] Every finite, idempotent, strictly simple algebra generates a minimal vari-

ety, and is finitely based provided it is of finite type.
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ALGEBRAS WITH NO PROPER SUBALGEBRAS. We have a definitive answer to Problems
2.1 and 2.3 also for surjective strictly simple algebras that have no trivial subalgebras. Recall

that a permutation group G on a set N is said to act primitively on N if the unary algebra (N; G)
is simple and |G| > 1 (if |[N| = 2).

Theorem 6.3. [80] Let A be a finite, simple, surjective algebra having no proper subalgebra.
Then one of the following conditions holds:

(a) A is quasiprimal;

(b) A is affine;

(¢c) A is isomorphic to an algebra term equivalent to (N; G)[™ for some finite set N (|[N| >

2), some m > 1, and for some permutation group G on N which acts primitively on N.
In the context of tame congruence theory, Theorem 6.3 can be restated as follows:

Let A be a finite, simple, surjective algebra having no proper subalgebra. If A is of type 1,
then A is isomorphic to an algebra term equivalent to (N’ G)[m] for some primitive permutation
group G on N; if A is of type 2, then A is affine, while if A is of type 3, then A is quasiprimal.
A cannot be of type 4 or 5.

As was mentioned in Theorem 4.2, a simple affine algebra with no proper subalgebra does
not generate a minimal variety. Furthermore, by Corollary 4.6, none of the algebras in Theorem

6.3 (c) generates a minimal variety either. Thus we have

Corollary 6.4. [80] A finite, simple, surjective algebra A having no proper subalgebra generates

a minimal variety if and only if it is quasiprimal. If so, A is finitely based provided it is of finite

type.

It is interesting to compare this result with the algebras in Example 2.4. Clearly, if the
operation o of G is surjective (this is the case, for instance, if G is Murskii’s groupoid), then
A(G) fails to be surjective only because of the constants.

In [61] Pigozzi raises the question whether there exists a finite, strictly simple groupoid
generating a minimal variety, which is not finitely based. Corollary 6.4 shows that such a groupoid
with no proper subgroupoids cannot exist. In fact, since every finite simple groupoid without
proper subgroupoids is surjective, if it generates a minimal variety, then it is quasiprimal, and
hence is finitely based.

The special case of Theorem 6.3 for algebras A in which the unary term operations form a
permutation group, combined with some deep results in tame congruence theory, makes it possible

to prove a slight extension of Theorem 5.5.

Theorem 6.5. [80] A locally finite minimal variety omitting type 1 is minimal as a quasivariety

if and only if it has a unique subdirectly irreducible algebra.
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ABELIAN ALGEBRAS. The case of surjective strictly simple algebras having several trivial
subalgebras seems to be more complicated than the two extremes settled above. However, if we
restrict our attention to Abelian algebras, then we can get a result analogous to Theorem 6.3.

Following [25] we call an algebra A Abelian if it satisfies the so-called term condition (or
TQC): for all n > 1, for every n-ary term operation f of A and for arbitrary elements u, v, a;,b; € A
(1<i<n-—-1),

f(u7a17 . '7an—1) - f(ua b17 RS bn—l) iff f(vaa'h .- 'aa’n—l) - f(v7b1a . '7bn—1)-

It is known from tame congruence theory that a finite simple algebra is Abelian if and only if it is
of type 1 or 2. Recently, Valeriote [86] proved that every finite simple Abelian algebra is strictly

simple.

Theorem 6.6. [81] Let A be a finite, surjective, simple Abelian algebra having a trivial subal-
gebra. Then one of the following conditions holds:
(a) A is affine;

(b) A is isomorphic to an algebra term equivalent to (2;id)"™ for some m > 1.
Again, rephrased in the context of tame congruence theory, this result mean the following:

Let A be a finite, surjective, simple Abelian algebra having a trivial subalgebra. If A is of
type 1, then A is isomorphic to an algebra term equivalent to (2;id) [m] for some m > 1, while if
A is of type 2, then A is affine.

In view of Theorems 4.4 and 4.5, every algebra (2;id)[™ (m > 1) generates a finitely based
minimal vartiety. Combining this with the analogous result for strictly simple affine algebras

having trivial subalgebras (cf. Theorem 4.2), we get

Corollary 6.7. [81] Every finite, surjective, simple Abelian algebra having a trivial subalgebra

generates a minimal variety, and is finitely based provided it is of finite type.

ALGEBRAS WITH A UNIQUE TRIVIAL SUBALGEBRA. Finally we mention a result show-
ing that on each finite set with at least three elements, there exist 2%° pairwise inequivalent
surjective, strictly simple algebras. For a group G and an element 0 ¢ G we use the operations A
and I, (a € G) on {0} UG introduced preceding Theorem 3.25. Further, let N denote the set of

positive integers.

Theorem 6.8. [82] For arbitrary finite group G with at least two elements, there exist opera-
tions fp, (n € N) on {0} UG (0 ¢ G) such that the algebras

Ar={0}uaG; AN{laae G} {fninel}), ICN,
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have the following properties:
(i) Ay is strictly simple and surjective, and {0} is the unique trivial subalgebra of Ay;
(ii) Ay generates a minimal variety;

(iii) for distinct sets I, J C N, the algebras Ay and A are not term equivalent.

We note that the operations f,, (n € N) are constructed in such a way that in the classification
by tame congruence theory, the algebras A are of type 5. However, by adding a single ternary

or binary operation, respectively, one can get a similar family of algebras of type 4 or 3 as well.
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