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Simple surjective algebras having no proper subalgebras

Agnes Szendrei

Abstract

We prove that every finite, simple, surjective algebra having
no proper subalgebras is either quasiprimal or affine or isomor-
phic to an algebra term equivalent to a matrix power of a unary
permutational algebra. Consequently, it generates a minimal
variety if and only if it is quasiprimal. We show also that a
locally finite, minimal variety omitting type 1 is minimal as a
quasivariety if and only if it has a unique subdirectly irreducible

algebra.
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1. Introduction

This note was inspired by C. Bergman’s and R. McKenzie’s recent paper [1]
whose main result is that every locally finite, minimal, congruence modular variety
is minimal as a quasivariety. To this end the authors find all finite simple algebras
without proper subalgebras, which generate a congruence distributive variety and
have the property that the set of unary term operations forms a group. Here we
extend this description in two aspects: we drop the requirement that the algebras
generate a congruence distributive variety, and replace the assumption that the
unary term operations form a group by the much weaker condition that the alge-
bra is surjective, i.e. all fundamental operations are surjective. It turns out that
besides quasiprimal algebras and affine algebras, the only algebras satisfying the
assumptions are the matrix powers of some unary permutational algebras (Theo-
rem 3.4). The proof makes essential use of an improved version of I. G. Rosenberg’s

primal algebra characterization theorem found in [16].
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We present some applications of Theorem 3.4 as well: we specialize it to al-
gebras with a single fundamental operation (Corollary 3.5), and find all strictly
simple algebras in which unary term operations form a group, but there is no
restriction on the generated variety (Corollary 3.10). Furthermore, we apply The-
orem 3.4 to show that a finite, simple, surjective algebra having no proper subal-
gebras — in particular, a finite simple groupoid without proper subgroupoids —
generates a minimal variety if and only if it is quasiprimal (Theorem 4.2, Corol-
lary 4.3). Finally, Corollary 3.10 makes it possible to extend the main result of
[1] as follows: A locally finite, minimal variety omitting type 1 is minimal as a
quasivariety if and only if it has a unique subdirectly irreducible algebra (Theorem
4.4).

In Section 2 we also get some Stupecki-type results on matrix powers of unary

algebras.

2. Reducts of matrix powers of unary algebras

We adopt the convention that algebras are denoted by boldface capitals and
their universes by the corresponding letters in italics. We identify every natural
number n with the set n = {0,...,n — 1}. For a set N, let Ty, Sy denote the
full transformation monoid and the full symmetric group on N, respectively. We
denote by id the identity mapping of each set. The cardinality of a set A is denoted
by |A|. For an algebra A we denote by Clo A, Clo; A, and Clogy,j A the clone of
term operations, the set of unary term operations, and the set of surjective term
operations of A, respectively.

For the notion and the history of matrix powers of arbitrary algebras the
reader is referred to [17]. Here we need the concept only for unary algebras. To
recall the definition, let C = (C;F) be a unary algebra and let m > 1. For
some mappings pu:m — n, o € Ty, and for gg,...,9m_1 € Clo; C let us define
an operation hf[go, ..., gm—1] on C™ as follows: for z; = (z0,..., ") e Cc™
(0<i<n-1),

he90s - Gm-1)(Z0; - Tn—1) = (90(202), -, gm-1(z{m_ 1))
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The mappings . and o will be referred to as the variable mapping and component
mapping, respectively. If go = ... = gy—1 = id, then we will write ] instead of
h}, (90, - s gm—1]- The m-th matrix power of C, denoted Cl™ s the algebra with
universe C™ and with all A, [90, - - -, gm—1] as fundamental operations. It is easy to
see that CI™ has no other term operations than its fundamental operations; that
is to say, Clo Cl™ consists of all operations of the form h, [90, - - -, 9m—1] as above
(cf. Corollary 2.5). Clearly, every term operation of C™ depends on at most m

variables. Clo CI™l has a useful generating system, too (see [17]):

Claim 2.1. Clo ClI™ js generated by the m-ary operation h%g (the so-called
diagonal operation), the unary operation h) ., with v the cyclic permutation

(01 ... m—1), and the fundamental operations of the m-th direct power of C.

Recall that a transformation monoid G C Ty (in particular, a permutation
group G C Sy) is called transitive if the unary algebra (N;G) has no proper
subalgebras. A permutation group G C Sy is said to act primitively on N if
(N;G) is simple and |G| > 1 (if |[N| = 2). Clearly, primitivity implies transitivity.

The main result of this section is the following theorem.

Theorem 2.2. Let A be a simple surjective algebra such that A is isomorphic
to a reduct of (N; Sy )™ for some finite set N (|[N| > 2) and for some m > 1. If
m is chosen minimal with respect to the existence of such an isomorphism, then
A is isomorphic to an algebra term equivalent to (N; G)!"™ for some permutation

group G on N which acts primitively on N if [N| > 2.

We introduce some notation. For a set A and for ¢ € Ty we denote by ker ¢
the kernel of ¢. For B C A™ and for I = {ig,...,ix_1} Cn, ip < ... < ix_1, the
projection of B onto its components in [ is

pr; B = {(ziy,...,zi,_,): (x0y...,Tn_1) € B}

Throughout this section N is a fixed set, |N| > 2. Unless stated otherwise,
N is not assumed to be finite. If A = (N™; F) is a reduct of (N;Ty)[™, then Ty
will denote the collection of all component mappings of unary term operations of

A that is,
Ta ={0 € Tpn: hS _1[90,---,9m—1] € Clos A for some gg, ..., gm—1}-
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Clearly,
Ta = {0 € Tru: hj[g0,---,9m—1] € Clo A for some p and go, ..., gm—1}-
Furthermore, we set

EA = ﬂ(kerp,: 7190 - - - s gm—1] € Clogurj A for some o and go, - - -, gm—1)-

Lemma 2.3. (i) If h{[go,---,9m—1] is a surjective operation of (N; Ty )™,
then gy, .. .,gm—1 are surjective.

(ii) For finite N, every surjective reduct of (N;Ty)™ is a reduct of
(N; Sp)tml.

(iii) An operation hf[go, - -, gm—1] of (IV; Sn)l™ is surjective if and only if
ker u N ker o is the equality relation.

Proof. The range of the operation hj (90, s Gm—1] is

R = {(go(xg), -- .,gm_l(a:gzjgli)): ;= (2, ., eN™ 0<i<n-—1}

Thus (i), and hence also (ii) are obvious. To show (iii) let go, ..., gm—1 be permu-
tations. If there exist indices i < j (0 < 4,7 < m — 1) with (¢,5) € ker p Nkero,
that is with 4y = ju and 70 = jo, then

pri; iy R ={(g:(al), 9;(&07)): 2l = 227 € N} = {(y,959; ' ()): y € N},
hence R # N™. Otherwise, 237, ... 2™ D ¢ N can be selected independently,

Opr === (m—1)p
implying that R = N™.

It is straightforward to check that the operations of (N;T; N)[m] are composed

as follows:

Lemma 2.4. For an n-ary operation hZ[go, .« «y9m—1) and for k-ary operations
RT [ fots- -« fm—14] 1 =0,...,n—1) of (N; Tnx)™ we have

1

h’Z[907 ceey gm—l](h;;g [fOOa Tt fm—l,O]($07 RS xk—1)7 s

e bt [ fone1, - oy fm—1,n—1)(To, - - -, T—1))
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= hZ[goa <. 7gm—1:|((f00(x8;g)7 R fm—l,O(xEZ:BZZ))a s

071 m—1)Tp_1
B (fO’n_]'(xOVn—l)’ tt fm—l:"—l(xgm—lgun—J))
Qo1 (m=1)0T(m_
- (gOfOU,O,u(-'EOUUE‘;), T gm_1']0(7”'—1)0a(m—l)M(aj(m—1)(71/((m—3‘ti )

Corollary 2.5. For arbitrary submonoid G of Ty,

Clo (N; G)[m] ={hlg90, - gm-1l: n > 1, p: m = n, 0 € Ty, go,---,9m—1 € G}

Proof. The left hand side clearly contains the projections, and by the previous
lemma, it is closed under composition. Therefore, by the definition of (INV; G)[m]

the claim follows.

We start to investigate some reducts of (NV; TN)[m]. Note that by Corollary 2.5
every term operation of a reduct A of (N;Tn)[™ is of the form he1g0;s - - - Gm—1]
for somen > 1, u: m - n, o € T,,, and go,...,9m—1 € Tn. Moreover, if A is a
reduct of (IV; Sy)l™, then for every term operation k{90, - - - gm—1] We have also

90,---,9m—1 € SN.

Lemma 2.6. Let A be a reduct of (N; Ty )™,
(i) If A is surjective, then

Ta = {0 € Tiu: h}lgo,-- -, 9m—1] € Clogyrj A for some p and go, - - -, gm—1}-
(ii) If A is simple, then Tx is a transitive submonoid of T,,.

Proof. (i) Since the fundamental operations of A are surjective, it follows that
every term operation of A arises from a surjective term operation by identification
of variables. The identification of variables changes merely the variable mapping,
which implies the equality.

(ii) We write T for Ta. Applying composition for elements of Clo; A we see
that T is closed under multiplication. Because of the projection in Clo; A, T
contains the identity mapping. Now let I be a subset of m that is closed under all

transformations in 7. Then the equivalence relation = on N™ defined by
x=y if and only if pr;z =pr;y

S
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is a congruence of A. Since A is simple, we conclude that I = () or I = m, proving

the transitivity of T

Lemma 2.7. Let A be a reduct of (N; Sy )™ such that A is surjective.

(i) ea Is invariant under Ta, that is, (i,j) € ea implies (io, jo) € ea for all
o€ Th.

(ii) Ifea is the equality relation on m, then A has an m-ary term operation

whose variable mapping is bijective (that is, it depends on all of its m variables).

Proof. Let us write T', € instead of Ta, €a, respectively.

(i) Assume (7,j) € €, and using Lemma 2.6 (i) select a surjective term oper-
ation h{[go, ..., gm—1] of A with component mapping o. It suffices to show that
(i0,jo) € kerv for the variable mapping v of each surjective term operation of
A. Consider the composition in Lemma 2.4 for A [90, - - -, gm—1] and for arbitrary
operations hJ! [for, - - ., fm—1,] € Clogurj A (I =0,...,n—1) such that the variable
mappings v; have pairwise disjoint ranges. (Replacing the variable mapping with
another one of the same kernel is equivalent to renaming the variables.) Thus
v = v;,(= vj,) runs over the variable mappings of all surjective term operations
of A. Furthermore, the disjointness condition ensures that the composition is sur-
jective. In the variable mapping of the composition ¢ and j are sent to zov and
jov, respectively. Since (i,j) € €, we have iov = jov, implying (io, jo) € kerv,
as required.

(ii) Let hg[go, - - -, gm—1] be a surjective term operation of A such that ker y
is minimal. We are done if we prove that ker p is the equality relation on m.
Suppose this claim fails, and let h7[fo,..., frm—1] be an arbitrary surjective term
operation of A. Consider the composition in Lemma 2.4 with = 7, f;; = f;
foralll =0,...,n—1,72=0,...,m — 1, and with vy,...,v,_1 such that their
ranges are pairwise disjoint and kerv; = kerv for alll = 0,...,n — 1. Thus the
composition is surjective. By the choice of vy, ..., v,_1, for the variable mapping
k of the composition we have ker x < ker y. Thus the minimality of ker ; implies
that ker k = ker . Consequently, for every block B of ker u, s is constant on B.
Clearly, for b € B, bk = bov,, where rp is the unique element of Byu. Therefore
Yy, and hence also v, is constant on Bo. Since this holds for all variable mappings

v of surjective term operations of A, we get that Bo is contained in a block of
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e. However, |B| = |Bo| for all blocks B of ker 1, as h{[go, - - -, gm—1] is surjective,
and therefore Lemma 2.3 implies that ker y N ker o is the equality relation. This

contradicts the assumption that € is the equality relation, completing the proof.

Lemma 2.8. Let A be a reduct of (N; Sy)™ such that A is surjective, Ty is
transitive on m and €p is the equality relation on m.

(i) For every transformation 7 € T,,, A has a term operation with compo-
nent mapping 7 and variable mapping v = id.

(ii) If N is finite, then the diagonal operation hi$ is a term operation of A.

Proof. (i) By renaming the variables if necessary we get from Lemma 2.7 (ii)
that A has a term operation of the form A [go, ..., gm—1] for some o € T}, and
go,---,9m—1 € Sn. Let us compose this operation with some essentially unary
term operations h;;_,{i}[fom ooy fm—1,i] of A such that iom; =i (¢ =0,...,n—1)
(the transitivity of T'a ensures the existence of such 7;). Then the variable mapping

of the composition is the identity, while the component mapping is 7.

(ii) By (i) A has a term operation of the form hld[go,...,gm—1] for some
9o, ---s9m—1 € Sn. Identifying its variables we get the unary term operation
hid . 190, --,9m—1] of A, which is a permutation on N™. Since N is finite, for

some natural number k, we have
has1l90 s G 1] = (B a[g0s - - - gm—1])* € Clog A.
Thus
RS (05 oy Tm—1) = K3 195" - -+, gmi1](Bid]go, - - - s Gm—1](Tos - - -, Tm—1)) € Clo A ]

proving the claim.

The next lemma makes it possible to take an isomorphic copy of the repre-
sentation of A as a reduct of (N; Sy)I™, in which the unary term operations are

easier to handle.

Lemma 2.9. Let wg,...,Tm—1 € Sy, and let m be the permutation of N™
defined by
mN™ = N™ (2% ..., 2™ ) = (mo(z?), ..., T (@™ ).
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Then 7 is an isomorphism of arbitrary reduct A of (N;Sn)!"™ onto another
reduct of (N; SN)[m] if we make correspond to each fundamental operation

k{190, - - -, gm—1] of A the operation

hZ[ﬂ-OgOﬂ-O_gla cey 7rm—lgm—17r(_ni_1)a]-
Proof. Indeed, for zg,...,z,_1 € N™ we have
h190;s - - - gm—1](T0; - - s Tn—1)™
— (7T (l.Oa) T (x(m—l)a))
- 090 Op/or-->» m—19m—1 (m—1)p
— — —1)o
= (m0g0m5 (00 (230)); - - > T 10m 1T k1 (T(am—1)0 (T 112)
= hZ[WOQOWo_al, cey 7Tm—19m—17f(_,;_1)0]($07r, ey T 1T).

As in Claim 2.1, v will denote the cyclic permutation (01 ... m — 1) on m.

Lemma 2.10. Let A be a reduct of (N;Tn)!™ such that hid and b, ., are

term operations of A. Then
Ga={g€Tn: hiS_1lg,...,9] € Clog A}
is a transformation monoid on N, and A is term equivalent to (N; G a)l™.

Proof. Let us write GG instead of Gp. That G is a submonoid of Ty
is immediate from the definition. Since hi,h) ., € CloA, it follows from
Claim 2.1 that Clo(N;G)™ C CloA. To prove the reverse inclusion let
h{[gos - - - gm—1] be a term operation of A, and let i € m. It suffices to show
that g; € G, that is, hid_  [g;,...,9;] € Cloj A. This can be verified as fol-
lows. For arbitrary natural numbers &, [, let us compute the unary term operation
(h) )RS, . 1[90s- - s gm—1](RY, _,1)! of A (addition in the subscripts and super-

scripts is understood modulo m):

(B 1) *hG, 1 (905 - - -5 gm—1] (A ) (20, ..., 2™ 1))
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= (h;yn—)l)khg’;,—)l[gm cey gm_1](($l, J?H'l, R $l+m—1))
= ()M (@@ 07), g2 @H19), ., g (D))
= (gp(a1*), g (e EFVOY gy g (gt EEm Loy

For every j € m, choosing k =% — j and | = j — 40, we see that A has a unary

term operation u; with

Jth component

/_/\.

Thus
hiri—)l[giﬂ ce ’gi](x) = h%g(UO(.’E), SRR um—l(x))

is indeed a term operation of A.
After these preparations we prove Theorem 2.2.

Proof of Theorem 2.2. We assume without loss of generality that A = (N™; F')
is a reduct of (N; Syx)l"™. Recall that N is now finite. Let us write T, ¢ instead
of Ta, €A, respectively. By Lemma 2.7 (i) € is invariant under 7.

First we show that e is the equality relation on m. Let Iy,...,I;_1 be the
blocks of €, let us identify the set N™ with N1 x ... x Nfs-1 and write its
elements in the form = = (z°%...,2™71) = (z’,...,271) (i. e. pryz = zl).
Consider a fundamental operation hf[go, ..., gm—1] of A, say it is n-ary, and let
0:5 — 8, j1:s — n be the mappings defined by the following conditions: for j € s,
Iijp = {jp} and Ijo C I;5. Furthermore, for j € s, let us consider the mappings

gitNTiw = NG (yier, = (@6 ))ier,-
Then for arbitrary elements xg,...,z,_1 € N™ we have

Io&)
9

a Is—1)s
hZ[go, .. .,gm_l](.'L‘O, .. .,xn_l) = (90(550;1 (s—1) ))

s gs—l(x(s_l)ﬂ

By surjectivity, all g; are surjective, and hence |I;| < |I5| for all j € s.
We show that |[Iy] = ... = |I;_1|. Let J C s consist of all indices j € s
for which |I;| is maximal. Let T denote the submonoid of T; generated by the

9
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mappings ¢ as ¢ runs over the component mappings of all fundamental operations
of A. Then, by the previous remark, J is closed under all transformations in 7.

Hence the equivalence relation = on N0 x ... x N%s—1 defined by

I I

rx=y ifand onlyif =z =y7 forall je€J

is a congruence of A. Since A is simple, we conclude that J = s, as required.

This yields a representation of A as a reduct of the matrix power
(NTo; Sy1)l. By the minimality of m we get s = m, whence |[Ih| = ... =
|I,_1| = 1, that is ¢ is the equality relation.

Thus we get from Lemmas 2.6 (ii) and 2.8 that hid is a term operation of A,
and A has a term operation of the form hl,[go,. .., gm—1] for some go, ..., gm—1 €
Sny. Now we apply Lemma 2.9 with 7y = id and m; = g¢og1...9;_1 for 7 =
1,...,m—1. Then the operation corresponding to h{,[go, ..., gm—1] is of the form
hlilid,...,id, g] for some g € Sny. It is easy to see that the diagonal operation
corresponds to itself in this assignment. So we can assume that A is a reduct
of (N; Sy)[™ such that the diagonal operation hid and hl[id,...,id, g] are term
operations of A.

We prove that k], is a term operation of A, and hence so is A Indeed,

m—1-

identifying the variables of hl4[id,...,id, g] we get that ¢ = A}, _,;[id,...,id, g] is

a unary term operation of A. Clearly, ¢™ = hid_,[g,...,g], so for some natural
number k, ¢™* = hid (g1 ..., g7 ). Thus
hl(zo, ..., xm—1) = hj[id, ..., id, g](z0, ..., Tm—2, Q" (z_1))

is a term operation of A, as required.

Hence Lemma 2.10 applies to A, yielding that A is term equivalent to
(N;GA)l™. Now G4 is a subgroup of Sy, as A is a reduct of (IV; Sy)l"™ and N is
finite. Since Con A = Con (N;Ga )™ = Con (N;G4) and A is simple, therefore
(N;G4) is simple, so Ga acts primitively on N provided |N| > 2.

The proof of the theorem is complete.

We conclude this section with some Stupecki-type results which can be proved
analogously to Theorem 2.2. They extend a theorem of B. Csdkany [3]. I am
indebted to L. Szabé for pointing out that the foregoing arguments can be applied

in this direction.
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Shupecki’s theorem [12] and a strengthening of it due to A. A. Salomaa [11]
states that for every finite set A with |A| > 3, the clone C of all operations on A

satisfies the following conditions, respectively:

(S the set of all unary operations in C together with any surjective operation in

C depending on at least two of its variables forms a generating set for C.

(Sa) the set of all permutations in C together with any surjective operation in C

depending on at least two of its variables forms a generating set for C.

It can be shown that the clones of matrix powers of unary permutational algebras

have property (Sa), even if the base set is infinite.

Proposition 2.11. Let N be a set and m an integer such that |[N| > 1, m > 1.

For arbitrary permutation group G on N, condition (Sa) is satisfied by the clone
C = Clo (N; G)l™l.

Proof. Consider an arbitrary surjective operation f in C depending on at
least two of its variables, and let A be the reduct of (N; G)I™ whose fundamental
operations are f and all permutations in C. Let us write T, ¢ instead of Th,
€A, respectively. Clearly, T is transitive; in fact, S,, C T. By construction A is
surjective, therefore Lemma 2.7 (i) yields that ¢ is invariant under T'. Furthermore,
the operation f of A ensures that e is not the full relation on m. Combining this
with S, C T we conclude that ¢ is the equality relation on m.

A slight modification of the proof of Lemma 2.8 (ii) yields that the conclu-
sion remains valid for A though at present N is not necessarily finite. This is
because now hid  [g;',..., 9.1 ;] € Clo; A holds by the definition of A. Thus
hid € Clo A, and by assumption h),_;, hid_[g,...,g] (¢ € G) are fundamen-
tal operations of A. Hence Lemma 2.10 applies to A with Gpo = G, yielding
Clo A = C. This completes the proof.

The analogue of Stupecki’s theorem holds for all matrix powers of finite unary

algebras.

Corollary 2.12. Let N be a finite set and m an integer such that |[N| > 1,
m > 1. For arbitrary transformation monoid U on N, condition (St) is satisfied
by the clone C = Clo (N; U )™,

11
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Proof. Consider an arbitrary surjective operation f = h{[go,-..,gm—1] in C
depending on at least two of its variables, and let D be the subclone of C generated
by f and all unary operations in C. The surjectivity of f implies that gg, ..., gm—1
are surjective. By the finiteness of N, it follows that U N Sy is a permutation
group on N and gg,...,9m—1 € U N Sy. Thus by Proposition 2.11 the clone
Co = Clo (N;U N Sy)l™ is generated by f and all permutations in Cy. Hence
Co C D, implying that hid € D. By assumption &), ,,, hid_ . [g,...,9] (g € U)

also belong to D. Therefore Lemma 2.10 applies to the algebra A = (N™; D), and
we have Gao = U, whence D = CloA =C.

3. The main result

In this section we give a full description, up to term equivalence, for all finite,
simple, surjective algebras having no proper subalgebras. Recall that a finite
algebra A is called quasiprimal if every operation on A preserving the internal
isomorphisms (i.e. isomorphisms between subalgebras) of A is a term operation of
A. The concept as well as the following characterization of quasiprimal algebras
is due to A. F. Pixley [9], [10].

Claim 3.1. A finite algebra A is quasiprimal if and only if the ternary dis-
criminator

t(a,b,c):{c ifa =" (a,b,c € A)

a otherwise

on A is a term operation of A.

An algebra A is said to be affine with respect to an Abelian group Aif A and

A have the same universe, £ — y + z is a term operation of A, and
{(a,b,c,d) € A*: a —b+c=d}

is a subuniverse of A* (i.e., the fundamental operations of A commute with = —
y+ z). The algebras that are affine with respect to A are well known to be related

to the module A (i.e. A considered as a module over its endomorphism ring

” (End A)
End A).
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Claim 3.2. Let A be an algebra and A an Abelian group on its universe. The
algebra A is affine with respect to A if and only if A is polynomially equivalent

to a module R;l\ for some subring R of End A.
In an earlier paper [16; Corollary 3.5] the following theorem was proved.

Theorem 3.3. [16] Let A be a finite, simple, surjective algebra having no
proper subalgebras. Then one of the following conditions holds:

(a)
(b) A is affine with respect to an elementary Abelian p-group (p prime);
(¢) A is isomorphic to a reduct of (N; Sy)[™ for a finite set N (|[N| > 2)

and for some integer m > 1.

A is quasiprimal;

If A satisfies condition (c), then Theorem 2.2 applies, and since A is assumed
to have no proper subalgebras, the group G is primitive even if |[N| = 2. Thus we

get

Theorem 3.4. Let A be a finite, simple, surjective algebra having no proper
subalgebras. Then one of the following conditions holds:

(a) A is quasiprimal;

(b) A is affine with respect to an elementary Abelian p-group (p prime);

(c) A is isomorphic to an algebra term equivalent to (N;G)™ for some
finite set N (|N| > 2), some m > 1, and for some permutation group G on N

which acts primitively on N.

In the context of tame congruence theory, Theorem 3.4 can be restated as

follows:

Let A be a finite, simple, surjective algebra having no proper subalgebras. If
A is of type 1, then A is isomorphic to an algebra term equivalent to (N;G)l™
for some primitive permutation group G' on N; if A is of type 2, then A is affine,
while if A is of type 3, then A is quasiprimal. A cannot be of type 4 or 5.

Assume now that A = (A4; f) is an algebra with a single fundamental opera-
tion. Clearly, if A has no proper subalgebras, then f must be surjective. Thus we

can specialize Theorem 3.4 to algebras with a single fundamental operation.
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Corollary 3.5. Let A be a finite simple algebra with a single fundamental
operation and with no proper subalgebras. Then one of the following conditions
holds:

(a) A is quasiprimal;

(b) A is affine with respect to an elementary Abelian p-group (p prime);

(¢) A is isomorphic to an algebra term equivalent to (N g)[m] for some set
N of prime cardinality, some integer m > 1, and some cyclic permutation g of
length |[N| on N.

Proof. Apply Theorem 3.4. If (a) or (b) holds for A, then we have nothing
to prove, so assume (c). Furthermore, assume without loss of generality that A
is term equivalent to (IV; G)™, and let f = ho1g0, -y Gm—1] (m:m — n, o € Ty,
90y - - - gm—1 € G) be the fundamental operation of A. The same argument as in
the proof of Lemma 2.6 (ii) yields that no proper subset of m is closed under o,
and hence o is a cyclic permutation of m. Rearranging the components we can
assume that o =~y = (01 ... m—1). Secondly, in the same way as in the proof of
Theorem 2.2 when we applied Lemma 2.9, taking an isomorphic copy of A via an
isomorphism 7 with mp = id and m; = g¢...¢;—1 (¢ =1,...,m—1), we can assume
that f = AJ[id,...,id, g] for some p:m — n and g € G. Observe that in both
steps the clone of term operations of A remains equal to Clo (V; G)[m]. Hence G
must be generated by the single permutation g. Thus the primitivity of G forces
g to be a cycle and N to be of prime cardinality. This completes the proof.

We note that the description in Corollary 3.5 (c) of the simple algebras of type
1 having a single fundamental operation and no proper subalgebras is a special

case of Theorem 4.8 in R. McKenzie’s paper [7], which can be restated as follows.

Every tame algebra of type 1 with a single fundamental operation which is
not constant, is isomorphic to an algebra term equivalent to (N;g)™ for some

finite set N, some integer m > 1, and some permutation g on N.

Problem 3.6. It would be interesting to have a common generalization of this
result and the analogous description in Theorem 3.4 (c) of the simple surjective

algebras of type 1 having no proper subalgebras.

14
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In the next section we will need simple algebras without proper subalgebras in
which unary term operations form a group. Obviously, if the unary term operations
of some algebra A form a group, then A is surjective. Furthermore, for m > 2,

[m]

the matrix powers (N; G)!"™ with |[N| > 2 and G an arbitrary permutation group
on N possess unary term operations that are not permutations. Thus Theorem

3.4 immediately implies

Corollary 3.7. Let A be a finite simple algebra having no proper subalgebras.
If Clo; A is a group, then one of the following conditions holds:

(a) A is quasiprimal;

(b) A is affine with respect to an elementary Abelian p-group (p prime);

(¢) A is term equivalent to (A; G) for some primitive permutation group G
on A.

Note that in case (c¢) of Theorem 3.4 and Corollaries 3.5, 3.7 it holds also
that, conversely, all algebras appearing in the description satisfy the assumptions
(up to term equivalence). Indeed, it is straightforward to check that the alge-
bra (N; G)[m] with G a primitive permutation group on N is simple and has no
proper subalgebras. By Claim 2.1 it is also term equivalent to a surjective algebra.
Moreover, it is not hard to show (applying Claim 2.1 and adequate parts of the
proofs of Corollary 3.5 and Theorem 2.2) that the algebras satisfying the stronger
constraints of Corollary 3.5 (c¢) are also term equivalent to an algebra with a single
fundamental operation.

Thus in case (¢) Theorem 3.4 and Corollaries 3.5, 3.7, respectively, provide an
explicit description, up to term equivalence, for the corresponding algebras. Using
some known results an analogous description can be given in cases (a) and (b) as
well.

Recall that a permutation group G on A is called semiregular if the identity
permutation is the only member of G having fixed points, and regular if it is transi-
tive and semiregular. An operation f is called idempotent if it satisfies the identity
f(z,...,z) = z, while an algebra is said to be idempotent if every fundamental
operation (and hence every term operation) of the algebra is idempotent. For an
algebra A we denote by Clo;q A the clone of idempotent term operations of A.

Assume A satisfies the assumptions of Theorem 3.4. If A is quasiprimal, then

15
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its term operations are exactly the operations preserving the automorphisms of A
(as A has no proper subalgebras). Since the fixed points of each automorphism of
A form a subalgebra, we conclude that Aut A is semiregular. For a permutation
group G acting on A let R(G) denote the clone of all operations on A admitting
all members of G’ as automorphisms. It is easy to see that if G is semiregular and
not regular, then R(G) contains unary operations that are not permutations.

Combining all these facts we get

Claim 3.8. If A is a surjective quasiprimal algebra without proper subalgebras
[or, in particular, a quasiprimal algebra without proper subalgebras and with
a single fundamental operation], then it is term equivalent to (A;R(G)) for a
semiregular permutation group G on A. Moreover if Clo; A is a group, then A is

term equivalent to (A; R(G)) for a regular permutation group G on A.

These descriptions are best possible. Indeed, it is not hard to show that for
any semiregular permutation group G on A the algebra (A; R(G)) is quasiprimal,
has no proper subalgebras, and is term equivalent to an algebra with a single
(surjective) fundamental operation. Furthermore, if G is regular, then its unary
term operations are exactly the permutations commuting with all members of G,
which form a regular permutation group on A.

The description of finite simple affine algebras appeared first in [2] (cf. [14;
Chapter 2] for a direct proof): For every finite simple affine algebra A there exist
a finite field K, a vector space KA = (A;+, K), and an endomorphism e of KA
with e2 = e such that A is term equivalent to

(A; Cloig ( A), e) or (A; Clog( A), e, T(A)).

(End g A) (End x A)
Here End x A stands for the endomorphism ring of kA and T(;l\) for the group
{z + a: a € A} of translations of A. Clearly, if A has no proper subalgebras,
then the first case cannot occur. If, in addition, A has a single fundamental
operation, then it is easy to see that some nonidentity translation z +b (b € A) is
an automorphism of A, so the second case with e = 0 cannot occur either.

Thus we have

Claim 3.9. If A is a simple, surjective, affine algebra without proper
subalgebras [or, in particular, a simple affine algebra without proper subalge-

bras and with a single fundamental operation/, then it is term equivalent to

16
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(A; Clojq ((EndK;{)A\),e, T(A)) for some Ve(itor space kA = (A;+,K) over a
finite field K and some endomorphism e of x A with e? = e [and e # 0]. Moreover
if Clo; A is a group, then A is term equivalent to (A; Cloiq ((EndKX)A\)’ T(A))

for some vector space g A = (A; +, K) over a finite field K.

Again, these descriptions are best possible, as it is straightforward to check
that all algebras (A; Cloig ( (End x )

no proper subalgebras, and are term equivalent to a surjective algebra; moreover,

A\),e, T(A\)) above are simple, affine, have

if e # 0, then to an algebra with a single (surjective) fundamental operation.
Furthermore, if ¢ is missing (i.e. e = id), then Clo; A = T(A).

Now we are in a position to give a full list of strictly simple algebras with
unary term operations forming a group, thus improving Corollary 10 in [1]. Recall
that an algebra is called strictly simple if it is simple and has no nontrivial (i.e.
nonsingleton) proper subalgebras. Let A be a strictly simple algebra such that
Cloy A is a group. As was noted in [1], either A is idempotent or A has no proper
subalgebras. The latter case is settled above. In the first case Theorem 2.1 from
[15] applies. For a permutation group G acting on A let Z(G) denote the set of
idempotent members of R(G). For a € A and for an integer £ > 2 let F denote

the clone of all operations f on A such that
X2 ={(ag,...,ar_1) € A¥: a; = a for at least one i, 0<i < k—1}

is a subuniverse of (A; f)*. Furthermore, we put F2 = (N, F2. In case |A| = 2,
we denote by M;q4 the clone of monotone, idempotent operations on A.

Summarizing, we have

Corollary 3.10. Let A be a finite, strictly simple algebra such that Clo; A is
a group. If A has no trivial subalgebras, then A is term equivalent to one of the
following algebras:

(a) (A;R(Q@)) for a regular permutation group G on A;

(b) (A; Cloq ( A), T(A)) for some vector space k A = (A; +, K) over
a finite field K ;

(¢) (A;G) for a primitive permutation group G on A.

(End  A)

If A has trivial subalgebras, then A is idempotent, and it is term equivalent to

one of the following algebras:

17
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(a®°) (A4;Z(Q)) for a permutation group G on A such that every nonidentity
member of G has at most one fixed point;

(b°) (A; Clog (
finite field K ;

(x°) (4Z(G) N FY) for some k (2 < k < w), some element 0 € A, and

some permutation group G' on A such that 0 is the unique fixed point of every

(EndKX)A\)) for some vector space g A = (A;+,K) over a

nonidentity member of G;
(m°) a reduct of (A; Mq) provided |A| = 2.

It is easy to see that all algebras listed in Corollary 3.10 are in fact strictly
simple and have the property that their unary term operations form a group. An
interesting consequence of Corollary 3.10 is that very few permutation groups can
occur as Clo; A for a strictly simple algebra A. Namely,

(i) the one-element group {id} (for idempotent A),

(ii) regular permutation groups (for quasiprimal or affine A),

(iii) primitive permutation groups (for essentially unary A).

Corollary 3.11. If A is a finite simple algebra having no proper subalgebras

such that Clo; A is a group, then Clo; A is either regular or primitive.

Clearly, if Clo; A is a transitive permutation group on A, then A has no
proper subalgebras. Thus the following result from [8] is also a consequence of
Corollary 3.10.

Corollary 3.12. [8] If G is a nonregular transitive permutation group on A

and A is a simple algebra with G = Cloy A, then A is term equivalent to (A; G).

4. Minimal varieties

It is well known, and easy to see that every locally finite minimal variety is
generated by a strictly simple algebra. It is an open problem, in general, which
finite, strictly simple algebras generate minimal varieties. Making use of Theo-
rem 3.4 we can determine all finite, simple, surjective algebras having no proper

subalgebras, which generate minimal varieties.
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Lemma 4.1. If m > 1 and C = (C; Q) is a unary algebra such that G is a

permutation group on C, |G| > 1, then CI™ does not generate a minimal variety.

Proof. Consider CI™ as an indexed algebra (recall that all operations
ho1g0; -y gm—1] with o € Ty, p:m — n, go,...,gm—1 € G are fundamental
operations of CI™), and let U be the reduct of (2;id)[™ which is of the same
type as Cl™ and for every fundamental operation h, (90 - - - > gm—1] of C[™ the
corresponding operation of U is hf,. Clearly, U is term equivalent to (2;id) [m],

We show that U is a homomorphic image of Cl™ x CI™l. Let ¢:C™ x
C™ — 2™ be the mapping defined as follows: for any a = (a°,...,a™™') and

b= (°...,0™" 1) in C™, (a,b)yp is the m-tuple whose ith component is

1, ifa’ =10

forall 72 (0<7<m—1).
0, otherwise orall $(0<i<m )

(@09 ={
Clearly, ¢ is surjective. Let h7[go,...,gm—1] (0 € Tpn, p2m —m, go, .-, gm—1 €
G) be an arbitrary fundamental operation of CI™, and (aq, bo), - - -, (Gn_1,bn_1)

arbitrary elements in C"™ x C™. For any i (0 <i < m — 1), we have

(hZ[go, . ,gm_l]((ao, bo), ey (an_l, bn_l))(p)i =1

& giaf) =a(i) & ai=bi & (b)) =1 &

(hZ((aO’ bO)QO’ SRRK) (a’n—la bn—l)w))i =1,

implying that ¢ is a homomorphism.

Thus U is a nonsingleton algebra belonging to the variety generated by C™.
Since Cl™ has distinct fundamental operations for which the corresponding oper-
ations of U coincide (e. g. hid ., and hid . [g,...,9], g € G, g # id), therefore U

generates a proper subvariety of CI™l. The proof of Lemma 4.1 is complete.

Note that the claim and proof of Lemma 4.1 is analogous to the well-known
situation for affine algebras: if A is a simple affine algebra having no proper
subalgebras, then A does not generate a minimal variety, as A2 has a homomorphic
image generating a nontrivial proper subvariety of the variety generated by A

([6], [13]). Among the algebras occurring in Theorem 3.4 there remain only the
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quasiprimal algebras, which do generate minimal varieties by Jénsson’s lemma, [5].

Thus we get

Theorem 4.2. A finite, simple, surjective algebra having no proper subalgebras

generates a minimal variety if and only if it is quasiprimal.

Corollary 4.3. A finite simple algebra with a single fundamental operation
and with no proper subalgebras generates a minimal variety if and only if it is

quasiprimal.

Recently C. Bergman and R. McKenzie [1] proved that every locally finite,
minimal, congruence modular variety is minimal as a quasivariety. Now we apply
Corollary 3.10 to prove an extension of this result. Both the statement and the
proof require some notions from tame congruence theory, for which the reader is
referred to [4].

Theorem 4.4. A locally finite, minimal variety omitting type 1 is minimal as

a quasivariety if and only if it has a unique subdirectly irreducible algebra.

The proof goes along the same lines as the proof for the congruence distribu-

tive case in [1; Theorem 12|, which is based on

Lemma 4.5. [1] Let A be a finite, strictly simple algebra. The variety V(A)
generated by A is a minimal quasivariety if and only if V(A) = SP(A) and A

embeds into every nontrivial subalgebra of AZ.

The two facts making it possible to weaken “congruence distributivity” to
“omitting type 1” are Corollary 3.10 and the following deep result from tame

congruence theory.

Theorem 4.6. [4; Theorem 9.6] For a locally finite variety V the following
conditions are equivalent:
(i) 'V omits type 1;

(ii) V satisfies a nontrivial idempotent, linear Mal’tsev condition.

Recall that a Mal’tsev condition is said to be idempotent if its identities imply

the idempotent law f(z,...,z) = z for every term f occurring in it, and is called
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linear, if terms are not substituted into one another on either side of each identity
in the condition. A Mal’tsev condition is called trivial if it is satisfied in every

variety.

Proof of Theorem 4.4. Let V be a locally finite, minimal variety omitting
type 1, and let A be a finite, strictly simple algebra in V' (say, A is a nontrivial
algebra of minimal cardinality in V). If V is minimal as a quasivariety, then we
have V' = SP(A) by Lemma 4.5, so A is the only subdirectly irreducible algebra
in V. Conversely, assuming that A is the unique subdirectly irreducible algebra in
V, we want to show that V' is minimal as a quasivariety. By Lemma 4.5 it suffices

to verify

Lemma 4.7. For arbitrary finite, strictly simple algebra A in a variety omitting

type 1, A embeds into every nontrivial subalgebra of A2,

Proof. The argument is a slight modification of the proof in [1; Theorem 12],
so we give a brief sketch only.
Suppose the claim fails for some A, and let A be of minimal cardinality. That

is to say, assume A is a strictly simple algebra such that

(i) the variety V(A) generated by A omits type 1,
(ii) there is a minimal subalgebra R of A? such that A does not embed into R,
and
(iii) for every strictly simple algebra B such that |B| < |A| and V(B) omits type

1, B embeds into each nontrivial subalgebra of B2.

By Theorem 4.6 (i) is equivalent to requiring that there exists a nontrivial idem-
potent, linear Mal’tsev condition (M) satisfied in V' (A).

The first step of the proof is to show, using (ii), that A has no trivial subal-
gebras. For the details the reader is referred to [1].

Now if Clo; A is a group, then we apply Corollary 3.10. Since no nontrivial
idempotent, linear Mal’tsev condition can hold in a variety generated by a unary
algebra, therefore condition (c) is excluded. Thus Clo; A and Aut A are regular
permutation groups on A, and every minimal subalgebra of A? is (the graph of)
an automorphism of A. Hence every minimal subalgebra of A? is isomorphic to

A, contradicting (ii).
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Therefore Clo; A is not a group, so A has a unary term operation g with
9> =g and g(A) # A. Let B=g(A), S = RN B2, and let B be the algebra with
universe B whose operations are the restrictions f |p to B of all term operations
f(@o, - xn_1) = g(f(20,- .., Tn_1)) (n > 1) of A. It was proved in [1] that B is
strictly simple, S is a minimal subuniverse of B2, and B 2 S. By (i), A has term
operations o, ..., 1, witnessing the satisfaction of the Mal’tsev condition (M) in
V(A). Then the operations #y|p,...,tx|p of B ensure the satisfaction of (M) in
V(B). The properties of B established so far contradict (iii). This completes the

proof of the theorem.

The example A = (A; S4) shows that the assumption on the type set of V(A)
cannot be omitted in Lemma 4.7.

When comparing Theorem 4.4 with the main result of [1] it is natural to ask
what are the nonmodular minimal varieties omitting type 1 that are also minimal
as quasivarieties. It can be shown that only some strictly simple algebras of type
5 can generate such varieties. This follows by combining one of the most striking
results of tame congruence theory with a relatively easy fact (which is known to

most of those working in the theory, though is not stated in [4]).

Theorem 4.8. [4; Theorem 10.4] Every residually small, locally finite variety

omitting types 1 and 5 is congruence modular.

Claim 4.9. Every type occurring in a variety occurs also as the type of the

monolith of a finite subdirectly irreducible algebra in the variety.

(The idea of the proof of Claim 4.9 is to show that for every finite algebra A
and for every type i € {1,...,5} occurring in the type set of A, if @ < [ is a prime
quotient of type ¢ in the congruence lattice of A such that 3 is maximal with this
property, then 3 is the unique upper cover of «, and hence A/« is subdirectly
irreducible with type 7 monolith.)

Thus we get

Corollary 4.10. Let V be a locally finite, minimal variety which is minimal as
a quasivariety. If the unique subdirectly irreducible algebra in V is of type 2, 3 or

4, then V is congruence modular.
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