Strongly Abelian minimal varieties

Agnes Szendrei

ABSTRACT

It is shown that every finite, simple, strongly Abelian algebra generating a min-
imal variety is term equivalent to a full matrix power of a 2-element unary
algebra. The proof is based on a classification of reducts of matrix powers of
unary algebras.

Introduction

The matrix power construction for algebras and varieties was first considered (under
different names) by T. Evans [3], M. Saade [13], W. D. Neumann [11], and S. Fajtlowicz
[4]. Since then, matrix powers have occurred in various topics; e.g. fine spectra of varieties
([20]), or bounded equational theories ([6]). Recently, important applications of reducts of
matrix powers have been found in the structure theory of finite algebras ([9], [5]), and in
the study of category equivalence of varieties ([10]).

The term operations of matrix powers of sets (or equivalently, the term operations of
matrix powers of algebras whose operations are projections) — interpreted in a different
form, and called “co-operations” — were investigated by B. Csdkany [1], [2] from the
point of view of completeness. A Rosenberg-type general completeness criterion for such
operations was found by Z. Székely [14]. In an unpublished work [15] this result was
extended to matrix powers of unary permutational algebras as well.

In this paper we extend Székely’s results as follows: among all reducts of matrix powers
of unary algebras we characterize the algebras that are term equivalent to full matrix
powers, by describing (in terms of a single kind of preservation property) the maximal
possible clones of the remaining algebras (Theorem 1.5 and Corollary 1.6). Making use of
this classification theorem we prove that there are no other locally finite, strongly Abelian
minimal varieties, than the well-known minimal varieties generated by matrix powers of
some 2-element algebras (Theorem 2.2). In fact, this application was the motivation for
the investigation of reducts of matrix powers of arbitrary unary algebras. Theorem 1.5
allows a slight refinement in the main result of [16] as well (Theorem 3.4).
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1. A classification of reducts of matrix powers of unary algebras

If not stated otherwise, algebras are denoted by boldface capitals and their universes
by the corresponding letters in italics. The clone of term operations of an algebra A is
denoted by Clo A. For algebras A = (A; F') and A’ = (A; F') having a common universe
A, A’ is called a reduct of A if F C Clo A (or equivalently, CloA’ C CloA), and A’ is
said to be term equivalent to A if Clo A’ = Clo A.

We identify every natural number n with the set n = {0,...,n — 1}. For a set U, let
Ty, Su, and Cy denote the full transformation monoid on U, the full symmetric group
on U, and the set of (unary) constant functions on U, respectively. We denote by id the
identity mapping of each set. The cardinality of a set A is denoted by |A|. For a mapping
©, the kernel of ¢ is denoted by ker .

For the notion and the history of matrix powers of algebras the reader is referred to
[20]; recent applications can be found in [5] and [10]. In this paper we need the concept
for unary algebras only. Let U = (U;F) be a unary algebra and let m be a positive
integer. For arbitrary mappings u: m — n, o € T, and for arbitrary unary term operations
9o, - - -, 9m—1 of U let us define an operation hZ[go, eevyGm—1] on U™ as follows: for z; =
(20,..., 2" HeU™ (0<i<n-1),

1190, -2 Gma) (@0, -+, Bn1) = (90(200), - > 1 (1))

The mappings p and o will be referred to as the wariable mapping and the coordinate

mapping of the operation, respectively, while gg, ..., gmn_1 will be called the sequence of
coordinate functions of the operation. If go = ... = gp—1 = id, then we will write hj,
instead of hfj[id, ...,id]; furthermore, if the operation is unary (and hence y is the unique

mapping m — 1), then the subscript x will be omitted.
The m-th matriz power of U, denoted U™ is the algebra with universe U™ and with
all h, [90, - - -, gm—1] described above as fundamental operations.

Lemma 1.1. Let U be a unary algebra, and let m be a positive integer. For an n-ary
operation h[go, ..., gm—1] and for k-ary operations hl[for, ..., fm—11] (Il =0,...,n —1)
of U™ we have

helgo, - - s gm—1] (B[ foos - - -, fm—1,0)(Z0, - - -, k1), - -
K hlq;:i:i[fo,n—la R fm—l,n—l](x07 R xk—l))

TOM)
7 J

0o _1 o
:(gﬂfOU,Ou(mogy(m (m—1)o( 1)u))

c s Im=1fm—-1)o,m -1 (T (1))

hence the composite operation is an operation of U™ and its variable mapping, coordinate
mapping and sequence of coordinate functions are

i = iovy, i 10Ty, and i gifio,in 0<i<m-—1),

respectively.



Proof. Straightforward. o
id

m—{i}’
Lemma 1.1 that U™ has no other term operations than its fundamental operations; that
is to say, Clo U™ consists of all operations of the form h, [90; - - -, gm—1] described above.

Since the ith n-ary projection on U™ is h it follows immediately from

Clearly, every (term) operation of U™ depends on at most m variables.

We will say that an operation hZ[gO, eevyGm—1] of UM is surjective in the i-th coor-
dinate if g; is surjective (0 < ¢ < m — 1). Clearly, if U is finite, then g; is surjective if
and only if it is a permutation of U. For a subset I C m, an operation hf[go, - - -, gm—1] of
U™ will be called coordinate-wise I-surjective if h is surjective in the i-th coordinate for
every i € I, and I-gluing if there exist distinct indices ¢,4" € I with iy =i'u, ic =i'o. In-
stead of coordinate-wise m-surjective or m-gluing we say briefly coordinate-wise surjective
or gluing, respectively. Notice that an operation hj, (905« - - Gm—1] of U™ is gluing if and
only if ker u Nker ¢ is different from the equality relation.

Lemma 1.2. Let U be a unary algebra, and let m > 1.

(1.2.1)  Every surjective operation of U™ s coordinate-wise surjective.

(1.2.2) For U finite, an operation of U™ is surjective if and only if it is coordinate-
wise surjective and not gluing. o

Let A be a set and w a permutation of A. For an n-ary operation f on A the conjugate
of f via 7 is the operation

nfn A" = A, (agy. .., 0n_1) = 7f(7"ao), ..., 7 Han_1)).
Clearly, mfm—! is exactly the operation for which m: (A; f) — (A;wfmr~1!) is an isomor-
phism. For any set F' of operations on A, the conjugate of F' via 7 is

rFr~ ! ={nfr~ ! feF}.

Obviously, if C is a clone on A, then so is 7Cr~!. For arbitrary algebras A = (A; F)
and A’ = (A; F’) with common universe A and for any permutation 7 of A the equality
Clo A = 7(Clo A’)7~! means that the isomorphic copy of A under 7 is term equivalent to
A

Let U be a unary algebra, m a positive integer, and consider a reduct U’ of U. Obvi-
ously, Clo (U’ )[m] is a subclone of Clo Ul™. However, the subclones of Clo U™ that are
conjugate to Clo (U’)l"™ — even via permutations of U™ of the form 7 = hid[mg, ..., Tp_1]
(€ Clo (U; Sy)™) — need not be equal to clones of mth matrix powers of some unary
algebras on U; to see this, take m = 2, U = (2;T3), U’ = (2;0), and mg = id, m; = (0 1).
The following proposition provides an internal characterization for the conjugates of the
clones of full matrix powers of reducts of a unary algebra.

Proposition 1.3. Let U be a finite unary algebra, and let C be a subclone of Clo Ul™l.
The following three conditions are equivalent for C:
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(1.3.1)  for every transformation o of m, C contains a surjective operation with co-
ordinate mapping o and variable mapping id;

(1.3.2) C contains the operation hi$ and at least one surjective unary operation with
coordinate mapping y= (01 ... m —1);

(1.3.3) U has a reduct U’ such that C is conjugate to Clo (U")"™ via some permu-
tation m = hi9my, ..., mm_1] in Clo U™,

Proof. By means of Lemma 1.1 one can easily check that for arbitrary operation
h = hZ[fo,..., fm—1] € C the conjugate of h via 7 = h'9[m, ..., mTm_1] (€ Clo (U;Sy)"™)
is

mhr~ ! = hZ[WOfOWO_Tl, e, 7Tm_1fm_1ﬂ'(_"1_1)7_].

Thus the implication (1.3.3) = (1.3.1) is obvious. .

Suppose now that (1.3.1) holds. By assumption, hid[go,...,gm-1] and
hial90; - - - » G—1] belong to C for some permutations go, - -, gm—-1,90, - - - Gy 1 of U. Iden-
tifying variables we get also h'4[go, . .., gm_1], A7 [gh, - - -, 9pm—1] € C. Since R'%Yg0,. .., Gm—1]

acts coordinate-wise on U™ and U is finite, composing hiS[go, . . ., gm_1] With some power

of h'[go, ..., gm—1] yields hiJ = hig[id, .. .,id], whence hig € C. This proves (1.3.2).
Assuming (1.3.2) observe first that in view of hi € C, for every unary operation
hY94,---,9m_1] € C we have

141905 - -+ Gm—1] = B3 (A" 190, - - -, g—1(20), - .-, KV [g0, - -, g 1] (@m—1)) € C.

Thus C contains h{,[g(,...,9s,_1] for some permutations gg,...,g.,_, of U. Consider
now the permutations 7o = id and m; = g4g}...9;_; (¢ = 1,...,m —1). Clearly, = =
hid[my, ..., Tm_1] belongs to Clo U™, By the remark made in the first paragraph of this
proof, the conjugate of the operation h{;[gg, . . . s 9m—1] via m is of the form h;d[id, .. .,id, g]
for some permutation g in CloU. The conjugate of h;g via 7 is obviously h;g itself. Thus

hd, hllid,...,id,g] € 7Cx~! (C Clo UM),

We show that h; also belongs to mCr~1, and hence so is h?. This will prove that 7Cm !
is the clone of the mth matrix power of a reduct of U (cf. Lemma 2.10 in [17]), as required
in (1.3.3). Let ¢ = h"[id, .. .,id, g]. Clearly, ¢™ = hid[g, ..., g], so for some natural number
k, ¢™F = hid[g=1 ... ,g71] € C. Thus

K (20 - - s Tm—1) = h[id, . .., id, g] (2o, - - -, Tm—2, ¢ (Tm—1)) € C,
completing the proof. o

Let U be a unary algebra, and let m be a positive integer. Further, let Z be the set
of blocks of a uniform partial equivalence of m (i.e., Z is a non-empty family of pairwise
disjoint, non-empty subsets of m of the same cardinality). We will say that an operation
h of U™ respects T, if for each block I of T one of the following conditions holds:

(Rspl) h is not coordinate-wise I-surjective,
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(Rsp2) h is coordinate-wise I-surjective and I-gluing,
(Rsp3) h is coordinate-wise I-surjective, moreover, the variable mapping of & is constant
on I, and the coordinate mapping of h maps I bijectively onto a block in Z.

Obviously, the three conditions (Rspl)—(Rsp3) mutually exclude one another.

It will not cause confusion if we do not distinguish a uniform partial equivalence
from the family of it blocks. A subclone C of Clo U™ will be said to respect a uniform
partial equivalence Z (or the family Z of blocks of a uniform partial equivalence) on m if
every member of C respects Z. Similarly, a reduct A of U™ will be said to respect Z if
every fundamental operation (or equivalently, cf. Proposition 1.4 (1.4.1) below, every term
operation) of A respects Z.

Proposition 1.4. Let U be a unary algebra, let m > 1, and let Z be the set of blocks of
a uniform partial equivalence on m.

(1.4.1) The set Clog U™ of all operations in Clo U™ respecting T forms a clone.

(1.4.2) Cloz U™ s a proper subclone of Clo U™ if and only if T is distinct from
the equality relation.

(1.4.3) If T is distinct from the equality relation, then Cloz U™ is not conjugate to
the clone of the m-th matrix power of any reduct of U.

Proof. The claim in (1.4.1) can be checked directly by making use of Lemma 1.1 and
the definition of respectability; alternately, it follows immediately from Lemma 3.2.

In (1.4.2) the necessity is obvious, while the sufficiency is a trivial consequence of
(1.4.3).

To prove (1.4.3) one can apply Proposition 1.3 and the following observation. If the
blocks in Z have at least two elements, then the operation h%g € Clo U™ is not respected
by Z, while if Z consists of singletons, but (JZ # m, then none of the surjective unary
operations in Clo U™ with coordinate mapping v = (01 ... m—1) is respected by Z. ¢

Now we are in a position to state the classification theorem for the subclones of the
clones of matrix powers of finite unary algebras.

Theorem 1.5. Let U be a finite unary algebra, and let m be a positive integer. For every
subclone C of CloUl™ one of the following two conditions holds:

(1.5.a) U has a reduct U’ such that C is conjugate to Clo (U")"™ via some permu-
tation m = hi9[my, ..., Tm_1] in Clo U™,

(1.5.b) C respects a uniform partial equivalence on m distinct from the equality rela-
tion.

Restated for algebras in a slightly weaker form Theorem 1.5 yields the following corol-
lary.

Corollary 1.6. If A is a reduct of the m-th matriz power of a finite unary algebra U
(m > 1), then either

(1.6.a) A is isomorphic to an algebra term equivalent to (U')™ for an appropriate
reduct U" of U, or



(1.6.b) A respects a uniform partial equivalence on m distinct from the equality re-
lation. o

We postpone the proof of Theorem 1.5 till the last section, and discuss first some of
its applications.

2. Minimal varieties generated by finite simple strongly Abelian algebras

A variety V is called minimal if it has exactly two subvarieties: V itself and the trivial
variety. Obviously, every locally finite minimal variety is generated by a finite simple
algebra having no nontrivial proper subalgebra. The variety generated by an algebra A
will be denoted by V(A).

In tame congruence theory (the structure theory of finite algebras and locally finite
varieties, see [5]) simple algebras are divided into 5 types. A finite simple algebra S turns
out to be of type 1 if and only if it is strongly Abelian, that is, it satisfies the following
strong term condition: for all n > 1, for every n-ary term operation f of S and for arbitrary
elements u, v, a4, b;,¢;, € S (1<i<n-—1),

f(uaah'"aan—l) :f(vabh'"abn—l) = f(U,Cl,...,Cn_l):f('U,Cl,...,Cn_1);

furthermore, S is of type 2 if and only if it fails to be strongly Abelian, however, it is
Abelian, that is, it satisfies the following term condition: for all n > 1, for every n-ary term
operation f of S and for arbitrary elements u,v,a;,b; € S (1 <i<n—1),

f(U,a13"'aan—1):f(uabl,"'abn—l) g f(v3ala"'aa’n—1):f(Uabla"'abn—l)-

It is not hard to see that every strongly Abelian algebra is Abelian.

For strongly Abelian algebras the most important examples are matrix powers of unary
algebras, and for Abelian (but not strongly Abelian) algebras the most important examples
are affine algebras (i.e., algebras polynomially equivalent to unitary modules over rings).
Clearly, subalgebras and reducts of strongly Abelian, resp. Abelian, algebras are also such.
In many cases, the property of being strongly Abelian, or Abelian leads to analogous
results. The following representation theorems from tame congruence theory illustrate the
analogy: Every finite simple algebra of type 1 can be represented as a subalgebra of a
reduct of a matrix power of some unary algebra [5, Theorem 13.3], and every finite simple
algebra of type 2 can be represented as a subalgebra of a reduct of an affine algebra [5,
Theorem 13.5].

Recently, while investigating the problem which finite simple algebras of type 2 gen-
erate residually small varieties, K. Kearnes, E. W. Kiss, and M. Valeriote noticed the
following interesting fact:

Theorem 2.1. [7] FEvery finite simple algebra of type 2 that generates a minimal variety
18 affine.



Their proof is based on the techniques of tame congruence theory. In [19] we present
another proof which makes use of the representation theorem mentioned above and a
classification theorem for reducts of affine algebras. Now we can prove the type 1 analogue
of Theorem 2.1, using an approach analogous to the one in [19]. We note that K. Kearnes,

E. W. Kiss, and M. Valeriote were also able to extend their methods to get the same result
[8].

Theorem 2.2. Fuvery finite simple algebra of type 1 that generates a minimal variety is
isomorphic to an algebra term equivalent to (2;id)™ or (2;0)"™ for some m > 1.

For the proof we need a variant of the representation theorem for finite simple algebras
of type 1, which was used earlier in [18].

Lemma 2.3. [18, Lemma 3.3] For arbitrary finite simple algebra S of type 1, there exist
an integer m > 1 and a finite set U such that S is isomorphic to a subalgebra S’ of a reduct
A of (U; Sy U Cp)l™ with S’ satisfying the following conditions:

(2.3.1) {s% (s%...,sm N e S'}=U forall0 <i<m—1,

(2.3.2) |{(s%8%): (s%...,s™m ) e S} >|U|forall0<i<j<m-—1.

A quadruple (A, U, m, S') satisfying all requirements in Lemma 2.3 will be called a
condensed representation of S.

Lemma 2.4. Let S be a finite simple algebra of type 1. If (A, U, m, S') is a condensed
representation of S, then V(A) =V (S).

Proof. Let h[go,---,9m—1] and A} [fo,-- ., fm—1] be arbitrary term operations of A.
Suppose they agree on S’, that is
g,(x:Z) = fi(zi") foralli (0<i<m—1)andall zg,...,z,_1 €S

For each i (0 < i < m—1), condition (2.3.1) for S’ ensures that either g; = f; are constants,
or both g;, f; are permutations and iy = iv. In the latter case condition (2.3.2) implies
that 40 = ¢7 and g; = f;. Thus the two term operations of A coincide. This shows that
every identity satisfied in S is satisfied in A as well. The converse is trivial, so the proof
is complete. o

Lemma 2.5. Let U be a unary algebra, let m > 1, and let T be the set of blocks of a
uniform partial equivalence on m. Then the mapping

pz: Cloz U™ — Clo (2;0)1F1, b =k [go, ..., gm-1] — KS[(f1)1ez]
with

1o 4 (ie€l) if (Rsp3) holds for h
o= arbitrary  otherwise ’

15 — Io if (Rsp3) holds for h
"~ | arbitrary otherwise ’
fr = id if (Rsp3) holds for h
=0 otherwise

1s a clone homomorphism.



Proof. Notice that ¢z is well defined, because if (Rspl) or (Rsp2) holds for h €
ClozUl™ and I € Z, then f; is constant, and hence hg[(fI)IEI] is independent of the
choice of I'n and I5. Clearly, ¢z assigns to the ith n-ary projection hii {6} in Clo U™
the ith n-ary projection in Clo (2; O)HIH. Making use of Lemma 1.1 one can easily check
that ¢z commutes with composition; the details are left to the reader. o

Now we can prove Theorem 2.2.

Proof of Theorem 2.2. Let S be a finite simple algebra of type 1 such that the variety
V = V(S) is minimal. By Lemmas 2.3 and 2.4 V contains an algebra A which is a reduct
of Ul™ for some m > 1 and some finite unary algebra U. Select A so that |A| be minimal,
and fix U and m. If Z is a uniform partial equivalence on m respected by A, then the
image of Clo A under the clone homomorphism ¢z in Lemma 2.5 yields a reduct of (2; 0)|I |
which — when made into an algebra of the same similarity type as A — belongs to V.
Moreover, since V is a minimal variety, ¢z is injective.

Combining this observation with the minimality of | A| we conclude that A respects no
uniform partial equivalence Z of m distinct from the equality relation, furthermore (since
A obviously respects the equality relation on m), U is a two-element algebra. We may
assume without loss of generality that U = (2;T,). Now Corollary 1.6 implies that A is
isomorphic to an algebra term equivalent to the mth matrix power of a reduct of (2;T3).
Applying again the observation in the preceding paragraph with Z the equality relation
on m, and making use of the injectivity of ¢z, we see that A has to be isomorphic to the
mth matrix power of a reduct Uy of (2;0). Clearly, Uy = (2;id) or Uy = (2;0).

Since V' is a minimal variety, we have V =V (A) = V(Ugn]). It is well known (cf. e.g.
[20]) that an algebra belongs to V(Ugm]) if and only if it is isomorphic to the mth matrix
power of an algebra in V' (Uy). In particular, it follows that, up to isomorphism, Ug"] is
the only simple algebra in V(UI™). Since S € V = V(UI™), we conclude that S = U™,
This completes the proof. o

3. Further refinement of the Primal Algebra Characterization Theorem

In [16] the following strong version of Rosenberg’s Primal Algebra Characterization
Theorem was proved:

Theorem 3.1. [16] Let A be a finite simple algebra having no proper subalgebra. Then
one of the following conditions holds:
(3.1.a) A is quasiprimal;
(3.1.b) A is affine with respect to an elementary Abelian p-group (p prime);
(3.1.c) A is isomorphic to a reduct of (2; To)!"™ for some integer m > 1;
(3.1.d) A has a compatible k-regular relation (k > 3);
(3.1.e) A has a compatible k-ary central relation (k > 2);
(3.1.f) A has a compatible bounded partial order.
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Recall that for an algebra A = (A;F) and a k-ary relation p on A, p is called a
compatible relation of A if p is a subuniverse of A¥. If, for an operation f on A4, p is a
compatible relation of (A; f), we also say that f preserves p. A family T'= {©q,...,0,_1}
(m > 1) of equivalence relations on A is called k-regular if each ©; (0 < i < m — 1)
has exactly k& blocks and O = ©y N ...N O,,_; has exactly k™ blocks; the relation
corresponding to T is defined as follows:

Ar ={(ag, ..., ak-1) c AF: for all (0<i<m-—1),

ag, - - -,ak_1 are not pairwise incongruent modulo ©;}.

A relation on A is called k-regular if it is of the form Ar for a k-regular family T of
equivalence relations on A with k£ > 3. (Note that for k£ = 2, Ay = Op is an equivalence
relation.)

We will need a description of what it means for an operation to preserve a k-regular
relation.

Lemma 3.2. [12, Lemma 7.3] Let f be an n-ary operation on a finite set A, and let
T ={Og,...,0,,—1} be a k-reqular family of equivalence relations on A such that \p is
preserved by f. For everyi (0 < ¢ < m—1) such that the range of f meets each block of ©;,
there exist j,1 (0 < j <m—1, 0 <1 < n-—1) such that for all zg, ..., Tn—1,Y0,--,Yn—1 € A
we have

f(@o,--Zn-1) O f(Yo,---,Un—1) & x109;y.

The other notions appearing in Theorem 3.1 will not be required in the arguments
later on, therefore they will not be defined here. For these concepts the reader is referred
to [16].

Now let U be a finite unary algebra, and let m be a positive integer. Furthermore, let
7 be a uniform partial equivalence on m, and denote by r the common size of blocks of Z.
First we give an alternate characterization for the property that an operation h € Clo U™
respects Z.

For 0 <7 < m — 1 let ®; denote the kernel of the projection of U™ onto its ith
coordinate, and for I C m put &y = ﬂiel ®,. Clearly,

T(Z) = {®y: I is block of 7}

is a |U|"-reqular family of equivalence relations on U™. Put ¢ = |U|", and consider the
following g-ary relation on U™:

AZ) = {(ao,...,aq-1) € (U™)%: for each I € Z,

the r-tuples (af)iez, ..., (a!_;)icr are not pairwise distinct}.

If g =2 (ie, [U =2 and r = 1), then A\(Z) = ®yz, while if ¢ > 3, then A(Z) is the
g-regular relation corresponding to T'(Z).



Lemma 3.3. Let U be a finite unary algebra, and let m be a positive integer. For arbi-
trary operation h € Clo U™ and for the set T of blocks of any uniform partial equivalence

on m the following conditions are equivalent:
(3.3.1) h respects Z,
(3.3.2) h preserves the relation \(T).

Proof. Let h = h{[go, - -, gm—1] € Clo U™ be n-ary.
(3.3.1) = (3.3.2). Assume h respects Z, and consider arbitrary g-tuples

(1) (.’EO(), cey .’1307(1_1), cey (.’En_l,g, cey xn_Lq_l) € )\(I)

Applying h we get the g-tuple

o m—1)o o m—1)o
((90(@85.0): -+ Gm—1.(E 105 s -+ (90(28e 1), - > m1 (&m0 1)))-
To prove (3.3.2) we have to check that for each I € Z, the g r-tuples
(2) (9i (=i 0))iers - (9i(whq-1))scr

in U" are not pairwise distinct; or equivalently (since ¢ = |U|"), that not all -tuples in U"
appear among the ¢ r-tuples in (2).

Let I € Z, and make use of the assumption that h respects Z. If (Rspl) holds, say
g; (j € I) is non-surjective, then our claim in the preceding paragraph is obvious, for the
jth coordinates in the r-tuples in (2) belong to the range of g;, a proper subset of U. If
(Rsp2) holds, and, say ku = k'p and ko = k’o for distinct k, k" € I, then our claim is
again trivial, since in this case in each r-tuple in (2) the k'th coordinate arises from the
kth coordinate by applying the permutation g, glzl of U. Finally, if (Rsp3) holds, then
with [ denoting the constant value of p on I we see that the r-tuples in (2) arise from the
r-tuples

(3) (mg,o)jEIm EXX! (mg,q_1)j€1’a

by applying the coordinate-wise permutation (y/);ecro — (gjo-1(y¥?))jero of U7, In view
of (Rsp3) Io belongs to Z, therefore by (1) the r-tuples in (3) are not pairwise distinct,
and hence the same holds for the r-tuples in (2).

(3.3.2) = (3.3.1). Assume now that h preserves A(Z). If ¢ > 3, then A\(Z) = Ap(g) is
a g-regular relation on U™, hence by Lemma 3.2

(4) for each I € T such that the range of h meets each block of @, there exist J € Z

and [ (0 <! <n—1)such that
(gi(fﬂﬁz,o))iel = (gi(yfﬂ,o))iel And (xg)jeJ = (ylj)jeJ-

Notice that (4) holds true also in the case ¢ = 2, when Z consists of singletons, each ®;
has exactly two blocks, and A(Z) = @ 7.

To prove that h respects Z, let us consider a block I € Z, and assume neither (Rspl)

nor (Rsp2) are satisfied by h. Then the range of h is easily seen to meet each block of ®;,

so it follows from (4) that iy = [ and ioc € J for all i € I. Since h is not I-gluing and

|I| = |J|, therefore o restricts to a mapping I — J which is bijective. Thus (Rsp3) holds
for h. o
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Making use of Corollary 1.6 and Lemma 3.3 we get the following refinement of Theorem
3.1:

Theorem 3.4. Let A be a finite simple algebra having no proper subalgebra. Then one
of the following conditions holds:

(3.4.a) A is quasiprimal;

(3.4.b) A is affine with respect to an elementary Abelian p-group (p prime);

(3.4.c) A is isomorphic to an algebra term equivalent U™ for some 2-element unary
algebra U and some integer m > 1;

(3.4.d) A has a compatible k-regular relation (k > 3);

(3.4.¢) A has a compatible k-ary central relation (k > 2);

(3.4.f) A has a compatible bounded partial order.

Proof. Let A be a finite simple algebra with no proper subalgebra. By Theorem 3.1
the only case to be considered is when (3.1.c) holds and (3.4.c) fails for A. Thus A is
isomorphic to a reduct A’ of (2;T5)!"™, and by Corollary 1.6 A’ respects a uniform partial
equivalence Z on m distinct from the equality relation. Now Lemma 3.3 implies that \(Z)
is a compatible relation of A’. Since A — and hence A’ — is simple, Z cannot consist
of singletons. Thus A(Z) is a g-regular compatible relation of A’ for some ¢ > 3, yielding
that (3.4.d) holds for A. o

4. Proof of Theorem 1.5

Let C be a subclone of Clo U™ for some finite unary algebra U and some integer
m > 1. We select a surjective operation hy = hg[qo, .« vy qm—1] from C such that hy has
maximal essential arity among all surjective operations in C, and keep h fixed until the
end of this section; say hg is n-ary and depends on all of its variables. The blocks of the
partition of m determined by the kernel ker o of the variable mapping will be denoted

by Iy,...,I,_1 so that |I()‘ = ...= ‘Il—l‘ > |Il| > |Il+1‘ > ... > |In_1|. Permuting the
variables of hg if necessary we may assume that I;a = {j} for j =0,...,n — 1. Note that
since hg is surjective, Lemma 1.2 ensures that qq,...,¢,_1 are surjective, moreover, ( is
injective on each block Iy,...,I,,_1 of ker c.

Lemma 4.1. For every j with 0 < j <1 —1 the set I; is mapped by ( bijectively onto
some Iy with0 <t <[-—1.

Proof. It suffices to carry out the proof for j = 0. Clearly, the operation

hg[QOa ey Qm—l](hg[qm ey Qm—l](an e axn—l)a Tnyeeos x2n—2)

in C is surjective, and by Lemma 1.1 its variable mapping is

PN ia (Sn—-1) ifiel
i+n—1 ifiel;j (1<j<n-1)°

11



If Iy contained elements 4, ¢’ such that ¢¢ and i'¢ belonged to different blocks of ker «, then
the operation above would depend on at least n 4+ 1 variables, contradicting the choice of
ho.

Hence Iy¢ C I; for some t (0 <t < mn —1). Since ( is injective on Iy and [Iy| > |13,
we conclude that |Iy| = |I;|, 0 <t <[l —1, and ¢ maps Iy bijectively onto I;. o

Now we define certain sets of blocks of ker a which will play a crucial role in the sequel.
For an integer k£ with 0 < k <1 — 1, a block I; will be called I;-reachable (or reachable
from Ii) if 0 < j < 1 — 1 and there exists a unary operation hy = h%[go,. .., gm—1] in
C such that h; is coordinate-wise Ip(-surjective and its coordinate mapping o maps I(
bijectively onto I;. Note that I} itself is Iy-reachable, as shown by the unary projection
hid. The family of I-reachable blocks of ker o will be denoted by Zj,. Clearly, Z;, yields a
uniform partial equivalence on m.

Our aim is to prove that C respects Z;. First we show a weaker property.

Lemma 4.2. Let k be an integer, 0 < k <1 — 1. For arbitrary operation h in C and for
arbitrary Iy-reachable block I; € Ij, one of the following conditions holds:
(4.2.1) h is not coordinate-wise I;-surjective,
(4.2.2) h is coordinate-wise Ij-surjective and I;-gluing,
(4.2.3) h is coordinate-wise I;-surjective, moreover, the variable mapping of h is constant,
while the coordinate mapping of h is injective on I;.

Proof. Let h = h][fo,..., fm—1] € C be a t-ary operation, let I; € Zj, and suppose
both (4.2.1) and (4.2.2) fail for them. Select a unary operation hy = h%[go,- .., Gm—1]
witnessing the Ix-reachability of I;, and consider the operation

hg[QOa LR Qm—l] (xta ce oy Titk—1,

ho1gos -+ s gm—1)(h[fos -+ s Fmno1](@0y -+ oy Te—1))s Tegks - -+ Tegn—2)

(5)

in C. By Lemma 1.1 the variable mapping, the coordinate mapping, and the sequence of
coordinate functions of this operation are

s+t ifiel,,s=0,...,k—1 . e .
i s+t—1 ifiel,s=k+1,....,n—1, z‘H{’.C ifiel, withs#k
icov  ifiel, ior it i € Iy
and
. ai if i € I, with s £ k
qi9ic fico 1 €Iy '

Making use of the facts that for ¢ € I}, we have i(o € Iy(o = I, moreover, by assumption,
hi is coordinate-wise Ij(-surjective, and h is coordinate-wise I;-surjective and not I;-
gluing, one can easily check by means of Lemma 1.2 that the operation (5) is surjective.
Furthermore, it has more than n essential variables unless Iy(ov = I;v is a singleton. So,
by the choice of hy we conclude that v is constant on I;. Since h is not I;-gluing, it follows
that 7 is injective on I;. o

12



Now we are in a position to prove
Lemma 4.3. For every integer k with 0 < k <[ — 1, the clone C respects Ty.

Proof. Let k be an integer with 0 < k <[l —1, let h = h][fo,.-., fm—1] € C be a t-ary
operation, and let I; € Zj. By Lemma 4.2 the only case to be considered is when condition
(4.2.3) holds for h, and it remains to show that I;7 € Z;. Renaming the variables of the
operation hl[fo,..., fm—1] if necessary we may assume that I;»v = {0}.

Now consider the operation

(6) hofor- s Fm—1](R&[0s - - -+ @m—1)(T0s - -, Tre1)s Tny « « «y Tagt—2)

in C. For every i € I; the variable mapping and the coordinate mapping of (6) sends ¢ to
iTa and i7(, respectively, and the ith coordinate function of (6) is f;¢;,, which is surjective.
This shows that (6) is coordinate-wise I;-surjective and not I;-gluing. As for the latter
property, notice that 7 is injective on I; and in view of the surjectivity of hg, ho is not I;7-
gluing. Thus, by Lemma 4.2, the variable mapping ¢ — 7« on I; is constant, implying
that I;7 C I, for some s (0 < s < n —1). Since 7 is injective on I; and |Io| = |I;| > |I],
we get that |I;| = |I4|, 0 < s <l —1, and 7 maps I; bijectively onto I.

Using the same notation for the unary operation witnessing the Ij-reachability of I;
as in the proof of Lemma 4.2, let us form the (unary) operation

(7) h,g[go, e 7gm—1] (h,;C[f(), ceey fm_l](a:, ceey .’I}))

in C. The coordinate mapping of (7) is ¢ — io7, and for each i the ith coordinate function
of (7) is g; fio. Clearly, the mapping o7 maps Ix( bijectively onto I;7 = I via I;. Further,
for each i € I( the coordinate function g; f;, is surjective, since ¢o € I; and hence both
factors are surjective. Thus the unary operation (7) witnesses that I;7 is Iy-reachable. ©

The claim of Lemma 4.3 establishes that (1.5.b) holds for C unless 7, =
{{0},...,{m —1}} for all k¥ with 0 < k < [ — 1. Therefore, to complete the proof of
Theorem 1.5 it suffices to consider this case.

Lemma 4.4. IfZ; = {{0},...,{m — 1}} for all k with 0 < k <1 —1, thenn =1 =
m, hg = hicd[qo, .« +yqm—1], and for every transformation o of m, C contains a surjective
operation with coordinate mapping o and variable mapping id.

Proof. Suppose Z, = {{0},...,{m — 1}} for all k£ with 0 < k <1 — 1. Obviously,
this implies that ker o is the equality relation, whence n = 1 = m, I; = {j} for all j
(0 < ] <m-— ].), and h() = hicd[q07 .. .,qm_l].

Let o be an arbitrary transformation of m. For each £ (0 < k < m —1) select a unary
operation h%*[gok, ..., 9gm—1k in C witnessing the Ix-reachability of {ko}. By definition,
o maps I( = {k(} onto {ko} — that is to say, k(o = ko — and gg¢ k is surjective.

Consider now the operation in C arising from hfd[qo, .+ +sqm—1] by subtituting the
essentially unary operations h‘;f_){k}[g()k, ooy gm—1k) (0 <k <m —1) for its variables. It
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is easy to check by Lemma 1.1 that the variable mapping, the coordinate mapping, and
the sequence of coordinate functions of this composite operation are

1 zC(m — {Z}) =1, 1> ’iCO’i =10, and 1> 9;9ic i
Hence, this operation satisfies the requirements of the lemma. o

Now Proposition 1.3 yields that (1.5.a) holds for C. This completes the proof of
Theorem 1.5.

References

[1] B. Csdkany, Completeness in coalgebras, Acta Sci. Math. (Szeged) 48 (1985), 75-84.

[2] B. Csdkany, Selective algebras and compatible varieties, Studia Sci. Math. Hungar.
19 (1984), 431-436.

[3] T. Evans, Products of points — some simple algebras and their identities, Amer.
Math. Monthly 74 (1967), 362-372.

[4] S. Fajtlowicz, n-Dimensional dice, Rend. Math. (6) 4 (1971), 1-11.

[5] D. Hobby, R. McKenzie, The Structure of Finite Algebras, Contemporary Mathemat-
ics, vol. 76, Amer. Math. Soc., Providence, R. I., 1988.

(6] J. Jezek, G. F. McNulty, Bounded and well-placed theories in the lattice of equational
theories, Algebra Universalis 26 (1989), 311-331.

[7] K. Kearnes, E. W. Kiss, M. Valeriote, personal communication, 1992.

[8] K. Kearnes, E. W. Kiss, M. Valeriote, personal communication, 1993.

9] R. McKenzie, Finite forbidden lattices, in: Universal Algebra and Lattice Theory
(Proc. Conf. Puebla, 1982), Lecture Notes in Math. 1004, Springer-Verlag, 1983; pp.
176-205.

[10] R. McKenzie, Algebraic and categorical characterizations of categorical equivalence
between varieties, Preprint, 1992.

[11] W. D. Neumann, Representing varieties of algebras by algebras, J. Austral. Math.
Soc. 11 (1970), 1-8.

[12] I. G. Rosenberg, A. Szendrei, Degrees of clones and relations, Houston J. Math. 9
(1983), 545-580.

[13] M. Saade, A comment on a paper by Evans, Z. Math. Logik Grundlag. Math. 15
(1969), 97-100.

[14] Z. Székely, On maximal clones of co-operations, Acta Sci. Math. (Szeged) 53 (1989),
43-50.

[15] Z. Székely, personal communication, 1989.

[16] A. Szendrei, The primal algebra characterization theorem revisited, Algebra Univer-
salis 29 (1992), 41-60.

[17] A. Szendrei, Simple surjective algebras having no proper subalgebras, J. Austral.
Math. Soc. 48 (1990), 434-454.

[18] A. Szendrei, Simple Abelian algebras, J. Algebra 151 (1992), 408-424.

14



[19] A. Szendrei, Maximal non-affine reducts of simple affine algebras, Algebra Universalis,
submitted.
[20] W. Taylor, The fine spectrum of a variety, Algebra Universalis 5 (1975), 262-303.

Bolyai Institute
Aradi vértanik tere 1
H-6720 Szeged, Hungary

15



