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Simple Abelian algebras

Agnes Szendrei

ABSTRACT

An algebra is called Abelian if all its term operations satisfy the so-called ‘term con-
dition’. By a recent result of M. Valeriote [22], a finite simple Abelian algebra has no
nontrivial proper subalgebra. Using this fact we prove that every finite simple Abelian
algebra whose fundamental operations are surjective is either polynomially equivalent to
a simple unitary module, or term equivalent to a matrix power of a unary permutational
algebra.

The term condition (see Section 1) defining Abelian algebras has played an
important role in studying the representation problem for congruence lattices, and
in commutator theory for congruence modular varieties (see [9], [5] for the history
and references). It features also in tame congruence theory ([7]), a new structure
theory for finite algebras. The name ‘Abelian’ is justified by the fact that a group
has this property if and only if it is commutative. Typical examples of Abelian
algebras are unitary modules and unary algebras. Commutator theory and tame
congruence theory yield two sufficient conditions for an Abelian algebra A to be
almost a unitary module: if A belongs to a congruence modular variety, or if A is
finite and belongs to a variety satisfying a nontrivial congruence identity, then A
is a so-called affine algebra, i.e. A is polynomially equivalent to a unitary module
([6], [7; 9-20 (2), 9.8, 9.18]).

The main results of this paper concern finite simple Abelian algebras. By
a recent theorem of M. Valeriote [22], these algebras have no nontrivial proper
subalgebras. We make no assumption on the congruence properties of the varieties
the algebras generate, however, we assume that all their fundamental operations
are surjective (briefly we say that the algebras are surjective). Thus, this family
includes every finite simple Abelian algebra with a single nonconstant fundamental
operation.

We present a complete description for finite, simple, surjective Abelian algebras:
if A is a finite, simple, surjective Abelian algebra, then either A is affine, or A is
isomorphic to an algebra term equivalent to a matrix power (IV; G)™ of an algebra
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(N; G) where G is a permutation group acting primitively on N provided |N| > 2
(Corollary 4.2). Most considerations are devoted to the case when A has a trivial
subalgebra (Theorems 2.1, 4.1), as the opposite case was settled in [18].

Simple algebras having no nontrivial proper subalgebras (briefly called strictly
simple algebras) are closely related to minimal varieties. It is well known and
easy to see that every locally finite minimal variety is generated by a finite strictly
simple algebra. However, it is an open problem (Problem 10 in [7]), which finite
strictly simple algebras generate minimal varieties. In [18] we described, up to term
equivalence, all finite, strictly simple, surjective algebras without trivial subalgebras.
It turned out that such an algebra generates a minimal variety if and only if it is
quasiprimal. In contrast, every finite strictly simple algebra which is idempotent
(that is, every singleton is a trivial subalgebra), generates a minimal variety ([17]).
The structure of finite strictly simple algebras having several trivial subalgebras
seems to be more complicated even if we assume that they are surjective; in fact,
no complete description (up to term equivalence) can be expected for them, except
in the Abelian case discussed here (cf. [20]). From the theorem above it follows
that a finite, simple, surjective Abelian algebra generates a minimal variety if and
only if it has a trivial subalgebra (Corollary 4.3).

1. Preliminaries

If not stated otherwise, algebras are denoted by boldface capitals and their
universes by the corresponding letters in italics. Two algebras are called term
equivalent [polynomially equivalent|, if they have the same clone of term [polyno-
mial] operations. The clone of term operations [the set of n-ary term operations| of
an algebra A is denoted by Clo A [resp., Clo,, A]. Similarly, the clone of polynomial
operations [the set of n-ary polynomial operations] of A is denoted by Pol A [resp.,
Pol,, A].

For a set N, let T, Sy, and C'ny denote the full transformation monoid on N,
the full symmetric group on N and the set of (unary) constant operations on N,
respectively. It will cause no confusion if we denote the unary constant operation
on N with value a simply by a. The identity mapping on N is denoted by idy (or
id if N is clear from the context). For convenience we identify every natural number
n with the set n = {0,1,...,n —1}.

Recall that an algebra A is said to be strictly simple if |A| > 2, A is simple
and A has no nontrivial proper subalgebra. By a trivial algebra we always mean a
one-element algebra. For an algebra A, the set of all elements u € A such that {u}
is a subalgebra of A will be denoted by Ua. An algebra A is called idempotent if
Ua = A, or equivalently, Clo; A = {id}.

For a set A and for k > 1, the nonvoid subsets of A* will also be called k-ary
relations (on A), and for an algebra A the universes of subalgebras of A¥ will be
called compatible relations of A.

For £k > 1 and for a subset I = {ig,...,5_1} of k with iy < ... < 4;_1, we
denote the projection mapping A¥ — Al (zo,...,75_1) = (%iy,...,%i,_,) by pry.

A finite algebra A is called quasiprimal ([12], [13]) if every operation on A
preserving the internal isomorphisms (i.e. isomorphisms between subalgebras) of
A is a term operation of A. An algebra A is said to be affine with respect to an
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Abelian group Aif A and A have the same universe,
Qz={(a,b,c,d) € A* a—b+c=d}

is a compatible relation of A (or equivalently, the operations of A commute with
x—y+2),and £ —y+ z is a term operation of A. It is well known that an algebra
A is affine with respect to an Abelian group A on its universe if and only if A is
polynomially equivalent to a module rA for some subring R of End A. For simple
affine algebras, an explicit description, up to term equivalence, can be found in [4]
(cf. also [15]).

Let C = (C;F) be a unary algebra and let m > 1. For arbitrary map-
pings o:m — m, u:m — n and gg,-..,gm—1 € Clo; C let us define an operation
h$ 90 - - - gm—1] on C™ as follows: for z; = (z9,...,2" HeC™ (0<i<n—1),

(3

OO’)
-

hZ[gO7 e ,gm_]_](.’l;'()7 ceey ./L'n_l) = (90(770” (m—l)a')).

.- 7gm—1(-73(m_1)u

The m-th matrix power of C, denoted CI™ is the algebra with universe C™ and
with all A, (90, - - -, gm—1] as fundamental operations. It is easy to see that C[™] has
no other term operations than its fundamental operations; that is to say, Clo Cl™
consists of all operations of the form hj, (90, - - -, gm—1] as above. Clearly, every term

operation of C™! depends on at most m variables.

Following D. Hobby and R. McKenzie [7] we call an algebra A Abelian if it
satisfies the so-called term condition (or TC): for all n > 1, for every n-ary term
operation f of A and for arbitrary elements u,v,a;,b; € A (1 <i<n—1),

f(u7a1a"'7an—1):f(uablr"abn—l) Al f(vaalr"aa'n—l):f(vabla"'abn—l)-

Furthermore, A is strongly Abelian if it satisfies the strong term condition (or
TC*): for all n > 1, for every m-ary term operation f of A and for arbitrary
elements u, v, a4, b;,¢; € A (1 <i<n-—1),

f(uua'la"'van—l) :f(vabla"'vbn—l) = f(u’aclv"'acn—l) :f(vucla"'acn—l)-

It is not hard to see that every strongly Abelian algebra is Abelian. By the
basics of tame congruence theory ([7]), a finite simple algebra is of type 1 if and
only if it is strongly Abelian, and it is of type 2 if and only if it is Abelian but not
strongly Abelian. A remarkable result in tame congruence theory is that every finite
simple algebra of type 2 is representable as a subalgebra of a reduct of a finite simple
affine algebra ([7; Theorem 13.5]), and, analogously, every finite simple algebra of
type 1 is representable as a subalgebra of a reduct of a matrix power of a finite
unary algebra ([7; Theorem 13.3]).

We will use also the following result, which was proved using the techniques of
tame congruence theory:

Theorem 1.1. (Valeriote [22]) Every finite simple Abelian algebra is strictly
simple.

A k-ary relation B on A is called totally reflexive if it contains each k-tuple
from A* whose components are not pairwise distinct. Further, B is called totally
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symmetric if it is closed under permuting the components. (As a rule, “totally” is
omitted if £ = 2.) A totally reflexive, totally symmetric relation B C A is called
central if B # A* and there exists a ¢ € A such that (c,aq,...,a5_1) € B for all
ai,...,a_1 € A. The set of all such elements c is called the center of B. Observe
that every unary relation is totally reflexive and symmetric, hence the unary central
relations are exactly the nonvoid proper subsets of A. For a fixed subset U of A, a
central relation will be called U-central if U is contained in its center.
For an element a € A we set

X®=(Ax{a})U({a} x A).

As usual, a binary relation on A is called irreflexive, if none of the pairs (a,a),
a € A, belongs to it. For a fixed subset U of A, the binary relations of the form

X*UY withu €U and Y an irreflexive binary relation on A — U

will be called U-crosses on A.

In [19] we proved a theorem, which essentially determines the maximal possible
clones for finite strictly simple algebras with trivial subalgebras not generating
congruence permutable varieties:

Theorem 1.2. ([19]) For every finite strictly simple algebra A with at least
one trivial subalgebra, one of the following conditions holds:

(a) A is quasiprimal;

(b) A is affine;

(¢) A has a k-ary compatible Ua -central relation for some k > 2;

(d) A has a compatible bounded partial order such that every element of Ua
is a bound (consequently |Ua| < 2);

(e) A has a compatible symmetric Ua -cross.

2. A classification of simple Abelian algebras

Our aim in this section is to specialize Theorem 1.2 to Abelian algebras. In
Lemmas 2.3 and 2.9 below we show that if A is a finite simple Abelian algebra such
that (d) or (e) holds, then A is strongly Abelian. Since a quasiprimal algebra is
never Abelian, this will prove the main result of the section:

Theorem 2.1.  For every finite simple Abelian algebra A with at least one
trivial subalgebra, one of the following conditions holds:

(a) A is affine;

(b) A has a k-ary compatible Ua -central relation for some k > 2;

(¢) A is strongly Abelian.

We present examples satisfying the assumptions of Theorem 2.1 and exactly
one of conditions (a)—(c).

Examples 2.2. (1) The affine algebras A satisfying the assumptions of The-
orem 2.1 are ‘almost’ simple modules; a precise description, up to term equivalence,
is given in [4] (cf. also [15]). It is easy to see that none of (b) or (c) holds for them.
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(2) Let kA = (A;+,K) be a finite vector space of dimension d > 2, and
let A be the algebra with base set A whose operations are all nonsurjective term

operations of the module (Bnd x Z)A\‘ Then A is a simple Abelian algebra which is

neither affine, nor strongly Abelian. The unique trivial subalgebra of A is {0}, and
for k = |K|9"1, a compatible k-ary {0}-central relation is

{(ag,...,ax_1) € A*: ay,...,ax_1 are not pairwise distinct,

or one of them is 0}.

Another algebra with similar properties is (A;By), where A is an arbitrary
finite set containing 0, and By is the clone consisting of all operations in Burle’s
clone ([2]) that preserve the singleton {0}.

(3) The matrix power A = (2;id)[™] is a simple strongly Abelian algebra with
exactly two trivial subalgebras, and none of conditions (a) or (b) in Theorem 2.1
holds. To see the failure of (b), make use of the fact that A is term equivalent to
an algebra with surjective fundamental operations ([21]), and apply Lemma 4.4.

For the proof of Theorem 2.1 we recall some basic notions and facts from tame
congruence theory. Let A be an algebra, and B a subset of A of the form B = e(A)
for some e € Pol; A with e2 = e. Since e acts identically on B, for every polynomial
operation g € Pol A, if g can be restricted to B (that is if g(B, ..., B) C B), then its
restriction g|p to B coincides with the restriction eg|p of the polynomial operation
eg to B. The induced algebra of A on B is defined as follows:

A|p = (B; {eg|p: g € PolA}).

For B C A and for a k-ary relation p on A we set p|p = p N B*.

Now assume A is a finite simple algebra. A set N C A is called a minimal
set for A if N is of the form N = f(A) for some nonconstant unary polynomial
operation f € Pol; A, and it is minimal (with respect to inclusion) among the sets
of this form. It is shown in the theory (cf. [7; 2.10]) that for a minimal set N,
there always exists a unary polynomial e € Pol; A with e? = e such that N = ¢(A4).
Furthermore, A is strongly Abelian (or of type 1) if and only if A|y is essentially
unary, and A is Abelian but not strongly Abelian (or of type 2) if and only if A|y
is polynomially equivalent to a vector space.

Lemma 2.3. Let A be a finite simple Abelian algebra. If A has a compatible
bounded partial order, then A is strongly Abelian.

Proof. Let < be a compatible partial order of A with least element 0 and
greatest element 1, and let N be a minimal set of A with N = e(A), e € Pol; A,
e? = e. Since e is monotone with respect to < and acts identically on N, therefore
e(<) = < |n. Further, this relation is a compatible partial order of A|y with least
element e(0) and greatest element e(1). Since an algebra polynomially equivalent
to a vector space cannot have a compatible bounded partial order (e.g. because
the Mal’tsev polynomial  — y + z does not preserve any bounded partial order), A

must be strongly Abelian.

As the induced minimal algebra is formed by using all polynomial operations,
it is crucial in the argument in the proof of Lemma 2.3 that partial orders are
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reflexive. For handling crosses we use a similar construction with term operations
instead of polynomial operations. This idea was applied earlier by C. Bergman and
R. McKenzie [1].

For an algebra A and a subset B of A of the form B = e(A) for some e € Clo; A
with €2 = e, we introduce the induced term algebra of A on B as follows:

Allp = (B; {eg|p: g € CloA}).

Lemma 2.4. Let A be an algebra, and let 2 = e € Clo; A, B = ¢(4),
|B| > 1.

(i) If A is Abelian, then so is Al|p.

(ii) If p is a compatible relation of A, then e(p) = p|p is a compatible relation
OfA| |B-

(iii) If A is generated by B, then Al|p is polynomially equivalent to A|p.

(iv) If A is strictly simple, then so is Al|p.

Proof. (i) is trivial.

(ii) The equality in the claim follows from the facts that p is preserved by e,
and that e acts identically on B. Obviously, p|p is a compatible relation of A||p.

(iii) The proof of this claim is implicit in [1]. Clearly, Pol A||p C PolA|p. To
prove the reverse inclusion, let eg|p (g € Polg A, k > 1) be an operation of A|p,
say

g(xoﬂ e ’xk—l) - f(x07 e 7mk—17 G/O, R al—l)
for some ! > 0, f € Clog4; A and ag,...,a;—1 € A. Since B generates A, there exist
an integer ¢, some elements bg,...,b;—1 € B and operations hg,...,h;—1 € Clo; A

such that a; = h;(bg,...,bs—1) for 0 < i <1 — 1. Thus, for the term operation

.](T(x07 co 9 Tk—1,Y05-- -, yt—l)
= f(an -y T—1, hO(yOa R yt—1)7 R hl—l(yOa R yt—l))

of A,

9(xo, -, Tk—1) = f(®0,- -, T—1, b0, - - -, bp—1)-

Hence eg|p is a polynomial operation of A||p.

(iv) Assume A is strictly simple. Let C be a nontrivial subalgebra of Al|p.
Since C' generates A, therefore every element a € A is contained in f(C,...,C)
for some f € CloA. Thus B = e(A) is in the subalgebra of A||p generated by C,
implying C' = B. Thus A||p has no nontrivial proper subalgebra.

In view of (iii), to show that A||p is simple, we can consider A|p instead of
A||p. By an observation of P. P. Pilfy and P. Pudlak [11] (see also [7; 2.3]), for
B = e(A) with e = e € Pol; A and |B| > 1, “restriction to B” is a surjective
homomorphism of the congruence lattice of A onto the congruence lattice of A|p.
This completes the proof.

Lemma 2.5. Let A be a finite algebra, and let €2 = e € Clo; A, B = ¢(A),
|B| > 1. If B is minimal (with respect to inclusion) among all subsets of A of this
form, then the monoid T' = Clo; Al|p satisfies the following condition:

(2.5) every element h € T with h? = h is either the identity or constant.
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Proof. Let h € T be such that h? = h. By the definition of Al|g, h = g|p
for some g € Clo; A with eg = g. Let C = h(B)(C B). Since h? = h, therefore
h|c = idg, implying ¢g*|c = id¢ for all £ > 1. However, g2(A) C g(B) = h(B) = C,
hence the range of each power g* (k > 2) of g is C. By the finiteness some power g*
(k > 2) satisfies (¢¥)2 = g*, so the minimality of B yields that C = B or |C| = 1.
Accordingly, h = idp or h is constant.

Lemma 2.6. Let A be a finite algebra such that every proper subalgebra
of A is trivial, and let e* = e € Clo; A, B =¢(A), |B| > 1. Then Ua C B, and the
following conditions hold for U = Ua and the monoid T = Clo; A||p:

(2.6) f(u)=wuforall feT andu € U, and

(2.6)" {f(b): feT}=Bforallbe B-U.

Consequently, Up ||, = Ua.

Proof. We write U for Us. Since g(u) = u for all g € Cloy A and u € U,
therefore U C B and (2.6) is obvious. For b € B—U, we have {g(b): g € Clo; A} =
A, as b generates A. Hence (2.6)" follows.

Lemma 2.7. Let B be a finite set, |B| > 1, let U be a subset of B, and let
T be a transformation monoid on B satisfying conditions (2.5), (2.6), and (2.6)".

(i) If|U|>1, then U = B and T = {id}.

(ii) If|\U| =1, say U = {0}, then {0} C T C Sp U {0}.

Proof. (i) Let |U| > 1. By (2.5) and (2.6) every element e € T with e = e is
the identity. However, by the finiteness of B, each f € T has some power e = fF¥
with e = e, implying that f is a permutation. Now by (2.6) f(b) € B — U for all
b€ B —U, whence (2.6)" yields that U = B. Thus by (2.6) T = {id}.

(ii) Letting U = {0} we have f(0) = 0 for all f € T. Thus T contains at
most one constant, namely 0. Suppose T contains a transformation f which is
neither a permutation nor the constant 0. Let b € B be such that f(b) # 0. In
view of (2.6)" there exists an h € T such that hf(b) = b. Thus hf € T is not a
permutation, however, hf(0) = 0 and hf(b) = b (b # 0). Some power (hf)* of hf
satisfies ((hf)%)2 = (hf)?, however, (hf)® is neither constant nor the identity. This
contradiction to (2.5) shows that T C SpU{0}. The inclusion T' C Sp cannot hold,
since then we would get U = B, T = {id} as in case (i), contradicting |B| > 1 = |U|.
Thus 0 € T

Lemma 2.8. Let B be a finite Abelian algebra with an element 0 € B
such that the constant 0 is a unary term operation of B and (Clo; B) — {0} is
a permutation group. Then B is either essentially unary or term equivalent to a
vector space.

Proof. We denote the permutation group (Clo; B) — {0} by G. First we show
that for £ > 1,

(2.8) for every f € Clox B depending on its first variable and for arbitrary
elements bq,...,bx_1 € B,

f($7 bl; SRR bk:—l) € SB-
By TC, for any elements a,a’ € B and by,...,bx_1 € B,
f(G,,O,...,O) :f(a',O,...,O) = f(a,bl,...,bk_l) :f(al,bl,...,bk_l).
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Since f depends on its first variable, we conclude that f(z,0,...,0) is not constant,
whence f(z,0,...,0) € G. By a repeated application of this equivalence we get
that f(z,b1,...,bk_1) € SB.

Now by symmetry it follows that every unary polynomial operation of B is
either constant or a permutation. If |B| > 2, then P. P. Palfy’s theorem [10] yields
that B is essentially unary or polynomially equivalent to a vector space. If |B| = 2,
then we can get the same conclusion from E. L. Post’s description [14] of the two-
element algebras (up to term equivalence) and the assumption that B is Abelian.
Finally, if B is polynomially equivalent to a vector space, then using that {0} is a
subalgebra of B, we can get that B is in fact term equivalent to a vector space.
(For a direct proof of the conclusion from (2.8), cf. [15].)

Lemma 2.9. Let A be a finite simple Abelian algebra having at least one
trivial subalgebra. If A has a compatible symmetric U -cross, then A is strongly
Abelian.

Proof. For convenience, we write U instead of Up. Let e be a unary term
operation of A such that e? = e, |e(A)| > 1, and e(A) is minimal among the subsets
of A of this form. Set B = e(A), and form the induced term algebra B = A||g. By
Theorem 1.1 and Lemma 2.4 B is (strictly) simple and Abelian. Let 0 € U and let
p be a compatible symmetric U-cross of A with X% C p. Since e(0) = 0, we have
0 € B, implying by Lemma 2.4 (ii) that p|p is a compatible symmetric U-cross of
B. (Note that by Lemma 2.6 Ug = U.) Applying Lemmas 2.5, 2.6, and 2.7 for the
monoid 7" = Clo; B of all unary term operations of B, we see that the following
two cases are to be considered:

Case . U =B and T = {id}.

Case II. U = {0} and {0} C T C Sp U {0}.

In Case I B is an idempotent algebra. Taking into account the description [16]
of finite, idempotent, strictly simple algebras (up to term equivalence), and the fact
that B is Abelian, we see that there are only two possibilities:

(a) B is affine, or

(b) B is a two-element essentially unary algebra.

It is easy to verify that an affine algebra cannot have a compatible U-cross (again,
the Mal’tsev operation z — y + z does not preserve any U-crosses). Therefore (a) is
impossible. Hence by (b) and Lemma 2.4 (iii) the induced algebra A |p is essentially
unary. Clearly, B is a minimal set, so A is strongly Abelian.

In Case II Cloy B = G U {0} for some permutation group G C Sp such that
g(0) =0 for all g € G. By Lemma 2.8 and by the simplicity of B,

(a)) B is term equivalent to a one-dimensional vector space (and hence is
affine), or

(b) B is a two-element essentially unary algebra.

Hence we can conclude the proof as in Case I.

3. Simple, surjective, strongly Abelian algebras

An algebra A will be called surjective if all its fundamental operations are
surjective. A permutation group G acting on a set N is said to be primitive, if the
unary algebra (A4;G) is simple and |G| > 1 (if |[N| = 2). The main result of this
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section is a strong version of the representation theorem for finite simple algebras
of type 1 for the case when the algebra is surjective.

Theorem 3.1.  Every finite simple surjective algebra of type 1 is isomorphic
to an algebra term equivalent to (N; G)!"™ for some finite set N (|N| > 2), some
integer m > 1, and for some permutation group G on N such that either G is
primitive or [N| =2 and |G| = 1.

The special case of Theorem 3.1 when the algebra has a single nonconstant
fundamental operation is a consequence of a result of R. McKenzie [9].

In [18; Theorem 2.2] Theorem 3.1 was proved for simple surjective algebras of
type 1 that are reducts of (N; Sy )™ for some finite set N (|N| > 2). In the sequel
we will need a slightly stronger version of this result, which is implicit in the proof
given in [18]. For a reduct U of (N; Sy)!"™, set

Ty = {0 € Tin: h}[g0,---,gm—1] € CloU for some p and go, - - -, gm—1}-

It is easy to check that Ty is a submonoid of T;,,. Recall that a submonoid T of T,
is called transitive if the unary algebra (m;T) has no proper subalgebras.

Theorem 3.2. (cf. [18; Theorem 2.2]) Let A be a surjective algebra that is
isomorphic to a reduct U of (N; Sy)[™ for some finite set N (|N| > 2) and for some
m > 1 such that Ty is a transitive submonoid of Ty,. If m is chosen minimal with
respect to the existence of such an isomorphism, then U (22 A) is term equivalent
to (N; G)™ for some subgroup G of Sy.

In [18] A was assumed to be simple, however, one can check that the proof
works also if simplicity is replaced by the weaker condition (see [18; Lemma 2.6])
that Ty is a transitive submonoid of T,. Of course, in this case (IV;G)™ is not
necessarily simple, so we cannot conclude that G is primitive unless |[N| = 2, |G| = 1.

We start the proof of Theorem 3.1 with a variant of the representation theorem
for finite simple algebras of type 1 ([7; 13.3]).

Lemma 3.3.  For arbitrary finite simple surjective algebra A of type 1, there
exist an integer m > 1 and a finite set N such that A is isomorphic to a subalgebra
W of a surjective reduct U = (N™; hf[go,---,9m-1],---) of (IN; Sn)™ with W
satisfying the following conditions:

(i) prggW=Nforall0<i<m-1,

(i) |pry 3 WI> N[ forall0<i<j<m-—1.

Proof. The proof is a modification of the proof of [7; 13.3]. Let N be a
minimal set in A, and e a unary polynomial of A with e? = e and e(4) = N. Let
F ={fo=e,f1,---, fk_1} be the family of all unary polynomial operations of A
with range N. Let us define a relation ~ on F' as follows: f; ~ f; if and only if
there exists an h € Sy such that f; = hf;. Clearly, ~ is an equivalence relation.
We can assume without loss of generality that {fo,..., fm—1} contains exactly one
element from each block of ~. By the basics of tame congruence theory ([7; 2.8.4]),
for any distinct elements z,y € A there exists an f; € F such that f;(z) # fi(y)-
Clearly, such an ¢ with 0 < ¢ < m — 1 also exists. Thus the assignment

= (fo(z), ..., fmo1(x)) (x € A)

Q



defines a bijective mapping of A onto a subset W of N™ having properties (i) and
(ii). Let us denote this mapping by ¢.

Counsider now any, say n-ary, fundamental operation g of A. Since A is strongly
Abelian, by tame congruence theory ([7; Claim (3) in 5.6]), the polynomial opera-
tions f;g (0 < i <m—1) of A depend on at most one variable. Since g is surjective,
each f;g maps onto N. Thus there exist mappings o:m — m, u:m — n and
permutations gg ..., gm_1 € Sy such that

fig(zo, ..., xn-1) = gi(fio(ziy)) forall 0<i<m—1.

Hence for arbitrary elements (fo(z;),..., fm-1(z;)) € W (z; € A, 0<j<n-—-1)
we have

9((fo(x0),- - frm—1(z0))™ ", ., (fo(@n—1)s - - -» fm—1(Tn=1)) ")
=g(20,. .y Tn_1) = (9(x0y ..., Tn_1)@)p "

= (g0(foo (zop)), -+ s 9m-1(Ffim—1)0 (T (m-1)p)))®

= hZ[go, ooy gm—1]((fo(®o); - - -5 fm—1(%0)), - - -, (fo(Tn-1),- -, fm—l(xn—l)))@_l-

This shows that if we make correspond to every fundamental operation g
of A the operation hj[go,--.,gm—1] with o,pu and go,...,gm—1 as described

above, then ¢ is an isomorphism between A = (A4;g,...) and the subalgebra
W = (W;h{lgos-- -, 9m-1],-..) of the reduct U = (N™; hf[go,.--,gm-1],...) of
(N; SN)[m]

It remains to show that U is surjective. Consider a fundamental operation
h$[gos - - s gm—1] of U. Its range is

R = {(go(xg5), -- ->9m—1(x§$:3;)): = (20,2 eN™ 0<i<n-—1}

Thus hZ[go, .« +y9m—1] is surjective unless there exist indices 0 < i < 7 < m —1
such that ip = jp and ic = jo. In the latter case pry; ;3 R is a permutation of
N (considered as a binary relation), hence by (ii) RN W C W, contradicting the
surjectivity of the fundamental operations of W (22 A).

Lemma 3.4. Let A be a finite simple surjective algebra which is isomor-
phic to a subalgebra W of a surjective reduct U = (N™; h{[go,---,9m-1],---) of
(N; Sy)l™ for some finite set N (|N| > 2) and some integer m > 2. If m is cho-
sen minimal with respect to the existence of such an isomorphism, then Ty is a
transitive submonoid of T,,.

Proof. Let I be a nonvoid subset of m closed under all transformations in Ty .
Consider an arbitrary fundamental operation Af[go, - - -, gm—1] of U, say it is n-ary.
Clearly, o and p can be restricted to I to yield mappings o|;: I — I and p|;: I —
n. We show that the projection mapping pr;: N™ — N is a homomorphism of

U = (N™; hg[go,---,9m—1],---) onto a reduct U’ = (NI;hzllj[go,...,gm_l],...) of

(N; Sy). For convenience, we carry out the computation for I = k (0 < k <
m — 1): for arbitrary elements z; = (22,...,2" ') e N™ (0 <i<n—1),
o o m—1)o
b1y (hG[90, -+ gm—1)(Z0, - -+ Tn—1)) = Pry, (90230, - - > Gm-1(Z (e 17)))

= (g0(20%), -, gr—1(z{y 1))

= h;}z (905 - - - s Gm—1](DTk Zo, - - -, DT Tr—1)-
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Clearly, pr; is onto NI, hence U’ is surjective. Composing pr; with the fixed
embedding of A into U, we get a homomorphism A — U’.

Suppose the image of A under this homomorphism is a one-element algebra.
Then prg;; W is a one-element set for all ¢ € I. Since W is a surjective subalgebra of
U, every fundamental operation hf[go; - - -, gm—1] of U maps onto W when restricted
to W, implying that m — I is closed under o. Now it is easy to check that m — I
is also closed under all transformations in Ty. Replacing I with m — I in the
previous paragraph and noting that in this case pr,,,_; is one-to-one, we get that A
is isomorphic to a subalgebra of a surjective reduct of (N; Sy )™~ Il contradicting
the minimality of m.

Hence the image of A under the homomorphism A — U’ has at least two
elements. By the simplicity of A it follows that A is isomorphic to a subalgebra of
U’. Thus the minimality of m yields I = m, proving that Ty is transitive.

Proof of Theorem 3.1. Let A be a finite simple surjective algebra of type 1, and
using Lemma 3.3 fix a representation of A as an isomorphic copy of a subalgebra W
of a surjective reduct U = (N™; h{[go, - -, gm—1],---) of (IV; Sn)[™ for some finite
set N (|V| > 2) and some integer m > 1. Assume this representation is chosen
so that m be minimal. By Lemma 3.4 Ty is a transitive submonoid of 7T;,, so the
assumptions of Theorem 3.2 (including the minimality of m) hold for U. Hence U
is term equivalent to (N;G)!™ for some subgroup G of Sy. It is well known (cf.
[21]) and easy to check that every subalgebra of (IV; G)I™ is of the form (N’; G")™
with G’ = G|y for some subset N’ of N. Thus A is isomorphic to an algebra term
equivalent to (N'; G’)"™ for some finite set N’ and some permutation group G’ on
N'. Since A is simple, (N';G’) must be simple, yielding that G’ acts primitively
on N' unless |[N'| =2, |G'| = 1.

4. Simple, surjective, Abelian algebras

In this section we study how Theorem 2.1 specializes to surjective algebras.
Our aim is to prove the following theorem.

Theorem 4.1. For every finite, simple, surjective Abelian algebra A having
a trivial subalgebra, one of the following conditions holds:

(a) A is affine;

(c)' A is isomorphic to an algebra term equivalent to (2;id)[™ for some integer
m > 1.

From [18; Theorem 3.4] and from Theorem 1.1 an analogous result follows for
finite, simple, surjective Abelian algebras with no trivial subalgebras. Thus we have

Corollary 4.2. Every finite, simple, surjective Abelian algebra is either
affine or isomorphic to an algebra term equivalent to (N; G)[m] for some finite set
N (IN| > 2), some integer m > 1, and for some permutation group G on N such
that either G is primitive or |[N| =2 and |G| = 1.

Combining this with some well-known results on simple affine algebras ([8], [3])
and the matrix powers of finite unary algebras ([21]), we get

11



Corollary 4.3. Let A be a finite, simple, surjective Abelian algebra. The
variety V(A) generated by A is minimal if and only if A has a trivial subalgebra;
V(A) is finitely based provided it is of finite type.

For the proof of Theorem 4.1 we have to eliminate case (b) in Theorem 2.1
provided A is surjective.

Lemma 4.4. Let A be a finite surjective algebra. If B is an n-ary compatible
relation of A (n > 1), then for arbitrary k (1 < k <n —1),

(B)x = {(z0,...,25_1) € A*: (z0,...,2n_1) € B for all 2, ..., x,_1 € A}

is a k-ary compatible relation of A provided it is not empty.
In particular, if B is a compatible central relation of A, then the center (B);
of B is a proper subalgebra of A.

The proof is straightforward.

We show that the center of a compatible Ua-central relation of an algebra A
of type 2 satisfying the assumptions of Theorem 4.1 has more than one element
even if [Ua| = 1. The following claim is a slight modification of the representation
theorem for finite simple algebras of type 2 for the case when the algebra has a
trivial subalgebra. It follows immediately from the proof given in [7; 13.5].

Lemma 4.5.  If A is a finite simple algebra of type 2 with a trivial subalgebra
{0}, then there exist a finite field K and a finite vector space gV = (V;+,0, K)

such that A is a subalgebra of a reduct V of the module (EndK%V, and gV is

spanned by A (as a vector space).

The essential arity of an operation f is the number of variables of f on which
f depends.

Lemma 4.6. If A is a finite, simple, surjective algebra of type 2 having a
trivial subalgebra, then there is no bound on the essential arities of surjective term
operations of A.

Proof. Since A is surjective, every term operation of A arises from a surjective
term operation by identification of variables. Hence it suffices to verify that there
is no bound on the essential arities of (arbitrary) term operations of A.

As we have seen in the proof of Lemma 2.9, the algebra B = A||p with B as
described there is either affine or a two-element essentially unary algebra. Since A
is of type 2, we have the first case. Thus there is no bound on the essential arities
of term operations of A||p, which implies the same property for A.

Lemma 4.7. If A is a finite, simple, surjective algebra of type 2 having
a trivial subalgebra {0}, then the center of every, at least binary, compatible {0}-
central relation of A has more than one element.

Proof. Consider a representation of A described in Lemma 4.5, and using
Lemma 4.6, take a surjective m-ary term operation h of A such that A depends on
all of its variables and m > |A|. Denote the corresponding term operation of V by
h. Clearly, h has the form

i_L:Zijj (sjeEndKV, 0<j<m-1)
i=0

[y
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with s; # 0 for all 0 < 7 < m — 1. By the surjectivity of h we have A = ZT:_Ol 55 A;
moreover, since A spans xV, therefore s;A D {0} for all 0 < j <m — 1. Clearly,

{0} C50ACs50A+5AC...Cspd+ ... +sp14=A.
Since m > |A|, equality holds somewhere, that is,
S0A+ ...+ 8, 1A=850A+ ...+ s;_1A+3s;A forsome 1<i<m-—1,
whence
(4.7) A=s0A+ ...+ s 1A+ s;11A+ ...+ sm_1A.

Suppose B is a k-ary compatible {0}-central relation of A (k > 2). Then (B),
is a binary {0}-central relation, which by Lemma 4.4 is a compatible relation of
(A; h). Hence for arbitrary elements a; € A (0 < j < m— 1) we have (a;,0) € (B)
for j # i and (0,a;) € (B)2, implying by an application of & that

m—1
( E sjaj,siai) € (B)g
j=0
J#i

Thus, by (4.7), s; A belongs to the center of (B)2, and hence to the center of B as
well.

Proof of Theorem 4.1. Apply Theorem 2.1 for A. In case (a) we have nothing
to prove, while in case (c) Theorem 3.1 yields (c)’, as the algebras (NV; G)[™ with
G a primitive permutation group on N have no trivial subalgebras. Finally, assume
that, according to case (b), A has an n-ary compatible U -central relation B with
n > 2. By Lemma 4.4 the center (B); of B is a proper subalgebra of A. However, by
Lemma 4.7, |(B)1| > 1, contradicting the fact (cf. Theorem 1.1) that A is strictly
simple. This completes the proof.
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