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Abstract. We find sufficient conditions for a subclone C of Burle’s
clone and for a subclone of the polynomial clone of a finite semimodule
to have the property that the associated C-minor partial order has finite
principal ideals. We also prove that for these clones the C-minor partial
order is universal for the class of countable partial orders whose principal
ideals are finite.

1. Introduction

Every clone C on a nonempty set A induces a quasi-order, called the
C-minor relation, on the set OA of all operations on A as follows: an opera-
tion f is a C-minor of another operation g if and only if f can be obtained
from g by substituting operations from C for the variables of g. The associ-
ated equivalence relation on OA, called C-equivalence, is a natural extension
of Green’s R relation [6, 13] from transformation monoids to operations
of higher arity. Early applications of the idea of C-equivalence for some
very particular choices of C can be found in the papers by Harrison [4] and
Henno [5]. More recently, the C-minor relation for operations on a 2-element
set A has received some attention in the theory of Boolean functions for var-
ious essentially unary clones C, see, e.g., [2, 3, 14, 17, 18, 19].

This paper focuses on the partially ordered set PC induced by the C-minor
relation on the set of C-equivalence classes of OA. We will assume that A is
finite, so the poset PC is countable for every clone C. In the papers [11, 12]
we started a systematic investigation of the clones for which the poset PC is
finite. The results suggest that PC is infinite for most clones C. Moreover,
it is known that the structure of PC can be complicated; for example, it is
proved in [10] that for all but finitely many clones C on a 2-element set, PC
has the property that every countable poset embeds into PC . On the other
hand, it was observed by Zverovich [19] and the first author [8] that for
some clones C, although the poset PC is infinite, it satisfies some finiteness
properties like the descending chain condition.

For the clone C of projections, Couceiro and Pouzet [2] found the exact
finiteness strength of PC by showing that PC is universal for the class of
countable posets with finite principal (order) ideals; that is, PC has finite
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principal ideals, and every countable poset with finite principal ideals em-
beds into PC . Our aim in this paper is to extend this result to a broad
class of clones C, which includes essentially unary clones, large subclones of
Burle’s clone, and large subclones of the clone of polynomial operations of
a semimodule over a commutative inverse semigroup. The natural context
for these results is to look at the C-minor relation on the set of all finitary
functions from A to another set U , rather than just on the set of all oper-
ations on A. Therefore, our results will be stated and proved in this more
general context.

A consequence of our results is that for a finite set A, the family of all
clones C on A for which PC has finite principal ideals is closed under taking
subclones if and only if |A| ≤ 2.

2. Preliminaries

2.1. General notation. Throughout this paper, we denote the set of nat-
ural numbers by ω := {0, 1, 2, . . . } and the set of positive integers by
ω+ := ω \ {0} = {1, 2, 3, . . . }. For n ∈ ω+ we set [n] := {0, . . . , n − 1}
and bne := {1, . . . , n}. Furthermore, if S is a set, we denote by Pf(S) the
set of finite subsets of S.

2.2. Partially ordered sets. A quasi-ordered set is a pair (P ;≤) where ≤
is a quasi-order, i.e., a reflexive and transitive binary relation on P . If, in
addition, the relation ≤ is antisymmetric, then ≤ is called a partial order
and (P ;≤) is called a partially ordered set (or a poset for short). A quasi-
order ≤ induces an equivalence relation ∼ on P by the rule x ∼ y if and
only if x ≤ y and y ≤ x. Furthermore, a quasi-order ≤ induces a partial
order � on the set P/∼ of the equivalence classes of ∼, which is defined by
the rule x/∼ � y/∼ if and only if x ≤ y, where x/∼ denotes the ∼-block of
x.

If (P ;≤) is a quasi-ordered set and x ∈ P , then the principal ideal gen-
erated by x is the set ↓x := {x′ ∈ P : x′ ≤ x}. For two posets (P ;≤) and
(Q;≤) a mapping h : P → Q is called an embedding of (P ;≤) into (Q;≤), if

x ≤ x′ in P if and only if h(x) ≤ h(x′) in Q.

Clearly, such a map h is necessarily injective. If h is also surjective, it is
called an isomorphism of (P ;≤) onto (Q;≤). We say that (P ;≤) embeds
into [is isomorphic to] (Q;≤) if there exists an embedding [isomorphism]
h : (P ;≤)→ (Q;≤).

Let K be a class of posets. We say that a poset (P ;≤) is universal for K,
if (P ;≤) is a member of K and every member of K embeds into (P ;≤). We
will use the notation FPI for the class of countable posets whose principal
ideals are finite.

Lemma 2.1. A poset (P ;≤) is universal for FPI if and only if (P ;≤) ∈ FPI
and (Pf(ω);⊆) embeds into (P ;≤).
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Proof. The necessity of the given condition for (P ;≤) to be universal for
FPI is clear, since (Pf(ω);⊆) ∈ FPI. To show the sufficiency, assume that
(P ;≤) ∈ FPI and (Pf(ω);⊆) embeds into (P ;≤). It is a well-known fact in
the theory of ordered sets that (Pf(ω);⊆) is universal for FPI (see, e.g., [2]
for a proof). Therefore, every member of FPI embeds into (Pf(ω);⊆) and
hence into (P ;≤), proving that (P ;≤) is universal for FPI. �

2.3. Operations and clones. For arbitrary sets A, U , and for any positive
integer n let F (n)(A,U) denote the set of all n-ary functions An → U , and

let F(A,U) :=
⋃
n≥1F (n)(A,U). In particular, O(n)

A := F (n)(A,A) is the

set of all n-ary operations on A, and OA := F(A,A) is the set of all finitary
operations on A. For every positive integer t and for every set U the i-th
t-ary projection on U is the t-ary operation (u1, . . . , ut) 7→ ui, which will be

denoted by π
(t)
i (U will be clear from the context).

A function f ∈ F (n)(A,U) depends on its i-th variable (1 ≤ i ≤ n) if
there exist n-tuples a = (a1, . . . , an), b = (b1, . . . , bn) ∈ An with aj = bj for
all j 6= i such that f(a) 6= f(b). A variable on which f does not depend is
called a fictitious variable. We say that f is essentially unary if it depends
on at most one of its variables. We will use the notation Im(f) for the range
of f .

We will consider F(A,U) (hence, in particular, OA) as a multisorted set

with sorts F (n)(A,U). Accordingly, for a subset S of F(A,U) we will use

the notation S(n) for S ∩F (n)(A,U). Furthermore, for each positive integer

t we define the t-th power of S to be St =
⋃
n≥1(S(n))t, that is, the n-th

sort of the t-th power St of S is defined to be the t-th power of the n-th sort
S(n) of S.

For arbitrary sets A, U and positive integer t there is a natural one-to-one
correspondence between F(A,U t) and (F(A,U))t via the assignment

f 7→ (π
(t)
1 ◦ f, . . . , π

(t)
t ◦ f).

We will identify F(A,U t) and (F(A,U))t via this correspondence. In partic-

ular, for every setA and for arbitrary positive integers n and t, the set (O(n)
A )t

is identified with the set F (n)(A,At) of all functions An → At, and hence
the set (OA)t is identified with F(A,At). Thus, for arbitrary k,m, n ≥ 1

and for arbitrary f ∈ (O(k)
A )m and g ∈ (O(m)

A )n, the composition g ◦ f (as

functions f : Ak → Am and g : Am → An) belongs to (O(k)
A )n. For each n,

the identity function in the n-th sort is π(n) := (π
(n)
1 , . . . , π

(n)
n ).

A subset C of OA is called a clone on A if C contains all projections and is
closed under composition; that is, π(n) ∈ (C(n))n for all n ≥ 1, and whenever

f ∈ (C(k))m and g ∈ (C(m))n, then g ◦ f ∈ (C(k))n. The intersection of any
family of clones on A is a clone; therefore the set of all clones on A is a
complete lattice under inclusion. Hence, for any set F of operations on A,
there exists a smallest clone that contains F , which will be denoted by 〈F 〉
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and will be referred to as the clone generated by F . If F is the set of basic
operations of an algebra A = (A;F ), then the members of the clone 〈F 〉
are referred to as the term operations A. The polynomial operations of A
are the operations in the clone generated by F and all (unary) constant
operations on A. For further background information on clones, see, e.g.,
[7, 16].

2.4. C-minors. For arbitrary sets A and U , and for arbitrary clone C on
A, we define the C-minor relation ≤C and the C-equivalence relation ≡C
on F(A,U) as follows: for f ∈ F (m)(A,U) and g ∈ F (n)(A,U) we define

f ≤C g to mean that f = g ◦ h for some h ∈ (C(m))n, and f ≡C g to mean
that f ≤C g and g ≤C f . In particular, via the identification of (OA)t with
F(A,At), this definition yields C-minor and C-equivalence relations ≤C and
≡C on (OA)t for every integer t ≥ 1.

Proposition 2.2. For arbitrary sets A and U , and for every clone C on A,

(1) ≤C is a quasi-order on F(A,U); and
(2) ≡C is an equivalence relation on F(A,U).

Moreover, for all g,g′ ∈ (OA)m and f ∈ F (m)(A,U) (m ≥ 1),

(3) g ≤C g′ implies f ◦ g ≤C f ◦ g′, and
(4) g ≡C g′ implies f ◦ g ≡C f ◦ g′.

Proof. (2) and (4) follow immediately from (1) and (3), respectively, since
≡C is the intersection of ≤C with its converse.

For (1) we need to show that ≤C is reflexive and transitive. Let f ∈
F (m)(A,U), f ′ ∈ F (m′)(A,U), and f ′′ ∈ F (m′′)(A,U) be arbitrary elements

of F(A,U). Since π(m) = (π
(m)
1 , . . . , π

(m)
m ) ∈ (C(m))m is the identity func-

tion Am → Am, the equality f = f ◦ π(m) shows that ≤C is reflexive.
If f ≤C f ′ ≤C f ′′, then by the definition of ≤C , there exist h′ ∈ (C(m))m

′
,

and h′′ ∈ (C(m′))m
′′

such that f = f ′ ◦ h′ and f ′ = f ′′ ◦ h′′. Hence

f = f ′ ◦ h′ = (f ′′ ◦ h′′) ◦ h′ = f ′′ ◦ (h′′ ◦ h′) with h′′ ◦ h′ ∈ (C(m))m
′′
,

showing that f ≤C f ′′. Thus ≤C is transitive.

To prove (3), let f ∈ F (m)(A,U), let g,g′ ∈ (OA)m, that is, g ∈ (O(k)
A )m

and g′ ∈ (O(l)
A )m for some k, l ≥ 1, and let us assume that g ≤C g′. Thus

there exists h ∈ (C(k))l such that g = g′ ◦ h. Hence f ◦ g = f ◦ (g′ ◦ h) =
(f ◦ g′) ◦ h, which shows that f ◦ g ≤C f ◦ g′, and completes the proof. �

The following statement is a straightforward consequence of the defini-
tions.

Proposition 2.3. For arbitrary sets A and U , and for arbitrary clones
C ⊆ K on A, the relations ≤C, ≤K and ≡C, ≡K on F(A,U) satisfy ≤C ⊆ ≤K
and ≡C ⊆ ≡K.

As we discussed in Subsection 2.2 above, for every clone C on A, the quasi-
order ≤C on F(A,U) induces a partial order on the quotient set F(A,U)/≡C ,
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which we will call the C-minor partial order, and will denote by �C . In
the next proposition we prove a necessary and sufficient condition for the
principal ideals of the partially ordered sets

(
F(A,U)/≡C ;�C

)
to be finite

for all U .

Proposition 2.4. The following are equivalent for an arbitrary clone C on
a set A:

(a) the sets Ct/≡C are finite for all t ≥ 1;
(b) the principal ideals of

(
F(A,U)/≡C ;�C

)
are finite for all sets U ;

(c) the principal ideals of
(
(OA)t/≡C ;�C

)
are finite for all t ≥ 1.

Proof. (a) ⇒ (b). Assume that condition (a) holds for C, and let U and

f ∈ F(A,U) be arbitrary. Thus f ∈ F (k)(A,U) for some k ≥ 1, and the
principal ideal of

(
F(A,U)/≡C ;�C

)
generated by f/≡C is the set

I := {(f ◦ g)/≡C : g ∈ Ck}.
Proposition 2.2 (4) implies that the assignment g/≡C 7→ (f ◦ g)/≡C as g
runs over all elements of Ck yields a well-defined map of Ck/≡C onto I. The
set Ck/≡C is finite by condition (a) (for t = k); therefore the ideal I is also
finite.

(b) ⇒ (c). This implication is clear from the identification of (OA)t with
F(A,At).

(c) ⇒ (a). Now assume that condition (c) holds for C, and let t ≥ 1

be an arbitrary integer. Since π(t) = (π
(t)
1 , . . . , π

(t)
t ) is the identity function

At → At, the principal ideal of
(
(OA)t/≡C ;�C

)
generated by π(t)/≡C is the

set

{(π(t) ◦ g)/≡C : g ∈ Ct} = {g/≡C : g ∈ Ct} = Ct/≡C .
Hence condition (c) implies that Ct/≡C is finite for all t ≥ 1, which proves
(a). �

For further background and results on the C-minor relations, see [8, 10,
11, 12].

2.5. Polynomial clones of semimodules. Let A = (A; +) be a semi-
group, that is, + is an associative (not necessarily commutative) operation
on A. If A has a neutral element, that is, an element 0 ∈ A such that
a + 0 = a = 0 + a for all a ∈ A, then A is called a monoid. For every
element a ∈ A and positive integer n, the sum a+ · · ·+ a with n summands
is denoted na. An element a ∈ A is called idempotent if 2a = a, and A is
said to be idempotent if every element a ∈ A is idempotent. An idempotent,
commutative semigroup is called a semilattice. An inverse semigroup is a
semigroup A such that for every a ∈ A there exists a unique element −a ∈ A
with the properties a+(−a)+a = a and (−a)+a+(−a) = −a; −a is called
the inverse of a. It is easy to see that every group and every semilattice
is an inverse semigroup. The next proposition summarizes some basic facts
about inverse semigroups that we will need later on (see, e.g., [6, 13]).
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Proposition 2.5. Let A = (A; +) be an inverse semigroup.

(1) The set of idempotent elements of A is a (nonempty) subsemilattice
of A.

(2) A is a group if and only if A has a unique idempotent element.
(3) If A is finite, then there is a positive integer m such that (m+1)a = a

for all a ∈ A.

For a finite inverse semigroup A, the least positive integer m such that
(m+ 1)a = a for all a ∈ A is called the exponent of A.

A semiring is an algebra R = (R; +, ·) such that (R; +) is a commutative
semigroup, (R; ·) is a semigroup, and · distributes over +. It is easy to check
that the set End(A) of all endomorphisms of a commutative semigroup A
forms a semiring with respect to pointwise addition and composition. A
(left) semimodule over a semiring R is an algebra RA = (A; +, R) where
A = (A; +) is a commutative semigroup on which R acts by endomorphisms;
that is, there is a homomorphism R→ End(A), r 7→ r̂ of semirings such that
the (unary) operation associated to each element r ∈ R is the endomorphism
r̂ of A. We will follow the convention of writing r instead of r̂.

The definition of a semimodule shows that every semimodule with under-
lying commutative semigroup A is a reduct of the semimodule EA where
E = End(A) is the endomorphism semiring of A. Therefore, when con-
sidering clones of (polynomial) operations of semimodules we may restrict
to semimodules of the form EA with E = End(A). Since E contains the
identity endomorphism, it follows easily that every term operation of EA
that depends on the variables x1, . . . , xn is of the form f1(x1) + · · ·+ fn(xn)
for some f1, . . . , fn ∈ E. Therefore, every polynomial operation of EA that
depends on the variables x1, . . . , xn is of the form f1(x1) + · · · + fn(xn) or
f1(x1) + · · · + fn(xn) + a for some f1, . . . , fn ∈ E and a ∈ A. The clone of
all polynomial operations of EA will be denoted by PClo(EA).

2.6. Burle’s clone. Let A be a set, |A| ≥ 2. Burle’s clone on A, denoted
BA, consists of all operations f ∈ OA such that either f is essentially unary,
or f has the form

(2.1) f(x1, . . . , xn) = Ψ
(
ψ1(x1) + · · ·+ ψn(xn)

)
where + denotes addition modulo 2, ψ1, . . . , ψn are functions A → [2], and
Ψ is a function [2]→ A (see [1]).

If |A| = 2, then BA is easily seen to be equal to the clone PClo(A) of
polynomial operations of an(y) abelian group A = (A; +) on A. Therefore,
when considering Burle’s clone BA we will always assume that |A| ≥ 3.

Proposition 2.6. Let 0 be a fixed element of A. Every operation f ∈ B(n)
A

with | Im(f)| ≤ 2 can be written in the form (2.1) such that Ψ is one-to-one
and ψi(0) = 0 for all 1 ≤ i ≤ n.

Proof. If f ∈ B(n)
A is not essentially unary, then by the definition of Burle’s

clone, f(x1, . . . , xn) = Ψ′
(
ψ′1(x1) + · · ·+ ψ′n(xn)

)
for some ψ′1, . . . , ψ

′
n : A→
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[2] and Ψ′ : [2] → A. Since | Im(f)| ≤ 2, the same conclusion is true even if
f is essentially unary. Now, letting ψi(xi) = ψ′i(xi) + ψ′i(0) for all 1 ≤ i ≤ n
and Ψ(y) = Ψ′

(
y +

∑n
i=1 ψ

′
i(0)

)
we get that (2.1) holds with ψi(0) = 0 for

all 1 ≤ i ≤ n. Hence, if the function Ψ: [2]→ A is one-to-one, we are done.
Otherwise, Ψ is a constant function, and hence so is f . In that case we can
choose ψ1, . . . , ψn be constant with value 0, and Ψ any one-to-one function
that maps 0 to f(0). �

Finally, we define some operations in BA which will play a role later on
in the paper. For this, we choose and fix an element 0 of A. For arbitrary
a ∈ A\{0}, let ⊕a denote the binary operation x⊕ay = Λa

(
λa(x)+λa(y)

)
in

BA where the functions Λa : [2]→ A and λa : A→ [2] are defined as follows:
Λa(0) = 0, Λa(1) = a, λa(a) = 1, and λa(b) = 0 for all b ∈ A \ {a}. Since
λa ◦ Λa is the identity function [2]→ [2], we have that

(x⊕ay)⊕az = Λa

(
λa
(
Λa(λa(x)+λa(y))

)
+λa(z)

)
= Λa

(
λa(x)+λa(y)+λa(z)

)
.

Similarly, x⊕a (y⊕a z) = Λa
(
λa(x)+λa(y)+λa(z)

)
; therefore the operation

⊕a is associative. For every integer n ≥ 2, we will write the composite
operation (. . . ((x1⊕x2)⊕a x3) . . .)⊕a xn without parentheses as x1⊕a x2⊕a
· · · ⊕a xn. An easy calculation, similar to the one above, shows that

(2.2) x1 ⊕a x2 ⊕a · · · ⊕a xn = Λa
(
λa(x1) + λa(x2) + · · ·+ λa(xn)

)
for all n ≥ 2.

3. The main result

The main result of this paper is the following theorem.

Theorem 3.1. Let C be a clone on a finite set A, |A| ≥ 2, and let U be
a finite set such that |U | ≥ min(3, |A|). If C satisfies one of the conditions
(A)–(C) below, then the C-minor partial order (F(A,U)/≡C ;�C) is universal
for the class FPI of countable posets whose principal ideals are finite.

(A) There exists a positive integer m such that every operation in C de-
pends on at most m variables.

(B) C is a subclone of Burle’s clone BA (|A| ≥ 3) such that C contains
all binary operations ⊕a (a ∈ A \ {0}) for some fixed element 0 ∈ A.

(C) For a commutative inverse semigroup A = (A; +) of exponent m
and E = End(A), C is a subclone of the clone PClo(EA) such that
C contains the operation x0 + x1 + · · ·+ xm.

Proof. Let C satisfy one of conditions (A)–(C). We will prove in Theo-
rem 4.1 that the sets Ct/≡C are finite for all t ≥ 1. Thus by Proposi-
tion 2.4, the principal ideals of the C-minor partial order (F(A,U)/≡C ;�C)
are finite. Also, F(A,U) is countable, because A and U are finite; hence
(F(A,U)/≡C ;�C) ∈ FPI. In Theorem 5.1 we will prove that under slightly
weaker hypotheses on C than (A)–(C), the poset (Pf(ω);⊆) embeds into
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(F(A,U)/≡C ;�C). Thus, by Lemma 2.1, (F(A,U)/≡C ;�C) is universal for
FPI, as claimed. �

The special case of part (A) of Theorem 3.1 when C is the clone of pro-
jections (and U = A = [2]) was proved in [2] by Couceiro and Pouzet. Two
special cases of part (C) of Theorem 3.1 are also worth stating separately,
namely when A is an abelian group or a semilattice. Note that in the case
when A is a semilattice, the exponent of A is m = 1, while in the case when
A is an abelian group of exponent m, then a clone C contains the operation
x0 + x1 + · · ·+ xm if and only if it contains the ternary operation x− y+ z.

Corollary 3.2. If a clone C satisfies one of the conditions (C)gr or (C)sl

below, then the C-minor partial order (F(A,U)/≡C ;�C) is universal for FPI
for any finite set U with |U | ≥ min(3, |A|).

(C)gr For a finite abelian group A = (A; +) (|A| ≥ 2) and E = End(A), C
is a subclone of the clone PClo(EA) such that C contains the opera-
tion x− y + z.

(C)sl For a finite semilattice A = (A; +) (|A| ≥ 2) and E = End(A), C is
a subclone of the clone PClo(EA) such that C contains the operation
+.

We close this section by discussing examples which show that in condition
(B) of Theorem 3.1 the assumption “C contains all binary operations ⊕a (a ∈
A \ {0})” cannot be omitted, and similarly, in condition (C) of Theorem 3.1
the assumption “C contains the operation x0 + x1 + · · · + xm” cannot be
omitted. To this end we will exhibit subclones C of Burle’s clone BA and
subclones C of PClo(EA) for certain inverse semigroups A such that the set
C/≡C is infinite. Since C/≡C is a principal ideal of the C-minor partial order
(OA/≡C ;�C) (see the proof of Proposition 2.4, case t = 1 in (c) ⇒ (a)), the
fact that C/≡C is infinite implies that (OA/≡C ;�C) = (F(A,A)/≡C ;�C) is
not even a member of FPI, let alone universal for FPI.

These examples, along with Theorem 3.1, also show that on a finite set
A with more than two elements the family of all clones C for which the
C-minor partial order (OA/≡C ;�C) is universal for FPI is not closed under
taking subclones.

Example 3.3. Let 0, a, b be distinct elements of A (|A| ≥ 3), and let
C be the subclone of BA generated by the operations fn (n ∈ ω) where
fn(x1, . . . , xn) = Λb

(
λa(x1) + · · ·+ λa(xn)

)
for n ≥ 1 and f0 = 0, the unary

constant operation with value 0. Since Λb ◦ λa : A → A is not constant,
we get that for n ≥ 1, fn depends on all of its variables. However, since
λa ◦ Λb : [2]→ [2] is constant 0, it follows that the identities

(3.1) fn
(
x1, . . . , xi, fm(x1+i, . . . , xm+i), xm+i+1, . . . , xm+n−1

)
= fn−1(x1, . . . , xi, xm+i+1, . . . , xm+n−1)

hold for all m,n ≥ 1 and 0 ≤ i ≤ n−1. This implies that every operation in
C is either a projection or is of the form fn(xi1 , . . . , xin) for some n ≥ 1 and
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some variables xi1 , . . . , xin . Furthermore, we have that whenever g ≤C fn
holds for some g ∈ C, then g depends on at most n variables if n ≥ 1, and
g is constant 0 if n = 0. Thus fm 6≡C fn if m 6= n (m,n ∈ ω), so C/≡C is
infinite.

Example 3.4. Let A be a finite inverse semigroup with neutral element
0 such that A has a nonzero nilpotent endomorphism that fixes 0.1 Then
there exists r ∈ End(A) = E such that r 6= 0 = r2 and r(0) = 0. Let C
be the subclone of PClo(EA) generated by the operations fn (n ∈ ω) where
fn(x1, . . . , xn) = r(x1)+· · ·+r(xn) for n ≥ 1, and f0 = 0, the unary constant
operation with value 0. The assumptions r 6= 0 and r(0) = 0 imply that
for n ≥ 1, fn depends on all of its variables, while the assumption r2 = 0
forces that the identities (3.1) hold for all m,n ≥ 1 and 0 ≤ i ≤ n − 1. As
in Example 3.3, we get that C/≡C is infinite.

4. Finite principal ideals

Our goal in this section is to establish that for the clones C in Theorem 3.1,
the principal ideals of (F(A,U)/≡C ;�C) are finite for arbitrary set U . By
Proposition 2.4, this will follow if we prove that the sets Ct/≡C are finite for
all t ≥ 1. Thus, our task is reduced to proving the following theorem.

Theorem 4.1. If a clone C on a finite set A satisfies one of conditions
(A)–(C) from Theorem 3.1, then the sets Ct/≡C are finite for all t ≥ 1.

The next lemma proves the theorem for the case when C satisfies condition
(A).

Lemma 4.2. If a clone C on a finite set A satisfies condition (A) from
Theorem 3.1, then the sets Ct/≡C are finite for all t ≥ 1.

Proof. Let t ≥ 1. Since every operation in C depends on at most m variables,
it follows that every function in Ct

(
⊆ F(A,At)

)
depends on at most mt vari-

ables. Therefore, for every f ∈ Ct there exists f ′ ∈ (C(mt))t
(
⊆ F (mt)(A,At)

)
such that f and f ′ can be obtained from one another by adding or re-
moving fictitious variables. Hence f ≡C f ′. This implies that |Ct/≡C | ≤
|(C(mt))t/≡C | ≤ |F (mt)(A,At)/≡C |. Since A is finite, the set F (mt)(A,At) of
all functions Amt → At is finite. This proves that Ct/≡C is finite. �

To get the same conclusion for the remaining clones in Theorem 3.1, we
will start by setting up a framework in which clones of polynomial opera-
tions of semimodules and subclones of Burle’s clone can be handled simul-
taneously.

1It is not hard to see that such an endomorphism exists if A is a finite semilattice with
neutral element such that |A| ≥ 3, or if A is a finite abelian group such that |A| is not
square free.
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Definition 4.3. Let A and U be arbitrary sets, and let f = f(x1, . . . , xn) be

a function in F (n)(A,U) with essential variables xj (j ∈ J). Furthermore,
let B = (B; +) be a commutative monoid such that B ⊆ U . We will say
that f is quasilinear with respect to B, or briefly, B-quasilinear, if there exist
b ∈ B and functions uj ∈ F (1)(A,B) (j ∈ J) such that

(4.1) f(x1, . . . , xn) =
∑
j∈J

uj(xj) for all x1, . . . , xn ∈ A

or

(4.2) f(x1, . . . , xn) = b+
∑
j∈J

uj(xj) for all x1, . . . , xn ∈ A,

with addition on the right-hand sides of (4.1) and (4.2) performed in B.
We will say that a function in F(A,U) is quasilinear if it is quasilinear

with respect to some B, and a subset S of F(A,U) is quasilinear if every
member of S is. In particular, a clone on A is quasilinear if all operations
in the clone are quasilinear.

Let A, U , f , J , and B be as in Definition 4.3, and assume that f is
B-quasilinear. If B has a neutral element 0B, then (4.1) is the special case
b = 0B of (4.2). Moreover, for such a B, the constant map with domain A

and range {0B}, which will also be denoted by 0B, is a member of F (1)(A,B).
Therefore, choosing ui to be 0B whenever xi is a fictitious variable of f , we
see that there exist b ∈ B and u1, . . . , un ∈ F (1)(A,B) such that

(4.3) f(x1, . . . , xn) = b+ u1(x1) + · · ·+ un(xn) for all x1, . . . , xn ∈ A,

where, as before, addition is performed in B.
Next we will introduce notation that will allow us to write B-quasilinear

functions f in the form (4.3) even if B has no neutral element. Let ~ be
an element not in U and let U0 := U ∪ {~}. As is usual in semigroup
theory, if B has a neutral element, 0B, let B0 denote B itself. Otherwise,
let B0 = (B∪{0B}; +) be the extension of B by the element 0B := ~ which
acts as a neutral element; that is, B is a subsemigroup of B0 and x+ 0B =
x = 0B + x for all x ∈ B ∪{0B}. As before, let 0B denote the constant map

with domain A and range {0B}, and let F (1)(A,B)0 = F (1)(A,B)∪{0B} (a
set of functions A → B ∪ {0B}). Now, the same argument as before shows
that every B-quasilinear function f ∈ F(A,U) can be written in the form

(4.3) for some element b ∈ B0 and some functions u1, . . . , un ∈ F (1)(A,B)0

so that addition on the right-hand side is performed in B0. The expression
on the right-hand side of the equality in (4.3) will be referred to as a B-
representation of f .

We will use the following conventions and notation for sets of quasilinear
functions.

Conventions and Notation 4.4. Let A and U be arbitrary sets. Asso-
ciated to any quasilinear set S ⊆ F(A,U) of functions, we will fix a set of
data witnessing the quasilinearity of S; namely
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• a family B(S) of commutative monoids,
• for each B ∈ B(S),

– a set SB of B-quasilinear functions in S,
– a subset EB of F (1)(A,B), and

• along with each f ∈ SB a set reprB(f) 6= ∅ of B-representations of
f

such that

• S =
⋃
{SB : B ∈ B(S)}, and

• for each f ∈ SB, every B-representation of f in reprB(f) has the
form b+u1(x1)+· · ·+un(xn) as in (4.3) with b ∈ B0 and u1, . . . , un ∈
E0

B := EB ∪ {0B}.
The set E0

B \ {0B} = EB \ {0B} will be denoted by E−B.

Example 4.5. Any set S of essentially unary operations onA is A-quasilinear
with respect to any fixed commutative monoid A = (A;�). To witness the

quasilinearity of S we will choose B(S) = {A}, SA = S, and EA = O(1)
A ;

moreover, for every operation f ∈ S we let reprA(f) consist of all A-
representations of f as in (4.3) with b = 0A and all, but at most one,
ui = 0A.

Example 4.6. It follows from our discussion in subsection 2.5 that if A =
(A; +) is a commutative semigroup and E = End(A), then any set S ⊆
PClo(EA) of polynomial operations of the semimodule EA is A-quasilinear.
To witness the quasilinearity of S we will choose B(S) = {A}, SA = S, and
EA = E; moreover, for every operation f ∈ S we let reprA(f) consist of all
A-representations of f as in (4.3) with ui ∈ E0

A for all i. Note that every
element of E0

A is a homomorphism A→ A0.

Example 4.7. Let A be a set with |A| ≥ 3, and let 0 be a fixed element of
A. Any subset S of Burle’s clone BA is quasilinear. In fact, if the range of
f ∈ S has size | Im(f)| > 2, then f is essentially unary, so by Example 4.5,
f is A-quasilinear for any (fixed) commutative semigroup A = (A;�). (A
can be chosen so that 0 is the neutral element of A.) If the range of f ∈ S
has size | Im(f)| ≤ 2, then by Proposition 2.6 f can be written in the form
(2.1) such that Ψ is one-to-one and ψi(0) = 0 for all 1 ≤ i ≤ n. Hence there
is a unique group operation +Ψ on the 2-element set Ψ([2]) ⊆ A such that Ψ
is an isomorphism ([2]; +)→

(
Ψ([2]); +Ψ

)
. Thus Ψ(x) +Ψ Ψ(y) = Ψ(x+ y)

holds for all x, y ∈ [2]. Consequently,

f(x1, . . . , xn) = Ψ
(
ψ1(x1) + · · ·+ ψn(xn)

)
(4.4)

= Ψ
(
ψ1(xn)

)
+Ψ · · ·+Ψ Ψ

(
ψn(xn)

)
,

showing that f is
(
Ψ([2]); +Ψ

)
-quasilinear.

Thus, to witness the quasilinearity of S ⊆ BA, we will fix a commutative
semigroup A = (A;�) with neutral element 0, and choose

B(S) = {A} ∪ {
(
Ψ([2]); +Ψ

)
: Ψ is a one-to-one function [2]→ A}.



12 E. LEHTONEN AND Á. SZENDREI

Moreover, for any B ∈ B(S) we let EB = E0
B = F (1)(A,B). If B = A,

then we choose SA to be the set of all operations f ∈ S with range of size
| Im(f)| > 2, and for each such f we choose reprA(f) as in Example 4.5.
If B =

(
Ψ([2]); +Ψ

)
for a one-to-one Ψ: [2] → A, then we let SB be the

set of all operations f of the form (4.4) with ψi(0) = 0 for all 1 ≤ i ≤ n,
and for each such f , the possible right-hand sides in (4.4) will form the set
reprB(f). (It is not hard to see that reprB(f) has only one element unless
f is a constant operation.)

Lemma 4.8. Let A be an arbitrary set. If f1, . . . , ft are n-ary operations
on A such that fj is Bj-quasilinear for each 1 ≤ j ≤ t, then the function

f = (f1, . . . , ft) ∈ F (n)
(
A, (A0)t

)
is
∏t
j=1 B0

j -quasilinear.

Proof. Indeed, if bj + u1j(x1) + · · · + unj(xn) ∈ reprBj
(fj) with bj ∈ B0

j

and u1j , . . . , unj ∈ E0
Bj

for every j (1 ≤ j ≤ t), then for the tuples b =

(b1, . . . , bt) ∈
∏t
j=1 B0

j and ui = (ui1, . . . , uit) ∈
∏t
j=1E

0
Bj

we have that

the expression b + u1(x1) + · · · + un(xn) is a
∏t
j=1 B0

j -representation of

f = (f1, . . . , ft) ∈ F (n)
(
A, (A0)t

)
. �

Conventions 4.9. Let S ⊆ OA be a set of quasilinear operations. For
any integer t ≥ 1, the quasilinearity of the set St ⊆ F

(
A, (A0)t

)
will be

witnessed by the data suggested by the proof of Lemma 4.8; namely:

B(St) =
{ t∏
j=1

B0
j : Bj ∈ B(S)

}
,

and for each B =
∏t
j=1 B0

j ∈ B(St), we choose (St)B =
∏t
j=1 SBj (⊆ St),

EB = E0
B =

∏t
j=1E

0
Bj

, and for every f = (f1, . . . , ft) ∈ (St)B, we let

reprB(f) consist of all B-representations of f whose projections onto each
coordinate j (1 ≤ j ≤ t) belong to reprBj

(fj).

The next lemma provides a sufficient condition for S/≡C to be finite for
a set of quasilinear functions S ⊆ F(A,U). The statement will primarily
be used for the special case when C is a clone of quasilinear operations and
S = Ct for some integer t ≥ 1. However, the statement and the proof are
more transparent in the general setting.

Lemma 4.10. Let C be a clone on a finite set A, and let U be another finite
set. If S ⊆ F(A,U) is a set of quasilinear functions, then S/≡C is finite,
provided condition (∗)p,r below holds for some positive integers p and r:

(∗)p,r whenever f is an (n+r)-ary function in SB, for some B ∈ B(S) and
n ≥ 0, such that f has a B-representation

(4.5) f(x1, . . . , xn, y1, . . . , yr) = b +
n∑
i=1

ui(xi) +
r∑
j=1

v(yj),
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with the right-hand side in reprB(f) such that v ∈ E−B, then the
(n+ r + p)-ary function

(4.6) g(x1, . . . , xn, y1, . . . , yr+p) = b +

n∑
i=1

ui(xi) +

r+p∑
j=1

v(yj)

is in SB, the right-hand side of (4.6) is a B-representation of g in
reprB(g), and g ≡C f .

Proof. Assume that there exist integers p, r ≥ 1 such that condition (∗)p,r
holds. Our goal is to show that S/≡C is finite. Since U is finite, there are
only finitely many commutative monoids B = (B; +) with B ⊆ U . Hence
B(S) is finite. Therefore, since S =

⋃
{SB : B ∈ B(S)}, it will follow that

S/≡C is finite if we show that SB/≡C is finite for each B ∈ B(S). So, let
B ∈ B(S) be arbitrary, and let p, r ≥ 1 be integers such that (∗)p,r holds.
To argue that SB/≡C is finite we will need some notation.

Let [ be an element not in E−B. If h ∈ SB and h∗ ∈ reprB(h), say h∗ is

the expression b +
∑n

i=1 wi(xi), then we define a function mh∗ : {[}∪E−B →
B0 ∪ω called the multiplicity function of h∗ as follows: mh∗([) = b, and for
every w ∈ E−B, mh∗(w) is the number of summands wi(xi) in h∗ such that
wi = w.

Let M denote the set of all functions m : {[} ∪ E−B → B0 ∪ ω satisfying

m([) ∈ B0 and m(w) ∈ ω for all w ∈ E−B. We define the distance of two
functions m, n ∈ M by

d(m, n) =
∑

w∈E−B

|m(w)− n(w)|.

Next we define equivalence relations ρ[ and ρw (w ∈ E−B) on M as follows:
for m, n ∈ M,

m ρ[ n ⇐⇒ m([) = n([), and

m ρw n ⇐⇒ either m(w) = n(w) < r,

or m(w) ≡ n(w) (mod p) and m(w), n(w) ≥ r.

Let l denote the intersection of ρ[ and all ρw (w ∈ E−B). Clearly, each ρw
has at most r+p equivalence classes, and ρ[ has at most |B|+ 1 equivalence
classes. Since A, U are finite, B ⊆ U , and hence E−B ⊆ F(A,B) is also
finite, it follows that l has only finitely many equivalence classes.

Therefore, to prove that SB/≡C is finite, it will be sufficient to show that
if f ,h ∈ SB have B-representations f∗ ∈ reprB(f) and h∗ ∈ reprB(h) such
that mf∗ l mh∗ , then f ≡C h. Suppose this implication is false, that is,
there exist f ,h ∈ SB such that for some B-representations f∗ ∈ reprB(f)
and h∗ ∈ reprB(h) we have mf∗ l mh∗ , but f 6≡C h. Choose and fix f , h
and f∗, h∗ with these properties in such a way that the distance d(mf∗ ,mh∗)
is as small as possible. First we want to argue that d(mf∗ ,mh∗) > 0. As-
sume, for a contradiction, that d(mf∗ ,mh∗) = 0. Then mf∗ = mh∗ , hence
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f∗ and h∗ may differ only by renaming variables and adding or removing
constant summands 0B. It follows that f and h may differ only by renam-
ing variables and adding or removing fictitious variables. But then f ≡C h,
which contradicts the choice of f and h. Thus d(mf∗ ,mh∗) > 0, and hence
mf∗ 6= mh∗ .

Let v ∈ E−B be such that mf∗(v) 6= mh∗(v). The assumption mf∗ l
mh∗ implies that mf∗ ρv mh∗ , and the choice of v excludes the possibil-
ity mf∗(v) = mh∗(v) < r. Therefore, mf∗(v) ≡ mh∗(v) (mod p) and
mf∗(v), mh∗(v) ≥ r.

By switching the roles of f and h if necessary we may assume without
loss of generality that mf∗(v) < mh∗(v), say mh∗(v) = mf∗(v)+kp for some
positive integer k. Since mf∗(v) ≥ r, we get that f∗ has the same form as the
expression on the right-hand side of (4.5). Now let g∗ be the expression on
the right-hand side of (4.6), and let g be the function with B-representation
g∗. Condition (∗)p,r tells us then that g ∈ SB, g∗ ∈ reprB(g), and f ≡C g.
By the choice of g∗ we have that mg∗([) = mf∗([), mg∗(v) = mf∗(v) + p,
and mg∗(w) = mf∗(w) for all w ∈ E−B \ {v}.

Thus mg∗ l mf∗ . Hence the functions g,h ∈ SB with B-representations
g∗ ∈ reprB(g) and h∗ ∈ reprB(h) satisfy mg∗ l mh∗ . Moreover,

d(mg∗ ,mh∗) = d(mf∗ ,mh∗)− |mf∗(v)−mh∗(v)|+ |mg∗(v)−mh∗(v)|
= d(mf∗ ,mh∗)− kp+ (k − 1)p = d(mf∗ ,mh∗)− p < d(mf∗ ,mh∗).

Since f , h and f∗, h∗ were chosen with minimum distance d(mf∗ ,mh∗) such
that mf∗ l mh∗ and f 6≡C h, we get that g ≡C h. In view of f ≡C g this
forces that f ≡C h, which contradicts our assumption on f and h. This
completes the proof of the lemma. �

Now we apply Lemma 4.10 to clones C that satisfy condition (B) or (C)
from Theorem 3.1.

Lemma 4.11. If a clone C on a finite set A satisfies condition (C) from
Theorem 3.1, then the sets Ct/≡C are finite for all t ≥ 1.

Proof. As in assumption (C), let C be a subclone of PClo(EA) containing
the operation x0 + x1 + · · ·+ xm, where A = (A; +) is a finite commutative
inverse semigroup of exponent m and E = End(A). Let t ≥ 1 and let
S = Ct. For B(C), CA, EA, and reprA(f) (f ∈ C) we will use the choices
agreed upon in Example 4.6. Therefore, Convention 4.9 determines the

corresponding data for S = Ct (in fact, for any subset S of
(
PClo(EA)

)t
).

In particular, B(S) = {(A0)t}, and for B = (A0)t we have EB = E0
B =

(E0)t. Furthermore, for every f ∈ S, the set reprB(f) consists of all B-
representations b +

∑
i wi(xi) of f with wi ∈ (E0)t for all i. Note that since

the elements of E0 are homomorphisms A→ A0, the elements of (E0)t are
homomorphisms A→ (A0)t.

To show that the set S/≡C is finite we will apply Lemma 4.10. Our goal is
to prove that (∗)p,r holds for S with p = m and r = 1. So let B = (A0)t and
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let f ∈ S be a function as in (4.5) such that v ∈ E−B and the B-representation

on the right-hand side is in reprB(f). Then b ∈ B and u1, . . . ,un,v ∈ (E0)
t
.

Now let g be the function in (4.6). Clearly, g ∈
(
PClo(EA)

)t
and the right-

hand side of (4.6) is a B-representation of g in reprB(g). It remains to show
that g ∈ S = Ct and f ≡C g.

Since A is an inverse semigroup of exponent m, so is B = (A0)t. There-
fore,

g(x1, . . . , xn, y1, . . . , y1︸ ︷︷ ︸
m+1

) = b +
n∑
i=1

ui(xi) + (m+ 1)v(y1)

= b +

n∑
i=1

ui(xi) + v(y1) = f(x1, . . . , xn, y1),

which shows that f ≤C g. Using the fact that v ∈ (E0)t is a homomorphism
A→ (A0)t = B, we get that

f(x1, . . . , xn, y1 + y2 + · · ·+ ym+1) = b +
n∑
i=1

ui(xi) + v
(m+1∑
j=1

yj

)

= b +
n∑
i=1

ui(xi) +
m+1∑
j=1

v(yj) = g(x1, . . . , xn, y1, . . . , ym+1).

This shows that g ≤C f , since the operation y1 + y2 + · · ·+ ym+1 belongs to
C by assumption. Thus g ≡C f . Moreover, since C is a clone and f ∈ S = Ct,
the relation g ≤C f also implies that g ∈ Ct = S. This completes the proof
of (∗)m,1, and hence shows that Ct/≡C is finite. �

Lemma 4.12. If a clone C on a finite set A satisfies condition (B) from
Theorem 3.1, then the sets Ct/≡C are finite for all t ≥ 1.

Proof. For convenience, we will assume that A = [k]. As in condition (B),
let k ≥ 3, and let C be a subclone of Burle’s clone BA such that x ⊕a y
belongs to C for all 1 ≤ a ≤ k− 1. Thus the operation x1⊕a x2⊕a · · · ⊕a xn
obtained from x ⊕a y by composition also belongs to C for all n ≥ 1 and
1 ≤ a ≤ k − 1. We start the proof with an auxiliary claim.

Claim 4.12.1. Let n ≥ 1 and 1 ≤ a ≤ k − 1. For every function ψ : A→ [2]
such that ψ(0) = 0,
(4.7)∑

1≤a≤k−1

ψ(x1 ⊕a x2 ⊕a · · · ⊕a xn) =

n∑
`=1

ψ(x`) for all x1, . . . , xn ∈ A.

Proof of Claim 4.12.1. Since ψ ◦Λa is the function [2]→ [2] given by 0 7→ 0,
1 7→ ψ(a), we see that ψ ◦ Λa is constant 0 if ψ(a) = 0 and ψ ◦ Λa is the
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identity function if ψ(a) = 1. Consequently,

∑
1≤a≤k−1

ψ(x1 ⊕a x2 ⊕a · · · ⊕a xn) =
∑

1≤a≤k−1

ψ

(
Λa

( n∑
`=1

λa(x`)
))

=
∑

1≤a≤k−1
ψ(a)=1

( n∑
`=1

λa(x`)
)

=

n∑
`=1

( ∑
1≤a≤k−1
ψ(a)=1

λa(x`)
)
.

The proof of (4.7) will be complete if we show that

(4.8)
∑

1≤a≤k−1
ψ(a)=1

λa(x) = ψ(x) for all x ∈ A.

Since λa (1 ≤ a ≤ k − 1) is the characteristic function of {a}, the left-hand
side of (4.8) is the characteristic function of the set {a : 1 ≤ a ≤ k−1, ψ(a) =
1}. In view of the fact that ψ(0) = 0, ψ is also a characteristic function of
this set, which proves the claim. �

Now let t be a positive integer and let S = Ct. For B(C), CB, EB, and
reprB(f) (B ∈ B(C), f ∈ C) we will use the choices agreed upon in Exam-
ple 4.7 (for any subset C of BA), which can be summarized as follows:

• B(C) consists of a fixed commutative semigroup A = (A;�) with
neutral element 0 ∈ A, and all 2-element groups

(
Ψ([2]); +Ψ

)
where

Ψ: [2] → A is a one-to-one function; hence, each member of B(C)
has a neutral element.
• For each B ∈ B(C), EB = E0

B = F (1)(A,B).
• If B = A, then CB consists of all essentially unary operations in
C, and for each f ∈ CB, the set reprB(f) of B-representations of f
consists of all sums with all but at most one summand equal to 0A.
• If B =

(
Ψ([2]); +Ψ

)
for some one-to-one function Ψ: [2] → A, then

CB consists of all operations f which can be written in the form (4.4)
with ψi(0) = 0 for all i; the set all such expressions for f is the set
reprB(f) of B-representations of f .

The last two items show that if B ∈ B(C) and f ∈ CB, then every B-
reperesentation in reprB(f) has the form (4.1), i.e., the constant term is
b = 0B.

Conventions 4.9 determine the corresponding data for S = Ct (for any

subset C of BA). Namely, B(S) is the set of all
∏t
j=1 B0

j with Bj ∈ B(C),
and for each B =

∏t
j=1 B0

j ∈ B(S), we have SB =
∏t
j=1 CBj , EB = E0

B =∏t
j=1EBj , and for every f = (f1, . . . , ft) ∈ SB, reprB(f) consist of all B-

representations of f whose projections onto each coordinate j (1 ≤ j ≤ t)
belong to reprBj

(fj).

As in the proof of Lemma 4.11, we will show the finiteness of S/≡C by
applying Lemma 4.10. Our goal is to prove that (∗)p,r holds for S with p = 2
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and r = k − 1. So let B =
∏t
m=1 Bm ∈ B(S), and let f ∈ SB be a function

as in (4.5) such that v ∈ E−B and the B-representation on the right-hand
side is in reprB(f). Furthermore, let g be the function in (4.6). We need to
show that (i) g ∈ SB, (ii) the right-hand side of (4.6) is a B-representation
of g in reprB(g), and (iii) g ≡C f .

We saw in the proof of Lemma 4.11, that (i)′ g ∈ S and (iii) follow if we
show that f ≤C g and g ≤C f . For this, it will be enough to argue that

(4.9) f(x1, . . . , xn, y1, . . . , yk−1)

= g(x1, . . . , xn, y1, . . . , yk−2, yk−1, yk−1, yk−1)

and

(4.10) g(x1, . . . , xn, y1, . . . , yk+1)

= f(x1, . . . , xn, y1 ⊕1 · · · ⊕1 yk+1, . . . , y1 ⊕k−1 · · · ⊕k−1 yk+1),

since the operations x1 ⊕a · · · ⊕a xk+1 belong to C for all 1 ≤ a ≤ k − 1.
To establish (ii) and to strengthen (i)′ to (i), we need to prove, in addition,
that

(4.11) g ∈
(
(BA)t

)
B

and

the right-hand side of (4.6) is a B-representation of g in reprB(g).

We will prove (4.9), (4.10), and (4.11) coordinatewise; that is, we will show
that for each m (1 ≤ m ≤ t), the analogous equalities

(4.12) f(x1, . . . , xn, y1, . . . , yk−1)

= g(x1, . . . , xn, y1, . . . , yk−2, yk−1, yk−1, yk−1)

and

(4.13) g(x1, . . . , xn, y1, . . . , yk+1)

= f(x1, . . . , xn, y1 ⊕1 · · · ⊕1 yk+1, . . . , y1 ⊕k−1 · · · ⊕k−1 yk+1)

hold for the m-th coordinate functions f and g; moreover,

(4.14) g ∈ (BA)B and the m-th coordinate of

the right-hand side of (4.6) is a Bm-representation of g in reprBm
(g).

If Bm = A, then f(x1, . . . , xn, y1, . . . , yk−1) =

n

�
i=1

ui(xi) �
k−1

�
j=1

v(yj)

where ui, v are the m-th coordinate functions of ui and v, respectively.
Since the expression on the right-hand side is an A-representation of f in
reprA(f), we get that at most one of u1, . . . , un and the k − 1 (≥ 2) v’s
differs from 0A. Thus v = 0A holds in this case. The operation g satisfies
an equality similar to f , except that k − 1 is replaced by k + 1. Therefore,
it is clear that the expression on the right-hand side of this equality belongs
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to reprA(g), proving (4.14). Since v = 0A, neither f nor g depends on any
of its variables yj . Therefore, the equalities (4.12) and (4.13) clearly hold.

Now let us assume that Bm = (Ψ([2]); +Ψ) for some one-to-one function
Ψ: [2]→ A. Then using (4.4) and the injectivity of Ψ we see that

(4.15) f(x1, . . . , xn, y1, . . . , yk−1) = Ψ
( n∑
i=1

φi(xi) +
k−1∑
j=1

ψ(yj)
)

and

(4.16) g(x1, . . . , xn, y1, . . . , yk+1) = Ψ
( n∑
i=1

φi(xi) +
k+1∑
j=1

ψ(yj)
)

where φi, ψ are functions A → [2] with φi(0) = ψ(0) = 0 for all i. (4.16)
shows that (4.14) holds. The equality (4.12) is also clear from (4.16), since
ψ(yk−1) + ψ(yk−1) + ψ(yk−1) = ψ(yk−1) holds for addition + modulo 2.
To prove (4.13) we use (4.15) and (4.16) above together with the equality
proved in Claim 4.12.1:

f(x1, . . . , xn, y1 ⊕1 · · · ⊕1 yk+1, . . . , y1 ⊕k−1 · · · ⊕k−1 yk+1)

(4.15)
= Ψ

( n∑
i=1

φi(xi) +
∑

1≤a≤k−1

ψ(y1 ⊕a · · · ⊕a yk+1)
)

(4.7)
= Ψ

( n∑
i=1

φi(xi) +

k+1∑
`=1

ψ(y`)
)

(4.16)
= g(x1, . . . , xn, y1, . . . , yk+1).

This completes the proof of (∗)2,k−1, and hence shows that Ct/≡C is finite.
�

Proof of Theorem 4.1. Combine Lemmas 4.2, 4.11, and 4.12. �

5. Embedding (Pf(ω);⊆) into (F(A,U)/≡C ;�C)

In this section we will prove that for every clone C that satisfies one of
conditions (A)–(C) from Theorem 3.1, the poset (Pf(ω);⊆) embeds into the
C-minor partial order (F(A,U)/≡C ;�C) provided |U | ≥ min(3, |A|). In fact,
as the theorem below shows, this conclusion is true under somewhat weaker
assumptions on C.

Theorem 5.1. Let C be a clone on a finite set A, and let U be a set such
that |U | ≥ min(3, |A|). If C satisfies one of the conditions (A), (B)′, or
(C)′ below, then the poset (Pf(ω);⊆) embeds into the C-minor partial order
(F(A,U)/≡C ;�C).

(A) There exists a positive integer m such that every operation in C de-
pends on at most m variables.

(B)′ C is a subclone of Burle’s clone BA (|A| ≥ 3).
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(C)′ For a commutative inverse semigroup A = (A; +) and E = End(A),
C is a subclone of the clone PClo(EA).

An embedding (Pf(ω);⊆)→ (F(A,U)/≡C ;�C) is a mapping S 7→ fS/≡C
(S ∈ Pf(ω)) such that S ⊆ T if and only if fS/≡C �C fT /≡C for all
S, T ∈ Pf(ω); equivalently,

(5.1) S ⊆ T ⇐⇒ fS ≤C fT for all S, T ∈ Pf(N)

where N = ω.

Definition 5.2. Let N be an arbitrary set, and let S 7→ fS be a function
Pf(N)→ F(A,U). For a clone C on A, the family fS (S ∈ Pf(N)) of func-
tions will be called C-independent if (5.1) holds, and strongly C-independent
if the following conditions hold: for arbitrary S, T ∈ Pf(N) and n ∈ N ,

(a) S ⊆ T implies that fS is obtained from fT by identifying variables,
and

(b) f{n} ≤C fT implies that n ∈ T .

Lemma 5.3. Let A and U be sets, and let C be a clone on A. Every strongly
C-independent family of functions in F(A,U) is C-independent.

Proof. Let fS (S ∈ Pf(N)) be a strongly C-independent family of functions
in F(A,U). Then conditions (a)–(b) from Definition 5.2 hold. We want to
prove (5.1). The implication ⇒ follows from (a), because the requirement
that fS is obtained from fT by identifying variables implies that fS = fT ◦h
for a tuple h of projections, so fS ≤C fT . To prove the converse implication
⇐ let fS ≤C fT . We want to show that S ⊆ T . Let n ∈ S. Then {n} ⊆ S,
so by condition (a) we have f{n} ≤C fS . Hence, by the transitivity of ≤C ,
we get that f{n} ≤C fT , which yields by condition (b) that n ∈ T . Thus
S ⊆ T , as claimed. �

If C is a clone on A and B ⊆ A, let

CB = {f |B : f ∈ C and f(B, . . . , B) ⊆ B}.

It is easy to see that CB is a clone on the set B. Next we show that we
can construct strongly C-independent families of functions in F(A,U), by
extension, from strongly CB-independent families of operations on a common
proper subset B of A and U .

Lemma 5.4. Let A, U , and B be sets such that B is a common proper
subset of A and U , and let C be a clone on A. For every strongly CB-
independent family fS (S ∈ Pf(N)) of operations on B there exists a strongly
C-independent family f̄S (S ∈ Pf(N)) of functions in F(A,U) such that f̄S
extends fS for each S ∈ Pf(N).

Proof. Let 0 ∈ U \B, and let fS (S ∈ Pf(N)) be a strongly CB-independent
family of operations on B. For each S ∈ Pf(N) define f̄S as follows: f̄S(x) =
fS(x) if x is in the domain of fS , and f̄(x) = 0 otherwise. Clearly, f̄S extends
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fS . We want to argue that f̄S (S ∈ Pf(N)) is a strongly C-independent
family of functions in F(A,U).

Suppose that S ⊆ T (S, T ∈ Pf(N)). Since the family fS (S ∈ Pf(N))
is strongly CB-independent, fS is obtained from fT by identifying variables;
say fS(x1, . . . , xk) = fT (xi1 , . . . , xim) where {xi1 , . . . , xim} = {x1, . . . , xk}.
Clearly, this identity extends to f̄S and f̄T , which proves condition (a) from
Definition 5.2 for the family f̄S (S ∈ Pf(N)).

Now assume that f̄{n} ≤C f̄T (n ∈ N , T ∈ Pf(N)), say f̄{n} is k-ary and

f̄T is m-ary. Then there exists h ∈ (C(k))m such that f̄{n} = f̄T ◦ h; that is,

f̄{n}(x) = f̄T
(
h(x)

)
for all x ∈ Ak. If x ∈ Bk, then f̄{n}(x) = f{n}(x) ∈ B,

so f̄T
(
h(x)

)
∈ B, which implies that h(x) ∈ Bm. Thus each coordinate

function hi of h satisfies hi(B, . . . , B) ⊆ B, and hence can be restricted to

B, so h|B ∈ (C(k)
B )m. By definition, all functions f̄S can also be restricted to

B. Therefore, the equality f̄{n} = f̄T ◦h yields that (f̄{n})|B = (f̄T )|B ◦h|B,
that is, f{n} = fT ◦h|B. Hence f{n} ≤CB fT . Since the family fS (S ∈ Pf(N))
is strongly CB-independent, we get that n ∈ T . This proves condition (b)
from Definition 5.2 for the family f̄S (S ∈ Pf(N)), establishing its strong
C-independence. �

Our main tool in proving Theorem 5.1 will be the following corollary of
Lemmas 5.3 and 5.4.

Corollary 5.5. Let C be a clone on a set A, let B ⊆ A, and let U be a
set such that |U | ≥ min(|B|+ 1, |A|). If, for some countably infinite set N ,
there exists a strongly CB-independent family fS (S ∈ Pf(N)) of operations
on B, then (Pf(ω);⊆) embeds into (F(A,U)/≡C ;�C).

Proof. The assumption |U | ≥ min(|B|+ 1, |A|) implies that U has a subset
C with |C| = |B| such that C 6= U if B 6= A. Since every bijection ϕ : U →
V induces an isomorphism (F(A,U)/≡C ;�C) → (F(A, V )/≡C ;�C) via the
map g/≡ 7→ (ϕ◦g)/≡, we get that by applying an appropriate bijection that
maps C to B, we may assume for the proof of Corollary 5.5 that C = B,
that is, B ⊆ A ∩ U , and B 6= U if B 6= A.

If B = A, then CB = C, and the given strongly CB-independent family fS
(S ∈ Pf(N)) of operations on B becomes, by increasing the codomain to U ,
a strongly C-independent family f̄S (S ∈ Pf(N)) of functions in F(A,U).
If B 6= A, then B 6= U , and Lemma 5.4 yields a strongly C-independent
family f̄S (S ∈ Pf(N)) of functions in F(A,U). In either case, we get from
Lemma 5.3 that S ⊆ T ⇔ f̄S ≤C f̄T holds for all S, T ∈ Pf(N). Thus the
mapping S 7→ f̄S/≡C is an embedding of (Pf(N);⊆) into (F(A,U)/≡C ;�C).
Since N is countably infinite, there exists a bijection ω → N , which induces
an isomorphism (Pf(ω);⊆) → (Pf(N);⊆). Thus (Pf(ω);⊆) embeds into
(F(A,U)/≡C ;�C). �

For the proof of Theorem 5.1 we will use the special case |B| = 2 of
Corollary 5.5. The main step is to exhibit a strongly D-independent family
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of operations on B for every subclone D of PClo(End(B)B) = PClo(B) where
B is a 2-element group or semilattice.

We will assume without loss of generality that B = [2], and will use the
following notation. For a finite set S ∈ Pf(ω), ΣS :=

∑
i∈S i is the sum of

the elements of S. For n ∈ ω, denote S<n := {i ∈ S : i < n}. For S ⊆ ω+,
set

DS :=
⋃
n∈S

({n} × bne) = {(n, i) : n ∈ S, 1 ≤ i ≤ n}.

(Recall the notation bne := {1, . . . , n}.) For every nonempty S ∈ Pf(ω+),
let us fix a bijection βS : DS → bΣSe. Our arguments do not depend on
the choice of βS , but for convenience we will choose βS to be the mapping
(n, i) 7→ ΣS<n + i; that is, βS is the unique bijection DS → bΣSe that is an
order isomorphism between the ordered sets (DS ;v) and (bΣe;≤) where ≤
is the natural order on any subset of ω+, and v is the lexicographic order
on DS (⊆ ω+ × ω+) with respect to ≤.

Let S ∈ Pf(ω+) be nonempty. For an (ΣS+1)-tuple u := (u1, . . . , uΣS+1)
(of variables or elements of [2]) and for an element n ∈ S, we will refer to the
n-tuple u(S,n) := (uβS(n,1), uβS(n,2), . . . , uβS(n,n)) as the (S, n)-block of u. An
S-block of u is an (S, n)-block of u for some n ∈ S. Note that the last entry
uΣS+1 does not contribute to any S-block of u. Denote BS,n := {βS(n, i) :
1 ≤ i ≤ n}.

Define the (ΣS + 1)-tuples ηSn,i,µ
S
n,i, ι

S
n ∈ [2]ΣS+1 by

ηSn,i(j) :=

{
0, if j ∈ BS,n \ {βS(n, i)},
1, otherwise,

µSn,i(j) :=

{
0, if j = βS(n, i),

1, otherwise,

ιSn(j) :=

{
1, if j ∈ BS,n,

0, otherwise,

for all j ∈ bΣS + 1e. For βS chosen above, we can write the tuples ηSn,i,

µSn,i, and ιSn as follows, indicating the various S-blocks and also positions

βS(n, i) and ΣS + 1:

ηSn,i = (1 · · · 1 · · · 1 · · · 1 0 · · · 0

βS(n, i)
↓
10 · · · 0 1 · · · 1 · · · 1 · · · 1

ΣS + 1
↓
1),

µSn,i = (1 · · · 1 · · · 1 · · · 1 1 · · · 101 · · · 1 1 · · · 1 · · · 1 · · · 1 1),

ιSn = (0 · · · 0︸ ︷︷ ︸ · · · 0 · · · 0︸ ︷︷ ︸ 1 · · · 111 · · · 1︸ ︷︷ ︸
(S, n)-block

0 · · · 0︸ ︷︷ ︸ · · · 0 · · · 0︸ ︷︷ ︸
︸ ︷︷ ︸

S-blocks

0).
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We will denote the all-0 and all-1 (ΣS + 1)-tuples by 0S := (0, . . . , 0) and
1S := (1, . . . , 1). Furthermore, we will use the following notation:

ES,n := {ηSn,i,µSn,i : i ∈ bne} (n ∈ S),

ES :=
⋃
n∈S

ES,n.

Now we define operations fS ∈ O[2] for each finite subset S of ω+. For

S 6= ∅, let fS : [2]ΣS+1 → [2] be the characteristic function of the set ES ,
that is,

fS(a) =

{
1, if a ∈ ES ,

0, if a ∈ [2]ΣS+1 \ ES .

(In other words, fS(a) = 1 if and only if there exists an S-block of a such that
exactly one or all but one entries of that S-block are 0, and all remaining
entries of a are 1.) For S = ∅, let f∅ : [2] → [2] be the unary constant
operation 0. The operations fS (S ∈ Pf(ω+)) are essentially the Boolean
functions constructed by Couceiro and Pouzet in [2], which in turn were
based on functions defined by Pippenger [14].

Lemma 5.6. Let S, T ∈ Pf(ω+) and n ∈ ω+. If S ⊆ T , then fS is obtained
from fT by identifying variables.

Proof. Let S, T ∈ Pf(ω+). If S = ∅ and T is arbitrary, then it is easy to
verify that the identity f∅(x) = fT (x, . . . , x) holds. Assume now that S 6= ∅.
For any (ΣS + 1)-tuple u = (u1, . . . , uΣS+1) (of variables or elements of [2])
let ũ = (ũ1, . . . , ũΣT+1) be the (ΣT + 1)-tuple defined as follows:

ũj :=

{
uβS(n,i), if j = βT (n, i) for some n ∈ S, i ∈ bne,
uΣS+1, otherwise.

Denoting the list of variables of fS by x = (x1, . . . , xΣS+1) we claim that the
identity fS(x) = fT (x̃) holds whenever S ⊆ T . This follows by observing
that for every a ∈ AΣS+1, ã is the unique (ΣT+1)-tuple b for which we have
that b(T,n) = a(S,n) for all n ∈ S, and the remaining entries of b, i.e., those
outside of the (T, n)-blocks for n ∈ S, are equal to aΣS+1. This completes
the proof. �

Next we want to prove that, for some infinite set N ⊆ ω+, fS (S ∈ Pf(N))
is a strongly D-independent family of operations on [2], provided D is a
subclone of PClo(B) for a semilattice or group B = ([2]; +) with neutral
element 0.

Lemma 5.7. Let B = ([2]; +) be the unique semilattice with neutral element
0, and let D be a subclone of PClo(B). For N := {n ∈ ω : n ≥ 4},
fS (S ∈ Pf(N)) is a strongly D-independent family of operations on [2].
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Proof. In view of Lemma 5.6 and Proposition 2.3, we only need to verify
that condition (b) in Definition 5.2 holds for the clone C := PClo(B) and
the family fS (S ∈ Pf(N)).

Let T ∈ Pf(N), n ∈ N , and assume that f{n} ≤C fT . Thus n ≥ 4. We
want to show that n ∈ T . The assumption f{n} ≤C fT implies that there

exists a map g ∈ (C(n+1))ΣT+1 such that f{n} = fT ◦ g.

Claim 5.7.1. g has the following properties:

(1) g is a homomorphism from Bn+1 to BΣT+1, i.e.,

(5.2) g(u + v) = g(u) + g(v) for all u,v ∈ [2]n+1.

(2) If i ∈ bne, then

(5.3) g(µ
{n}
n,i ) =

∑
j∈bne\{i}

g(η
{n}
n,j ).

(3) g maps the set E{n} into ET , and its complement [2]n+1 \E{n} into

the complement [2]ΣT+1 \ ET of ET .

Proof of Claim 5.7.1. PClo(B) is generated by + and the unary constant op-
erations 0, 1. Therefore (1) follows from the fact that + is a homomorphism
B2 → B, and 0, 1 are homomorphisms B→ B.

(2) follows from (1) and the fact that µ
{n}
n,i =

∑
j∈bne\{i} η

{n}
n,j for all

i ∈ bne.
Finally, to prove (3), let a ∈ [2]n+1, and use the equality f{n} = fT ◦ g.

If a ∈ E{n}, then 1 = f{n}(a) = fT
(
g(a)

)
, so g(a) ∈ ET . Similarly, if

a /∈ E{n}, then 0 = f{n}(a) = fT
(
g(a)

)
, so g(a) /∈ ET . �

Claim 5.7.2. For all i, j ∈ bne with i 6= j, we have that g(η
{n}
n,i ) 6= g(η

{n}
n,j )

and g(µ
{n}
n,i ) 6= g(µ

{n}
n,j ).

Proof of Claim 5.7.2. Suppose, on the contrary, that g(η
{n}
n,i ) = g(η

{n}
n,j ) for

some i 6= j. Then, by (5.2) and by the idempotence of +, we get that

g(η
{n}
n,i + η

{n}
n,j ) = g(η

{n}
n,i ) + g(η

{n}
n,j ) = g(η

{n}
n,i ).

This contradicts Claim 5.7.1 (3), because η
{n}
n,i + η

{n}
n,j ∈ [2]n+1 \ E{n} and

η
{n}
n,i ∈ E{n}. A contradiction can be derived in a similar way, if we suppose

that g(µ
{n}
n,i ) = g(µ

{n}
n,j ) for some i 6= j. �

Claim 5.7.3. There exists an element t ∈ T and a map σ : bne → bte such

that g(η
{n}
n,i ) = ηTt,σ(i) for all i ∈ bne.

Proof of Claim 5.7.3. First we will argue that if i ∈ bne, then g(η
{n}
n,i ) 6= µTp,q

for all p ∈ T , q ∈ bpe. Suppose, on the contrary, that there is i ∈ bne such
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that g(η
{n}
n,i ) = µTp,q for some p ∈ T , q ∈ bpe. Then, by (5.3), we get for all

` ∈ bne \ {i} that

g(µ
{n}
n,` ) =

∑
j∈bne\{`}

g(η
{n}
n,j ) = g(η

{n}
n,i ) +

∑
j∈bne\{`,i}

g(η
{n}
n,j )

= µTp,q +
∑

j∈bne\{`,i}

g(η
{n}
n,j ) ≥ µTp,q,

where ≤ denotes the natural ordering of the semilattice BΣT+1 induced by
the ordering 0 < 1 of B; that is, ≤ is the coordinatewise ordering of the
set [2]ΣT+1 induced by the ordering 0 < 1 of [2]. Since the only tuples
in [2]ΣT+1 that are greater than or equal to µTp,q by ≤ are µTp,q ∈ ET and

1T ∈ [2]ΣT+1 \ ET , it follows from Claim 5.7.1 (3) that g(µ
{n}
n,` ) = µTp,q for

all ` ∈ bne \ {i}. This contradicts Claim 5.7.2, because n ∈ N implies that
n ≥ 4.

Thus, we have that for each i ∈ bne, g(η
{n}
n,i ) 6= µTp,q for all p ∈ T , q ∈ bpe.

On the other hand, since η
{n}
n,i ∈ E{n}, we know from Claim 5.7.1 (3) that

g(η
{n}
n,i ) ∈ ET = {ηTp,q, µTp,q : p ∈ T, q ∈ bpe}. Hence, each g(η

{n}
n,i ) (i ∈ bne)

is an η-tuple from ET . To complete the proof, it remains to show that all
these η-tuples have the same first subscripts.

Suppose then, on the contrary, that there exist i, i′ ∈ bne, p, p′ ∈ T ,

q ∈ bpe, q′ ∈ bp′e such that p 6= p′, g(η
{n}
n,i ) = ηTp,q, g(η

{n}
n,i′ ) = ηTp′,q′ ; then

necessarily i 6= i′, and g(η
{n}
n,i ) + g(η

{n}
n,i′ ) = ηTp,q + ηTp′,q′ = 1T . By (5.3), we

have that for all ` ∈ bne \ {i, i′},

g(µ
{n}
n,` ) =

∑
j∈bne\{`}

g(η
{n}
n,j ) = g(η

{n}
n,i ) + g(η

{n}
n,i′ ) +

∑
j∈bne\{i,i′,`}

g(η
{n}
n,j )

= 1T +
∑

j∈bne\{i,i′,`}

g(η
{n}
n,j ) = 1T .

This equality contradicts Claim 5.7.1 (3), because µ
{n}
n,` ∈ E{n}, but 1T /∈

ET . �

By Claim 5.7.2, the mapping σ : bne → bte given by Claim 5.7.3 is injec-

tive; hence t ≥ n. Let d := g(µ
{n}
n,i ). Since µ

{n}
n,i ∈ E{n}, Claim 5.7.1 (3)

implies that d ∈ ET . By (5.3), we have that

d = g(µ
{n}
n,i ) =

∑
j∈bne\{i}

g(η
{n}
n,j ) =

∑
j∈bne\{i}

ηTt,σ(j),

and since σ is injective, exactly n − 1 entries in the (T, t)-block of d are
equal to 1, and the entries outside the (T, t)-block are 1. In order for d to
be in ET , it is necessary that either 1 or t− 1 entries in the (T, t)-block of d
are equal to 1. Thus, either n = 2 or n = t. The former case is not possible,
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because the assumption that n ∈ N forces n ≥ 4. Hence we conclude that
n = t ∈ T . �

Lemma 5.8. Let B = ([2]; +) be the unique group on [2] with neutral
element 0, and let D be a subclone of PClo(B). For N := {n ∈ ω :
n ≥ 6, n even}, fS (S ∈ Pf(N)) is a strongly D-independent family of oper-
ations on [2].

Proof. In view of Lemma 5.6 and Proposition 2.3, we only need to verify
that condition (b) in Definition 5.2 holds for the clone C := PClo(B) and
the family fS (S ∈ Pf(N)).

Let T ∈ Pf(N), n ∈ N , and assume that f{n} ≤C fT . Thus n is even and
n ≥ 6. We want to show that n ∈ T . The assumption f{n} ≤C fT implies

that there exists a map g ∈ (C(n+1))ΣT+1 such that f{n} = fT ◦ g.

Claim 5.8.1. g has the following properties:

(1) For the ternary group T = ([2];x+y+z), g is a homomorphism from
Tn+1 to TΣT+1, and hence for every odd natural number 2k + 1,

(5.4) g
(2k+1∑
i=1

ui

)
=

2k+1∑
i=1

g(ui) for all u1, . . . ,u2k+1 ∈ [2]n+1.

(2) If i ∈ bne, then

(5.5) g(µ
{n}
n,i ) =

∑
j∈bne\{i}

g(η
{n}
n,j ) and g(η

{n}
n,i ) =

∑
j∈bne\{i}

g(µ
{n}
n,j ).

(3) g maps the set E{n} into ET , and its complement [2]n+1 \E{n} into

the complement [2]ΣT+1 \ ET of ET .

Proof of Claim 5.8.1. PClo(B) is generated by + and the unary constant
operation 1. Since + is a homomorphism T2 → T, and 1 is a homomor-
phisms T→ T, it follows that g is a homomorphism Tn+1 → TΣT+1. This
means that g(u+v+w) = g(u)+g(v)+g(w) holds for all u,v,w ∈ [2]n+1.
Repeated application of this equality yields (5.4).

(2) is true, because the fact that n ∈ N is even implies that we have

µ
{n}
n,i =

∑
j∈bne\{i} η

{n}
n,j and η

{n}
n,i =

∑
j∈bne\{i}µ

{n}
n,j for all i ∈ bne; moreover,

since the number of summands, n− 1, is odd, (5.4) applies.
(3) can be proved the same way as the analogous statement was proved

in Claim 5.7.1. �

Claim 5.8.2. For all i, j ∈ bne with i 6= j, we have that g(η
{n}
n,i ) 6= g(η

{n}
n,j )

and g(µ
{n}
n,i ) 6= g(µ

{n}
n,j ).

Proof of Claim 5.8.2. Suppose, on the contrary, that g(η
{n}
n,i ) = g(η

{n}
n,j ) for

some i 6= j, and let k ∈ bne \ {i, j}. By (5.4) and by the fact that B is a
Boolean group, we get that

g(η
{n}
n,i + η

{n}
n,j + η

{n}
n,k ) = g(η

{n}
n,i ) + g(η

{n}
n,j ) + g(η

{n}
n,k ) = g(η

{n}
n,k ).
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This contradicts Claim 5.8.1 (3), because η
{n}
n,i + η

{n}
n,j + η

{n}
n,k ∈ [2]n+1 \

E{n} and η
{n}
n,i ∈ E{n}. Replacing η’s by µ’s throughout, we can get a

contradiction in a similar way, if we suppose that g(µ
{n}
n,i ) = g(µ

{n}
n,j ) for

some i 6= j. �

Claim 5.8.3. There do not exist any i, j ∈ bne, p ∈ T , q ∈ bpe such that

g(η
{n}
n,i ) = ηTp,q and g(η

{n}
n,j ) = µTp,q, or g(µ

{n}
n,i ) = ηTp,q and g(µ

{n}
n,j ) = µTp,q.

Proof of Claim 5.8.3. Suppose, on the contrary, that there exist i, j, p, q such

that g(η
{n}
n,i ) = ηTp,q and g(η

{n}
n,j ) = µTp,q. Hence i 6= j and

(5.6) g(η
{n}
n,i ) + g(η

{n}
n,j ) = ηTp,q + µTp,q = ιTp .

Let ` ∈ bne \ {i, j}. Combining (5.4) and (5.6) we get that

g(η
{n}
n,i + η

{n}
n,j + η

{n}
n,` ) = g(η

{n}
n,i ) + g(η

{n}
n,j ) + g(η

{n}
n,` ) = ιTp + g(η

{n}
n,` ).

Here η
{n}
n,i +η

{n}
n,j +η

{n}
n,` ∈ [2]n+1 \E{n}, therefore Claim 5.8.1 (3) shows that

g(η
{n}
n,i +η

{n}
n,j +η

{n}
n,` ) ∈ [2]ΣT+1 \ET , and hence ιTp +g(η

{n}
n,` ) ∈ [2]ΣT+1 \ET .

For the same reason, g(η
{n}
n,` ) ∈ ET = {ηTr,s, µTr,s : r ∈ T, s ∈ bre}, because

η
{n}
n,` ∈ E{n}. Since ιTp + ηTp,s = µTp,s ∈ ET and ιTp + µTp,s = ηTp,s ∈ ET hold

for all s ∈ bpe, we conclude that g(η
{n}
n,` ) equals ηTr,s or µTr,s for some r 6= p.

Thus, the (T, p)-block of g(η
{n}
n,` ) is (1, . . . , 1).

Now fix k ∈ bne \ {i, j}, and consider

w :=
∑

`∈bne\{k}

g(η
{n}
n,` ).

By Claim 5.8.1, w = g(µ
{n}
n,k ) ∈ ET . However, in the sum on the right

hand side, g(η
{n}
n,i ) + g(η

{n}
n,j ) = ιTp , and, as we established in the preceding

paragraph, the (T, p)-block of the remaining summands is (1, . . . , 1). The
number of summands is odd, therefore the (T, p)-block of w equals (0, . . . , 0),
which contradicts w ∈ ET .

The claim about g(µ
{n}
n,i ) and g(µ

{n}
n,j ) is proved similarly, by switching

the roles of the η’s and the µ’s. �
Let us define the map ρ : bne → DT by the rule ρ(i) = (p, q) if and only

if g(η
{n}
n,i ) ∈ {ηTp,q,µTp,q}. By Claims 5.8.2 and 5.8.3, ρ is injective.

Denote d :=
∑n

i=1 g(η
{n}
n,i ). It follows from (5.5) that

(5.7) d = g(η
{n}
n,i ) + g(µ

{n}
n,i ) for all i ∈ bne.

By Claim 5.8.1 (3), the summands g(η
{n}
n,i ) and g(µ

{n}
n,i ) belong to ET , be-

cause η
{n}
n,i ,µ

{n}
n,i ∈ E{n}. Thus, for each i, (5.7) is a decomposition d = u+v
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of d with summands u,v ∈ ET . The condition u,v ∈ ET yields that there
exist κ, λ ∈ T , α ∈ bκe, β ∈ bλe such that u ∈ {ηTκ,α,µTκ,α}, v ∈ {ηTλ,β,µTλ,β}.

Claim 5.8.4. If u + v = d holds for u ∈ {ηTκ,α,µTκ,α} and v ∈ {ηTλ,β,µTλ,β},
then κ = λ and α = β.

Proof of Claim 5.8.4. Let u, v satisfy the assumptions, and suppose first
that κ 6= λ. Assuming, without loss of generality, that κ < λ, and denoting
the entries in the (T, κ)-block of u by x, y, and the entries in the (T, λ)-block
of v by χ, ψ, we can write u, v and d as follows:

u = (1 · · · 1 x · · ·x

βT (κ, α)
↓
yx · · ·x 1 · · · 1 1 · · · 1

βT (λ, β)
↓
1 1 · · · 1 1 · · · 1 1),

v = (1 · · · 1 1 · · · 111 · · · 1 1 · · · 1 χ · · · χψχ · · · χ 1 · · · 1 1),

d = (0 · · · 0 y · · · yxy · · · y︸ ︷︷ ︸
(T, κ)-block

0 · · · 0 ψ · · ·ψχψ · · ·ψ︸ ︷︷ ︸
(T, λ)-block

0 · · · 0 0).

The equality d = u + v holds, because {x, y} = {χ, ψ} = [2] and + is
performed modulo 2. This shows that

• the (T, κ)-block of d contains either a single occurrence of 0 and κ−1
occurrences of 1, or a single occurrence of 1 and κ − 1 occurrences
of 0,
• the (T, λ)-block of d contains either a single occurrence of 0 and λ−1

occurrences of 1, or a single occurrence of 1 and λ − 1 occurrences
of 0, and
• the remaining entries of d, i.e., those belonging neither to the (T, κ)-

block nor to the (T, λ)-block, are all 0.

It is easy to verify that the only possible way of decomposing d into a

sum of two elements of ET is u + v. Thus, {g(η
{n}
n,i ),g(µ

{n}
n,i )} = {u,v}

for all i ∈ bne. Since n ≥ 6, there exist distinct i, j ∈ bne such that

g(η
{n}
n,i ) = g(η

{n}
n,j ), which contradicts Claim 5.8.2.

This proves that κ = λ. Now suppose that α 6= β. Assuming, without
loss of generality, that α < β, and denoting the entries in the (T, κ)-blocks of
u and v by x, y and χ, ψ, respectively, we can write u, v and d as follows:

u = (1 · · · 1 x · · · x

βT (κ, α)
↓
y x · · · x

βT (κ, β)
↓
x x · · · x 1 · · · 1 1),

v = (1 · · · 1 χ · · · χ χ χ · · · χ ψ χ · · · χ 1 · · · 1 1),

d = (0 · · · 0 X · · ·XY X · · ·XY X · · ·X︸ ︷︷ ︸
(T, κ)-block

0 · · · 0 0).

To check that d has the given form, notice that {x, y} = {χ, ψ} = [2],
therefore x 6= y and χ 6= ψ, so with addition + modulo 2 we get that
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x+χ 6= y+χ = x+ψ. Hence, with the choice X := x+χ, Y := y+χ = x+ψ,
the equality d = u + v holds. This shows that

• the (T, κ)-block of d contains either two occurrences of 0 and κ− 2
occurrences of 1, or two occurrences of 1 and κ− 2 occurrences of 0,
and
• the entries outside the (T, κ)-block are all 0.

In the former case, the only possible decompositions of d into a sum of two
elements of ET are ηTκ,α + µTκ,β and µTκ,α + ηTκ,β; that is, for all i ∈ bne,
{g(η

{n}
n,i ),g(µ

{n}
n,i )} = {ηTκ,α,µTκ,β} or {g(η

{n}
n,i ),g(µ

{n}
n,i )} = {µTκ,α,ηTκ,β}. In

the latter case, the only possible decompositions of d into a sum of two
elements of ET are ηTκ,α + ηTκ,β and µTκ,α + µTκ,β; that is, for all i ∈ bne,
{g(η

{n}
n,i ),g(µ

{n}
n,i )} = {ηTκ,α,ηTκ,β} or {g(η

{n}
n,i ),g(µ

{n}
n,i )} = {µTκ,α,µTκ,β}.

Since n ≥ 6, the pigeonhole principle yields in both cases that there exist dis-

tinct i, j ∈ bne such that g(η
{n}
n,i ) = g(η

{n}
n,j ), which contradicts Claim 5.8.2.

�

Claim 5.8.5. For the tuple d defined above, we have that

(5.8) either d = 0T or d = ιTκ for some κ ∈ T .

Proof of Claim 5.8.5. (5.7) and the discussion following it shows that d =
u + v for some u,v ∈ ET . Therefore, by Claim 5.8.4, there exist κ ∈ T and
α ∈ bµe such that u,v ∈ {ηTκ,α,µTκ,α}. Using the fact that ηTκ,α +µTκ,α = ιTκ ,

we get that d = 0T if u = v, and d = ιTκ if u 6= v. �
Recall that ρ is the injective map bne → DT that assigns to each i ∈ bne

the pair ρ(i) = (p, q) such that g(η
{n}
n,i ) ∈ {ηTp,q,µTp,q}.

Claim 5.8.6. For each m ∈ T , either D{m} ⊆ Im ρ or D{m} ∩ Im ρ = ∅.

Proof of Claim 5.8.6. Suppose, on the contrary, that there is m ∈ T
such that ∅ 6= D{m} ∩ Im ρ ( D{m}. Consider the (T,m)-block of d =∑n

i=1 g(η
{n}
n,i ). The (T,m)-block of each summand g(η

{n}
n,i ) ∈ {ηTρ(i),µ

T
ρ(i)}

is

(i) the constant tuple (1, . . . , 1), if ρ(i) = (p, q) with p 6= m, and
(ii) an almost constant tuple of the form (0, . . . , 0, 1, 0, . . . , 0)+(c, . . . , c)

(c ∈ [2]) with the sole 1 in the q-th position, if ρ(i) = (m, q).

Our assumption ∅ 6= D{m}∩Im ρ ( D{m} implies that, as i runs over the ele-
ments of bne, each one of the two cases (i)–(ii) occurs at least once. Further-
more, the injectivity of ρ implies that for distinct i’s for which case (ii) ap-
plies, the 1’s will occur in different positions. It follows that the (T,m)-block
of d contains both 0 and 1 as an entry, which contradicts Claim 5.8.5.
�

Claim 5.8.7. There is exactly one m ∈ T such that D{m} ⊆ Im ρ.
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Proof of Claim 5.8.7. Since Im ρ 6= ∅, we get from Claim 5.8.6 that there
exists at least one m ∈ T such that D{m} ⊆ Im ρ. Suppose, on the contrary,
that there are at least two such elements of T , and fix m to be one of them.
Then we obtain from m ∈ T ⊆ N and D{m} ( Im ρ that m is even and
6 ≤ m = |D{m}| < | Im ρ| = n.

Let R := ρ−1(D{m}). We know that ρ is injective and that for each i ∈ R,

g(η
{n}
n,i ) ∈ {ηTρ(i),µ

T
ρ(i)} = {ηTm,q,µTm,q} for some q ∈ bme. Hence, |R| = m

is even and {g(η
{n}
n,i ) : i ∈ R} is a transversal for

{
{ηTm,q,µTm,q} : q ∈ bme

}
.

We have µTm,q = ηTm,q + ιTm for each q ∈ bme, and since m is even, we also

have that
∑

q∈bme η
T
m,q = ιTm. Therefore, if the number of µ’s among the

tuples g(η
{n}
n,i ) (i ∈ R) is k, then∑

i∈R
g(η

{n}
n,i ) = ιTm + kιTm = 0T or ιTm,

depending on the parity of k.
Now let us fix an element r ∈ R. Then ρ(r) ∈ D{m}, say ρ(r) = (m, r′),

so g(η
{n}
n,r ) ∈ {ηTm,r′ ,µTm,r′}. Thus, the last displayed equality, along with

the equality µTm,r′ = ηTm,r′ + ιTm, implies that∑
i∈R\{r}

g(η
{n}
n,i ) = g(η{n}n,r ) +

∑
i∈R

g(η
{n}
n,i )

∈ {ηTm,r′ + 0T ,µTm,r′ + 0T ,ηTm,r′ + ιTm,µ
T
m,r′ + ιTm} = {ηTm,r′ ,µTm,r′}.

Since |R \ {r}| = |R| − 1 = m− 1 is odd, we can apply Claim 5.8.1 (1) to
conclude that

g
( ∑
i∈R\{r}

η
{n}
n,i

)
=

∑
i∈R\{r}

g(η
{n}
n,i ) ∈ {ηTm,r′ ,µTm,r′} ⊆ ET .

On the other hand, the fact that 5 ≤ |R \ {r}| = m− 1 ≤ n− 2 shows that∑
i∈R\{r}

η
{n}
n,i ∈ [2]n \ E{n}.

This contradicts Claim 5.8.1 (3), and hence finishes the proof. �
Let m be the element of T given by Claim 5.8.7. Then actually Im ρ =

D{m}, and we conclude that ρ is a bijection from the n-element set bne onto
the m-element set D{m}. Hence, n = m ∈ T . �

We are now ready to prove the main result of this section.

Proof of Theorem 5.1. The theorem will follow from the special case |B| = 2
of Corollary 5.5 and from Lemmas 5.7 and 5.8, if we show that for each
clone C on A satisfying one of the conditions (A), (B)′, (C)′, there exists a
two-element subset B ⊆ A such that CB is a subclone of PClo(B), where
B = (B; +) is a semilattice or a group.
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If C satisfies condition (A), then for any choice of a two-element subset
B of A, the operations in CB depend on at most m variables. Post’s de-
scription [15] of all clones on a two-element set shows that in this case the
members of CB depend, in fact, on at most one variable. Hence CB is a
subclone of PClo(B), where B = (B; +) is a two-element group.

If C satisfies condition (B)′, then for any choice of a two-element subset
B of A, CB is a subclone of PClo(B), where B = (B; +) is a two-element
group.

Assume therefore that C satisfies condition (C)′. Let m denote the expo-
nent of A, and let S = (S; +) be the semilattice of all idempotent elements
of A (see Proposition 2.5). First we will consider the case when |S| > 1.
Let ≤ denote the natural order on S defined by x ≤ y iff x + y = y, and
choose B = (B; +) to be a two-element subsemilattice of S with B = {o, e}
such that o < e and there is no s ∈ S such that o < s < e.

Our goal is to show that CB is a subclone of PClo(B). We may as-
sume without loss of generality that C = PClo(EA) (E = End(A)). Let
f(x1, . . . , xn) = a +

∑n
i=1 ui(xi) (a ∈ A0, u1, . . . , un ∈ E0) be an n-ary

operation in C such that f(B, . . . , B) ⊆ B, and recall that E0 is a set of
endomorphisms of A0. Let c = ma+o, and for each i, let vi be the function
A → A defined by vi(x) = mui(x) + o. Since E0 is closed under +, each
vi ∈ E0. Thus the operation g(x1, . . . , xn) = c +

∑n
i=1 vi(xi) is a member

of C and satisfies g(x) = mf(x) + o for all x ∈ An. Since mb + o = b for
each b ∈ B, we get that g(B, . . . , B) ⊆ B and f |B = g|B. Moreover, for
all b1, . . . , bn ∈ B, the definitions of c and vi (1 ≤ i ≤ n) imply that c ∈ S
with c ≥ o and vi(bi) ∈ S with vi(bi) ≥ o. On the other hand, the condi-
tion c +

∑n
i=1 vi(bi) = g(b1, . . . , bn) ∈ B implies that c ≤ e and vi(bi) ≤ e.

Thus it follows from our choice of B that c ∈ B and vi(bi) ∈ B for all i.
Thus f |B(x1, . . . , xn) = g|B(x1, . . . , xn) = c +

∑n
i=1 vi|B(xi) where c ∈ B

and v1|B, . . . , vn|B ∈ End(B). Since the only elements of End(B) are the
identity endomorphism and the two constant endomorphisms, it follows that
f |B ∈ PClo(B), as claimed.

It remains to consider the case when |S| = 1. Thus A is an abelian group
(see Proposition 2.5). Let 0 denote the neutral element of A, let b ∈ A
be an element of prime order p, and let B = {0, b}. Let f(x1, . . . , xn) =
a +

∑n
i=1 ui(xi) (a ∈ A0 = A, u1, . . . , un ∈ E0 = E) be an n-ary operation

in C such that f(B, . . . , B) ⊆ B. Since ui(0) = 0 for each i, we get that
a = f(0, . . . , 0) ∈ B and a + ui(b) = f(0, . . . , 0, b, 0, . . . , 0) ∈ B. Hence, for
each i, there are only two possibilities for the function ui|B : B → A, one
being constant 0, and the other one

(1) ui|B(x) = x for all x ∈ B if a = 0, and
(2) ui|B(x) = −x for all x ∈ B if a = b.

If p = 2, then B = (B; +) is a subgroup of A, and these considerations show
that ui is either the constant 0 or the identity endomorphism of B. Hence it
follows that f |B ∈ PClo(B). If p > 2, then for i 6= j, ui|B and uj |B cannot
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simultaneously be nonconstant. Otherwise, if, say, u1|B and u2|B are both
nonconstant, then a + u1(b) + u2(b) = f(b, b, 0, . . . , 0) ∈ B, and conditions
(1)–(2) imply that 2b = 0+b+b ∈ B if a = 0, and −b = b+(−b)+(−b) ∈ B
if a = b, which is impossible for p > 2. Therefore f |B depends on at most
one of its variables. This implies that CB is a subclone of PClo(B) for any
two-element group B = (B;�) on B. �

6. C-minors of Boolean functions

We conclude this paper by bringing together results pertaining to the C-
minor partial orders on the setO[2] of Boolean functions. The two semilattice
operations on [2] will be denoted by ∧ and ∨, and addition modulo 2 by +.
For posets, lexicographic product and disjoint union will be denoted by ×lex

and ·∪, respectively. For the two-element antichain we use the notation 2.

Theorem 6.1. For a clone C on [2], the C-minor partial order (O[2]/≡C ;�C)
is

(i) finite, if C contains the discriminator function

t(x, y, z) =

{
x, if x 6= y,

z, otherwise,
(x, y, z ∈ [2]);

(ii) isomorphic to

(ω;≤)×lex 2, (ω;≤) ·∪(ω;≤) or (ω;≤) ·∪(ω;≤) ·∪(ω;≤) ·∪(ω;≤),

if C is one of the clones 〈∧,∨, 0, 1〉, 〈∧,∨, 0〉, 〈∧,∨, 1〉, or 〈∧,∨〉;
(iii) universal for the class FPI of countable posets whose principal ideals

are finite, if C is a subclone of 〈+, 0, 1〉, 〈∧, 0, 1〉 or 〈∨, 0, 1〉; and
(iv) universal for the class of all countable posets, otherwise.

Proof. Statement (i) is established in [11, Corollary 4.2]. Statement (ii)
follows from the results obtained in [8] and [9]; see also the discussion in [10]
for further explanation. Statement (iii) can be derived from Theorem 3.1 of
the current paper as follows. By Post’s description [15] of all clones on [2],
every subclone C of 〈+, 0, 1〉, 〈∧, 0, 1〉 or 〈∨, 0, 1〉 either satisfies condition
(A) of Theorem 3.1 (with m = 1) or condition (C) of Theorem 3.1. Finally,
statement (iv) is proved in [10, Theorem 15]. �
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