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Abstract. We describe a manageable set of relations that generates the finitary
relational clone of an algebra with a parallelogram term. This result applies to any
algebra with a Maltsev term and to any algebra with a near unanimity term. One
consequence of the main result is that on any finite set and for any finite k there
are only finitely many clones of algebras with a k-ary parallelogram term which
generate residually small varieties.

1. Introduction

A clone on a set A is a collection of finitary operations on A that contains the
projection operations and is closed under composition. If A = 〈A;F0, F1, F2, . . .〉 is
an algebra of some signature, then the clone of A consists of the term operations of
A.

A finitary operation f on a set A is compatible with a finitary relation R ⊆ An

(or R is compatible with f) if R is closed under the coordinatewise application of
f , or equivalently, if R is a subuniverse of 〈A; f〉n. The set of compatible pairs
(f,R) ∈ Op(A) × Rel(A) of operations and relations defines a Galois connection,
⊥ : Op(A) → Rel(A) and ⊥ : Rel(A) → Op(A), between the set of operations and
the set of relations on A. It is shown in [2, 6] that a set C of operations on a finite set
A is a clone if and only if it is closed with respect to this Galois connection, meaning
that C⊥⊥ = C. Thus, each clone C on a finite set A corresponds to a unique Galois
closed set of relations C⊥, and for this reason a Galois closed set of relations has come
to be called a (finitary) relational clone.

To study clones on infinite sets A via this type of Galois connection it is necessary
to make some modifications. The natural approach is to let Op(A) remain the set of
finitary operations on A, but let Rel(A) be the set of all relations of arity ≤ |A| (or
the class of all relations on A). In this approach the Galois closed sets of operations
are again the clones on A. Unfortunately, the corresponding relational clones are
usually unmanageable. Alternatively, one may leave the Galois connection of the
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second paragraph unchanged (with both Op(A) and Rel(A) finitary), in which case
the Galois closed sets of operations are no longer the clones on A, but the “locally
closed” clones on A. Here if C is a clone on A, then f : An → A is a C-local operation
if for each finite subset U ⊆ An there is a gU ∈ C such that f and gU agree on
U . The local closure of C is the clone C of all C-local operations, and C is locally
closed if C = C. In this approach, one studies clones only up to local closure. One
is compensated for the loss of scope by the facts that finitary relational clones are
easier to deal with and that many interesting clones are locally closed (e.g. any clone
on a finite set or any clone of a free algebra).

It is shown in [9, 10, 12] that a set R of finitary relations on a possibly infinite set
A is a finitary relational clone if and only if it contains the equality relation and is
closed under the operations of finite direct product, arbitrary intersection of relations
of the same arity, permutation of coordinates, projection onto a subset of coordinates,
and directed union of relations of the same arity. Given a finitary relational clone
R it is a basic problem of clone theory to describe a manageable set of relations G
which generates R under these operations. (Equivalently G ⊆ R and G⊥⊥ = R.) To
describe such a set it is reasonable to start with G0 = R and then discard unnecessary
relations. Since the k-ary relations in R ordered by inclusion form an algebraic
lattice, each k-ary member of R is the intersection of completely ∩-irreducible k-
ary members of R. Hence if G1 is the collection of all completely ∩-irreducible
members of R, then the fact that relational clones are closed under intersection
implies that G⊥⊥1 = G⊥⊥0 = R. Next, suppose that R ∈ G1 is directly decomposable,
say R = S×T (after possibly permuting coordinates). Using projection onto subsets
of coordinates we get S, T ∈ R. Since direct product distributes over arbitrary
intersection, the fact that R is completely ∩-irreducible implies that both S and
T are completely ∩-irreducible. Thus, each indecomposable direct factor of R is
simultaneously directly indecomposable and completely ∩-irreducible, and belongs
to R. Since R is generated by these factors under direct product, if G2 is defined to
be the set of directly indecomposable, completely ∩-irreducible relations in R, then
G⊥⊥2 = G⊥⊥1 = G⊥⊥0 = R.

These reflections motivate us to call a member of a finitary relational clone critical
if it is directly indecomposable and completely ∩-irreducible. We have just explained
why every finitary relational clone is generated by its critical members. The purpose
of this paper is to give a structure theorem for certain critical compatible relations
of certain algebras. Here if A is an algebra, then a critical relation of A is a critical
relation in the finitary relational clone of compatible relations of A. The assumption
that we make about our algebras is that they generate congruence modular varieties,
and the assumption that we make about the critical relations we investigate is that
they satisfy a parallelogram property (to be defined later). We then define “parallel-
ogram terms” which enforce the parallelogram property for critical relations. Thus,
if a variety V has parallelogram terms, then our results provide valuable insight into
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the structure of the clones of algebras in V . For example, we will show that on any
finite set there are only finitely many clones of algebras that generate residually small
varieties and have k-ary parallelogram terms for a fixed k.

The class of varieties with a parallelogram term is definable by a Maltsev condition.
This Maltsev condition is stronger than the one defining the class of congruence mod-
ular varieties, but weaker than the one defining the class of congruence permutable
varieties and also weaker than the one defining the class of varieties with a near una-
nimity term. In fact, the class of varieties with a (k + 3)-ary parallelogram term is
the same as the class of varieties with a (k + 1)-ary “edge term” or a (2k − 1)-ary
“cube term”, both concepts from [1].

The results obtained here extend our results from [7] about clones of finite groups,
and also extend the results announced in [13] about clones of finite Maltsev algebras.

2. Critical Relations in Congruence Modular Varieties

In Kongruenzklassengeometrien, [14], R. Wille associates to an algebra A a geome-
try whose points are the elements of A and whose lines are the classes of congruences
on A. Wille’s Parallelogrammaxiom is the assertion that whenever p, q, r ∈ A are
related by congruences θ and ψ, as in Figure 1,
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there is a fourth point s ∈ A completing the parallelogram, as in Figure 2.
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If A is an algebra, then we define a parallelogram in Ak to be a subset {p,q, r, s} ⊆
Ak of elements related by congruences η, η′ ∈ Con(Ak) that are disjoint kernels of
projections of Ak onto subsets of coordinates, as in Figure 3.
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If k = {0, . . . , k − 1}, η is the kernel of the projection onto the coordinates in U ⊆
k and η′ is the kernel of the projection onto the coordinates in V ⊆ k, then the
assumption that η and η′ are disjoint means that U ∪ V = k. After permuting the
coordinates of the tuples in Figure 3 so that those in U are followed by those in
V − U , the statement that {p,q, r, s} is a parallelogram means that we can factor
these tuples as p = ac, q = ad, r = bc, and s = bd using tuples whose lengths
satisfy |a| = |b| = |U | and |c| = |d| = |V − U |.
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When we need more information we will call a parallelogram an (m,n)-parallelogram
if |U | = m and |V−U | = n (e.g., if |a| = m and |c| = n in Figure 4). We will say that a
relation R ⊆ Ak satisfies the parallelogram property (or (m,n)-parallelogram property)
if whenever it contains three vertices of a parallelogram ((m,n)-parallelogram), then
it also contains the fourth. This means exactly that whenever η ∈ Con(Ak) is the
kernel of a projection onto m coordinates and η′ is the kernel of the projection onto
the complementary set of coordinates, then the restrictions of η and η′ to R are
permuting equivalence relations.

In this section we will prove a structure theorem for critical relations R which
satisfy the following restrictions:

(1) R is a compatible relation of an algebra A in a congruence modular variety,
(2) R satisfies the (1, k − 1)-parallelogram property.

We start with an elementary characterization of critical relations. If s ∈ Ak, then
an i-approximation of s is a tuple t ∈ Ak such that sj = tj for all j 6= i (i.e., t agrees
with s in all coordinates except possibly the i-th).
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Lemma 2.1. Let R be a finitary relational clone on A and let R ∈ R be k-ary for
some k > 1. R is critical if and only if there is a tuple s ∈ Ak such that

(1) R is maximal in R for the property that s /∈ R, and
(2) R contains i-approximations of s for all i.

Moreover, if R is critical and R∗ is the unique upper cover of R in the ∩-semilattice
of k-ary relations of R, then every tuple s ∈ R∗ −R has properties (1) and (2).

Proof. [⇒, and the last claim of the theorem] Assume that R is critical. Since k > 1,
we have that R 6= Ak and R is completely ∩-irreducible. Thus R has a unique upper
cover R∗ in the ∩-semilattice of k-ary relations of R. Choose any tuple s ∈ R∗ − R.
Already item (1) holds. Item (2) will follow from the next claim.

Claim 2.2. If U ( k is a proper subset of k and prU : Ak → AU is projection onto
the coordinates in U , then prU(R) = prU(R∗).

If one applies a permutation of coordinates to a critical relation one obtains another
critical relation, so there is no harm in assuming that U = ` = {0, . . . , `−1} for some
` < k. Let V = k − U . The relation S := prU(R) × AV contains R and is directly
decomposable, so S must contain R∗. Thus prU(R) ⊆ prU(R∗) ⊆ prU(S) = prU(R),
forcing prU(R) = prU(R∗).

To derive item (2) from Claim 2.2 let U = k − {i}. From s ∈ R∗ we get prU(s) ∈
prU(R∗) = prU(R), so there is a tuple si ∈ R such that prU(s) = prU(si). This si is
an i-approximation of s in R.

[⇐] Now suppose that R ∈ R is a k-ary relation satisfying (1) and (2). Since (by
(1)) every k-ary relation in R properly containing R contains s and R does not, R
is completely ∩-irreducible. If R is directly decomposable, then there is a partition
k = U ∪ V of the index set into two nonempty sets such that, up to a permutation
of coordinates, R = prU(R) × prV (R). Item (2) guarantees the existence of u and
v-approximations su, sv ∈ R of s for any given u ∈ U and v ∈ V . The fact that they
are approximations yields prU(sv) = prU(s) and prV (su) = prV (s), so

s = prU(s)prV (s) = prU(sv)prV (su) ∈ prU(R)× prV (R) = R,

contrary to (1). Hence R is critical. �

Our goal in the remainder of this section is to prove a structure theorem for critical
relations in certain algebras. In this paragraph we outline the approach and fix some
of the assumptions and notation that will be used. R will always denote a k-ary
critical relation of the algebra A, andR will always be assumed to satisfy the (1, k−1)-
parallelogram property. R∗ will denote the unique upper cover of R in the subalgebra
lattice of Ak. We shall reduce the representation R ≤ Ak of R as a subalgebra of
Ak in the following way. First let Ai := pri(R) be the subalgebra of A that is the
projection of R onto its i-th coordinate. This makes R ≤sd

∏
i<k Ai a subdirect

representation. Next, some general terminology: given a subalgebra S of an algebra
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B and a congruence ψ ∈ Con(B), let Sψ denote the union
⋃
s∈S s/ψ of all ψ-classes

that have nonempty intersection with S. Call S saturated with respect to ψ (or ψ-
saturated) if Sψ = S. Returning to our reduction, let Θ =

∏
i<k θi ∈ Con

(∏
i<k Ai

)
be the largest product congruence for which R is Θ-saturated. Define Ai = Ai/θi
and let ν :

∏
i<k Ai →

∏
i<k Ai be the natural map between products induced by the

quotient maps in each factor. Define R := ν(R) to be the image of R under this
map (similarly define R∗ := ν(R∗)). Then R ≤sd

∏
i<k Ai is a subdirect product

representation, and R = ν−1(R) is the full inverse image of R under ν (since R is
Θ-saturated and Θ = ker(ν)). Our ‘structure theorem’ for R really will be a structure
theorem for its reduction, R.

The reduction from R to R can be performed on any compatible relation of any
algebra, but when A belongs to a congruence modular variety and R is a critical
k-ary relation satisfying the (1, k − 1)-parallelogram property we are able to show:

• If k > 1, then the Ai’s are subdirectly irreducible algebras.
• If k > 1, then R is the graph of a joint similarity between the Ai’s.
• If k > 2, then the Ai’s have abelian monoliths.

Before proving our first result we introduce even more notation and terminology.
If S ≤

∏
I Bi is a subalgebra of a product over the index set I, and J ⊆ I, then the

kernel of the projection, prJ , of S onto the coordinates in J will be denoted ηJ (or ηj
if J = {j}). This means that if s = (si)i∈I , t = (ti)i∈I ∈ S, then (s, t) ∈ ηJ if and only
if sj = tj for all j ∈ J . The projection onto the complementary set of coordinates,
I − J , will be denoted η′J (or η′j). The i-th coordinate kernel of S ≤

∏
i<k Bi is the

image under pri : S→ Bi of the congruence η′i ∈ Con(S). That is, the i-th coordinate
kernel of S ≤

∏
i<k Bi is the set of all (a, b) ∈ B2

i such that there exist uj ∈ Bj for
which (u0, . . . , ui−1, a, ui+1, . . . , uk−1) ∈ S and (u0, . . . , ui−1, b, ui+1, . . . , uk−1) ∈ S.

Lemma 2.3. Let R be a k-ary critical relation of A that satisfies the (1, k − 1)-
parallelogram property. The i-th coordinate kernel of R ≤

∏
i<k Ai, which will be

denoted θi, is a congruence on Ai. The product Θ :=
∏

i<k θi is the largest product
congruence on

∏
i<k Ai that saturates R.

Proof. We first prove that θi is a congruence when i = 0. The same argument works
for the other coordinates.

It follows from the fact that θ0 is the image of the congruence η′0 under the surjective
homomorphism pr0 that θ0 is a reflexive, symmetric, compatible relation on A0. To
see that it is also transitive, choose (a, b), (b, c) ∈ θ0. Abbreviating (a, u1, . . . , uk−1)
by au, this means that there exist (k − 1)-tuples u,v such that au, bu ∈ R and
bv, cv ∈ R. Since au, bu, and bv are three vertices of a (1, k − 1)-parallelogram and
lie in R, we must have the fourth vertex av in R. Since av, cv ∈ R we get (a, c) ∈ θ0.

Next we prove that R is Θ-saturated. For this we must show that if a :=
(a0, . . . , ak−1) ∈ R is Θ-related to b := (b0, . . . , bk−1) ∈

∏
i<k Ai, then b ∈ R. We
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prove by induction that bi := (b0, . . . , bi−1, ai, . . . , ak−1) belongs to R for all i satis-
fying 0 ≤ i ≤ k. When i = 0 this is the assertion a ∈ R, which we are assuming, and
when i = k this is the assertion b ∈ R. To prove that (bi ∈ R) ⇒ (bi+1 ∈ R),
permute coordinates to put the i-th coordinate first and write v for the tuple
(b0, . . . , bi−1, ai+1, . . . , ak−1) of coordinates common to bi and bi+1. Thus, we must
show that (aiv ∈ R)⇒ (biv ∈ R) given the fact that (ai, bi) ∈ θi. Since (ai, bi) ∈ θi,
there is a (k − 1)-tuple u such that aiu, biu ∈ R. Since {aiu, aiv, biu, biv} is a
(1, k− 1)-parallelogram and aiu, aiv, biu ∈ R we must have bi+1 = biv ∈ R, which is
what was to be proved.

Finally we show that Θ contains every product congruence that saturates R. Let
Ψ =

∏
i<k ψi ∈ Con

(∏
i<k Ai

)
be any product congruence that saturates R. Choose

(a, b) ∈ ψ0. Since pr0(R) = A0 and a ∈ A0, there is a tuple au ∈ R. Since
(au, bu) ∈

∏
i<k ψi = Ψ and R is Ψ-saturated we have bu ∈ R. But au, bu ∈ R forces

(a, b) ∈ θ0. Thus (a, b) ∈ ψ0 implies (a, b) ∈ θ0 for any (a, b), proving that ψ0 ≤ θ0.
The same argument works in any other coordinate, so Ψ ≤ Θ. �

Lemma 2.4. Let R be a k-ary critical relation of A that satisfies the (1, k − 1)-
parallelogram property. If k > 1, then each Ai := Ai/θi is subdirectly irreducible.

Proof. Since R is a critical relation of A of arity k > 1, there is a smallest k-ary
compatible relation R∗ properly containing R. Since R ⊆

∏
i<k Ai, R is a directly

indecomposable relation, and
∏

i<k Ai is a directly decomposable relation when k > 1,
we have R (

∏
i<k Ai, and consequently R ( R∗ ⊆

∏
i<k Ai.

Choose s = (s0, s1, . . . , sk−1) ∈ R∗ − R and let s0 = (t0, s1, . . . , sk−1) ∈ R be a 0-
approximation to s in R. Both s and s0 belong to R∗, hence to

∏
i<k Ai, according to

the conclusion of the previous paragraph. Since s0 ∈ R, s /∈ R, and R is Θ-saturated
for Θ =

∏
i<k θi, we have (s, s0) /∈

∏
i<k θi. But s and s0 agree in all coordinates

except the 0-th, so (s0, t0) /∈ θ0.
Since (s0, t0) /∈ θ0, there exist congruences on A0 that are strictly larger than

θ0. Let ψ be any such congruence, and define Ψ := ψ × 01 × · · · × 0k−1. Since
Ψ 6≤ Θ, it follows from Lemma 2.3 that the Ψ-saturation RΨ of R is strictly larger
than R, hence contains R∗, hence contains s. This implies that there is a tuple
u = (u0, . . . , uk−1) ∈ R such that (s,u) ∈ Ψ, or equivalently (s0, u0) ∈ ψ and si = ui
for i > 0. Now s0 = (t0, s1, . . . , sk−1) ∈ R and u = (u0, s1, . . . , sk−1) ∈ R, so
(t0, u0) ∈ θ0 by the definition of coordinate kernels. From (s0, u0) ∈ ψ, (u0, t0) ∈ θ0,
and θ0 ≤ ψ we derive that (s0, t0) ∈ ψ. Combining this with the conclusion of the
previous paragraph we have that the pair (s0, t0) is not in θ0 but is in any congruence
ψ that is strictly larger than θ0. It follows that θ0 is a completely ∩-irreducible
congruence of A0 with unique upper cover θ0∨Cg(s0, t0), and hence that A0 = A0/θ0

is SI with least nonzero congruence (θ0 ∨ Cg(s0, t0))/θ0. The same argument works
in any other coordinate. �
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Now we are ready to prove the structure theorem. Additional notation used here
includes that µi is the unique upper cover of θi in Con(Ai) (recall that we proved
in Lemma 2.4 that this upper cover is θi ∨ Cg(si, ti) for specified elements si, ti),
ρi = (θi : µi) is the centralizer of µi modulo θi, µi = µi/θi is the monolith of Ai, and
ρi = ρi/θi is the centralizer of the monolith.

Theorem 2.5. Let R be a k-ary critical relation of A that satisfies the (1, k − 1)-
parallelogram property, and let R ≤

∏
i<k Ai be its reduced representation. If k > 1

and A lies in a congruence modular variety, then the following hold.

(1) R ≤
∏

i<k Ai is a representation of R as a subdirect product of SI algebras.

(2) R ≤
∏

i<k Ai has trivial coordinate kernels.

(3) The projection of R onto any k − 1 coordinates is 1-1.
(4) R is completely ∩-irreducible in the subalgebra lattice of

∏
i<k Ai, and its

unique upper cover is R∗.
(5) If k > 2, then the i-th coordinate kernel of R∗ ≤

∏
i<k Ai is the congruence

µi.
(6) R is the graph of a joint similarity between the Ai’s.
(7) If k > 2, then each SI Ai has abelian monolith.
(8) The image of the composite map

R ↪→
∏
i<k

Ai � (Am/ρm)× (An/ρn)

is the graph of an isomorphism for any m,n < k.

Proof. [(1)] This is a consequence of Lemma 2.4 and the definition of R.
[(2)] Let θ0 be the 0-th coordinate kernel of R ≤

∏
i<k Ai. If (a, b) ∈ θ0, then

there are elements ui ∈ Ai for i > 0 such that au := (a, u1, . . . , uk−1) ∈ R and
bu := (b, u1, . . . , uk−1) ∈ R. We want to choose preimages in R for the tuples au and
bu with respect to the homomorphism ν :

∏
i<k Ai →

∏
i<k Ai. Since R is saturated

with respect to ker(ν) =
∏

i<k θi, we can choose preimages au, bu ∈ R which are equal
in all coordinates except the first. Thus a and b are related by the 0-th coordinate
kernel of R ≤

∏
i<k Ai, forcing a = b. Since (a, b) ∈ θ0 was arbitrary, θ0 is trivial.

The same argument works for the other coordinate kernels.
[(3)] This is a restatement of item (2).
[(4)] Every subalgebra S ≤

∏
i<k Ai that properly contains R is the image under

ν :
∏

i<k Ai →
∏

i<k Ai of a ker(ν)-saturated subalgebra of
∏

i<k Ai that properly
contains R. All of these contain R∗, so their intersection I also contains R∗. Since
R∗ ⊆ I and I is the smallest ker(ν)-saturated subalgebra of

∏
i<k Ai properly con-

taining R, it follows that R∗ = ν(R∗) = ν(I) is the smallest subalgebra of
∏

i<k Ai

properly containing ν(R) = R.
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[(6)] First we explain what the statement of (6) means. Similarity is an equivalence
relation defined on the class of SI algebras in a congruence modular variety. The
definition may be found in 10.7 of [5], but we will use the characterization given in
Theorem 10.8 of [5] instead: If B,C ∈ V are SI, a graph of a similarity from B to C
is an algebra G ∈ V for which there are congruences β, γ, δ, ε ∈ Con(G) such that
G/β ∼= B, G/γ ∼= C and there is a projectivity β∗/β ↘ ε/δ ↗ γ∗/γ in Con(G),
where β∗ and γ∗ are the unique upper covers of β and γ respectively. B and C are
similar if there is a graph of a similarity between them.

For a family of SI’s, {Bi | i ∈ I} ⊆ VSI , we define a graph of a joint similarity
between them to be a single algebra G ∈ V for which there are congruences βi, δij,
εij ∈ Con(G) such that G/βi ∼= Bi and β∗i /βi ↘ εij/δij ↗ β∗j /βj for all i 6= j.

The claim of (6) is that G := R is a graph of a joint similarity between the
SI’s Bi := Ai, i < k. To define the congruences that witness this, first choose
s ∈ R∗ − R, then select i-approximations si ∈ R for all i, and finally let si = ν(si)
where ν :

∏
i<k Ai →

∏
i<k Ai is the natural map. The congruences that witness

joint similarity are βi := ηi, δij := 0, and εij := Cg(si, sj) for all i 6= j.
It suffices to show that η∗i /ηi ↘ Cg(si, sj)/0 for any i 6= j. We argue only the

case where i = 0, j = 1, as all cases are the same. Here, if s = (s0, s1, . . . , sk−1),
s0 = (t0, s1, . . . , sk−1) and s1 = (s0, t1, s2, . . . , sk−1), then we proved in Lemma 2.4 that
the unique upper cover of θ0 is µ0 = θ0 ∨Cg(s0, t0). Applying ν to these congruences
and elements we conclude that the unique upper cover η∗0 (= µ0 × 1 × · · · × 1) of
the first projection kernel η0 equals η0 ∨ Cg(s1, s0), i.e., η∗0 = η0 ∨ Cg(s1, s0). So to
prove that η∗0/η0 ↘ Cg(s0, s1)/0 it remains to show that η0∧Cg(s0, s1) = 0. For this,
observe that Cg(s0, s1) ≤ η′{0,1}, since s0 and s1 agree in all coordinates but the first

two, so η0 ∧ Cg(s0, s1) ≤ η0 ∧ η′{0,1} = η′1. But η′1 is the kernel of a projection of R

onto (k−1) coordinates, so by item (3) we get that η′1 = 0. This completes the proof
of (6).

[(7)] Suppose that G is a graph of a similarity between SI’s B and C and that
β, γ, δ, ε ∈ Con(G) are such that G/β ∼= B, G/γ ∼= C, and β∗/β ↘ ε/δ ↗ γ∗/γ in
Con(G). If the monolith of B is nonabelian, then so are the perspective quotients
β∗/β, ε/δ and γ∗/γ; moreover, by perspectivity, the centralizers (β : β∗), (δ : ε),
(γ : γ∗) are equal. But if β is completely meet irreducible and β∗/β is nonabelian,
then (β : β∗) = β, and similarly (γ : γ∗) = γ. Thus, when one of B and C has
nonabelian monolith, then both do and β = (β : β∗) = (γ : γ∗) = γ.

We showed in (6) that R is the graph of a joint similarity between the Ai’s, with
witnessing congruences βi := ηi, δij := 0 and εij := Cg(si, sj). If one of the Ai’s
has nonabelian monolith, then all βi’s ( = ηi’s) must be equal, and must be equal to
their intersection, which is zero. Thus, the surjective map pri : R → Ai has kernel
ηi = 0 for all i, implying that these maps are isomorphisms. When this happens,
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R =
⋂
i<j Rij where

Rij :=
{

(a0, . . . , ai−1, pri(r), ai+1, . . . , aj−1, prj(r), aj+1, . . . , ak−1) ∈
∏
i<k

Ai

∣∣∣ r ∈ R}.
But, by (4), R is completely ∩-irreducible in the subalgebra lattice of

∏
i<k Ai. Thus,

R =
⋂
i<j Rij implies that R = Rij for some i and j. But now there can be no

coordinates other than i and j, since prh : Rij → Ah is not 1-1 unless h = i or h = j
and there are no other coordinates. Thus k = {0, . . . , k−1} = {i, j}, contrary to our
assumption that k > 2.

[(5)] We prove that the 0-th coordinate kernel of R∗ ≤
∏

i<k Ai is µ0. The same
argument works for the other coordinates.

The 0-th coordinate kernel consists of all pairs (a, b) ∈ A0 × A0 such that there
are elements ui ∈ Ai for i > 0 such that au := (a, u1, . . . , uk−1) ∈ R∗ and bu :=
(b, u1, . . . , uk−1) ∈ R∗. Choose preimages au, bv ∈ R∗ with respect to the map
ν :
∏

i<k Ai →
∏

i<k Ai for these tuples. Since µ0 > θ0, R is not saturated with
respect to the product congruence Ψ := µ0×0×· · ·×0, so the Ψ-saturation RΨ of R
contains R∗, hence contains au and bv. This means that there are tuples a′u, b′v ∈ R
such that (a, a′), (b, b′) ∈ µ0. Since R is Θ-saturated for Θ :=

∏
i<k θi, and (ui, vi) ∈ θi

for all i > 0, we get from a′u ∈ R that a′v ∈ R. Now the fact that a′v, b′v ∈ R
implies that (a′, b′) ∈ θ0 ≤ µ0. Therefore (a, a′), (a′, b′), (b′, b) ∈ µ0, showing that
(a, b) ∈ µ0. Applying ν to this we get that (a, b) ∈ µ0. Hence µ0 contains the 0-th
coordinate kernel of R∗ ≤

∏
i<k Ai.

The 0-th coordinate kernel of R∗ ≤
∏

i<k Ai is a tolerance contained in the min-

imal abelian congruence µ0 of A0. By modular commutator theory, any tolerance
contained in an abelian congruence is a congruence, so the 0-th coordinate kernel
is either 0 or it is µ0. The 0-th coordinate kernel cannot be 0, since it contains
nontrivial pairs of the form (s0/θ0, t0/θ0) where s = (s0, s1, . . . , sk−1) ∈ R∗ − R and
(t0, s1, . . . , sk−1) ∈ R is a 0-approximation to s. Thus the 0-th coordinate kernel of
R∗ ≤

∏
i<k Ai is µ0, and (5) is proved.

[(8)] Since η∗i /ηi ↘ εij/0↗ η∗j/ηj in Con(R) for all i 6= j, the centralizers (ηi : η∗i )
are equal for all i. But (ηi : η∗i ) is the kernel of the composite map

ϕi : R
pri−→ Ai

nat−→ Ai/ρi.

The maps ϕm and ϕn are the coordinate maps of the composite map

(2.1) R ↪→
∏
i<k

Ai � (Am/ρm)× (An/ρn).

Since ϕm and ϕn are surjective and have the same kernel, the image of the composite
map in (2.1) is the graph of an isomorphism. �
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3. Parallelogram Terms

The two main results in this section are that k-parallelogram terms enforce the
parallelogram property for critical relations (Theorem 3.6) and that a variety has
k-parallelogram terms if and only if it has a k-cube term (Theorem 3.5). The first of
these is central to this paper, while the second is an important side observation. We
prove the second of these first.

Recall that a k-ary near unanimity term (or k-nu term) for a variety V is a term
U such that:

(3.1) V |= U



x y y · · · y y
y x y y y
y y x y y
...

. . .
...

y y y x y
y y y · · · y x

 =



y
y
y
...
y
y

 .1

Recall also that a Maltsev term for a variety V is a term M such that:

(3.2) V |= M

(
x x y
y x x

)
=

(
y
y

)
.

Now we describe some terms that generalize both of those in (3.1) and (3.2).
Let k = {0, 1, . . . , k − 1}. For any subset U ⊆ k let χU : k → {0, 1} denote

its characteristic function. Let χU : k → {x, y} equal the composite β ◦ χU where
β : {0, 1} → {x, y} is the bijection 0 7→ y and 1 7→ x. (Thus χU is also a characteristic
function of U , but with values in {x, y} instead of {0, 1}.)

Definition 3.1. Let V be a variety, and let F = FV(x, y) be the free V-algebra over

{x, y}. Let k > 1. A k-cube term for V is a V-term C for which CFk(
(χU)U 6=∅

)
= χ∅.

In words, CFk
applied to the characteristic functions of nonempty subsets of k

produces the characteristic function of the empty set. We do not specify the order of
the characteristic functions, so we consider any term obtained from C by permutation
of variables to be a k-cube term also.

For example, a 2-cube term is a term C such that

(3.3) CF2 (
χ{0}, χ{0,1}, χ{1}

)
= χ∅.

1Here and later an equation of this type is to be read along rows, and is intended to be a compact
representation of a sequence of identities. In this case, the individual identities satisfied by V are
U(x, y, y, . . . , y, y) = y, U(y, x, y, . . . , y, y) = y, U(y, y, x, . . . , y, y) = y, &c.



12 KEITH A. KEARNES AND ÁGNES SZENDREI

If we write characteristic functions as column vectors, (χU(0), χU(1), . . . , χU(k − 1))T ,
then (3.3) assumes a more familiar form (compare with (3.2)):

(3.4) CF2

(
x x y
y x x

)
=

(
y
y

)
.

The fact that the rows of (3.4) express equations relating the free generators of
FV(x, y) means that these equations hold as identities throughout V . Hence, a 2-
cube term for V is nothing other than a Maltsev term. On the other hand, a 3-cube
term is something new:

CF3 (
χ{0}, χ{1}, χ{2}, χ{0,1}, χ{0,2}, χ{1,2}, χ{0,1,2}

)
= χ∅,

or equivalently

(3.5) V |= C

x y y x x y x
y x y x y x x
y y x y x x x

 =

yy
y

 .

If the term C in (3.5) depends only on its first three variables in V , then it is a 3-nu
term for V . More generally, a k-nu term is nothing other than a k-cube term that
depends only on the variables associated to characteristic functions of the singletons.

Definition 3.2. Let k > 1. A k-edge term for a variety V is a term E for which

EFk (
χ{0}, χ{0,1}, χ{1}, χ{2}, . . . , χ{k−1}

)
= χ∅,

or equivalently

(3.6) V |= E


x x y y · · · y
y x x y y
y y y x y
...

. . .
...

y y y y · · · x

 =


y
y
y
y
y

 .

In words, a k-edge term is a term which when applied to the characteristic functions
of all of the singletons, {i}, and exactly one doubleton (or “edge”), {0, 1}, produces
the characteristic function of the empty set. As such, it is simply a k-cube term that
depends only on the variables associated to singleton sets and the doubleton {0, 1}.
Here we do specify the order of the variables, because later we will need to refer to
the “edge term identities” without ambiguity. The order we have chosen makes it
clear that a Maltsev term is nothing other than a 2-edge term, and that a k-nu term
is nothing other than a k-edge term that does not depend on its second variable.

Both k-cube terms and k-edge terms were introduced in [1], where the following
results were proved.

Theorem 3.3. Let V be a variety and k > 1 be an integer.
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(1) V has a k-cube term if and only if it has a k-edge term.
(2) If V has a k-cube term, then it is congruence modular.

Definition 3.4. Let m and n be positive integers and let k = m + n. An (m,n)-
parallelogram term (or k-parallelogram term) for V is a term P = Pm,n for which

(3.7) V |= P



x x y
x x y

...
x x y
y x x

...
y x x
y x x

z y · · · y y · · · y y
y z y y y y
...

. . .
...

y y z y y y
y y y z y y
...

. . .
...

y y y y z y
y y · · · y y · · · y z


=



y
y
...
y
y
...
y
y


.

Here P is (k+ 3)-ary, the rightmost block of variables is a k× k array, the upper left
block is m× 3 and the lower left block is n× 3.

In this definition, if m+n = k = m′+n′ for positive pairs (m,n) and (m′, n′), then
Pm,n and Pm′,n′ satisfy different identities. But we will see next that a variety has a
term satisfying the identities of Pm,n if and only if it has a term satisfying the identities
of Pm′,n′ , which is why we are justified in referring to either as a k-parallelogram term
(with no reference to (m,n)).

Theorem 3.5. The following are equivalent for a variety V and an integer k > 1.

(i) V has (m,n)-parallelogram terms for all pairs (m,n) of positive integers sat-
isfying m+ n ≥ k.

(ii) V has an (m,n)-parallelogram term for some pair (m,n) of positive integers
satisfying m+ n = k.

(iii) V has a k-cube term.
(iv) V has a k-edge term.

Proof. [(i)⇒(ii)] This is a tautology.
[(ii)⇒(iii)] Let P be an (m,n)-parallelogram term for V . Substituting x for each z

in the identities (3.7) shows that

P
(
χ{0,...,m−1}, χ{0,...,k−1}, χ{m,...,k−1}, χ{0}, χ{1}, . . . , χ{k−1}

)
= χ∅.

Since m and n are positive, each input to P is the characteristic function of a
nonempty set. Therefore P itself is a k-cube term (depending on at most k + 3
of its variables).

[(iii)⇒(iv)] This is from Theorem 3.3 (1).
[(iv)⇒(i)] Assume that V is any variety with a k-edge term E, and that F =

FV(x, y, z) is the free V-algebra over {x, y, z}. We first show that it is possible to
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construct a (1, k − 1)-parallelogram term for V from E. The (1, k − 1)-parallelogram
identities (3.7) express the fact that the column (y, y, . . . , y)T lies in the subalgebra
of Fk generated by the columns that appear in the array of inputs to P in (3.7), i.e.,

(3.8)


y
y
...
y
y

 ∈
〈

x
y
...
y
y

 ,


x
x
...
x
x

 ,


y
x
...
x
x

 ,


z
y
...
y
y

 ,


y
z
...
y
y

 , . . . ,


y
y
...
z
y

 ,


y
y
...
y
z


〉
.

To see that (3.8) holds, use the edge identities (3.6) to verify that

(3.9) E



x y y y y · · · y
y z z y y y
y y y z y y
y y y y z y
...

. . .
...

y y y y y · · · z

 =



a
y
y
y
...
y


where a = E(x, y, y, y, . . . , y), and

(3.10) E



x y y y y · · · y
x x z z z z
x x y y y y
x x y y y y
...

. . .
...

x x y y y · · · y

 =



a
z
y
y
...
y


where again a = E(x, y, y, y, . . . , y). Finally, substituting the output tuples from (3.9)
and (3.10) into the first two positions of E and subalgebra generators from (3.8) into
the other positions we obtain

(3.11) E



a a y y y · · · y
y z z y y y
y y y z y y
y y y y z y
...

. . .
...

y y y y y · · · z

 =



y
y
y
y
...
y

 ,

showing that (3.8) holds. Working through the calculation we find that we have
shown that if P(x, y, z, w0, . . . , wk−1) is defined to be the term

E(E(x,w1, w1, w2, . . . , wk−1),E(y, z, w1, w1, . . . , w1), w1, w2, . . . , wk−1),

then P is a (1, k − 1)-parallelogram term.
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Next we prove that if V is any variety with an (m,n)-parallelogram term P for
some positive m and n, then it also has an (m + 1, n − 1)-parallelogram term Q,
provided n− 1 is positive. The identities that we assume to hold for P are:

(3.12) V |= P



x x y
...

x x y
y x x
y x x

...
y x x

z · · · y y y · · · y
...

. . .
...

y z y y y
y y z y y
y y y z y
...

. . .
...

y · · · y y y · · · z


=



y
...
y
y
y
...
y


,

where we have divided the array into m rows, followed by one row, followed by n− 1
rows. We need to construct Q so that it satisfies the following identities:

(3.13) V |= Q



x x y
...

x x y
x x y
y x x

...
y x x

z · · · y y y · · · y
...

. . .
...

y z y y y
y y z y y
y y y z y
...

. . .
...

y · · · y y y · · · z


=



y
...
y
y
y
...
y


,

where the only difference from (3.12) occurs at the beginning of the (m+ 1)-rst row.
Much like the earlier part of the proof, showing the existence of some Q satisfying

these identities is equivalent to showing that the column (y, y, . . . , y)T in Fk can be
generated via P from the k+3 columns of the array of inputs to Q in (3.13). To start
we have:

(3.14) P



x x y
...

x x y
x x y
y x x

...
y x x

z · · · y y y · · · y
...

. . .
...

y z y y y
y y z y y
y y y z y
...

. . .
...

y · · · y y y · · · z


=



y
...
y
a
y
...
y


,

where a = P(x, x, y, y, . . . , z, . . . , y) with the lone z in the (m+ 4)-th position. Then
we have
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(3.15) P



x x y
...

x x y
x x y
x x x

...
x x x

y · · · y y y · · · y
...

. . .
...

y y y y y
y y z y y
x x y x x
...

. . .
...

x · · · x y x · · · x


=



y
...
y
a
x
...
x


,

where a = P(x, x, y, y, . . . , z, . . . , y) is the same as before. In (3.15), all entries in
the last n − 1 rows are x except those in the (m + 4)-th column, which are y. All
entries in higher rows are the same as those in (3.14) except those in the upper right
m× (m+ n) block, which are all y. The identities used to establish (3.15) are some
consequences of the (m,n)-parallelogram identities obtained by identifying variables.

Using the output tuples from (3.14) and (3.15) together with other columns from
the array of inputs from (3.13) we find that

(3.16) P



y y y
...

y y y
a a y
y x x

...
y x x

y y · · · z y · · · y
... . . .

...
y z y y y
z y y y y
y y y z y
...

. . .
...

y y · · · y y · · · z


=



y
...
y
y
y
...
y


.

Working through the calculation, we have shown that if Q(x, y, z, w0, . . . , wk−1) is
defined to be the term

P(P(x, y, z, w0, . . . , wk−1),P(y, y, z, . . . , z, wm, z, . . . , z), z, wm, . . . , w0, wm+1, . . . , wk−1),

then Q is an (m+ 1, n− 1)-parallelogram term.
Our arguments show that if V has a k-edge term, then it has (m,n)-parallelogram

terms for all positive pairs (m,n) such that m+ n = k. But any k-edge term is also
a k′-edge term that does not depend on its last k′ − k variables whenever k′ ≥ k.
Thus, if V has a k-edge term for some k > 1, then it has (m,n)-parallelogram terms
for all positive pairs (m,n) for which m+ n = k′ ≥ k. �

The next theorem indicates one way in which k-parallelogram terms generalize
Maltsev terms and k-nu terms.

Theorem 3.6. Let V be a variety and k > 1 be an integer.

(1) V has a k-nu term if and only if no algebra A ∈ V has a critical relation of
arity at least k.
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(2) V has a Maltsev term if and only if for every A ∈ V it is the case that every
critical relation of A satisfies the parallelogram property.

(3) V has a k-parallelogram term if and only if for every A ∈ V it is the case
that every critical relation of A of arity at least k satisfies the parallelogram
property.

Proof. [(1),⇒] Let U be a k-nu term for V . Choose any algebra A ∈ V , any compat-
ible relation R of A of arity ` ≥ k, and any tuple a ∈ A`. Suppose that R contains
i-approximations ai for all i = 0, . . . , k − 1. Then since U is a k-nu term and R
is compatible with U we have a = U(a0, . . . , ak−1) ∈ R. In words, if R contains i-
approximations to a for at least k distinct i’s, then R must contain a. It follows from
Lemma 2.1 that R is not critical. Since A and R were arbitrary, V has no algebra
with a critical relation of arity at least k.

[(1), ⇐] We prove the contrapositive. Let F = FV(x, y). If V does not have a k-nu
term, then the subalgebra S ≤ Fk that is generated by the characteristic functions of
the singletons, χ{i}, does not contain the characteristic function of the empty set, χ∅.

Extend S to a subalgebra R ≤ Fk that is maximal for not containing χ∅. Then R is
a compatible k-ary relation on F ∈ V . Since R contains the i-approximations χ{i} to
χ∅ and is maximal as a k-ary compatible relation on F for the property χ∅ /∈ R, it
follows from Lemma 2.1 that R is a critical k-ary relation.

[(2), ⇒] Suppose that M is a Maltsev term for V , that A ∈ V , and that R is any
compatible relation of A. Permuting coordinates if necessary, a typical parallelogram
has vertices ac, ad,bc, and bd. If the first three are in R, then the fourth is also in
R since:

R 3 M(ad, ac,bc) = M(a, a,b)M(d, c, c) = bd.

[(2), ⇐] As in (1), we prove the contrapositive. Let F = FV(x, y). If V does not
have a Maltsev term, then the subalgebra S ≤ F2 that is generated by xy, xx and
yx does not contain yy. Extend S to a subalgebra R ≤ F2 that is maximal for
yy /∈ R. Since R contains the 0- and 1-approximations xy and yx to yy, it follows
from Lemma 2.1 that R is a critical binary relation. This relation fails the paral-
lelogram property, since it contains only the first three vertices of the parallelogram
{xx, xy, yx, yy}.

[(3), ⇒] Suppose that V has a k-parallelogram term, that A ∈ V , and that R
is any critical relation of A of arity ` ≥ k. Permuting coordinates if necessary, a
typical parallelogram in A` has vertices ac, ad,bc, and bd where |a| = m = |b|,
|c| = n = |d| and m and n are positive integers satisfying m + n = `. Assume, for
the sake of obtaining a contradiction, that Π := {ac, ad,bc,bd} is a parallelogram
with ac, ad,bc ∈ R while bd /∈ R.

Since R (6= A`) is completely ∩-irreducible, it has a unique upper cover R∗ in the
∩-semilattice of `-ary compatible relations of A. Our first objective will be to deduce
from the existence of Π that there is a parallelogram Π′ with three vertices in R and
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the fourth in R∗ − R. Choose any s ∈ R∗ − R. Since bd /∈ R, the subalgebra of
A` generated by R ∪ {bd} contains the upper cover R∗, hence contains the tuple s.
Therefore there exist tuples e0, . . . , eh−1 ∈ R and an (h + 1)-ary term t such that
s = t(bd, e0, . . . , eh−1) in A`. If we apply the polynomial f(x) := t(x, e0, . . . , eh−1)
to the four vertices of the parallelogram

s s
s s

�
�
�� �

�
��

ac ad

bc bd

η

η′

η

η′

Figure 5. An (m,n)-parallelogram

we get

s s
s s

�
�
�� �

�
��

q := f(ac) f(ad) =: p

r := f(bc) f(bd) = s ∈ R∗ −R

η

η′

η

η′

Figure 6. Another (m,n)-parallelogram

Because of the way p,q, r and s are related by η and η′, the set Π′ := {p,q, r, s} is
also an (m,n)-parallelogram. Because of the way p,q, and r were generated via t
from ac, ad,bc, ei ∈ R we have p,q, r ∈ R, while we have arranged that s ∈ R∗−R.
Thus, we have achieved our first objective.

From Lemma 2.1, the fact that s ∈ R∗−R implies that R contains i-approximations
to s for all i; choose some and denote them by s0, . . . , s`−1. Since V has a k-
parallelogram term, it also has an (m,n)-parallelogram term P by Theorem 3.5.
Now a direct application of the parallelogram identities shows that

P(p,q, r, s0, . . . , s`−1) = s.

Since the inputs to P are in R and the output is not, this contradicts the compatibility
of R with P.

[(3), ⇐] Let F = FV(x, y, z). Let xx, xy, yx and yy denote the tuples in F k whose
0-th coordinates are x, x, y and y respectively, and whose i-th coordinates are x, y, x
and y respectively for all larger i. Let yi denote the tuple in F k whose i-th coordinate
is z and whose other coordinates are y. If V does not have a (1, k− 1)-parallelogram
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term, then the subalgebra S ≤ Fk that is generated by {xy, xx, yx,y0, . . . ,yk−1}
does not contain yy. Extend S to a subalgebra R ≤ Fk that is maximal for yy /∈ R.
Since R contains the i-approximations yi to yy it follows from Lemma 2.1 that R
is a critical relation. R has arity k and it fails the parallelogram property, since
it contains only the first three vertices of the parallelogram {xx, xy, yx, yy}. This
completes the proof of (3). �

We have just proved that, when one quantifies over all algebras in a variety, certain
properties of clones (e.g., the existence of a parallelogram term) are equivalent to
certain properties of local clones (e.g., critical relations of sufficiently large arity
satisfy the parallelogram property). One cannot expect such a connection between
clones and local clones of single algebras. In fact, all parts of the previous theorem
are false for single algebras. For example, if A is an infinite algebra with universe A
whose basic operations are all operations on A with finite range, then A is locally
primal. Hence the only critical relations of A are the unary relation A and the binary
equality relation. These relations are bounded in arity and satisfy the parallelogram
property, yet A has no nu term, no Maltsev term, and no parallelogram term, since
the only term operations of A with infinite range are the projection operations. But
if A is a finite algebra, then there is something that can be said.

Theorem 3.7. Let A be a finite algebra.

(1) A has a k-nu term for some k if and only if there is a bound on the arity of
the critical relations of A.

(2) A has a Maltsev term if and only if every critical relation of A satisfies the
parallelogram property.

(3) A has a k-parallelogram term for some k if and only if every critical relation
of A of sufficiently large arity satisfies the parallelogram property.

Proof. The forward direction of each part of this theorem follows from the forward
direction of the corresponding part of Theorem 3.6. The backward directions also
follow from the proof of Theorem 3.6 with the addition of one new idea. It will be
enough to illustrate the argument for item (3) only.

[(3),⇐] We prove the contrapositive, so assume that A has no parallelogram term.
Let F ≤ Am be a 3-generated free algebra in the variety generated by A. Then F
also has no parallelogram term, so the proof of Theorem 3.6 shows that for any k the
subalgebra S of Fk generated by {xy, xx, yx,y0, . . . ,yk−1} does not contain yy. Here
we will represent elements of F ⊆ Am as column vectors of length m with entries
from A, and will represent k-tuples ab ∈ F k as the corresponding m × k matrices
of elements of A. The columns associated to the free generators x, y, z ∈ F will
be (a0, . . . , am−1)T , (b0, . . . , bm−1)T , and (c0, . . . , cm−1)T respectively, so the matrices
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associated with generators xy and y0 of S are

xy =

 a0 b0 b0
...

... · · · ...
am−1 bm−1 bm−1

 and y0 =

 c0 b0 b0
...

... · · · ...
cm−1 bm−1 bm−1

 ,
while the matrices for the other generators follow the same pattern.

In the proof of Theorem 3.6 we extended S to a subalgebra R ≤ Fk maximal for
the property yy /∈ R, and found that R was a k-ary critical relation of F that does
not satisfy the parallelogram property. We cannot do that here, since there is no
guarantee that such a relation will be a critical relation of A. What fails to be true
now is that, although S contains i-approximations to yy for all i when considered
as a subalgebra of Fk, when considered as a subalgebra of Am×k it need not contain
“(i, j)-approximations” to the matrix

(3.17) yy =

 b0 b0 b0
...

... · · · ...
bm−1 bm−1 bm−1


for all i, j. (An (i, j)-approximation of yy is a matrix in Am×k that agrees with the
matrix in (3.17) in all coordinates except the (i, j)-th.)

So choose a subset of coordinates U ⊆ m × k = {0, . . . ,m − 1} × {0, . . . , k − 1}
satisfying the following properties:

(i) U contains every pair (0, j), j < k,
(ii) prU(yy) /∈ prU(S), and

(iii) If V ( U , then prV (yy) ∈ prV (S).

To see that such a set U exists, notice that U := m × k satisfies items (i) and (ii),
since yy /∈ S. Any set minimal with respect to satisfying (i) and (ii) must also satisfy
(iii) except possibly the set U = {0} × k. But this set does in fact satisfy (iii), since
prV (yy) = prV (yi) ∈ prV (S) if V ⊆ ({0} × k) − {(0, i)}. Thus, U can be chosen to
be any set minimal with respect to satisfying (i) and (ii).

If S ′ := prU(S) where U satisfies (i), (ii) and (iii) from the previous paragraph, then
S ′ contains three vertices prU(xy), prU(xx), and prU(yx) of a parallelogram, but not
the fourth, prU(yy), according to property (ii). By property (iii), S ′ contains (i, j)-
approximations to prU(yy) for all (i, j) ∈ U . Therefore, if R ≤ AU is an extension of
S′ that is maximal with respect to not containing prU(yy), then R is a critical relation
of A and does not satisfy the parallelogram property. By property (i) above, the arity
of R is somewhere in the interval [k,mk]. Thus, we have shown that if A does not
have a k-parallelogram term and the 3-generated free algebra in V(A) is embeddable
in Am, then A has a critical relation that does not satisfy the parallelogram property
whose arity is in the interval [k,mk]. If A has no parallelogram term at all, then it
has critical relations of arbitrarily large arity that fail the parallelogram property. �
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4. Applications

The following result is an immediate consequence of Theorems 3.3 (2), 3.5, 3.6 (3)
and Theorem 2.5.

Theorem 4.1. Let V be a variety with a k-parallelogram term. If A ∈ V and R is a
critical relation of A of arity ` ≥ max(k, 3), then the reduction R has the structure
described in Theorem 2.5.

(Only items (5) and (7) of Theorem 2.5 require the arity of R to be at least 3.)
We wish to apply Theorem 4.1 to derive results about the clones of algebras with

parallelogram terms. The first important result is the following, which is also proved
in [1, 8] using k-edge terms in place of k-parallelogram terms.

Corollary 4.2. If V is a congruence distributive variety with a k-parallelogram term,
then V has a max(k, 3)-nu term.

Proof. According to Theorem 4.1, any critical relation of arity at least max(k, 3)
on any A ∈ V involves SI sections of A with abelian monoliths. Since no SI in a
congruence distributive variety has an abelian monolith, it must be that no A ∈ V
has a critical relation of arity at least max(k, 3). By Theorem 3.6 (1), V has a
max(k, 3)-nu term. �

Before stating the second application of Theorem 4.1, recall from the introduction
that on a finite set A a set C of operations is a clone if and only if C is Galois closed,
meaning that C⊥⊥ = C. Moreover, each clone C corresponds to a unique Galois closed
set of relations, or relational clone, namely R := C⊥, and R determines C by C = R⊥.
A subset S of a relational clone R is said to generate R if S⊥⊥ = R, or equivalently,
if S⊥ = R⊥ (that is, if S and R determine the same clone).

The rest of this paper will be devoted to proving the following result.

Theorem 4.3. If A is a finite algebra with a k-parallelogram term (k > 1) such
that A generates a residually small variety, then the relational clone of compatible
relations of A is generated by relations of arity ≤ c where

c = max(k, c0) and c0 = |A||A|+1
(
B(|A|+ 1)− 1

)
.

Here B(n) denotes the n-th Bell number. Notice that the factor B(|A|+ 1)− 1 in
c0 is the number of equivalence relations on all nonempty subsets of A; this follows
from the fact that the function assigning to each equivalence relation on {0, 1, . . . , n}
the equivalence relation obtained by omitting the equivalence class of n establishes a
one-to-one correspondence between the equivalence relations on an (n + 1)-element
set and the equivalence relations on all subsets of an n-element set.

Corollary 4.4. For a fixed integer k > 1 and a fixed finite set A there are only
finitely many clones of algebras on A that have a k-parallelogram term and generate
a residually small variety.



22 KEITH A. KEARNES AND ÁGNES SZENDREI

Proof. Let C be a clone on A such that the algebra A := 〈A; C〉 has a k-parallelogram
term and generates a residually small variety. LetR := C⊥ denote the relational clone
of A, that is, R is the set of all (finitary) compatible relations of A, and let R(≤c)

consist of all relations of arity ≤ c in R. Theorem 4.3 implies that (R(≤c))⊥⊥ = R,
that is, (R(≤c))⊥ = C. Since there are only finitely many relations of arity ≤ c on
A and c is independent of the choice of the clone C, this implies that there are only
finitely many choices for C. �

For the proof of Theorem 4.3 we will need the following well-known theorem on
generating sets of relational clones, see [2, 6, 11].

Theorem 4.5. Let C be a clone and let R := C⊥ be the corresponding relational
clone on a finite set A. The following conditions on a subset S of R are equivalent:

(i) S⊥ = C;
(ii) S⊥⊥ = R;

(iii) every relation in R can be obtained from relations in S and from the equal-
ity relation on A by the relational clone operations of finite direct product,
intersection of relations of the same arity, permutation of coordinates, and
projection onto a subset of coordinates;

(iv) every relation in R is definable in the relational structure 〈A;S〉 by a positive
primitive formula.

We argued in the introduction that every member of R can be obtained from
critical relations in R via the operations of finite direct product and intersection of
relations of the same arity. Hence we get the following.

Corollary 4.6. (i)–(iv) in Theorem 4.5 are also equivalent to the condition that

(v) every critical relation in R is definable in the relational structure 〈A;S〉 by a
positive primitive formula.

We will prove Theorem 4.3 by combining criterion (v) with our understanding of the
structure of critical relations of algebras with k-parallelogram terms (Theorem 4.1).
However, our structure theorem for critical relations (Theorem 2.5) describes the
structure of the reduction R of a critical relation R rather than R itself. Therefore,
before proving Theorem 4.3, we want to adapt the use of positive primitive definitions
to this situation.

For a cardinal λ a multisorted relational signature S with λ sorts is a set of (finitary)
relation symbols such that to each relation symbol u in S there is an associated arity
nu (≥ 1) and a function σu : nu → λ specifying for each i < nu the sort σu(i) (< λ)
of the i-th argument of u. To define positive primitive formulas of signature S we
fix pairwise disjoint countably infinite sets Xµ of variables for each sort µ < λ. The
atomic formulas are u(y0, . . . , ynu−1) and y =µ z where u is a relation symbol in S,
yi ∈ Xσu(i) (i.e., yi is a variable of sort σu(i)) for each i < nu, and y, z ∈ Xµ (i.e., y, z
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are variables of sort µ). A positive primitive formula of signature S is an existential
formula whose matrix is a conjunction of atomic formulas of signature S.

A multisorted relational structure of signature S is a pair B =
〈
(Bµ)µ<λ; (uB)u∈S

〉
where (Bµ)µ<λ is a λ-sequence of nonempty sets called the sorts of B, and for each
u ∈ S, the interpretation uB of u in B is a multisorted relation uB ⊆

∏
i<nu

Bσu(i),

that is, for each i < nu the i-th coordinate of each tuple in uB is in the σu(i)-th sort.
Positive primitive formulas of signature S can be interpreted in B the usual way, and
each positive primitive formula of signature S with free variables xi ∈ Xµi (i < l)
defines a multisorted relation R ⊆

∏
i<lBµi . We will say that a multisorted relation

R ⊆
∏

i<mBµi on the sorts of B is p.p. (positive primitive) definable in B if there is
a positive primitive formula of signature S that defines R.

More informally, by a multisorted relational structure with λ sorts we will mean
a pair B = 〈(Bµ)µ<λ;S〉 where, as before, (Bµ)µ<λ is a λ-sequence of sets called
the sorts of B, and S is a family of multisorted relations on those sorts, that is, S
is a family of subsets of finite products of sorts. Now we want to define what an
appropriate signature for B is if we want to index the relations in S. If there is more
than one sort, this requires a decision, because a subset of a product

∏
i<nBµi may

not determine the list of factors Bµi (i < n) uniquely. To be as inclusive as possible we
will say that an appropriate signature for B = 〈(Bµ)µ<λ;S〉 is a multisorted relational
signature S with the same number (λ) of sorts as B such that there is a multisorted

relational structure BS =
〈
(Bµ)µ<λ; (uB

S
)u∈S

〉
of signature S on the same sorts such

that

• S = {uBS
: u ∈ S}, and

• for each choice of n, σ : n→ λ, and U ∈ S with U ⊆
∏

i<nBσ(i) the signature
S contains a relation symbol u with nu = n and σu = σ whose interpretation
in BS is U .

We will refer to such a BS as an indexing of B with an appropriate signature S.
The multisorted structures we will be concerned with are structures whose sorts

are sections (quotients of subalgebras) of a given algebra and whose relations are
subalgebras of products of the sort algebras.

Lemma 4.7. Let Qµ = Qµ/θµ (µ < λ) be quotients of subalgebras of a fixed algebra

A, let S be a family of subalgebras of finite products of some Qµ’s, and let Q
S

be an

indexing of the multisorted relational structure Q = 〈(Qµ)µ<λ;S〉 by an appropriate

signature S. For each u ∈ S and U := uQ
S
∈ S, let U be the full inverse image of

the subalgebra U of
∏

i<nu
Qσu(i) under the natural homomorphism

∏
i<nu

Qσu(i) →∏
i<nu

Qσu(i), and let S be the collection of all these U ’s. If a multisorted relation

R ⊆
∏

i<mQτ(i) is p.p. definable in the multisorted relational structure Q
S
, then

(1) R is the universe of a subalgebra R of
∏

i<m Qτ(i), and
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(2) for the subalgebra R of
∏

i<m Qτ(i) obtained by taking the full inverse image

of R under the natural homomorphism
∏

i<m Qτ(i) →
∏

i<m Qτ(i), R is p.p.
definable in the (one-sorted) relational structure 〈A;S ∪ {θµ : µ < λ}〉.

Proof. Let Φ(x) be a p.p. formula of signature S that defines R ⊆
∏

i<mQτ(i) in Q
S
.

Thus Φ(x) has the form ∃y Ψ(x′) where x′ is the concatenation of x with y, and
Ψ(x′) is a conjunction of atomic formulas of signature S. Let x′ = (xi)i<n where
x = (xi)i<m and y = (xi)m≤i<n. Furthermore, let τ ′ : n → λ be defined so that τ ′(i)
is the sort of xi for each i < n. Since Φ(x) defines R, τ ′(i) = τ(i) for all i < m.
Hence τ ′ is an extension of τ .

We may assume without loss of generality that in each conjunct of Ψ(x′) which is a
relational atomic formula u((xij)j<nu), the variables xij (j < nu) are pairwise distinct.
For if there is a repetition among the variables, say xi0 = xi1 , then σu(0) = σu(1),
and u((xij)j<nu) is logically equivalent to ∃z

(
u(z, (xij)1≤j<nu) ∧ z =σu(0) xi1

)
for any

variable z ∈ Xσu(0) not occurring in Φ(x). Hence the p.p. formula

∃yz
(
u(z, (xij)1≤j<nu) ∧ z =σu(0) xi1 ∧

∧
(all other conjuncts of Ψ(x′))

)
defines the same relation in Q

S
as Φ(x), and has fewer repetitions of variables in

relational atomic formulas. Repeating this precedure we can eliminate all repetitions
of variables in relational atomic formulas.

Now, after this adjustment, for each conjunct C of Ψ(x′) let C∗(x′) denote the
formula

C ∧
∧
i<n

xi =τ ′(i) xi.

Let Ψ∗(x′) denote the conjunction of all the C∗(x′)’s obtained in this way, which
we will refer to as the conjuncts of Ψ∗(x′). Furthermore, let Φ∗(x) denote the p.p.
formula ∃y Ψ∗(x′). It is clear from this construction that Ψ∗(x′) and Ψ(x′) define the

same relation in Q
S
, and hence so do Φ∗(x) and Φ(x). Thus Φ∗(x) is another p.p.

formula that defines R. We will use this formula to prove (1) and (2).
First we will argue that the sets XC defined by the conjuncts C∗(x′) of Ψ∗(x′)

are subuniverses of
∏

i<n Qτ ′(i). If C has the form u((xij)j<nu), where u is a relation

symbol in S, then XC consists of all tuples (ai)i<n ∈
∏

i<nQτ ′(i) for which (aij)j<nu ∈
uQ

S
. Since the variables xij (j < nu) are pairwise distinct, we get that, up to a

permutation of coordinates, XC is the product of uQ
S

with all sets Qτ ′(i′) with i′ < n,

i′ /∈ {ij : j < nu}. Hence XC is a subuniverse of
∏

i<n Qτ ′(i). Similarly, if C has

the form xj =τ ′(j) xj′ , then XC consists of all tuples (ai)i<n ∈
∏

i<nQτ ′(i) for which

aj = aj′ . It is clear that in this case XC is a subuniverse of
∏

i<n Qτ ′(i). The set
defined by Ψ∗(x′), the conjunction of the C∗(x′)’s, is the intersection of the sets
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XC , and is therefore a subuniverse Y of
∏

i<n Qτ ′(i). Finally, the set defined by

Φ∗(x) = ∃y Ψ∗(x′) is the projection of Y onto its first m coordinates, and is therefore
a subuniverse of

∏
i<m Qτ(i). This completes the proof of (1).

To prove (2) let S− denote the one-sorted relational signature obtained from S
by forgetting the sorts; that is, S− and S have the same relation symbols, and each
relation symbol u has the same arity nu in S− and S, the only difference is that in S−
there is no need for a sort function σu. We will expand S− by adding λ new binary
relation symbols Θµ (µ < λ), and denote the resulting one-sorted relational signature
by T. Clearly, the relational atomic formulas of signature S are also relational atomic
formulas of signature T. Therefore, by replacing each equational atomic formula
xj =τ ′(j) xj′ by Θτ ′(j)(xj, xj′) we can associate a p.p. formula of signature T to each
multisorted p.p. formula of signature S. We will denote the formulas of signature T
associated to Φ∗(x), Ψ∗(x′), and each conjunct C∗(x′) of Ψ∗(x′) by Φ†(x), Ψ†(x′),
and C†(x′), respectively.

It is clear from the definition of S that T is an appropriate signature for the one-
sorted relational structure P := 〈A;S ∪ {θµ : µ < λ}〉; namely we get an indexing

PT :=
〈
A; (uP

T
)u∈S− , (Θ

PT
µ )µ<λ

〉
of P by T if for each u ∈ S− we define uP

T
to

be the full inverse image of uQ
S

under the natural homomorphism
∏

i<nu
Qσu(i) →∏

i<nu
Qσu(i), and for each µ < λ, we define ΘPT

µ to be the congruence θµ of Qµ. To

prove (2), we will argue that Φ†(x) defines the relation R in PT.
Each conjunct C†(x′) of Ψ†(x′) has the form

C† ∧
∧
i<n

Θτ ′(i)(xi, xi)

where C† is the same as C if C is a relational atomic formula u((xij)j<nu), and C† is
Θτ ′(j)(xj, xj′) if C is an equational atomic formula of the form xj =τ ′(j) xj′ . In either
case, let XC denote the relation defined by C†(x′) in PT. Thus XC consists of all
tuples (ai)i<n ∈ An that satisfy the following conditions:

(i) (aij)j<nu ∈ uP
T

in the first case, (aj, aj′) ∈ θτ ′(j) in the second, and
(ii) (ai, ai) ∈ θτ ′(i) for all i < n, that is, ai ∈ Qτ ′(i) for all i < n.

Thus XC consists of all tuples (ai)i<n ∈
∏

i<nQτ ′(i) for which (i) holds. Since uP
T

is the full inverse image of uQ
S

under the natural homomorphism
∏

i<nu
Qσu(i) →∏

i<nu
Qσu(i), and θτ ′(j) is the full inverse image of the equality relation on Qτ ′(j)

under the natural homomorphism Q2
τ ′(j) → Q

2

τ ′(j), we see from the earlier description

of XC that XC is the full inverse image of XC under the natural homomorphism
ν ′ :

∏
i<n Qτ ′(i) →

∏
i<n Qτ ′(i). The relation Y defined in PT by the conjunction

Ψ†(x′) of the C†(x′)’s is the intersection of the XC ’s. Since each XC is the full inverse
image of XC under ν ′, their intersection Y is the full inverse image of the intersection
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Y of the XC ’s under ν ′. Finally, the relation defined by Φ†(x′) in PT is the projection
prIY of Y onto the set I = m = {0, . . . ,m − 1} of first m coordinates. Since Y is
the full inverse image of Y under the natural homomorphism ν ′ :

∏
i<n Qτ ′(i) →∏

i<n Qτ ′(i), prIY is the full inverse image of prIY under the natural homomorphism

ν :
∏

i<m Qτ(i) →
∏

i<m Qτ(i). We have shown earlier that prIY = R. Therefore

the relation defined by Φ†(x′) in PT is the full inverse image R of R under ν, as
claimed. �

After these preparations we return to the proof of Theorem 4.3.

Proof of Theorem 4.3. Let A be a finite algebra that has a k-parallelogram term
and generates a residually small variety V . Let R denote the relational clone of all
compatible relations of A, and let R(≤c) consist of all relations of arity ≤ c in R.
Our goal is to show that R = (R(≤c))⊥⊥. By Corollary 4.6 this equality follows if
we prove that every critical relation of A is p.p. definable in the relational structure
〈A;R(≤c)〉.

Let R be a critical relation of A of arity ` > c. Since c ≥ max(k, 23), we get from
Theorem 4.1 that the reduction R of R has the structure described in Theorem 2.5.
We will use the notation of Theorem 2.5 (with the exception that k is replaced by
`). Thus R is a subdirect product of some sections Ai = Ai/θi of A, and R is the
full inverse image of R under the natural homomorphism

∏
i<` Ai →

∏
i<` Ai. Let

λ =
∣∣{Ai : i < `}

∣∣, let Qµ = Qµ/θµ (µ < λ) be an enumeration of {Ai : i < `}, and let

τ : `→ λ denote the unique function such that Ai = Qτ(i) for all i < `. Furthermore,

let S be the collection of all subuniverses of products of ≤ c algebras of the form Qµ

(µ < λ). Then Q := 〈(Qµ)µ<λ;S〉 is a multisorted relational structure with λ sorts

where λ ≤ B(|A|+ 1)− 1. Let Q
S

be an indexing of Q by an appropriate signature
S, and define S as described in Lemma 4.7. By construction, S ⊆ R(≤c). Therefore
the statement we want to prove, namely that R is p.p. definable in 〈A;R(≤c)〉, will

follow from Lemma 4.7 if we prove that R is p.p. definable in Q
S
.

So, it remains to show that R is p.p. definable in Q
S
. Recall that ` > c ≥ max(k, 8).

Hence ` ≥ max(k, 3), and therefore by Theorem 4.1, the sections Ai = Qτ(i) of A

that appear in the subdirect decomposition of R are subdirectly irreducible, and have
abelian monoliths µi (i < `). Since V is congruence modular by Theorems 3.3 (2) and
3.5, and is residually small by assumption, we get from 10.15 of [5] that the centralizer
ρi of µi is abelian for each i < `. Let ρ be the product congruence ρ0 × · · · × ρ`−1

of R, and let t be the number of ρ-classes of R. Choose elements o(m) (m < t) of R

that form a transversal for the ρ-classes, and let o(m) = (o
(m)
i )i<` where o

(m)
i ∈ Ai for

all m < t and i < `. Since condition (8) of Theorem 2.5 holds for R, it follows that
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the elements o
(m)
i (m < t) form a transversal for the ρi-classes of Ai for each i < `.

Let O denote the subalgebra of R generated by the elements o(m) (m < t).
Let d be a difference term for V . Since the congruence ρi of Ai (i < `) is abelian,

5.7 of [5] implies that

M i := {(x, y, z, d(x, y, z)) : x, y, z ∈ Ai with x ρi y ρi z}

is a subuniverse of A
4

i for each i < `. Moreover, d(x, x, z) = z and d(x, z, z) = x hold
for all elements x, z ∈ Ai with x ρi z.

Claim 4.8. Let U and V be arbitrary subuniverses of R that contain O. If U, V ,O ⊆∏
i<`Qτ(i)

(
=
∏

i<`Ai

)
are p.p. definable in Q

S
, then so is

U � V := {w ∈ R : w = d(u,o,v) for some u ∈ U,o ∈ O,v ∈ V with u ρo ρv},

and U � V is a subuniverse of R that contains both U and V .

To prove Claim 4.8 let x = (xi)i<`, y = (yi)i<`, z = (zi)i<`, and w = (wi)i<` be
disjoint sets of variables such that xi, yi, zi, wi ∈ Xτ(i) for each i < `. Assume that U ,

V , and O, are defined in Q
S

by the p.p. formulas Φ(x), Ψ(y), and Ω(z), respectively.

For each i < ` we have M i ∈ S, because M i is a subuniverse of Q
4

τ(i) (= A
4

i ) and

c ≥ 4. So our choice of S ensures that M i is the interpretation in Q
S

of a 4-ary relation
symbol Mi whose variables are all of sort τ(i). Hence the definitions of U � V and
M i (i < `) immediately imply that U � V is defined by the p.p. formula

Γ(w) := ∃x ∃z∃y
(

Φ(x) ∧ Ω(z) ∧Ψ(y) ∧
∧
i<`

Mi(xi, zi, yi, wi)
)
.

Now statement (1) of Lemma 4.7 implies that U �V is a subuniverse of
∏

i<` Qτ(i) =∏
i<` Ai. Since U, V ,O ⊆ R and d is a term, we have U � V ⊆ R. Therefore U � V

is a subuniverse of R. To show that U ⊆ U � V let u ∈ U , and let o(m) be the
transversal element chosen from the ρ-class of u. By assumption o(m) ∈ O ⊆ V ,
therefore u = d(u,o(m),o(m)) ∈ U � V . The proof that V ⊆ U � V is similar. This
completes the proof of Claim 4.8.

Next we want to show that every subalgebra of R with a small generating set
has at most c essential coordinates; all other coordinates are repetitions of essential
coordinates.

Claim 4.9. If a subalgebra U of R is generated by t + 1 elements, then there exist
I ⊆ {0, 1, . . . , ` − 1} and ϕ : {0, 1, . . . , ` − 1} → I such that |I| ≤ c, ϕ(i) = i for all
i ∈ I, τ(i) = τ(ϕ(i)) for all i < `, and

(xi)i<` ∈ U ⇒ xi = xϕ(i) for all i < `.
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To prove the claim let an := (ani)i<` ∈ R (n ≤ t) be t + 1 elements that generate
U. Define an equivalence relation ∼ on {0, 1, . . . , ` − 1} as follows: for i, j < `
let i ∼ j iff τ(i) = τ(j) and in each generator an the i-th and j-th coordinates
ani, anj ∈ Qτ(i) (= Ai = Aj) are equal. The range of τ is λ, and we have established
earlier that λ ≤ B(|A|+ 1)− 1. Furthermore, for each i < ` the (t+ 1)-tuple (ani)n≤t
of i-th coordinates of the selected generators of U is an element of Q

t+1

τ(i), so since

|Qτ(i)| ≤ |A| and t ≤ |A|, there are at most |A||A|+1 choices for (ani)n≤t. Therefore

∼ has at most
(
B(|A| + 1) − 1

)
|A||A|+1 = c0 equivalence classes. Now choose a

transversal I for the equivalence classes of ∼, and let ϕ : {0, 1, . . . , `− 1} → I assign
to each i < ` the transversal element in i/∼. It is clear from this construction that
|I| ≤ c0 ≤ c, ϕ(i) = i for all i ∈ I, and τ(ϕ(i)) = τ(i) for all i < `. Moreover, since
i ∼ ϕ(i) for all i < `, we get that in each generator an (n ≤ t) of U the i-th and
ϕ(i)-th coordinates are equal. Therefore the same holds for all elements of U as well.
This completes the proof of Claim 4.9.

Claim 4.10. R ⊆
∏

i<`Qτ(i) is p.p. definable in Q
S
.

For each element r ∈ R let Ur denote the subalgebra of R generated by the t+ 1
elements o(m) (m < t) and r. By Claim 4.9 there exist Ir ⊆ {0, 1, . . . , ` − 1} and
ϕr : {0, 1, . . . , ` − 1} → Ir such that |Ir| ≤ c, ϕr(i) = i for all i ∈ Ir, τ(i) = τ(ϕr(i))
for all i < `, and xi = xϕr(i) for all (xi)i<` ∈ Ur and i < `. Thus Wr := prIrUr

is a subalgebra of
∏

i∈Ir Qτ(i)

(
=
∏

i∈Ir Ai

)
, hence W r ∈ S. Moreover, U r is p.p.

definable in Q
S

by the formula

Ψr(x) := Wr

(
(xi)i∈Ir

)
∧

∧
i<`, i/∈Ir

xi =τ(i) xϕr(i)

where x = (xi)i<l is a sets of distinct variables such that xi ∈ Xτ(i) for each i < `, and
Wr is a relation symbol in S such that nWr = |Ir|, σWr : Ir → λ with σWr(i) = τ(i) for

all i ∈ Ir, and the interpretation of Wr in Q
S

is Wr.
By construction, each U r (r ∈ R) contains O, and for r = o(0) we have that

O = U r. Thus O and all U r (r ∈ R) are p.p. definable in Q
S
. Therefore a repeated

application of Claim 4.8 yields that

�r∈RU r = R,

and that R is p.p. definable in Q
S
. This completes the proof of the claim and of

Theorem 4.3. �

A. Bulatov proved in [3] that there are only finitely many distinct clones on {0, 1, 2}
that contain a Maltsev operation. (In fact, he proved that there are 1129 such clones.)
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The finiteness of this set of clones follows easily from Theorem 4.3, as does the more
general result involving parallelogram operations.

Corollary 4.11. For a fixed integer k > 1 there are only finitely many distinct clones
on the set {0, 1, 2} that have a k-parallelogram operation.

Proof. Every algebra of fewer than four elements in a congruence modular variety
generates a residually small subvariety. (This fact follows from the Freese–McKenzie
characterization of finitely generated congruence modular varieties in [4].) �

We have to fix k in the previous theorem, since for each k > 1 there exist clones
on {0, 1, 2} that contain (k + 1)-nu operations but no k-nu operations (so there
are infinitely many distinct clones with parallelogram operations on {0, 1, 2}). This
follows from the fact that there exists such operations on {0, 1}.
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[11] R. Pöschel and L. A. Kalužnin, Funktionen- und Relationenalgebren. Ein Kapitel der diskreten
Mathematik, Mathematische Monographien, 15, VEB Deutscher Verlag der Wissenschaften,
Berlin, 1979.
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(Keith Kearnes) Department of Mathematics, University of Colorado, Boulder, CO
80309-0395, U.S.A.

E-mail address: Keith.Kearnes@Colorado.EDU
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