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The primal algebra characterization theorem revisited

Agnes Szendrei

The aim of this note is to present a strong version of I. G. Rosenberg’s primal al-
gebra characterization theorem that was found while studying simple algebras without
proper subalgebras having the additional property that their fundamental operations are
surjective. The investigation of these algebras, which was inspired by a recent paper of
C. Bergman and R. McKenzie [1], will be completed in a forthcoming paper [20].

It seems, however, that the new version of Rosenberg’s theorem to be discussed here is
of independent interest as well. It sheds some light on the following strange phenomenon
occurring in the proof (but remainimg hidden in the final formulation) of Rosenberg’s
theorem [12]: certain algebras semi-affine with respect to elementary Abelian 2-groups
come up in the proof at some point after semi-affine algebras had already seemed to have
been taken care of. Starting from R. W. Quackenbush’s proof [11] we now show that
all these ‘exceptional’ algebras are isomorphic to reducts of matrix powers of 2-element
unary algebras; moreover, all other semi-affine algebras whose powers admit no subalgebras

falling into any of the remaining five classes of Rosenberg’s theorem are in fact affine.

1. The main result

For a set A and for k£ > 1, the nonvoid subsets of A* will often be called k-ary relations
(on A), and for an algebra A the universes of subalgebras of A will be called subuniverses

of A. We adopt the convention that algebras are denoted by boldface capitals and their
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universes by the corresponding letters in italics. We identify every natural number n with
the set n = {0,...,n—1}. For aset N, let Ty, Sy, and C denote the full transformation
monoid on N, the full symmetric group on N and the set of (unary) constant operations
on N, respectively. We denote by idy, or shortly id, the identity mapping on N. The
cardinality of a set A is denoted by |A|. For an algebra A we denote by Clo A, Clo; A,
and Pol A the clone of term operations, the set of unary term operations, and the clone of
polynomial operations of A, respectively.

Recall that a finite algebra is said to be primal if every operation on its universe is
a term operation. As is well known, I. G. Rosenberg’s theorem [12] characterizes primal
algebras A by the nonexistence of six kinds of relations among the subuniverses of finite
powers of A. Equivalently, for every finite algebra A which is not primal, some finite power
of A has a subuniverse falling into one of six classes of relations. Four of these classes are

as follows:

(1) bounded partial orders on A,

(2) permutations of A (considered as binary relations) having cycles of equal prime
length and no fixed points,

(3) equivalence relations distinct from A? and the diagonal A,

(4) quaternary relations of the form
Qz={(a,b,c,d) € A" a—b+c=d}

for some elementary Abelian p-group A= (A;+) (p prime).

We say that an algebra A is semi-affine with respect to an Abelian group Aif A
and A have the same universe and the quaternary relation @ 4 s a subuniverse of A%,
Furthermore, A is said to be affine with respect to A = (A;+) if it is semi-affine with
respect to A and, in addition, z — y + z is a term operation of A. It is well known and
easy to see (cf. [19; 2.1, 2.7- 2.8]) that the algebras that are semi-affine, or affine, with
respect to A are closely related to the module ~ ]{, i.e. A considered as a module over

(End A)
its endomorphism ring End A.

CLAIM 1.1. Let A be an algebra and A an Abelian group on its universe.
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(i) A is semi-affine with respect to A if and only if A is a reduct of the algebra
(4; Pol (g4 2y4));

(ii) A is affine with respect to A if and only if A is polynomially equivalent to a
module RA\ for some subring R of End A.

To describe the remaining two classes of relations we need some definitions. A k-
ary relation B on A is called totally reflexive if it contains each k-tuple from A* whose
coordinates are not pairwise distinct. Further, B is called totally symmetric if it is closed
under permuting the coordinates. A totally reflexive, totally symmetric relation B C A*
is called central if B # AF and there exists ¢ € A such that (c,aq,...,ax_1) € B for all
ai,...,a5—1 € A. The fifth class is

(5) central relations on A.

Observe that every unary relation is totally reflexive and symmetric, hence the unary
central relations are exactly the nonvoid proper subsets of A.

Let £ > 3. A family T = {©y,...,0,_1} (m > 1) of equivalence relations on A is
called k-regular if each ©; (0 < i < m —1) has exactly k blocks and ©7 = ©¢gN...NO,, 1

has exactly £™ blocks. A relation on A is called k-regular if it is of the form

Ar = {(ag,...,ax_1) € A*: foralli (0<i<m—1),

ag, - . .,ak—1 are not pairwise incongruent modulo ©;}

for a k-regular family T of equivalence relations on A. They form the sixth class:
(6) k-regular relations on A (k > 3).

Note that k-regular relations are both totally reflexive and totally symmetric.

Matrix powers of unary algebras are examples of algebras admitting a subuniverse
belonging to class (6). For the notion and the history of matrix powers of arbitrary
algebras the reader is referred to [21], [5]. Here we need the concept only for unary
algebras. To recall the definition, let C = (C; F) be a unary algebra and let m > 1.
For given mappings o:m — m, u:m — n and for gg,...,gm—1 € Clo; C let us define an
operation hf[go, - - - ; gm—1] on C™ as follows: for z; = (22,...,a" ) eC™ (0<i<n-1),

'R
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put

00’)
-

hZ[go, ey gm_l](aso, caey -Tn—l) = (90(350“ (m—l)a))-

. agm—l(x(m_l)u

The m-th matrix power of C, denoted C™l, is the algebra with universe C™ and with
all hj, [90; - - -, gm—1] as fundamental operations. It is easy to see that C[™] has no other
term operations than its fundamental operations; that is to say, Clo Cl™ consists of all
operations of the form hj, (90, - --,9m—1] as above. Clearly, every term operation of Clm]
depends on at most m variables. It is straightforward to check that if |C'| = k£ > 3 and
T consists of the kernels of the m projections C™ — C, then T is a k-regular family of
equivalences on C™ (with ©7 = A), and Ar is a subuniverse of (C[m])k.

Recall that a finite algebra A is called quasiprimal if every operation on A preserving
the internal isomorphisms (i.e. isomorphisms between subalgebras) of A is a term operation
of A. The concept as well as the following characterization of quasiprimal algebras is due

to A. F. Pixley [7], [8].

CLAIM 1.2. A finite algebra A is quasiprimal if and only if the ternary discriminator

ifa==5
t(a,bc)=4°¢ ! bce A
(a,b,¢) {a otherwise (a,b,c € 4)

on A is a term operation of A.

Note that each algebra whose term operations are all operations admitting a relation
of class (2), or similarly, a unary relation of class (5) is quasiprimal. Also, every primal
algebra is obviously quasiprimal.

Now we are in a position to state the main result of the paper.

THEOREM 1.3. Let A be a finite simple algebra having no proper subalgebra. Then
one of the following conditions holds:

(a) A is quasiprimal;

(b) A is affine with respect to an elementary Abelian p-group (p prime);

(¢) A is isomorphic to a reduct of (2; Ty)"™ for some integer m > 1;

(d) there is a k-regular relation among the subuniverses of A¥ for some k > 3;

(e) there is a central relation among the subuniverses of A¥ for some k > 2;
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(f) there is a bounded partial order among the subuniverses of AZ.

2. The ‘exceptional’ algebras

As was mentioned in the introduction, the core of the proof of Theorem 1.3 is the anal-
ysis of those semi-affine algebras that come up so unexpectedly in the proof of Rosenberg’s
theorem. This is done in this section.

Recall that in [6] an algebra A is said to be strongly Abelian if for all n > 1, for
every n-ary term operation f of A and for arbitrary elements u,v € A and a;, b;,c; € A

1<i<n-1),
fluya1,...;an-1) = f(v,b1,...,bp—1) implies f(u,c1,...,¢n-1) = f(v,C1,...,Cn-1).
For B C A™ and for 0 < 4g,...,1_1 <n — 1,

Prig....ix_1 B = {(xioa SRR xik71): (an ) .Z'n_l) € B}

is the projection of B onto its coordinates i, ...,ix_1. In particular, if I = {ig,...,ix_1}

is a subset of n with ig < ... <1, then we write pr; B instead of pr; _,  B.

THEOREM 2.1. Let A be a finite algebra which is strongly Abelian and semi-affine
with respect to an Abelian group. Assume no finite power A¥ (k > 2) of A has a totally
reflexive, totally symmetric subuniverse distinct from A¥. Then A is isomorphic to a

reduct of (2;T3)™ for some integer m > 1.

Proof. Let A satisfy the assumptions, and let A = (A;+) be an Abelian group such
that A is semi-affine with respect to A. For arbitrary Abelian group operation + we will
denote by d, the ternary operation defined by d, (z,y,2) = z — y + 2. First we prove the

following claim.

Claim (a). For some m > 1 and some subalgebra (N;d;) of (A4;dy), there exist
a subdirect subalgebra (W;d,) of (N;d,)™ and an isomorphism ¢: (A;dy) — (W;dy)
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which is simultaneously an isomorphism between A and the subalgebra W on W of a

reduct of (N; Cn)™.

We use the idea of [6; 13.3]. Let N be a minimal set in A, and e a unary polynomial
of A with e? =eand e(A) = N. Let F = {fo=e, f1,..., fm—1} be the family of all unary
polynomial operations of A with range N. By the basics of tame congruence theory [6;
2.8.4], for any distinct elements z,y € A there exists f; € F such that f;(z) # fi(y). Thus

the assignment

= (fo(z),..., fm-1(x)) (x€ A)

defines a bijective mapping of A onto a subdirect subset W of N™. Let us denote this
mapping by ¢. Computing in A and A\m’ and taking into account that A is semi-affine

with respect to 121\, we get for arbitrary elements x,y, z € A that

di(z,y,2)p=(r—y+2)p=(folr —y+2),..., fm-1(z —y +2))
= (fO(-T) - fO(y) + f0(2)7 ) fm—l(x) - fm—l(y) + fm—l(z))
= (fO(x)a B fm—l(‘r)) - (fO(y)a RS f’m—l(y)) + (fO(Z)7 D fm—l(z))
=zp — yp + 2 = dy(T0, Yy, 200).

Thus N is closed under d, and (W;d,) is a subdirect subalgebra of (IV;d;)™ isomorphic
to (A4;dy) via .

Consider now any, say n-ary, fundamental operation g of A. Since A is strongly
Abelian, by tame congruence theory [6; Claim (3) in 5.6], the polynomial operations f;g

(0<i<m-—1) of A depend on at most one variable. Furthermore, they are constant or

map onto N. Thus there exist mappings o: m — m, u: m — n such that

fig(xo, ..., 2n-1) = 9i(fic(Tin))

with g; € Cy U {id} for all ¢ (0 < ¢ < m — 1). Hence for arbitrary elements
(fo(zj),-- -, fm—1(zj)) € W (z; € A, 0 < j <n—1) we have

9((fo(zo), -, fm—1(@0))e™, ..., (fo(Tn=1),-- -, frm—1(Tn—-1))p~ ")
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=g(zo,...,Tn 1) = (g(x0, ..., Tn_1)p)p !

= (gO(fOU(xo,u)); RS gm—l(f(m—l)a(x(m—l),u)))go_l

= hZ[go, ooy gm—1)((fo(®o); - - -, fm—1(w0)), - - -5 (fo(Tn-1),---, fm—l(ﬂcn—l)))w_l-

This shows that if we make correspond to every basic operation g of A the operation
h$[90; - - s gm—1] With o, and go, . .., gm—1 as described above, then ¢ is an isomorphism
between A = (A;g,...) and the subalgebra W = (W; h{[go, ..., gm—1],--.) of a reduct of
(N; Cn)l™. This proves Claim (a).

Claim (b). |[N| = 2.

Let |[N| = t. The elements of W will be written in the form w = (w°,...,w™™1).

Consider the following subset of Wt:

B = {(wo, ..., wi—1) € W' foralli (0<i<m—1),

w}, ..., w;_, are not pairwise distinct}.

Clearly, B is totally reflexive and totally symmetric. Since W is a subdirect subset of
N™, therefore W has elements vy, ...,v;_1 such that v3,...,v) ; are pairwise distinct,

and hence (vg,...,v—1) ¢ B. Thus B # W'. It is straightforward to check that B is a

subuniverse of Wt. In fact, if we apply a basic operation kg, [90y- - -y gm—1] of W to some
elements (wy0,...,wit—1) € B (1 =0,...,n—1), then we get
—1 —1
(90 (w85 0): - -2 g1 (Wi 137 )5+ (G0 (WS 1)+ Gm1 (Wi 1) 1))

In view of go,...,9m—1 € Cn U {id}, this clearly belongs to B. Since A = W, by the
assumptions on A we conclude that ¢ = 2, completing the proof of Claim (b).

Without loss of generality we identify (N;d;) with (2;d,), where 2 = {0,1} and +
is addition modulo 2. Thus we get that for some integer m > 1, there exist a subdirect
subalgebra (W;dy) of (2;d4)™ and an isomorphism ¢: (A;dy) — (W;dy) which is simul-
taneously an isomorphism between A and the subalgebra W on W of a reduct of (2; T5)!"™.

Assume m is chosen minimal with respect to the existence of such W and ¢.
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For [ = 0,1 let H; denote the family of all nonvoid subsets I C m such that

Zwi =1 forall w=w’...,w™ ) eW,

i€l
and put H = HyU H. Since (W;d,) is a subalgebra of (2;d; )™ where (2;d.) is a simple
idempotent Mal’tsev-algebra, it is not hard to show that these equalities determine W as
follows (cf. [19; Lemma 4.4 and Remark on p. 98]):

W ={(w’...,w™ ) €2™ Y wi=1lforall I € H, =01}
iel

Clearly, we have a similar description for all projections of W as well.

We are done if we prove that H = (). Assume H # (). Let H denote the set of
minimal members of H (with respect to inclusion), and set H; = H;N H (I = 0,1). Let
g =min{|I|: I € H}. As W is a subdirect subset of 2™, we have ¢ > 2.

Notice that H U {@} is closed under symmetric difference. Indeed, if, say, I € H;, and
J € H,, then

Swi=l and Y wi=i; forall w= (..., ™) W,
iel JEJ
implying that
Y =S w Y w =l forall w= (..., w™ ) €W,
ke(IUJ)—(INJ) iel i€J

whence (TUJ) — (INJ) € H.
Consequently, for arbitrary sets I,J € H with I C J we have I,J — I € H. This

yields that every set in H is the disjoint union of sets in H. Thus

W ={(w’...,w™ ) €2™ Y w'=1lforallI€H, =01}
1€l

Moreover, by the minimality of the members of H we get the following fact.

Claim (c). For arbitrary set J C m,

prJW:2|J| ifand only if I ¢ J forall € H;

8



in particular,

pr; W =2Y1 forall JCm with |J]|<gq.

We distinguish two cases.

CASE 1: g > 2. First we establish a property of the basic operations of W.

Claim (d). Let h = hf[go;-- -, 9m—1] (With o:m — m, p:m — n, go,...,gm-1 € Tr)
be a basic operation of W. Then for every set I € H with |I| = ¢, one of the following
conditions holds:

(i) g is constant for some i € I,

(ii) g; € Sy for all i € I, and there exist distinct indices 4,i" € I with iy = #/p,
w0 =10,

(iii) g; € Sy for all 4 € I, pu is constant on I and {io: ¢ € I} is a g-element set

belonging to H.
Let I € Hy, |I| = q, and assume (i), (ii) fail. Then g;(z) = = + ¢; with ¢; € 2 for all

i1 € I. Furthermore, for arbitrary subset I’ of I such that u is constant on I’, the elements

io (i € I') are pairwise distinct. As W is closed under h, we have
(8) > (uin+c)=1 forall wj=(u),...,ul")eW (0<j<n—1).

i€l
Suppose p is not constant on I. Then for arbitrary r € {iu: i € I} we have that |{i €
I: i = r}| < q and the elements io (i € I, ipp = r) are pairwise distinct. Applying the
second part of Claim (c) for the sets J, = {io: i € I,ip=r} (r € {ip: i € I}) we get

{(U:ﬁZ)iEI: UQy - - -, Up—1 € W} — 2|I|’

contradicting (8). Thus p is constant on I. It follows now that |{ioc: i € I}| = q.

Furthermore, by (8) we get that pry;,. ,enn W # 2l7l. By the first part of Claim (c) and by

the minimality of ¢ we conclude that {io: i € I} € H, completing the proof of Claim (d).
Now let ¢ = 29! and define a subset B of W as follows:

B = {(wo, ..., ws_1) € Wt for all I € H with |I| = gq,

pr; wo, - .., Pry w1 are not pairwise distinct}.
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Clearly, B is totally reflexive and totally symmetric. By the second part of Claim (c)
we have |pr; W| = 2971 = ¢ for all I € H with |I| = q. Thus, for arbitrary fixed set
Iy € H with |Iy| = q there exist elements vy, ...,v;—1 € W such that pry, Vo, ---,Pry, Ve—1

are pairwise distinct, yielding (vo,...,v;_1) ¢ B. Thus B # W% We prove that B is a

subuniverse of Wt. For arbitrary fundamental operation h = halgo0, - -5 gm—1] (0:m — m,
pim — m, go,...,gm—1 € To), and for arbitrary elements (wig,...,wit—1) € B (I =
0,...,n— 1), the result of h on these elements is

-1 -1
9)  ((90(whe )+ Gmor (W=7 N s (G0 (WEG 1), -+ s Gmr (Wi DT 1))

Let I € H with |I| = q. Note that |[pr; W| = 2971 = ¢ and, in view of ¢ > 2 and Claim (c),
we have pr; ; W = 22 for alli,j € I, i # j. Now apply Claim (d). In case (i) the projections
of the ¢ m-tuples in (9) to I cannot exhaust pr; W (and hence are not pairwise distinct),
because they have a constant coordinate. In the remaining cases let, say, g;(z) = = + ¢;
(¢; € 2,4 € I). If (ii) holds, then again the projections of the ¢ m-tuples in (9) to I cannot
exhaust pr; W (and hence are not pairwise distinct), because the i-th and i’-th coordinates
sum up to the constant ¢; + ¢;;. Finally, in case (iii), the projections of the ¢ m-tuples in
(9) to I, equal, for some I (0 <! < n — 1), the projections of the ¢ m-tuples appearing in
(wi0,---,wit—1) (€ B) to {io: ¢ € I}, with the constant tuple (c¢;);cr added. Thus (9)
belongs to B, proving that B is a subuniverse of Wt. However, since ¢t = 297! > 2 and

W 2 A, this contradicts our assumptions on A.

CASE 2: ¢ = 2. Since H U {(}} is closed under symmetric difference, the relation =
on m defined by

i=j ifandonlyif i=j5 or {i,j}eH

is an equivalence relation. Let By, ..., Bs_1 be the blocks of =, and assume without loss of
generality that s € B; (0 <i<s—1). Let W' = Pr{o,. s—1} W, let m denote the projection
mapping W — W', and let a:m — s be defined by i« = j whenever ¢ € B;. Then there

exist elements ag =... =as_1 =0 and ag,...,a,,—1 € 2 such that

W ={(=z"*+ag,..., 2z V% 4 a,_1,2° +a,,...,2m V4 qa,_1: (2°,...,2° 1) e W'}
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Obviously,  is an isomorphism (W;d,) — (W';d,). For every basic operation h =
R 190 - - s gm—1] (G:m — m, pzm — n, go, ..., gm-1 € T2), say gi(z) = kiz+c; (ki) c; € 2,

0 <i<m—1), and for arbitrary elements w; = (w?, .. .,w;_l) eW' (0<j<n-1),

h(wym™1, .. wl_ 7t
=h O (m—1)a O (m-1)a
((wg* + ao, - . ., wy +am-1);---, (Wpr1 +ag, ..., w1 "+ Gm—1))
= (K/O(wgga + aOa) +coyeeny Hm—l(wgz:gza + a(m—l)a) + Cm—l)
fy (K/O(wgza —|— G/OO') —|— CO, ey ﬁs_l(wgz::]l';za —|— a(s—l)a) + 63_1)71-—1
= h;[fo, ey fs_l](w(), ey ’w;_l)ﬂ'_l

with 7 = oals:s = s, v = uls: s = nand fi(z) = ki(x +a;p) +¢; foralli (0<i<s—1).
Thus the isomorphism ¢7: (A4;d4) — (W';d,) is simultaneously an isomorphism be-
tween A = (A;g,...) and the subalgebra (W'; hZ[fo, ..., fs—1],--.) of a reduct of (2; T3)[L.
Clearly, s < m, since H # (). This contradicts the minimality of m, and completes the

proof.

3. Proof of Theorem 1.3

First we introduce some notation that will be needed in the sequel. For any 7 € S,,,
we set B™ = pry, . (n—1)x B;1l.e. BT arises from B by permuting its coordinates according

to w. For n > 1 and for an equivalence relation € on n, put
AP = {(zo,...,2n_1) € A™ z; = x; whenever (i, j) € ¢}.

These are called diagonal relations. The superscript is omitted if it is clear from the
context. In the subscript it will often be more convenient to write, instead of €, the list of

nonsingleton blocks of ¢; e.g. A((ﬁ), AW etc. Clearly A = Ag), and for € the equality

01/23
relation, Ag") = A™. With these notations one can easily see that an n-ary relation B
on A is totally reflexive if and only if Ag-") C B for every equivalence ¢ distinct from the

equality relation, and totally symmetric if and only if B™ C B for all 7 € S,,.
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For an algebra A, a totally reflexive, totally symmetric subuniverse B of A¥ will be
called trivial if B = A* or (for k = 2) B = A. Clearly, if A is finite and k > |A|, then
every totally reflexive, totally symmetric subuniverse of AF is trivial.

The proof of I. G. Rosenberg’s primal algebra characterization theorem in [12] (see

also [11]) yields the following fact.

LEMMA 3.1. [12] Let A be a finite algebra. Assume some finite power A* (k > 1)
of A has a nontrivial totally reflexive, totally symmetric subuniverse, and let k be the
largest positive integer with this property. If B is a nontrivial totally reflexive, totally
symmetric subuniverse of A¥ and B is maximal with respect to inclusion, then B is either

an equivalence relation, or a central relation, or a k-regular relation.

The claims of the lemma below can be extracted from R. W. Quackenbush’s proof for

Rosenberg’s primal algebra characterization theorem [11; Sections 4-6].

LEMMA 3.2. [11] Let A be a finite algebra such that no finite power of A contains a
nontrivial totally reflexive, totally symmetric subuniverse. Assume that some finite power
A™ of A contains a subuniverse with cardinality not a power of |A|, and let m be the
smallest positive integer with this property. If B is an arbitrary subuniverse of A™ such

that | B| is not a power of |A|, then 2 < m < 3 and
Pr, gy B = A™ L for all i € m.

In particular,

(i) if m = 2 and B is a maximal proper subuniverse of A%, then B is a bounded
partial order, while

(ii) ifm =3 and Ag12 C B, then for some permutation m € S we have Agy U Age C
B™ and A12NB™ = Ag12, furthermore, there is an elementary Abelian 2-group A= (A;+)

such that A is semi-affine with respect to A.

From Lemma 3.4 below it follows that the algebras described in Lemma 3.2 (ii) satisfy
the assumptions of Theorem 2.1. For the proof we need a characterization of strongly

Abelian algebras.
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CLAIM 3.3. An algebra A is strongly Abelian if and only if for alln > k > 1, for
every n-ary term operation f of A and for arbitrary elements u;,v; € A (0 <i <k —1)

and aj,bj,c; € A(k<j<n-1),

f(uo, e s U—1s Ay ooy an_l) = f(’U(), ey Up—1, bk, ey bn—l)
implies
f(u07 sy Uk—15Cfy - - -y c'n—l) = f(v()a <oy Uk—1,Cks - - - Cn—l)-

For k£ = 1 these implications are the same as in the definition, while for £ > 1 they

can be derived by induction.

LEMMA 3.4. For an algebra A that is semi-affine with respect to an Abelian group
]{, the following conditions are equivalent:

(i) A is strongly Abelian,

(ii) A3 has a subuniverse B such that Aoy U Ags € B and A3 N B = Aga.

Proof. (i)=-(ii). Suppose A is strongly Abelian, and let B be the subuniverse of A3
generated by Ag; U Age. Hence B consists of all triples of the form

(f(a(), ey Qk—1, bk, ceey bn—l); f(ao, ey Qp—1,0k,y - - -, an_l), f(bo, ey bk—l; bk, ceey bn—l))

with n > 1,0 < k <n, f an n-ary term operation of A and a;,b; € A (0<i<n—1). If
for an element of B the last two coordinates are equal, then all three coordinates are equal
in view of Claim 3.3. Thus A2 N B C Ag12, as required.

(ii))=-(i). Assume (ii) holds and let f be an arbitrary term operation of A; say f is

n-ary. By Claim 1.1 (i)
n—1
f(xoy..yTpn_1) = Zrixi +a forsome n>1,a€A, rg,...,7n_1 € End A.
i=0

First we show that

(7) Im7ry N Ti: Imr; = {0}.

=1
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Consider an element rqgag = 1161 + ...+ r—10n—1 € Imrg N 2?2—11 Imr;. Since
(ap,0,a9) € B and (aj,a;,0)€ B forall 0<j<n-—1,

therefore by applying f we get

n—1 n—1
(Z rja; + a, Z rja; +a, roap + a) € B.
3=0 i=1

The last two coordinates are equal by assumption, hence all coordinates are equal. Thus
roag = 0, proving (7).

Now, if f(u,a1,...,an-1) = f(v,b1,...,by_1) for some u,v € A and aj,b; € A
(1<j<n-—1),then ro(u—v)= Z;L:_ll rj(bj —a;), whence by (7) ro(u—v) = 0, implying
f(u,eq,...,en-1) = f(v,c1,...,cn—1) for arbitrary elements ¢; € A (1 < j <n—1).

Combining the foregoing facts with a slight modification in the proof of [11; Propo-

kM

sition 6.1] to avoid ”falling back into class (2)”, we now complete the proof of Theorem

1.3.

Proof of Theorem 1.3. Let A satisfy the assumptions of the theorem. If some finite
power of A contains a nontrivial totally reflexive, totally symmetric subuniverse, then by
Lemma 3.1 and by the assumptions on A we have (d) or (e).

Assume now that no finite power of A contains a nontrivial totally reflexive, totally
symmetric subuniverse, however, some finite power A™ of A contains a subuniverse with
cardinality not a power of |A|. Let m be chosen minimal with this property. By Lemma
32m=2o0rm=23. If m =2, Lemma 3.2 (i) immediately implies that (f) holds for A.

Suppose now that m = 3, and let B be a subuniverse of A3 such that |B| is not a
power of |A|. Define

C ={(z,y): (z,z,y) € B}.
Since pro, B = A?, C is nonempty. Clearly, C' is a subuniverse of A?. Since A has
no proper subuniverse, pr,C = pr; C = A. By the minimality of m we have |C| = |A]|
or |C| = |A]2. In the latter case C = A% and Ag;s C B. In the former case A has a

permutation o such that C = {(z,z0): x € A}; in fact, o is an automorphism of A. Thus
B' = {(z,y,2) € A’: (z,y,20) € B}
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is a subuniverse of A3 with |B’| = |B| and A2 C B’. Therefore A3 has a subuniverse
satisfying the assumptions of Lemma 3.2 (ii), which together with Lemma 3.4 and Theorem
2.1 yields (c).

Finally, it remains to consider the case when each subuniverse of each finite power of
A has cardinality a power of |A|. Then, by a result of R. W. Quackenbush [10] A generates
a congruence permutable variety, and hence by a theorem of R. McKenzie [4] (cf. also [16],

[2]) one of conditions (a), (b) holds for A.

4. Some consequences

Now we look at some applications of Theorem 1.3. We specialize it to algebras whose
fundamental operations are surjective or generate a variety satisfying a nontrivial congru-
ence condition, and we get some functional completeness results as well.

An algebra A is said to be functionally complete if it is finite and every operation
on A is a polynomial operation of A. For an algebra A, V(A) will denote the variety
generated by A.

A. Functionally complete algebras having no proper subalgebras

Recently K. Kaarli [3] solved A. Foster’s longstanding problem (see A. F. Pixley [7])
whether every functionally complete algebra A is categorical (i.e. A is the only subdirect
irreducible in V(A)). He constructed an example showing that the answer is negative in
general; however, what is more interesting, he proved that if the algebra A is assumed also
to have no proper subalgebra, then the answer is affirmative, in fact A is quasiprimal.

None of the earlier Rosenberg-type completeness criteria were strong enough to imply

this fact. Now Theorem 1.3 does the job.

COROLLARY 4.1. [3] Every finite, functionally complete algebra having no proper

subalgebra is quasiprimal.

Proof. Let A be a finite algebra having no proper subalgebra, and assume A is

functionally complete. Clearly, A is simple, therefore Theorem 1.3 applies. Since A is

15



functionally complete, none of conditions (b)—(f) can hold for A. Thus A is quasiprimal,

as claimed.

B. Surjective algebras

We will call an algebra surjective if all its fundamental operations are surjective. The
observation that for algebras with a single operation, or more generally, for surjective
algebras, the family of “excluded relations” in the characterization of primality can be
considerably reduced is due to G. Rousseau [15] and 1. G. Rosenberg [13]. There are two

facts underlying this phenomenon.

LEMMA 4.2. Let A be a finite surjective algebra. If B is a subuniverse of A™ (n > 1),
then for arbitrary k (0 < k <n —1),

(B)k = {(z0,...,25-1) € A*: (z0,...,2pn_1) € B for all zp,...,2p_1 € A}
is a subuniverse of A¥ provided it is not empty.

The proof is straightforward. It is easy to see that for B a bounded partial order,
(B); is the singleton containing the least element, while for B a central relation, (B); is
the centre of B. Furthermore, for any k-regular family T' of equivalence relations on A we

have (Ar)e = ©p. Thus Lemma 4.2 immediately implies the following fact.

LEMMA 4.3. [15], [13] Let A be a finite, simple, surjective algebra without proper
subalgebras. Then

(i) there is no bounded partial order among the subuniverses of A?;

(ii) there is no central relation among the subuniverses of A¥ for any k (k > 2);

(iii) if Ay is a subuniverse of A* (k > 3) for some k-regular family T of equivalences

on A, then O = A.

The second fact crucial in these considerations also originates from [15] and [13],
though it was stated in a different terminology. It concerns the structure of surjective

algebras admitting a k-regular relation Ar with ©7 = A.
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LEMMA 4.4. [15], [13] Let A be a finite surjective algebra. If, for some k > 3, there
is a k-regular relation A\r with |T| = m and ©r = A among the subuniverses of A*, then

[m]

A is isomorphic to a reduct of (N; Sy)'™ for some k-element set N.

Let us combine Lemmas 4.3, 4.4 with Theorem 1.3, and observe that in Theorem 1.3
(c) for every surjective operation hf[go, - - ., gm—1] of (2; T5)l"™] we have go, ..., gm_1 € Sa.
Thus we get the corollary below, which includes as special cases the main results of [17]

and [18].

COROLLARY 4.5. Let A be a finite, simple, surjective algebra having no proper
subalgebra. Then one of the following conditions holds:

(a) A is quasiprimal;

(b) A is affine with respect to an elementary Abelian p-group (p prime);

(cd) A is isomorphic to a reduct of (N; Sn)™ for a nonsingleton finite set N and

some integer m > 1.
In the context of tame congruence theory, Corollary 4.5 can be restated as follows:

Let A be a finite, simple, surjective algebra having no proper subalgebra. If A is of
type 1, then A is isomorphic to a reduct of (N; Sy)!"™ for a nonsingleton finite set N and
some integer m > 1; if A is of type 2, then A is affine, while if A is of type 3, then A is

quasiprimal . *

C. Algebras in varieties satisfying a nontrivial congruence condition

By a congruence condition we mean an inclusion p C ¢ where p, ¢ are terms using
the operation symbols V, A, and o (interpreted as join, meet, and relation product of
congruences, respectively). A congruence condition is satisfied in a variety if it holds for
arbitrary congruences of each algebra in the variety, and is called trivial, if it is satisfied

in every variety.

* For type 2 this result was announced at the Conference on Universal Algebra and
Lattice Theory in Charleston (1984), but the proof, different from the one presented here,

remained unpublished.

17



It is well known that congruence conditions are closely related to Mal’tsev conditions.

Recall that a strong Mal’tsev condition is a condition of the form

(Ffoy---s fre1)(eo Ao  ANes_1)

with eq, ..., es_1 identities in the function symbols fy, ..., fr_1, which is said to be satisfied
in a variety V if V has terms fy,..., fr,—1 such that ey,...,es_1 hold in V. A Mal’tsev
condition is a property of the form (3In) U, where all U, (n = 0,1, 2, ...) are strong Mal’tsev
conditions, and a weak Mal’tsev condition is a property of the form (V&) (3n) U, where all
(3n) Uk, (K =0,1,2,...) are Mal'tsev conditions. A strong (-, weak) Mal’tsev condition
is called idempotent if its identities imply the idempotent law f;(z,...,xz) = z for every
function symbol f; occurring, and is called linear, if functions are not substituted into
one another on either side of each identity in the condition. A strong (-, weak) Mal’tsev
condition is said to be trivial if it is satisfied in every variety.

By a result of A. F. Pixley [9] and R. Wille [22] every congruence condition is equiv-
alent to an idempotent, linear, weak Mal’tsev condition. Thus every variety satisfying a
nontrivial congruence condition satisfies a nontrivial idempotent, linear Mal’tsev condition.
It is worth mentioning, though will not be used here explicitly, that by tame congruence

theory [6; Theorem 9.6], for locally finite varieties the converse also holds.

For a locally finite variety V the following conditions are equivalent:
(i) V omits type 1;
(ii) V satisfies a nontrivial congruence condition;

(iii) V satisfies a nontrivial idempotent, linear Mal’tsev condition.
We will need a special case of the easy direction (iii)=-(i).

CLAIM 4.6. If A is isomorphic to a reduct of (N;Tn)"™ for a nonsingleton finite
set N and for some integer m > 1, then V(A) satisfies no nontrivial idempotent, linear

Mal’tsev condition.

The reader not familiar with [6] can prove this claim directly, by observing that all
idempotent operations of (N;Tx )™ are of the form hidlid, . ...id] (u:m — n), hence for

arbitrary fixed element ¢ € N, they restrict to the set N x {c}™~! as projection operations.
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For finite algebras admitting a k-regular relation we have the same conclusion as in

Claim 4.6 (cf. [14]).

LEMMA 4.7. Let A be a finite algebra. If, for some k > 3, there is a k-regular
relation among the subuniverses of A*, then V(A) satisfies no nontrivial idempotent,

linear Mal’tsev condition.

Proof. Let T = {©g,...,0,—1} (m > 1) be a k-regular family of equivalence relations
on A, and assume A7 is a subuniverse of A¥. Suppose a nontrivial idempotent, linear
Mal’tsev condition witnessed by the terms fo,. .., fr—1 holds in V(A). Consider the reduct
A’ = (4; fo,..., fr—1) of A. Since the operations fy, ..., fr_1 of A’ are idempotent, A’ is
a surjective algebra. Obviously, A7 is a subuniverse of (A’)* as well. Therefore by Lemma
4.2 we get that ©p = (Ar)z is a congruence of A'.

Let B = A’/O7 and ®; = ©,;/07 (i = 0,...,m — 1). Clearly, B is a surjective
algebra such that V' (B) satisfies the same nontrivial idempotent, linear Mal’tsev condition
as V(A). Moreover, U = {®,...,P,,_1} is a k-regular family of equivalences on B with
®;; = A such that Ay is a subuniverse of B¥. Thus by Lemma 4.4 B is isomorphic to a
reduct of (N;Ty)[™ for some k-element set N. This contradicts Claim 4.6, completing
the proof.

Combining Theorem 1.3 with Claim 4.6 and Lemma 4.7 we get

COROLLARY 4.8. Let A be a finite simple algebra having no proper subalgebra.
If V(A) satisfies a nontrivial congruence condition, then one of the following conditions
holds:

(a) A is quasiprimal;
(b) A is affine with respect to an elementary Abelian p-group (p prime);
(e
(f

) there is a central relation among the subuniverses of A* for some k > 2;
) there is a bounded partial order among the subuniverses of A2.

In particular, for surjective algebras we have
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COROLLARY 4.9. Let A be a finite, simple, surjective algebra having no proper
subalgebra. If V(A) satisfies a nontrivial congruence condition, then either
(a) A is quasiprimal, or

(b) A is affine with respect to an elementary Abelian p-group (p prime).

D. Functional completeness

For an algebra A = (A4; F) let A = (A; F U Cj,), that is, A arises from A by adding
all constants as fundamental operations. Clearly, for A finite, A is functionally complete
iff A is primal iff A is quasiprimal (as A has neither proper subalgebras nor nontrivial
automorphisms).

Applying Theorem 1.3 for A and some techniques from part B we get a slight im-
provement on I. G. Rosenberg’s result [13] on the functional completeness of surjective

algebras.

COROLLARY 4.10. For a finite, simple, surjective algebra A one of the following
conditions holds:

(a)’ A is functionally complete;

(b) A is affine with respect to an elementary Abelian p-group (p prime);

(ed) A is isomorphic to a reduct of (N;Sy)I™ for a nonsingleton finite set N and
for some integer m > 1;

(e)’ there is a central relation among the subuniverses of A?;

(f) there is a bounded partial order among the subuniverses of A2.

Proof. Clearly, (a) for A implies (a)’, (b) for A implies (b) (cf. Claim 1.1 (ii)), and
(f) for A implies (f). Furthermore, (c) for A implies (c) for A, and since A is surjective,
we have (cd) with |[N| = 2. If (e) holds for A, say B is a central relation among the
subuniverses of A¥, then B is a subuniverse of A* as well. Since A is surjective, Lemma,
4.2 yields that (B)2 is a subuniverse of A% Tt is easy to see that (B)2 is a central relation,
whence (e)’ follows. Finally, assume (d) for A. Then (d) holds for A as well, so in the same
way as in part B (using the simplicity of A) we conclude that (cd) holds with |N| > 3.
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An application of Corollary 4.8 for A immediately implies

COROLLARY 4.11. Let A be a finite simple algebra such that V(A) satisfies a
nontrivial congruence condition. Then one of the following conditions holds:

(a)) A is functionally complete;
(b) A is affine with respect to an elementary Abelian p-group (p prime);
(e) there is a central relation among the subuniverses of A* for some k > 2;
(

f) there is a bounded partial order among the subuniverses of A2.

)
)

Note that if A is, in addition, surjective, then (e) can be replaced by (e)’ (see Corollary
4.10). Corollary 4.11 is a common generalization of the well-known theorem of R. McKen-
zie [4] (see also H. P. Gumm [2]) concerning finite simple algebras A with V' (A) congruence
permutable — when (e), (f) cannot occur —, and the main result of I. G. Rosenberg [14],

where V(A) is assumed to be congruence distributive.

E. Concluding remarks

1. Conditions (a)—(f) in Theorem 1.3 are independent in the sense that for each one of
the six conditions there exists an algebra A satisfying the assumptions of the theorem for
which that condition holds and none of the remaining ones do. For (a)-(b) and (d)—(f) this
is easy and quite well known, while for condition (c) the matrix powers (2; S9)l™ (m > 1)

are appropriate. Indeed, it is straightforward to check (cf. e.g. [21], [5]) that Clo (2; S)™

is generated by the m-ary operation h}g[id, ...,1d] and unary operations h) _.,[id,...,id],
hid [, ..., 7] where v is the cyclic permutation (01 ... m—1) and 7 is the transposition

(01). Hence (2; S3)[™ is term equivalent to a surjective algebra. Clearly, (c) holds while (a)
and (b) fail for (2;S,)l™. Since (2;S2)l"™ has cardinality 2™ and it has a term operation
depending on m variables, therefore it cannot be isomorphic to a reduct of (IV; SN)[""']
with |N| > 2, m’ > 1. In view of Lemmas 4.3 and 4.4 the properties established so far for
(2; S2)™ imply the failure of conditions (d)—(f) as well.

2. Tt is easy to see that if A = (A; f) is an algebra with a single fundamental operation

and it has no proper subalgebra, then f is surjective. Thus Corollaries 4.5 and 4.9 hold
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true for every finite simple algebra A with a single fundamental operation and with no
proper subalgebra.

3. The results in Corollaries 4.5, 4.10 can be further improved: namely, finite simple
algebras satisfying condition (cd) can be described more explicitly, up to term equiva-
lence, which has interesting consequences, for instance, on minimal varieties. This will be

discussed in another paper [20].
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