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Abstract. It is proved that for every nearly idempotent plain algebra A
with at least two idempotent elements there exists an idempotent plain al-
gebra B such that the varieties V(A) and V(B) are categorically equivalent;
furthermore, except for some cases when A has three or four elements, the
full idempotent reduct of A is plain. These facts lead also to a classification,
up to term equivalence, of nearly idempotent plain algebras with at least two
idempotent elements.

Introduction

An algebra A is called plain (or strictly simple), if A is finite, simple, and A has no
nontrivial proper subalgebras. Recently K. A. Kearnes [3] has found a short, elementary
proof for the result in [10] that plain idempotent algebras generate minimal varieties. In
fact, the proof is given for a more general class of algebras that are called in [3] nearly
idempotent plain algebras. By definition, a plain algebra A is nearly idempotent if A has
at least one idempotent element and the automorphism group of A acts transitively on
the set of non-idempotent elements of A.

Our aim is to study how far nearly idempotent plain algebras are from idempotent
plain algebras. If A is a nearly idempotent plain algebra with a single idempotent element
0, then clearly 0 is the only fixed point of each nonidentity automorphism of A. Further-
more, since the automorphisms of A act transitively on A\ {0}, therefore every unary term
operation of A is either the constant with value 0 or a permutation of A fixing 0. Hence
A is one kind of so-called term minimal algebras discussed in detail in [11].
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In this paper we restrict our attention to nearly idempotent plain algebras with at
least two idempotent elements. We show that these algebras are indeed very close to
idempotent plain algebras. Firstly, it turns out that for every nearly idempotent plain
algebra A with at least two idempotent elements there exists an idempotent plain algebra
B such that the varieties V(A) and V(B) generated by these algebras are categorically
equivalent. Secondly, we prove that, except for some cases when A has three or four
elements, the full idempotent reduct of A is plain; that is, up to term equivalence, A
arises from a plain idempotent algebra by expanding it with some new operations.

Both of these results point out a reason for the fact that the property of generating
minimal varieties carries over naturally from idempotent plain algebras to nearly idempo-
tent plain algebras. This is obvious for the result on category equivalence. To see it for
the other result one would need to know

(o) to what extent the property of generating minimal varieties is hereditary for
expansions among plain algebras.

It is well known (see e.g. [2; Theorems 12.1, 12.4]) that if for a plain algebra A the variety
V(A) is congruence modular, then V(A) is minimal unless A is an affine algebra having no
idempotent elements. Since every idempotent plain algebra A with at least three elements
generates a congruence modular variety (cf. [10]) — and this property is inherited by the
expansions of A —, it follows immediately that all nearly idempotent expansions of A will
generate a minimal variety. We remark at this point that hereditariness in the sense of (e)
holds true also under much weaker assumptions than congruence modularity; see [12].

Comparing nearly idempotent plain algebras to idempotent plain algebras

We follow the convention that algebras are denoted by boldface capitals and their base
sets by the corresponding letters in italics.

Let A be an arbitrary algebra. By an idempotent element of A we mean an element
u € A such that {u} is a subuniverse of A. The set of idempotent elements of A will be
denoted by Ua. We will say that A is an idempotent algebra if Uy = A. By an idempotent
operation on A we mean an operation f on A such that f(z,...,x2) = z for all z € A.
Clearly, the algebra A is idempotent if and only if every fundamental operation (hence
every term operation) of A is idempotent. The full idempotent reduct of A is defined to
be the algebra with base set A whose operations are all idempotent term operations of A.

Observe that by the definition above, a unary operation is idempotent if and only
if it is the identity mapping, denoted id; this is the meaning involved in the concept of
an idempotent algebra or full idempotent reduct of an algebra. However, among unary
operations (that is, among transformations) a more customary meaning attached to the
word “idempotent” — which we will adopt from now on — is the following: a unary
operation f on A is called idempotent if f2(x) = f(x) holds for all z € A.

For an algebra A, Clo A will denote the clone of term operations of A; Clo,, A the set
of n-ary term operations of A (n > 1); Aut A the automorphism group of A; and Sub A
the set of subuniverses of A. One-element subuniverses [subalgebras] of A are usually
referred to as trivial subuniverses [subalgebras]. Two algebras C, D on the same base set
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C = D are called term equivalent if Clo C = CloD. We will find it convenient to extend
this notion to algebras C, D on arbitrary base sets as follows: C, D will be called term
equivalent — in symbols: C = D — if C is isomorphic to an algebra C’ on D such that
CloC’ = CloD.

For an n-tuple z the coordinates of z will be denoted by z°,...,z" L. If C is a
set, V. C C, and g is an operation on C with g(V,...,V) C V|, then g|y stands for the
restriction of g to V. Similarly, for a subset S of C™ (n > 1), S|y is used as an abbreviation
for SN V™. The diagonal of C x C is the set A¢c = {(c¢,¢): ¢ € C}. For S,T C C? the
relational product of S and T is the set

SoT ={(a,c) € C?: there exists b € C with (a,b) € S, (b,c) € T},

and the converse of S is

SY = {(b,a) € C?: (a,b) € S}.

Let C = (C; F) be an arbitrary algebra. For a positive integer m the m-th matriz
power Cl™ of C is the algebra with base set C™, whose operations are, for all k, all k-ary
operations g: (C™)¥ — C™ of the form

ith

A

Ve

g(an---axk—l) = ("'agi(xm---axk—157'-')7

where g; € Cloy,; C for all i (0 <i<m—1).

Let e € Clo; C be an idempotent unary term operation of C. Then e(C) is defined
to be the algebra with base set e(C) = {x € C: e(x) = z}, whose operations are all
operations of the form eg|,c) with g € CloC. Notice that the algebra e(C) is essentially
independent of e as soon as the range of e is fixed. That is, if € € Clo; C is idempotent and
e(C) = e(C), then &(C) and e(C) have the same set of operations, namely the restrictions
to e(C) = e(C) of all term operations of C whose range is contained in &(C) = e(C).

It is easy to see that CI"™l and e(C) have no other term operations than their fun-
damental operations described in the preceding paragraphs. Since we are interested in
algebras only up to term equivalence, we need not be very rigorous on the similarity types;
the similarity types of CI™ and e(C) could be selected arbitrarily so that the sets of term
operations are those described.

Following [6] we call e € Cloy C invertible if for some integer m > 1 there exist
tos ..., tm—1 € Cloy C and t € Clo,, C such that

t(e(to(w)),...,etm—1(z))) =z forallzeC.

The importance of the constructions C — CI™ and C — ¢(C) for an invertible
idempotent e € Clo; C lies in the fact that they yield category equivalences V(C) —
V(C™) and V(C) — V(e(C)) between the varieties generated by these algebras. Moreover,
as R. McKenzie proved in [6], if for two algebras C,D there is a category equivalence
V(C) — V(D) carrying C to D, then D = ¢(C[™) for some m > 1 and some invertible
idempotent ¢ € Clo, C™l. The latter deep result will not be applied in this paper. What
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we will need is merely the natural bijections between the subuniverses of the squares of
the algebras C, CI"™l and C, e(C). It is straightforward to check (see also [13]) that

(1) Sub (C x C) — Sub (CI™ x ¢cl™), g+ sl™

with
Sl = {(z,y) e C™ x C™: (a%,y%) € S for i =0,...,m — 1}
is a bijection. Suppose now that e € Clo; C is invertible and idempotent, and invertibility

is witnessed by the term operations tg,...,t,,_1 and t as above. For every subuniverse S
of C x C, each pair o € S can be canonically represented as

(e0) o =t(eto(0),...,etm_1(c)) with eto(c),...,etm_1(c) €e(S) (o €S),

implying that S is generated by its subset e(S) (throughout, the operations are applied
coordinatewise). Furthermore, the definition of the operations of e(C) combined with the
idempotence of e yields that e(S) is a subuniverse of ¢(C) x e(C), and e(S) = S|¢¢)- Thus

(1) Sub (C x C) — Sub (e(C) x e(C)), S+ e(S) =S|
is a bijection. In particular, it follows that for a subuniverse S of C x C

(1) S is a congruence of C iff SI™ is a congruence of CI™,
(1) 8 is an automorphism of C iff S[™! is an automorphism of Cl™l;

and similarly

()" S is a congruence of C iff e(S) is a congruence of e(C),
()" S is an automorphism of C iff e(S) is an automorphism of e(C).

The only nontrivial claims that are involved in these statements are that
— in ()" e(S) o e(S) Ce(S) implies So S C S, that is, if e(S) is transitive then so is S,
while

— in (1)" e(S) o e(SY) = e(S) o (e(9))" C A (c) implies S o SY C Ag; and the same
with the roles of S, S" interchanged.

Both claims follow easily if one applies the canonical representation (ee) for the pairs in
S.

Clearly, the algebra C can essentially be recovered from CI™ as follows: if gy €
Clo; Cl"™ is defined by eo(y) = (3°,...,4°), then g is idempotent and invertible, further-
more, C = ¢o(Cl™). The following lemma — a variation of Remark 2 in [6; Section 2]
— the proof of which is straightforward, shows how the construction C — e(C) for an
invertible idempotent e € Clo; C can be ‘inverted’ to recover C from e(C).
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Lemma 1. [6] Let C be an arbitrary algebra with an invertible idempotent unary term
operation e, and let D = e(C). If the invertibility of e is witnessed by to, . .., ty,—1 € Clo; C
and t € Clo,, C, then e(y) = (eto(t(y)),. .., etm_1(t(y))) is an invertible idempotent unary
term operation of D™ and the mapping

C —e(D™), cw (eto(c),...,etm-1(c))
15 an isomorphism between C and an algebra term equivalent to €(D[m])_

One explanation why nearly idempotent plain algebras A with at least two idempotent
elements behave so similarly to plain idempotent algebras is given in the next proposition,
which implies that the variety V(A) is categorically equivalent to a variety generated by a
plain idempotent algebra.

Proposition 2. Let A be a nearly idempotent plain algebra with at least two idempotent
elements.

(1) A has an invertible idempotent unary term operation e with e(A) = Ua,

(2) B =¢(A) is a plain idempotent algebra, and

(3) A = e(B?) for some invertible idempotent unary term operation € of B[l

Proof. For brevity we will write U instead of Ua . If A is idempotent, then the claims
of the proposition are obvious (with e the identity operation and € = ¢g where ¢ is the
operation described in the paragraph preceding Lemma 1). Therefore we assume that
U # A. Select arbitrary distinct elements ug,u; € U, and let ¢ € A\ U. The sets {c} and
{ug,u1} generate A, hence A has unary term operations e; for s = 0,1 and a binary term
operation h such that e;(c¢) = u; and h(ug, u1) = c. Thus the equality

(*) h(eo(z), e1(2)) = =

holds for z = ¢. If z € U, then the equalities e;(z) = x and (*) are obvious. Finally, since
Aut A is transitive on A\ U, we conclude that (x) holds for all z € A\U and e;(A\U) CU
(¢ = 0,1). This implies that e = eg is idempotent, eg(e1(z)) = e1(z) for all z € A, and e
is invertible (as witnessed by eg, e; and h). This completes the proof of (1).

The claim in (2) is now an easy consequence of the properties of the bijection in (1)
(cf. also (1)'), and (3) follows immediately from Lemma 1. o

We note that the weaker versions of the claims (1)—(2) in Proposition 2 where the
invertibility of e is not required is true for any plain algebra with at least two idempotent
elements (cf. [11], [3]).

Making use of Proposition 2 we now prove a structure theorem for nearly idempo-
tent plain algebras. A 2-element algebra B will be called orderable if B has a nontrivial
compatible order.



Theorem 3. If A is a nearly idempotent plain algebra with at least two idempotent
elements, then exactly one of the following conditions holds for A:

(a) the full idempotent reduct of A is plain;

(b) A =B for a two-element orderable idempotent algebra B with |Aut B| = 2;

(¢) A =e(BPB) for a two-element orderable idempotent algebra B with |AutB| =1,
and for an invertible idempotent unary term operation € of B2 with three-element range
containing the diagonal.

Proof. Throughout the proof we write U instead of Ua . If the algebra A is idempotent,
then (a) obviously holds, so we assume that A\U # (). We use the claims and the notation
of Proposition 2, including the term operations ey = e, e; and h constructed in its proof
to witness the invertibility of e.

By Lemma 1 and Proposition 2 the mapping ¢: A — €(B?), a — (eo(a),e1(a)) is an
isomorphism between A and an algebra term equivalent to (B!?l). For any u € U we have
o(u) = (eg(u), e1(u)) = (u,u), therefore the image of U under ¢ is the diagonal Ap of B2.
The term operation of s(B[z]) corresponding to e under ¢ is

e =poeop ! ¢(B?) — &(B?),

(eo(a), ex(a)) = ¢(a) = p(e(a)) = (eo(eo(a)); e1(en(a))) = (eo(a); eo(a)).

That is, €’ is the term operation go(y) = (y°, 4°) of BIZ restricted to e(B2). Clearly,
¢ (e(BI2)) = ¢o(BI) = B.

Later on, we will need the following claim, which is an easy consequence of the assertion
in (1)".

Claim 1. Restriction to U = e(A) = B yields an isomorphism |;;: Aut A — AutB.

It is worth noting that the invertibility of e is not a crucial assumption in this claim,
though the proof presented here makes use of it. In fact, as was observed in [4], Claim 1
is true for arbitrary plain algebra A with at least two idempotent elements and for any
idempotent e € Cloy A with e(A) = Ua, even if e is not invertible.

In order to prove Theorem 3 we consider first the case when B is not a two-element
orderable algebra. Our aim is to show that the full idempotent reduct of A is plain. To
this end we need to investigate the subuniverses of A x A. First we establish the required
facts for the subuniverses of B x B, and then using Proposition 2 we lift the results to A.

For a set C and for ¢ € C, X¢(C) will denote the subset ({c} x C) U (C x {c}) of
C xC.

Claim 2. (see [9]) (1) Every proper subdirect subuniverse of B x B is either an
automorphism of B or of the form X°(B) for some element 0 € B.

(2) If X°(B) is a subuniverse of B for some 0 € B, then 0 is a fixed point of each
automorphism of B.

Proof of Claim 2. Let S be a proper subdirect subuniverse of B x B, which is not an
automorphism of B. The sets ,S = {b € B: (u,b) € S} and S, = {b € B: (b,u) € S}
are nonempty subuniverses of B for all u € B. Consequently, each of them is either a
one-element set or equals B, as B is plain. By the assumptions on S, not all of them
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are one-element sets. Therefore a short analysis of the possible cases yields that there
exist elements 0,1 € B such that S = ({0} x B) U (B x {1}). If 0 = 1, then we get
that S = X°(B). Suppose therefore that 0 # 1. Then {b € B: (b,b) € S} = {0,1} is
a subuniverse of B, hence B = {0,1} and S is the order 0 < 1. This contradicts our
assumption that B is not orderable, so the proof of (1) is complete.

To verify (2) assume X°(B) is a subuniverse of B and consider an automorphism
m of B. Then the relational product ' = X°(B) o w is a subuniverse of B x B, and
T = ({0} x B)U (B x {w(0)}). Thus the claim proved in (1) implies that 7 (0) = 0.

Claim 3. Every proper subdirect subuniverse of A x A is either an automorphism of
A or of the form X°(A) for some element 0 € U.

Proof of Claim 3. Let S be a proper subdirect subuniverse of A X A such that S is
not an automorphism. Then ¢(S) is a proper subdirect subuniverse of e(B) x ¢(B[?)
which is not an automorphism. In view of the bijections described in (1) and (f), B x B
has a subuniverse T such that ¢(S) = T[z]\e( p2)- It is easy to see that T' must be a proper
subdirect subuniverse of B which is not an automorphism. Thus by Claim 2 T' = X°(B)
for some element 0 € B = e(A) = U. Hence

0(S) = (X°(B)P|o(B2)
= X0 (e(B?) U (Ey x E1) U (Ey x Ey)

where E; = {(bg,b1) € (B?): b; =0, by_; # 0} (1=0,1). Applying ¢! we get that
S = X°A)U (Dy x D) U (D1 x Dy) with D; = YE;) (i =0,1).

Here the sets Dy, D; are disjoint from U, because Ey = ¢(Dy), E1 = ¢(D;) are disjoint
from Ap = (U).

We show that Dy x D1 = ). Otherwise we would have a pair (¢,d) in S such that
c,d € A\U. Since Aut A acts transitively on A\ U, there exists 7 € Aut A with d = 7(c).
By Claim 1 and Claim 2 (2) we have 7(0) = 0. It follows now that V = {a € A: (a,7(a)) €
S} is a subuniverse of A such that ¢ € V and VNU = {0}. Thus V is a proper subuniverse
of A containing a nonidempotent element of A, contradicting the plainness of A. This
completes the proof of Claim 3.

Now we are in a position to prove that the full idempotent reduct of A is plain. Since
each block of a congruence of an idempotent algebra is a subuniverse, it suffices to show
that the full idempotent reduct of A has no nontrivial proper subalgebras.

Let a, by, b1 be arbitrary elements of A such that by # b;. We are done if we show that
A has an idempotent term operation g with g(bg, b1) = a. Let us select and fix an element
c € A\ U, and consider the subuniverse S of A x A generated by the pairs (b;,c) (i = 0,1).
Then S is a subdirect subuniverse, because {bg, b1} and {c} generate A. Clearly, S is not
an automorphism of A and is not of the form X°(A) for any 0 € U. Thus by Claim 3
S = A x A. Hence A has a binary term operation g such that g((bo, ¢), (b1,¢)) = (a,c),
that is, g(bo,b1) = a and g(c,c¢) = c. The transitivity of Aut A on A\ U implies that
g9(z,xz) =z for all z € A\ U, while for the elements x € U this equality is trivial. Thus g
is idempotent. This completes the proof that (a) holds whenever B is not a two-element
orderable algebra.



Remark. Notice that — except for one step in the proof of Claim 3 where near idempo-
tence is made use of — most of the argument above is based solely on the representation
A = ¢(BP]) of A from Proposition 2 and on the corresponding natural bijections (1), (1).
Nevertheless, the assumption that A be nearly idempotent cannot be omitted if we want
to conclude that the full idempotent reduct of A is plain. It is easy to see, for instance,
that if A = B[? for a plain idempotent algebra B with X°(B) € Sub (B?) (cf. Theorem 4),
then the full idempotent reduct of A is not plain.

Returning to the proof of Theorem 3 we now consider the case when B is a two-element
orderable algebra. By Claim 1 we have |[Aut A| = [Aut B|. Since Aut A acts transitively
on A\ U and no nonidentity automorphism has a fixed point in A \ U, therefore we get
that |Aut A| = |A\ U|. In the case |[Aut B| = 2 these considerations yield that |A| = 4,
hence € has to be the identity operation. Thus (b) follows immediately from Proposition 2.
Similarly, if [Aut B| = 1, then |A| = 3, and (c) is an immediate consequence of Proposition 2
and the inclusion Ap C e(B?) established at the beginning of the proof.

In case (b) A has a compatible Boolean lattice order with bounds in U, while in
case (c) A has a compatible total order with bounds in U. Therefore in both cases the
intervals of these lattices are subalgebras of the full idempotent reduct of A, hence the full
idempotent reduct of A is not plain. This implies that no two of conditions (a)—(c) can
hold simultaneously for a nearly idempotent plain algebra. o

Nearly idempotent plain algebras, up to term equivalence

Plain idempotent algebras are known, up to term equivalence (see [9], and for the
two-element case [7]). This description, combined with Theorem 3 allows one to determine
up to term equivalence all nearly idempotent plain algebras with at least two idempotent
elements. For comparison we note that according to the results in [11], for each finite set
A with |A| > 3 there are continuously many pairwise non-equivalent nearly idempotent
plain algebras A with base set A such that A has a single idempotent element.

We introduce some notation. Let A be a finite set. For a set U C A and for a
permutation group G acting on A, let Ry (G) denote the clone of all operations f on A such
that f(u,...,u) = u for all u € U and f admits each member of G as an automorphism.
If G = {id}, then we write Ry instead of Ry (G).

For an element 0 € A and for n > 2, let F° denote the clone of all operations f on A
preserving the relation

X2(A) = {(ao,...,an_1) € A™: a; = 0 for at least one 4, 0 < i <n — 1}.

Furthermore, we put Fo = (\re, Fp. Clearly, X3(A) = X°(A) is the subset of A x A that
played an important role in the proof of Theorem 3.

For a partial order < on A, P< denotes the clone of all operations on A that are
monotone with respect to <.

In addition, we will use the notation 2 for the two-element set {0,1}; A for the
semilattice operation on 2 with absorbing element 0; 0 = (0,0), 1 = (1,1) and a = (0,1)
for the elements of 2 x 2; and 3 for the subset {0,a,1} of 2 x 2.
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For the readers’ convenience we recall first the description of idempotent plain alge-
bras.

Theorem 4. [9], [7] (cf. [11]) Up to term equivalence, the idempotent plain algebras are
the following:

(i) (A;RA(Q)) for a permutation group G on A such that every nonidentity permu-
tation in G has at most one fived point;

(ii) (A;RA(G) N FY) for some k (2 < k < w), for some element 0 € A, and some
permutation group G on A such that 0 is the unique fixed point of each nonidentity
permutation in G;

(i) (A;z—y+2 {re+ (1—r)y: r € End g A}) where g A is a finite vector space over

a finite field K ;
(2;R2(G) NP<) where G is a permutation group and < is the order 0 <1 on 2;
(2;Re NFPNP<) for some k (2 < k < w), where < is the order 0 < 1;
(2;1);
(2;id).

(iv
(v
(vi

(vii

Nab2Na 2N ANV

Now we are in a position to describe all nearly idempotent plain algebras A with
2< |U A‘ < ‘A|

Theorem 5. Up to term equivalence, the nearly idempotent plain algebras that are not
idempotent but have at least two idempotent elements are the following:

(a.l) (A;Ru(Q)) for a proper subset U of A with |U| > 2 and for a permutation group
G on A such that A\ U is an orbit of G, every nonidentity permutation in G has
at most one fixed point and that fized point is in U;

(a.il) (A;Ru(G)NFP) for a proper subset U of A with |U| > 2, for some k (2 < k < w),
for some element 0 € U, and some permutation group G on A such that A\ U is
an orbit of G and 0 is the unique fixed point of each nonidentity permutation in
G;

(aiii) (A;2 —y + z,{rz + (1 — r)y: r € End xA},e) where xA is an at least two-
dimensional finite vector space over a finite field K and e is a projection onto a
subspace of kA of codimension 1;

(b.iv) (2 x 2;Rp,13({id," }) NP<) where < is the Boolean lattice order on 2 x 2 and ' is
complementation;

(b.vii) (2 x 2;j0) with (2°,2%) 0 (4°,y") = (21,9°);
(c.iv) (8;Ryp,13 N P<) where < is the order 0 < a < 1;
(c.v) (3;Rgp,13 N F2NP<) for some k (2 < k < w), where < is the order 0 < a < 1;
(c.vi) (3;%,e9,e1) where (20 xt) * (0 91) = (2° Ayt yt) and e;((2°, 21)) = (2, 2%)
(

i=0,1).

Proof. 1t is straightforward to check that the algebras listed in the theorem are
indeed nearly idempotent plain algebras which are not idempotent and have at least two
idempotent elements. In fact, the sets of idempotent elements are the following: U in
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cases (a.i)—(a.ii), e(A) in case (a.iii), and {0,1} in the remaining cases; furthermore, the
automorphism groups are the following: G in cases (a.i)—(a.ii),

(xx) {kz+a: ke K\ {0}, ace(hd)}

in case (a.iii), {id,’ } in cases (b.iv), (b.vii), and the one-element group in cases (c.iv)—(c.vi).

Conversely, let A be a nearly idempotent plain algebra with 2 < |Ua| < |A|, and
for simplicity let us write U instead of Ux. If Theorem 3 (b) or (c) holds for A, then
obviously A is uniquely determined (up to term equivalence) by the two-element orderable
idempotent algebra B. To see this for (c) recall that (B[?!) depends on the range of ¢ only,
and the two possible three-element ranges containing the diagonal yield term equivalent
algebras. Furthermore, we know from the proof of Theorem 3 and from Proposition 2 that
B = e(A) where e is a unary term operation of A with range U.

It is easy to check that for the algebras A listed in (b.iv)—(c.vi) the corresponding
algebras B = e(A) exhaust all two-element orderable idempotent algebras; namely the
algebra (iv) with |G| = 2 if A is of type (b.iv), (vii) if A is of type (b.vii), and (iv) with |G| =
1, (v), (vi), respectively, if A is of type (c.iv), (c.v), (c.vi). Thus the uniqueness established
in the previous paragraph proves the claim of Theorem 5 for all nearly idempotent plain
algebras satisfying condition (b) or (c) in Theorem 3.

Suppose now that condition (a) in Theorem 3 holds for A, and let A;q denote the full
idempotent reduct of A. Clearly |A| > 3, so Ajq is term equivalent to one of the algebras
(i)—(iii) in Theorem 4. In case (i) Aiq, and hence A, too, is quasiprimal. Since A is plain,
it follows easily that G = Aut A satisfies the conditions required in (a.i) and A is term
equivalent to (4; Ry (G)).

In case (iii) Aiq is a plain algebra generating a congruence permutable variety, there-
fore A also has these properties. By McKenzie’s theorem [5] A is quasiprimal or affine.
But A cannot be quasiprimal, as A;q is not quasiprimal. Hence A is affine. From the
description of plain affine algebras up to term equivalence (see e.g. [1] or [8]) and from the
assumption that 2 < |U| < |A| we conclude that A is term equivalent to an algebra of the
form described in (a.iii) with kA an at least two-dimensional vector space over a finite field
K and e a projection onto a nontrivial proper subspace of KA\. Since the automorphism
group of this algebra is the group in (*x), one can easily see that the automorphism group
acts transitively on A\ U = A\ e(A) if and only if e(A) has codimension 1.

Finally, consider the case when A;q is (term equivalent to) the algebra in (ii). Clearly,
G = Aut Ajq. Let us call a subuniverse S of A™ or of A, (n > 1) irredundant if S is
a subdirect subuniverse and S;; = {(z% 27) € A% x € S} is not a permutation for any
0 <i<j<n-—1 Since Ajg is not quasiprimal, A is not quasiprimal, either. Hence
for some m > 2, A™ has an irredundant subuniverse T' distinct from A™. Obviously, all
irredundant subuniverses of finite powers of A are among the irredundant subuniverses of
finite powers of A;q. Thus the description of irredundant subuniverses of finite powers of
A;q (see Proposition 2.3 and its application on p. 263 in [9]) yields that

— {z € A: (z,...,x) € T} = {0}, whence 0 € U, moreover,
— A is term equivalent to (4; Ry (G') N FP) where G’ = Aut A, and | = w if X2(A) is a
subuniverse of A™ for all n > 2, while [ is the largest such n otherwise. (Observe that
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if X2(A) is a subuniverse of A" then X9_;(A) = {zx € A" (2°,2% 21,... 2" 1) €
XP(A)} is a subuniverse of A"~1.)

Since G' = Aut A C Aut Ajg = G and A is nearly idempotent, all other requirements in
(a.ii) hold for G'. (It can be verified that, in fact, we must have G = G’ and k =[.) o
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