Modules in General Algebra

Agnes Szendrei*

Abstract

We discuss structure theorems for abelian algebras, which state that the
abelian algebras in question are close to modules. Each structure theorem
reflects a major development in commutator theory. The highlights are Herr-
mann’s Theorem stating that abelian algebras are affine in congruence mod-
ular varieties, and Quackenbush’s Theorem characterizing quasi-affine alge-
bras. We conclude by summarizing some recent results from a joint paper
with K. A. Kearnes. Among others, we show that Herrmann’s Theorem can
be extended to any variety which satisfies a nontrivial lattice identity as a
congruence equation.

This paper is a written version of a talk presented at the Conference on
General Algebra, Klagenfurt, Austria, May 29 — June 1, 1997.

1 Introduction

Classical algebraic structures — such as groups, rings, modules, lattices — play a
significant role in studying general algebraic systems. This paper focuses on the
question how modules over rings occur in general algebra. Modules have inspired
the development of general algebra various ways, the most profound influence being,
to this day, the discovery that algebras very similar to modules may be present as
‘building blocks’ in arbitrary algebras just as abelian groups are in arbitrary groups.
This phenomenon was revealed by commutator theory — a deep structure theory
whose fundamental idea is a generalization of the group theoretic commutator to
arbitrary algebras.

For simplicity we won’t discuss general commutator theory, except for a short
section at the end of the paper. Instead, we will restrict our attention to algebras
which are “abelian”, that is, which play the same role as abelian groups do among
groups.

It is a well-known fact that a group A is abelian if and only if the diagonal

subset
D ={(a,a):a € A}
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Figure 1: The algebra A x A

of Ax A is a normal subgroup of the group A x A. Normal subgroups are exactly the
subgroups which are congruence blocks. Thus the condition characterizing abelian
groups among groups can be restated to say that

D is a block of a congruence of A x A, (1)

which makes sense for arbitrary algebras A.

Three congruences of the algebra A x A will play an important role throughout
these discussions. The kernel of the two projections A x A — A will be denoted 7,
and 7y. To define the third congruence let us consider those congruences § of A x A
which have the property that D is a union of d-blocks; or equivalently, a diagonal
element of Ax A is d-related to diagonal elements only. Clearly, the congruence § = 0
(the equality relation) has this propety, and for any family of congruences with this
property the transitive closure of their union also has this property. Therefore A x A
has a largest congruence with the property that D is a union of congruence blocks.
This congruence will be denoted by A, or if necessary, by Aa. Now it is clear that
condition (1) is equivalent to the following:

D is a block of the congruence A of A x A. (2)

Property (1) is not the only condition characterizing abelian groups within the
class of groups. It requires justification that this characterization is “the right one”
if one wants to capture the property of being abelian in general. The importance of
condition (1) in studying general algebras was realized around the year 1976 when
several authors — following different approaches — were led to investigating simple
algebras in congruence permutable varieties. J. D. H. Smith [11] and R. McKenzie
[8] independently discovered an interesting phenomenon concerning these algebras,
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Figure 2: The lattice Con (A x A)

which involved condition (1), and several other authors came close to finding the
same results. We will now discuss these discoveries in more detail.

Recall first that a variety is called congruence permutable if a0 § = S o«
holds for any two congruences «, § of each algebra in the variety. Classical examples
of such varieties are all varieties of groups, rings, and R-modules for any ring R.

Let A be a simple algebra such that the variety V(A) it generates is congruence
permutable. In this case the congruence lattice Con (A x A) of A x A is easily
seen to be a lattice of height 2 whose least element is the equality relation 0, and
whose greatest element is the full relation 1. Clearly, besides the trivial congruences
0 and 1 the projection kernels 7;,7, are also congruences of A x A. Therefore
|Con (A x A)| > 4. The surprising fact found in 1976 was that A can have two
sharply different behaviors according to whether A x A has exactly four, or more
than four congruences.

Let us consider first the case when |Con (A x A)| = 4. It can be proved that
under the assumptions on A this implies that |Con (A*)| = 2F for all £ > 1. In
particular, this has the following consequences.

e If A is finite and has no nontrivial subalgebras, then the variety V(A) is
congruence distributive. (A variety is said to be congruence distributive if
all algebras in the variety have a distributive congruence lattice.)

e If A is finite and A denotes the algebra arising from A by adding all constants
as fundamental operations, then the variety V(A™) is congruence distributive.

In both cases A is a functionally complete algebra; that is, every operation on
the base set of A is a polynomial operation of A. An analogous conclusion holds
even if A is infinite: every operation on the base set of A can be “interpolated”
on any finite subset of its domain by a polynomial operation of A. Recall that a
polynomial operation of an algebra is an operation which arises from fundamental
operations and from constant operations via composition. In contrast, an operation
which arises from the fundamental operations only via composition, is called a term
operation of the algebra.

Now let |Con (A x A)| > 4. This means that A X A has a congruence © such that
7,NO =0and n;,00 =1 for s = 1,2. One can show that A has this property if and
only if condition (2) — or the equivalent condition (1) — holds for A. Moreover,



it follows also that under the assumptions on A condition (2) is equivalent to the
following:

There exist an abelian group A = (4;+) and
a subring R of its endomorphism ring End A such that (3)
A is polynomially equivalent to pzA.

Two algebras are said to be polynomially equivalent if they have the same poly-
nomial operations.

2 Abelian Versus Affine

Properties (2) and (3) will play a central role throughout this paper. An algebra
A is said to be abelian if (2) [or, equivalently, (1)] holds for A, and affine if (3)
holds for A. Obviously, not all abelian algebras are affine: a set with no operations
clearly forms an abelian algebra which is not affine. However, all affine algebras are
abelian. To see this it suffices to notice that for any module Rﬁ the congruence A
of Rﬁ X R/T can be described as follows:

(a,0) A(c,d) <= a—-b=c—d.

Hence the same holds for any affine algebra A which is polynomially equivalent to
Rzzl\.

As we mentioned above, in congruence permutable varieties simple abelian alge-
bras must be affine. In fact, simplicity is irrelevant here; in other words, in con-
gruence permutable varieties ‘being abelian’ and ‘being affine’ are equivalent prop-
erties for any algebra. The proof that in congruence permutable varieties abelian
algebras are affine is fairly straightforward. It makes use of the fact that by con-
gruence permutability A has a ternary term operation p satisfying the identites
p(z,y,y) = = = p(y,y,x), and then using the abelian property proceeds to show
that for any element 0 in A the operation z +y = p(z, 0, y) yields an abelian group
A= (A; +) such that every polynomial operation of A is a polynomial operation of
the module _, gﬁ. This is enough to conclude that A is affine.

This result on abelian algebras in congruence permutable varieties was soon gener-
alized to congruence modular varieties, that is, to varieties in which all algebras
have a modular congruence lattice (see [3]). This is the first deep theorem on how
modules occur in general algebra.

THEOREM 2.1 (C. Herrmann) In congruence modular varieties every abelian
algebra 1s affine.

Idea of proof. Let V be a congruence modular variety, and let A be an algebra
from V. There are two important facts, both depending heavily on congruence
modularity, which are crucial to the proof:
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e If A is abelian, then so is the algebra (A x A)/A.
e Let A be abelian. For any element 0 € A the mapping
A — (AXxA)/A, a— (a,0)/A

is injective. Moreover, if {0} is a trivial subalgebra of A, then ¢ is an embed-
ding.

From now on the proof splits into two cases.
Assume first that A has a trivial subalgebra, say {0}. The facts mentioned above
allow us to define an infinite sequence of abelian algebras as follows:

A() =A and Ai—l—l = (AZ X Az)/AAZ for i > 0.

In this sequence each algebra is embedded in the next one by the injective homo-
morphism described above, so we can form the direct union of this infinite family
as shown in the diagram below:

o
Ao‘—>A1‘—>...‘—>AZ';)AZ'+1‘—)...‘—) UAZ:K

i=0
It turns out that there is a natural way for defining an abelian group operation +
on the universe of A so that the algebra (A;+), which arises from A by adding +
as a new operation, becomes an affine algebra; namely, + is defined in such a way
that subtraction on A is the union of the natural homomorphisms A; x A; — A;,;.
This shows that

A embeds in a reduct of an affine algebra. (4)

Making use of the assumption that V is congruence modular, one can derive from
property (4) that A must be affine, as claimed.

Now assume that the abelian algebra A has no trivial subalgebras, and form the
algebra A° = (A x A)/A. Since the diagonal D is a block of A, this algebra has a
trivial subalgebra. It is also abelian, therefore by the case settled above we conclude
that the algebra A° is affine. One can show now that A, too, must be affine. This
completes the proof of Herrmann’s Theorem. O

3 Abelian Versus Quasi-affine

The property displayed in (4) defines an important class of algebras. The members
of this class are usually not affine, but they are still ‘close enough’ to modules so
that their operations are tractable. The algebras satisfying condition (4) are said to
be quasi-affine.

It is not hard to see that all quasi-affine algebras are abelian. Indeed, if A is quasi-
affine, that is, it embeds in a reduct of an affine algebra A*, then the congruence A«
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t(a,c) t(b,d)

t(b,c) t(a,d)

Figure 3: Square labelled with a twisted matrix in A

of A* x A* restricts to A X A as a congruence of A X A; moreover, this congruence of
A x A has the diagonal as a congruence class, because Ap+ has the same property
with respect to A* x A*. Thus A satisfies condition (1), and hence it is abelian.

It will be useful to present yet another condition which is equivalent to condi-
tions (1)—(2) defining the abelian property.

CLAIM 3.1 An algebra A is abelian if and only if A satisfies the following term
condition: for all polynomial operations t of A and for all tuples a,b,c,d of ap-
propriate lengths in A we have

t(a,c) =t(a,d) <= t(b,c)=t(b,d).

It will be convenient to visualize this condition as shown in Figure 3. We
have a square whose vertices can be labelled with 2 x 2 matrices of the form

t(a,c) t(b,d)

t(b,c) t(a,d)
ples of appropriate lengths in A. Such matrices will be called twisted matrices
in A. The term condition requires that whenever the labelling is such that the two
vertices of a diagonal have the same label, then the two vertices of the other diagonal
also have the same label.

Claim 3.1 provides a new way for us to verify that quasi-affine algebras are abelian.
Suppose that the algebra A is quasi-affine, that is, it embeds in a reduct of an affine
algebra A*. Let rA* be a module with underlying abelian group A = (A*; +) such
that A* is polynomially equivalent to rA*. Every polynomial operation t(x,y) of
A~ is of the form

] where t is a polynomial operation of A and a,b,c,d are tu-

tx,y) =D rwi+ Y sy +u
for some 7;,5; € R and u € A*. Therefore for any twisted matrix in A as displayed
in Figure 3 the equality

t(a,c) +t(b,d) =t(b,c) + t(a,d)

holds in the algebra A*, that is, the sum of the two top and the two bottom elements
of the square — computed in the abelian group A* — are equal. Thus, if the elements

6



along one of the diagonals are equal, then the elements along the other diagonal must
also be equal. This shows that the term condition holds for A, hence A is abelian.

Again, one can construct examples to show that not all abelian algebras are
quasi-affine.

In the literature there are quite a few (but not many) results stating that under
certain conditions an abelian algebra must be quasi-affine (or affine). Herrmann’s
Theorem discussed in the preceding section is one of them. Further sufficient condi-
tions are listed in the theorem below, where — unlike in Herrmann’s Theorem — no
assumption is made on the congruence properties of the variety the algebra comes
from.

THEOREMS 3.2 An abelian algebra A is quasi-affine provided that it satisfies
one of the following conditions:

(i) A is finite and simple (or more generally: tame) (D. Hobby — R. McKenzie

[4]).
(ii) A is finite and all its minimal congruences are of type 2 (R. McKenzie [9]).
(iii) A is simple and idempotent (K. A. Kearnes [5]).

(iv) A has a central, cancellative binary term (K. A. Kearnes [6]).

The proof of (iii) uses Herrmann’s method, while (i)—(ii) use the techniques of
tame congruence theory — a structure theory of finite algebras and locally finite
varieties —, for which the reader is referred to the book [4]. The same deep theory
made it possible to prove in [4] another sufficient condition, which is more in the
vein of Herrmann’s Theorem.

THEOREM 3.3 (D. Hobby — R. McKenzie) If V is a locally finite variety
which satisfies a nontrivial lattice identity as a congruence equation, then in'V every
abelian algebra is affine.

For more than ten years an outstanding open problem has been whether the same
conclusion holds true if the assumption that V is locally finite is omitted.

PROBLEM 3.4 Is it true that if V is any variety which satisfies a nontrivial lattice
identity as a congruence equation, then in V every abelian algebra is affine?

We will discuss this problem shortly. Before that we will look at the question how
quasi-affine algebras can be characterized within the class of abelian algebras. Let
A be a quasi-affine algebra, and let A* be an affine algebra such that A embeds in
a reduct of A*. Let pA* be a module with underlying abelian group A* = (4*;+)
such that A* is polynomially equivalent to rA*. As we have pointed out earlier, the
reason for the term condition to hold in A is that for any labelling of the square



n squares

matching: M

Figure 4: A hierarchy of “term conditions”

with a twisted matrix in A, the sum — computed in A* — of the two top and the
two bottom elements are equal.

A similar argument works for any finite number of squares instead of only one
square. Suppose that we have n squares whose vertices are labelled with twisted
matrices in A (see Figure 4). Since the two top and the two bottom elements of each
square sum up in A* to the same element, therefore the sum of all 2n top elements
is the same as the sum of all 2n bottom elements. Consequently, if the labelling is
such that there exists a matching M between the 2n top vertices and the 2n bottom
vertices which has the property that the two vertices on each edge from M, except
on a fixed edge e € M, have the same label, then the two vertices on e must also
have the same label.

For each choice of n, M, e this is a kind of “term condition”. The special case
when n = 1 and M is the matching determined by the diagonals of the square,
coincides with the term condition introduced in Claim 3.1. The other matching
in the case n = 1 yields essentially the same condition, only the role of x and y
is switched in the polynomial operations ¢(x,y). Thus we have found an infinite
family of “term conditions”, including the original term condition, which must hold
in every quasi-affine algebra. R. Quackenbush [10] proved that these term conditions
are not only necessary, but also sufficient for an algebra to be quasi-affine.

THEOREM 3.5 (R. Quackenbush) An algebra A is quasi-affine if and only if
for any positive integer n, for each matching M between the 2n top vertices and the
2n bottom wvertices of n squares and for each edge e € M, if the vertices of the n
squares are labelled with twisted matrices from A in such a way that the two vertices
on each edge from M —{e} have the same label, then the two vertices on e also have
the same label.

This characterization of quasi-affine algebras shows that the class of quasi-affine
algebras can be axiomatized by an infinite set of universal Horn sentences, and
therefore quasi-affine algebras form a quasivariety. R. Quackenbush proved also
that this quasivariety is not finitely axiomatizable, hence one cannot expect to find
a much simpler axiom system than the one in Theorem 3.5.

Quackenbush’s characterization of quasi-affine algebras was generally believed
to be too complicated to be applicable in proving quasi-affineness. In fact, until



recently it has never been used to actually prove any result of the kind which are
listed in Theorems 3.2.

4 New Results

This section surveys some results from the paper [7] where, among other things an
affirmative solution is given to Problem 3.4. The main result in [7] on the relationship
between abelian and quasi-affine algebras is the following sufficient condition for an
abelian algebra to be quasi-affine.

THEOREM 4.1 If A is an abelian algebra such that A Nny = 0 holds in the
congruence lattice of A X A, then the algebra A is quasi-affine.

Most earlier sufficient conditions on quasi-affineness are special cases of this the-
orem. Among the results listed in Theorems 3.2, (i) for simple (tame) algebras of
type 2 and (ii)—(iii) are consequences of Theorem 4.1. However, Theorem 4.1 differs
from the earlier results in that its proof makes use of Quackenbush’s Theorem. To
show how Quackenbush’s characterization is applied we sketch the proof below.

Idea of proof of Theorem 4.1. Suppose that A is an abelian algebra which is
not quasi-affine. We have to prove that the congruences A and 7, of A x A intersect
nontrivially.

Since A is not quasi-affine, there exist a positive integer n, a matching M between
the 2n top vertices and the 2n bottom vertices of n squares, and an edge e € M
such that Quackenbush’s condition fails; this failure means that the n squares can
be labelled with twisted matrices from A in such a way that the two vertices on
each edge in M — {e} have the same label, but the two vertices of e have different
labels.

Let us fix n, M, e so that n be minimal. Since A is abelian, we must have n > 2.
The square which contains the top vertex of e will be called the critical square.
We will select another edge, namely an edge whose bottom vertex is in the critical
square, and will denote it ¢’. (Notice that usually we have two choices for ¢'.)

Now let us define a binary relation p on A x A as follows:

(p,q) p(rys) <= the partial labelling of the n squares with p,q,r, s
(as shown in Figure 5) can be extended to a full
labelling of the n squares with twisted matrices in A
so that the two vertices of each edge in M — {e, €'}
have the same label.

The assumption that Quackenbush’s condition fails for n, M, e means that there
exist pairs (p,q) and (r,s) in A x A such that (p,q) p(r,s) and s = ¢, but p # r.
Consequently

pNng #0. (5)



THE CRITICAL SQUARE

Figure 5: Choice of €' for the definition of p

It is easy to see that p is a compatible binary relation of the algebra A x A. The
crucial steps in the proof are to show that

(a) for any p-related pairs (p, q) p (r, s) we have p = ¢ if and only if r = s,
and
(b) the relation p is reflexive (for appropriate choice of €').

(a) can be proved by making use of the minimality of n. If (p, q) p (r, s), then by
the definition of p the n squares can be labelled with twisted matrices in A such that
the elements p, g, r, s occur at the appropriate vertices, and the two vertices of each
edge in M —{e, ¢’} get the same label. It turns out that if either one of the equalities
p = q, resp. r = s holds, then we can omit the critical square together with all edges
starting there, and then add (at most two) new edges so that the same labelling
as before is a labelling of the remaining n — 1 squares with twisted matrices from
A in such a way that all edges but one have the same label on their two vertices;
moreover the exceptional edge has labels r, s, resp. p,q on its two vertices. Since
Quackenbush’s conditions must hold for all labellings of less than n squares, we can
derive the missing equality r = s, resp. p = gq.

The proof of (b) depends on a simple graph theoretical argument which allows
us to show that for at least one choice of the edge €’ the n squares can be labelled
with the matrices

B A P P L

where a, b are any two fixed elements of A, in such a way that the two vertices of
each edge in M get the same label, moreover, e is labelled with a’s and €’ is labelled
with b’s. These matrices are obviously twisted matrices in A, therefore it follows
that (a,b) p(a,b).

Once (a)—(b) are verified for p, we can easily complete the proof of the theorem.
Firstly, (b) immediately implies that the symmetric, transitive closure p of p is
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a congruence of A and we have p C p. Secondly, (a) has the consequence that
the congruence p inherits from p the property that in the algebra A x A diagonal
elements are p-related to diagonal elements only. Since A is the largest congruence
of A x A with this property, therefore p C A. Hence p C A. Combining this with
(5) we see that A Nny # 0, what was to be proved. O

One can show that the hypotheses of Theorem 4.1 always hold for an abelian
algebra A which belongs to a variety satisfying a nontrivial idempotent Mal’cev
condition. The property that a variety satisfies an idempotent Mal’cev condi-
tion means that the variety satisfies a condition of the form “there exist idempotent
terms in the language of the variety for which certain identities hold”, and such a
condition is called nontrivial if it fails in at least one variety. It is worth noting
that a variety satisfies a nontrivial idempotent Mal’cev condition if and only if a
nontrivial congruence condition holds for all congruences of all members of the vari-
ety. Here, by a congruence condition we mean an equation expressible in terms
of A (intersection of relations), V (congruence generated by the union of the two
relations), and o (composition of relations).

Thus we can derive the following important corollary to Theorem 4.1.

COROLLARY 4.2 IfV is a variety which satisfies a nontrivial idempotent Mal’cev
condition (or, equivalently, a nontrivial congruence condition), then in V every
abelian algebra is quasi-affine.

Under slightly stronger assumptions we can also conclude that abelian algebras
must be affine.

THEOREM 4.3 IfV is a variety which satisfies an idempotent Mal’cev condition
that fails in the variety of semilattices, then in YV every abelian algebra is affine.

It is a well-known fact that every variety in which a nontrivial lattice identity
holds as a congruence equation, satisfies the hypotheses of the preceding theorem.
Thus the corollary below is an immediate consequence of Theorem 4.3.

COROLLARY 4.4 IfV is a variety which satisfies a nontrivial lattice identity as
a congruence equation, then in V every abelian algebra is affine.

This solves Problem 3.4.

5 Concluding Remarks

As we mentioned at the beginning of the paper, the investigation of abelian algebras
is part of general commutator theory, which is an important tool in studying the
structure of algebras in general. A commutator is a binary operation defined on the
congruence lattices of algebras. The notion generalizes the well-known commutator
operation for groups. As in groups, the commutator of two congruences «,f is

11



denoted [a, 8], and an algebra is called abelian exactly when [1,1] = 0 holds for its
congruences 1 (full relation) and 0 (equality relation).

The results on abelian algebras which are surveyed in this paper all reflect an
important development in commutator theory. A general commutator theory was
first worked out for congruence permutable varieties by J. D. H. Smith [11]. This
was soon extended to congruence modular varieties by J. Hagemann and C. Herr-
mann [2]. The notion of the congruence modular commutator is defined in terms of
the centrality relation, which is based on a relativized version of the term condition
from Claim 3.1; if «, 8 are congruences of an algebra A then [«, 3] is defined to be
the least congruence v of A such that « centralizes S modulo 7.

In congruence modular varieties the commutator has nice algebraic and categor-
ical properties. These properties have made commutator theory a very effective
technique in studying algebras in congruence modular varieties. For the details of
these developments the reader is referred to the book [1].

The definition of the commutator based on the centrality relation makes sense
for arbitrary algebras, not only for those in congruence modular varieties. And, in
fact, the theory of this commutator produced very significant results, especially for
finite algebras and locally finite varieties; see e.g. [4]. However, some of the nice
properties that are true in the congruence modular case remain no longer valid in a
more general setting. For instance, the commutator is no longer symmetric — that
is, [a, 5] = [B, a] is not true in general —, and we don’t understand the structure of
abelian algebras.

R. Quackenbush hinted in [10] that these shortcomings could be avoided if one
defined a commutator using his infinite family of “term conditions”. This approach
would yield a commutator [«, §]; — called the linear commutator — which is
symmetric and such that the abelian algebras with respect to this commutator are
exactly the quasi-affine algebras.

Until recently, the main problem with this commutator was that it was not known
whether the linear commutator is a ‘true commutator’ in the sense that it agrees
with the usual commutator in congruence modular varieties. In the paper [7] we
prove that the answer to this question is ‘yes’. In fact, much more is true:

IfV is a variety which satisfies a nontrivial idempotent Mal’cev condition (or, equiva-
lently, a nontrivial congruence condition), then the linear commutator coincides with
the symmetric commutator throughout V.

The symmetric commutator is the symmetric version of the commutator based
on the centrality relation; in more detail, if o, 8 are congruences of an algebra A
then their symmetric commutator [«, 5], is defined to be the least congruence 7y of
A such that « centralizes f modulo v and also 8 centralizes & modulo 7.

12



References

[1] R. Freese and R. McKenzie, Commutator Theory for Congruence Modular Va-
rieties, LMS Lecture Note Series, No. 125, Cambridge University Press, 1987.

[2] J. Hagemann and C. Herrmann, A concrete ideal multiplication for algebraic
systems and its relation to congruence distributivity, Arch. Math. (Basel) 32
(1979), 234-245.

[3] C. Herrmann, Affine algebras in congruence modular varieties, Acta Sci. Math.
41 (1979), 119-125.

[4] D. Hobby and R. McKenzie, The Structure of Finite Algebras, Contemporary
Mathematics, American Mathematics Society, Providence, Rhode Island, 1988.

[6] K. A. Kearnes, Idempotent simple algebras, in “Logic and Algebra” (Proceed-
ings of the Magari Memorial Conference, Siena), Marcel Dekker, New York,
1996.

[6] K. A. Kearnes, A quasi-affine representation, Internat. J. Algebra and Comput.
5 (1995), 673-702.

[7] K. A. Kearnes and A. Szendrei, The relationship between two commutators,
Internat. J. Algebra and Comput., to appear.

[8] R. McKenzie, On minimal, locally finite varieties with permuting congruence
relations, Preprint, 1976.

[9] R. McKenzie, unpublished result.

[10] R. W. Quackenbush, Quasi-affine algebras, Algebra Universalis 20 (1985), 318
327.

[11] J. D. H. Smith, Mal’cev Varieties, Springer Lecture Notes No. 554, 1976.

Author’s Address:
AGNES SZENDREI
JOZSEF ATTILA UNIVERSITY
BOLYAI INSTITUTE
H-6720 SzeGep, HUNGARY
Phone: 36—62—454087
Fazx: 36-62—-326246
email: A.Szendrei@math.u—szeged.hu

13



