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Abstract. Let (†) denote the following property of a variety V: Every
subquasivariety of V is a variety. In this paper, we prove that every idem-
potent dual discriminator variety has property (†). Property (†) need not
hold for nonidempotent dual discriminator varieties, but (†) does hold
for minimal nonidempotent dual discriminator varieties. Combining the
results for the idempotent and nonidempotent cases, we obtain that
every minimal dual discriminator variety is minimal as a quasivariety
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1. Introduction

In this paper, we consider a question that originates in algebraic logic. A
propositional deductive system is called structurally complete if every admis-
sible rule of the logic is derivable. Informally, this means that the rules of
inference cannot be properly enlarged without properly increasing the set of
theorems. As explained in [1], structural completeness for algebraizable logics
corresponds to a property of the corresponding quasivariety: a quasivariety
is structurally complete if it is generated as a quasivariety by its free mem-
bers. The hereditary version of this property is of interest in algebraic logic:
a quasivariety Q is hereditarily structurally complete, or deductive, if every
subquasivariety of Q is generated by its free members. This is equivalent to
the property that every subquasivariety of Q is a relative subvariety, i.e. is of
the form Q ∩ V for some variety V. When Q is itself a variety, this property
means that every subquasivariety of Q is a subvariety.
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We take as our starting point the algebraic versions of these concepts.
We consider the question: when is it the case that every subquasivariety of
some variety is a variety? Our main result is about minimal varieties, and
in this case the question becomes: when is a minimal variety minimal as a
quasivariety?

In this paper we prove the following.

Theorem 1.1. If V is a minimal dual discriminator variety, then V is minimal
as a quasivariety.

The argument for Theorem 1.1 is divided into two parts. In the first part we
prove that any subquasivariety of an idempotent dual discriminator variety
is a variety. Then we prove that any nonidempotent, minimal, dual discrim-
inator variety is minimal as a quasivariety.

The dual discriminator operation on a set A is the ternary operation

q(a, b, c) =

{
a if a = b;

c else.

This operation is a ternary majority operation on A.

A variety V is a dual discriminator variety if it is generated as a variety
by a subclass K ⊆ V for which there exists a ternary term q(x, y, z) such
that q interprets as the dual discriminator operation on each member of K.
This forces the class of nontrivial members of the universal class SPU (K) to
coincide with the class of simple members of V, and also to coincide with the
class of subdirectly irreducible members of V.

The standard examples of dual discriminator varieties are the variety
of distributive lattices and the variety of Boolean algebras. In each of these
cases, a suitable class K consists of the algebras in the variety of size ≤ 2, and
the term q(x, y, z) = (x∨y)∧(x∨z)∧(y∨z) interprets as the dual discrimina-
tor on K. Other examples can be created by starting with an arbitrary class
K of similar algebras, adjoining a ternary operation q(x, y, z) that is the dual
discriminator operation on K, and generating a variety with the resulting
class Kq.

The main theorem of this paper was proved for the more restrictive class
of discriminator varieties in Proposition 5.4 of [4]. It is known that a variety
is a discriminator variety if and only if it is both congruence permutable and
a dual discriminator variety [7, Lemma 2.2(iii)].

2. The idempotent case

Our goal in this section is to prove that any subquasivariety of an idempotent
dual discriminator variety is a variety. We begin by enumerating some of the
properties of idempotent dual discriminator varieties.

The property that is most important for us, which is recorded in the next
lemma, is that if V is an idempotent dual discriminator variety, A ∈ V, and
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a, b ∈ A, then the principal congruence CgA(a, b) has a uniquely determined

complement CgA(a, b)∗, which is the kernel of an endomorphism of A.

Lemma 2.1. Let V be an idempotent dual discriminator variety, and suppose
q(x, y, z) is a ternary term whose interpretation in all simple members of V is
the dual discriminator operation. Let A ∈ V and let a, b ∈ A. The following
hold:

(1) The function ha,b(x) := qA(a, b, x) is an endomorphism of A.

(2) The congruence CgA(a, b)∗ := ker(ha,b) is the unique complement of

CgA(a, b) in Con(A).

Proof. The fact that ha,b is an endomorphism is [7, Theorem 3.2(2)]. Item
(2), except for the uniqueness statement, is proved in [7, Theorem 3.8]. But
dual discriminator varieties are congruence distributive, since the dual dis-
criminator operation is a majority operation for the variety, and in congru-
ence distributive varieties complements of congruences are unique when they
exist. �

The congruence CgA(a, b)∗, complementary to CgA(a, b), is called the
co-principal congruence associated to (a, b).

We write H, S, and P to denote the class operators for the formation
of the class of homomorphic images, subalgebras, and products, respectively.
We let Q(A) denote the quasivariety generated by A. If Q is a quasivariety
and A ∈ Q we write ConQA to denote the set of relative congruences of A,
that is the set of all θ ∈ Con(A) such that A/θ ∈ Q.

Lemma 2.2. Let V be an idempotent dual discriminator variety, let Q ⊆ V be
a subquasivariety, and let A ∈ Q.

(1) The join of two co-principal congruences of A is co-principal: specifi-
cally, for all a, b, c, d ∈ A it is the case that

CgA(a, b)∗ ∨ CgA(c, d)∗ = CgA(qA(a, b, c), qA(a, b, d))∗.

(2) For all a, b ∈ A, A/CgA(a, b)∗ ∈ S(A) ⊆ Q. Hence CgA(a, b)∗ ∈
ConQA.

(3) If γ is a maximal congruence of A, then γ ∈ ConQA.

Proof. Item (1) is proved in [7, Corollary 3.9]. Item (2) follows from the fact

that CgA(a, b)∗ is the kernel of an endomorphism of A.
Now we consider Item (3). Fix a maximal congruence γ of A, and let

I := {θ∗ : θ∗ ⊆ γ and θ is a principal congruence}
be the set of co-principal congruences contained in γ. We aim to show that
γ is the directed union of the elements of I. The fact that I is directed by
join follows from Item (1). Since γ ⊇

⋃
I, it suffices to prove that the union

of I majorizes every principal congruence below γ.
Choose a pair (a, b) ∈ γ. We have CgA(a, b)∗ * γ, because otherwise

A2 = CgA(a, b) ∨ CgA(a, b)∗ ⊆ γ,
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which is false. Hence there is a pair (c, d) ∈ CgA(a, b)∗ \ γ. Since CgA(c, d)∩
CgA(c, d)∗ = ∆A ⊆ γ, and γ is meet prime in Con(A), it follows that

CgA(c, d)∗ ⊆ γ. We have

(c, d) ∈ CgA(a, b)∗ ⇔ CgA(a, b) ∧ CgA(c, d) = ∆A

⇔ (a, b) ∈ CgA(c, d)∗ (⊆ γ).

So, for every (a, b) ∈ γ there is a co-principal congruence CgA(c, d)∗ such

that (a, b) ∈ CgA(c, d)∗ ⊆ γ, which is what was required to establish that
γ =

⋃
I.

The lattice ConQA of relative congruences of A with respect to the
quasivariety Q is the lattice of closed sets of an algebraic closure operator
(cf. [5, Lemma 2.2]). Therefore ConQA is closed under the formation of unions
of up-directed subsets. By Item (2) of this lemma we have that I ⊆ ConQA,
and by Item (1) of this lemma I is directed by join, so γ =

⋃
I ∈ ConQA. �

We are now ready to prove the main result in this section.

Theorem 2.3. If V is an idempotent dual discriminator variety, then any
subquasivariety of V is a subvariety.

Proof. Let Q be a subquasivariety of V. We shall argue that Q is closed under
the formation of quotients. Choose A ∈ Q. We proved in Lemma 2.2 (3) that
the maximal congruences of A belong to ConQ(A). Since every subdirectly
irreducible algebra in V is simple, every congruence on A is an intersection
of maximal congruences. But ConQ(A) is closed under intersection, so we
must have Con(A) ⊆ ConQ(A). This means exactly that if θ ∈ Con(A),
then A/θ ∈ Q, or equivalently that H(Q) ⊆ Q. �

Theorem 2.3 establishes Theorem 1.1 when V is idempotent.

3. The non-idempotent case

C. Bergman and R. McKenzie proved the following result about locally finite
varieties that are minimal as quasivarieties.

Proposition 3.1 ([2, Corollary 2]). Let V be a locally finite variety. Then V is
a minimal quasivariety if and only if

(1) V has a unique subdirectly irreducible algebra A, and
(2) A is embeddable in every nontrivial member of V.

The algebra A, if it exists, is finite and strictly simple.

Using a fine analysis of finite strictly simple algebras, it is shown in [8]
that Item (1) implies Item (2) for any locally finite variety.

We want to extend the “if” direction of Proposition 3.1 to a version
that applies to varieties that need not be locally finite. Let VS and VSI de-
note the classes of simple members and subdirectly irreducible members of
V respectively.
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Proposition 3.2. If V is a variety and

(1) VSI ∪ {trivial algebras} is a universal class that is minimal for properly
containing the class {trivial algebras}, and

(2) every nontrivial member of V contains a subalgebra in VSI,
then V is minimal as a quasivariety.

Proof. Assume that ϕ is a quasi-identity that holds in some nontrival algebra
A ∈ V. By Item (2), there exists S ∈ VSI embeddable in A. Necessarily S
satisfies ϕ. By Item (1) we derive that VSI satisfies ϕ, and therefore V =
SP(VSI) also satisfies ϕ. �

Let’s apply this result to minimal filtral varieties.
Recall that a variety V is filtral if it is semisimple (meaning VSI = VS)

and, for every A ∈ V and every representation of A as a subdirect product
of simple algebras, every congruence on A is determined by a filter on the
index set of the product (cf. [3, 9]).

It is known that a variety V is filtral if and only if it is congruence dis-
tributive and has the property that principal congruences are complemented
on members of V (cf. [6, Theorem 4.14]). It is also known that if V is filtral,
then VS ∪ {trivial algebras} is a universal class. This allows us to derive the
following result from Proposition 3.2.

Theorem 3.3. Let V be a minimal filtral variety. If every nontrivial member
of V has a simple subalgebra, then V is minimal as a quasivariety.

The proof of Theorem 3.3 is recorded after the proof of the next lemma.

Lemma 3.4. Suppose V is a minimal filtral variety. If ϕ is a universal or
existential sentence in the language of V, then either VS � ϕ or VS � ¬ϕ.

Proof. Suppose to the contrary that there is a universal sentence ϕ such that
K := {A ∈ VS : A � ϕ} satisfies ∅ 6= K ( VS. If W is the variety generated
by K, by Jónsson’s lemma, the class of subdirectly irreducibles members in
W agrees with K. Thus W ( V, which contradicts the minimality of V. �

Proof of Theorem 3.3. Lemma 3.4 and VSI = VS establish that Item (1) of
Proposition 3.2 holds for any minimal filtral variety. If every nontrivial mem-
ber of V has a simple subalgebra, then Item (2) of Proposition 3.2 will also
hold. �

Next we provide a condition which identifies circumstances when Item
(2) of Proposition 3.2 holds for filtral varieties.

Proposition 3.5. Let V be a minimal filtral variety. Suppose there are a term
t(x̄) and S ∈ VS such that

(1) tS is a constant function and
(2) the range of tS is not a singleton subuniverse of S.

Then V is minimal as a quasivariety.
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Proof. Our aim is to prove that if some term t(x̄) has the properties listed,
then there must be a simple member P ∈ VS that is embeddable in every
nontrival member of V. The conclusion of Proposition 3.5 then follows from
Theorem 3.3.

Suppose that t(x̄) and S ∈ VS satisfy the hypotheses. Then, by Lemma
3.4, it follows that VS � t(x̄) = t(ȳ), i.e, the interpretation of t is a constant
function in each simple algebra. Furthermore, if

∆(y) := {α(y) : S � α(t(x̄)) and α(y) is ± atomic},

then VS � ∆(t(x̄)). Since every member of V is (isomorphic with) a subdirect
product of simple algebras, it is easy to see that

V \ {trivial algebras} � ∆(t(x̄)). (‡)

Let s ∈ S be such that tS(x̄) = s, and let P be the subalgebra of S generated
by s. Note that (2) says that P is nontrivial, and, since VS is closed under
substructures, it follows that P ∈ VS.

We are now ready to see that P is embeddable in any nontrivial A ∈ V.
Choose ā ∈ An and let a := tA(ā). Now, (‡) implies that the subalgebra of
A generated by a is isomorphic with P. �

Note that Proposition 3.5 holds, in particular, when V has constant
terms 0 and 1 such that 0 6= 1 for all nontrivial algebras in V. This motivates
the following:

Problem 3.6. Is every minimal filtral variety minimal as a quasivariety?

Our next result shows that the minimality question for filtral varieties
can be settled by inspecting the two-variable quasi-identities.

Lemma 3.7. Let V be a minimal filtral variety which is not minimal as
a quasivariety. Then, there exists a quasi-identity ρ in two variables, say
∀xy(α(x, y) → β(x, y)), such that V 2 ρ and A � ρ for some nontrivial
A ∈ V. Furthermore, if V is not idempotent, then there is such a quasi-
identity in just one variable.

In this lemma (and later), we write quasi-identities compactly as

∀xy(α(x, y)→ β(x, y)).

In such an expression, α is a conjunction of atomic formulas and β is atomic.

Proof. Let V be a minimal filtral variety which is not a minimal as a quasiva-
riety. Then, there is a quasi-identity ϕ := ∀x̄(α0(x̄) → β0(x̄)) such that
V 2 ϕ and A � ϕ for some nontrivial A ∈ V. From the fact that V 2 ϕ
it is clear that VS 2 ϕ, which by Lemma 3.4 yields VS � ¬ϕ. Now, let S
be a simple algebra generated by some {s, s′} ⊆ S (there is always such an
algebra because VS is closed under subalgebras). Since S � ¬ϕ, there exist
terms t1(x, y), . . . , tn(x, y) such that

S � α0(t1(s, s′), . . . , tn(s, s′)) ∧ ¬β0(t1(s, s′), . . . , tn(s, s′)).
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Define

α(x, y) := α0(t1(x, y), . . . , tn(x, y)),

β(x, y) := β0(t1(x, y), . . . , tn(x, y)).

The quasi-identity ∀xy(α(x, y)→ β(x, y)) will hold in A and fail in S.
In the case that V is not idempotent, in the argument above we can

take S generated by a single element. �

Any dual discriminator variety is filtral since (i) it is congruence dis-
tributive (the dual discriminator term operation on VS is a majority term
operation for V) and (ii) principal congruences are complemented (cf. [7,
Theorem 3.8]), so all of the above applies to dual discriminator varieties.
From this point we restrict our focus to dual discriminator varieties. One
essential consequence of this strengthened assumption is that dual discrimi-
nator varieties have a majority term.

Let A be a structure and f : An → A be a function. We say that a first-
order formula Φ(x̄, y) defines the function f in A provided that A � Φ(ā, b)
if and only if f(ā) = b. For functions f : An → A and g : Bn → B let
f × g : (A × B)n → A × B be defined by (f × g)((a1, b1), . . . , (an, bn)) :=
(f(ā), g(b̄)).

Lemma 3.8 (From [10, Corollary 4.4]). Let K be a first-order axiomatizable
class of algebras with a majority term and suppose that for each A ∈ K,
the first-order formula Φ(x̄, y) defines a function FA : An → A in A. The
following are equivalent:

(1) There is a term t(x̄) such that for all A ∈ K and all ā ∈ An we have
FA(ā) = tA(ā).

(2) For all A,B ∈ K, all S ≤ A × B and all s̄ ∈ Sn we have that (FA ×
FB)(s̄) ∈ S.

We shall need the characterization of the subalgebras of twofold prod-
ucts under the presence of the dual discriminator.

Lemma 3.9 ([7, Theorem 2.4]). Let A and B be algebras, and suppose there
is a term q(x, y, z) that interprets as the dual discriminator in both A and
B. Let C ≤ A×B, and let A0 and B0 be the projections of C into A and B
respectively. One of the following holds:

(1) C = A0 ×B0.
(2) C is the graph of an isomorphism between A0 and B0.
(3) C = ({a} × B0) ∪ (A0 × {b}) for some a ∈ A0 and b ∈ B0, and with
|A0| , |B0| > 1.

We are now ready to prove the main result in this section.

Proof of the non-idempotent case of Theorem 1.1. We argue that a minimal
non-idempotent dual discriminator variety is minimal as a quasivariety.

By Proposition 3.5 we may assume that:
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(∗) there do not exist t(x) and S ∈ VS satisfying (1) and (2) of Proposition
3.5. (Expressed in a positive form, we are assuming that for any t(x)
and S ∈ VS, if tS(x) is a constant function, then its range must be a
singleton subuniverse.)

By Lemma 3.7, it suffices to prove that if ρ is any quasi-identity in one
variable such that V 2 ρ, then there are no nontrivial models of ρ in V. So,
fix ρ equal to ∀x(α(x)→ β(x)) such that V 2 ρ. From the fact that V 2 ρ it
follows that VS 2 ρ, and thus, by Lemma 3.4, we have

VS � ∃x(α(x) ∧ ¬β(x)). (A)

Let

γ(x) := α(x) ∧ β(x) and ϕ(x) := α(x) ∧ ¬β(x).

Our next step is to prove the following:

VS � γ(x) ∨
∨

t∈T (x)

ϕ(t(x)). (B)

To see this, fix S ∈ VS and s ∈ S. Let S0 be the subalgebra of S generated
by s; there are two cases. If S0 is trivial, then clearly S � γ(s). Otherwise,
S0 is a simple algebra, and thus, by (A), we have that S0 � ∃xϕ(x). Hence,
there is a term t ∈ T (x) such that S0 � ϕ(t(s)), which in turn implies that
S � ϕ(t(s)), since ϕ(t(x)) is quantifier-free. This completes the proof of (B).
Next, observe that by compactness there are terms t1(x), . . . , tn(x) such that

VS � γ(x) ∨ ϕ(t1(x)) ∨ · · · ∨ ϕ(tn(x)). (3.1)

For each S in VS define a function FS : S → S by

FS(x) =


x if γ(x),

t1(x) if ϕ(t1(x)) ∧ ¬γ(x),
...

...

tn(x) if ϕ(tn(x)) ∧ ¬ϕ(tn−1(x)) ∧ · · · ∧ ¬ϕ(t1(x)) ∧ ¬γ(x).

We aim to apply Lemma 3.8 to obtain a term r(x) that interprets as FS in
each simple algebra S in V. It is not hard to write the previous displayed line
in the form of a first-order formula Φ(x, y) which defines FS for each S ∈ VS,
hence we need to check that Lemma 3.8 (2) holds with K = VS. Assume
C ≤ A×B with A,B ∈ VS. By Lemma 3.9, we know that either C is direct
product, a graph of an isomorphism, or C = ({a} × B0) ∪ (A0 × {b}) with
A0 and B0 nontrivial and A0,B0 ∈ VS. It is easy to see that Lemma 3.8 (2)
holds in the first two cases. We prove that it also holds in the third case. By
symmetry, we only need to check that (FA(a), FB(b′)) ∈ C for each b′ ∈ B0.

With the intention of deriving a contradiction, assume that FA(a) 6= a.
There must exist i ∈ {1, . . . , n} such that FA(a) = tAi (a) and A � ϕ(tAi (a))

(hence A � ¬β(tAi (a))). We prove now that tB0
i is the constant function with

range {b}. Choose any b′′ ∈ B0. Since tA0
i (a) = FA(a) 6= a, and tCi (a, b′′) =

(tA0
i (a), tB0

i (b′′)) must be in C, it follows that tB0
i (b′′) = b, and therefore
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that tB0
i (x) is constant with range {b}. From assumption (∗) from the second

paragraph of this proof we derive that {b} must be a singleton subuniverse
of the simple algebra B0. However, the fact that the range of ti(x) is a
singleton subuniverse is expressible by a family of universal sentences, so, by
Lemma 3.4, if this is true of B0 it must be true for any algebra in VS, such
as A. But it is not true for A, since A � ¬β(tAi (a)) and β is an equation
between terms. This contradiction implies that FA(a) = a, and thus it is
clear that (FA(a), FB(b′)) ∈ C.

We have established the necessary information to conclude that there
exists a term r(x) satisfying

rS(x) = FS(x) for all S ∈ VS.
By the definition of the functions FS, and the fact that FS(x) = x if γ(x)
holds, we have

VS � γ(x) ∨ ϕ(r(x)), and (C)

VS � γ(r(x)) ∨ ϕ(r(x)). (C’)

Since γ(r(x)) is the formula α(r(x)) ∧ β(r(x)) and ϕ(r(x)) is the formula
α(r(x)) ∧ ¬β(r(x)), we get from (C’) that VS � α(r(x)). Since α(r(x)) is a
conjunction of equations we get

V � α(r(x)). (D)

To conclude the proof we show that V \ {trivial algebras} � ¬ρ. Let
E ∈ V be nontrivial and let {Ai : i ∈ I} ⊆ VS be such that E ≤sd

∏
i∈I Ai.

If it were the case that E � ∀x γ(x), then since γ(x) is a conjunction of
equations and the representation E ≤sd

∏
i∈I Ai is subdirect, we would have

{Ai : i ∈ I} � ∀x γ(x), which contradicts (A). Therefore, there must exist
e ∈ E such that E |= ¬γ(e), which in turn produces i ∈ I such that Ai �
¬γ(ei). From (C) we derive that Ai � ϕ(r(ei)), and in particular we have
Ai � ¬β(r(ei)). It follows that E � ¬β(r(e)), which in combination with (D)
yields that e ∈ E is a witness to

E � ∃x(α(r(x)) ∧ ¬β(r(x))),

hence that r(e) ∈ E is a witness to

E � ∃x(α(x) ∧ ¬β(x)).

This shows that E � ¬(∀x(α(x)→ β(x))), so E fails ρ. �
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Ágnes Szendrei
Department of Mathematics
University of Colorado
Boulder, CO 80309-0395, USA

e-mail: szendrei@colorado.edu



Minimal dual discriminator varieties 11

Diego Vaggione
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