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Abstract. This paper is motivated by a practical question: given a finite algebra
A in a finite language, how can we best program a computer to decide whether the
variety generated by A has a difference term, and how hard is it to find the difference
term? To help address this question we produce a simple Maltsev condition which
characterizes difference terms in the class of locally finite varieties. We do the same
for weak difference terms.

Let V be a variety. A 3-ary term p(x, y, z) is said to be a weak difference term for
V if it is idempotent and satisfies the Maltsev identities p(x, x, y) ≈ y ≈ p(y, x, x)
whenever p is restricted to a block of an abelian congruence of a member of V . A
weak difference term which moreover satisfies V |= p(x, x, y) ≈ y is called a difference
term for V .

Difference terms and weak difference terms are ubiquitous. Every congruence mod-
ular variety [1] or congruence meet-semidistributive variety (trivially) has a difference
term. A locally finite variety omits type 1 in the sense of tame congruence theory
if and only if it has a weak difference term [2, Theorem 9.6]. Difference terms and
weak difference terms can be characterized, in principle, by Maltsev conditions in-
volving additional 3-ary terms ([5, Theorem 8.8], [6, Theorem 1.2(2)]) which in turn
imply reasonably simple syntactic characterizations [6, Theorem 1.2(3)], [8, Theorem
2.1(4)], similar in form to the third author’s syntactic characterization of congruence
meet-semidistributive varieties [7, Theorem 2.1].

These characterizing Maltsev conditions have never been explicitly worked out;
however, it was shown in [5, Theorem 5.5] that if a locally finite variety has a weak
difference term, then it has one which is witnessed by a Maltsev condition that is
significantly simpler than the characterizing condition. A similar improvement for
difference terms in locally finite varieties was announced without proof in [6]. In this
paper we further improve these results to the point where the witnessing Maltsev
conditions can be easily described. We also give a family of examples to show that
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2 KEITH KEARNES, ÁGNES SZENDREI, AND ROSS WILLARD

there is no uniform derivation of a weak difference term from a Siggers-like operation,
even in locally finite varieties.

1. Simple Maltsev conditions

Following [5, Def. 5.2], given congruences α, β, γ of an algebra, define τ(α, β, γ) to
be the transitive closure of β∪ (α∩ (γ ◦ (α∩β)◦γ)). Our first result slightly improves
[5, Theorem 5.5], and improves [8, Theorem 2.1] in the case of locally finite varieties.

Theorem 1. Let V be a variety for which FV(2) is finite. The following are equiva-
lent:

(1) V has a weak difference term.
(2) For all A ∈ V and α, β, γ ∈ ConA,

α ∩ (β ◦ γ) ⊆ τ ∗ ◦ τ

where τ = τ(α, β, γ) and τ ∗ = τ(α, γ, β).
(3) For some n ≥ 1 there exist idempotent terms fi(x, y, z), gi(x, y, z), 1 ≤ i ≤ 4n,

and p(x, y, z) such that the following are identities of V:

fi(x, y, x) ≈ gi(x, y, x) for all i

x ≈ f1(x, y, y)

gi(x, y, y) ≈ fi+1(x, y, y) for 1 ≤ i < n

fi(x, x, y) ≈ f2n+i(x, x, y) for 1 ≤ i ≤ n

gi(x, x, y) ≈ g2n+i(x, x, y) for 1 ≤ i ≤ n

f2n+i(x, y, y) ≈ g2n+i(x, y, y) for 1 ≤ i ≤ n

gn(x, y, y) ≈ p(x, y, y)

p(x, x, y) ≈ fn+1(x, x, y)

gn+i(x, x, y) ≈ fn+i+1(x, x, y) for 1 ≤ i < n

fn+i(x, y, y) ≈ f3n+i(x, y, y) for 1 ≤ i ≤ n

gn+i(x, y, y) ≈ g3n+i(x, y, y) for 1 ≤ i ≤ n

f3n+i(x, x, y) ≈ g3n+i(x, x, y) for 1 ≤ i ≤ n

g2n(x, x, y) ≈ y

Moreover, if fi, gi, p are terms satisfying the identities in (3), then p is a weak differ-
ence term for V and the pairs {(fi, gi), (f rev

i , grevi ) : 1 ≤ i ≤ 4n} witness [8, Theorem
2.1(4)] for p, where hrev(x, y, z) := h(z, y, x).

Remark 2. We do not claim that (and do not know whether) every weak difference
term p for V is accompanied by terms fi, gi satisfying (with p) the identities in
Theorem 1(3). In particular, we do not know if a locally finite variety which omits
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type 1 has a weak difference term simultaneously satisfying (3) and which is Maltsev
on every block of a locally solvable congruence in V (cf. [2, Theorem 9.6]).

Proof. Given congruences α, β, γ of an algebra, define β2 = β ∨ (α ∧ (γ ∨ (α ∧ β)))
and γ2 = γ ∨ (α ∧ (β ∨ (α ∧ γ))). Clearly τ(α, β, γ) ≤ β2 and τ(α, γ, β) ≤ γ2. Hence
(2) ⇒ (1) is an immediate consequence of [5, Theorem 5.5(2 ⇒ 1)]. In fact, the
proof of [5, Theorem 5.5(1 ⇒ 2)] with minor adjustments also proves (1) ⇒ (2).
The equivalence of (2) with (3) is valid for arbitrary varieties and is shown in the
usual way, by specializing (2) to A = FV(x, y, z), α = CgA(x, z), β = CgA(x, y), and
γ = CgA(y, z). (See Figure 1.)

Finally, if fi, gi, p are terms satisfying the identities in (3), then for any A ∈ V
and a, b ∈ A, if fi(a, a, b) = gi(a, a, b) ↔ fi(a, b, b) = gi(a, b, b) for all 1 ≤ i ≤ 4n,
then from the identities in (3) we can easily deduce a = p(a, b, b) and p(a, a, b) =
b. Symmetrically, if f rev

i (a, a, b) = grevi (a, a, b) ↔ f rev
i (a, b, b) = grevi (a, b, b) for all

1 ≤ i ≤ 4n, then b = p(b, a, a) and p(b, b, a) = a. This establishes that the pairs
{(fi, gi), (f rev

i , grevi )) : 1 ≤ i ≤ 4n} witness [8, Theorem 2.1(4)]. By adapting the
proof of [6, Theorem 1.2(3⇒ 1)], one can deduce that p is a weak difference term. �

The next theorem is shown by combining results of the first two authors [3, 5]. It
slightly improves an observation made in passing at the end of Section 1 in [6].

Theorem 3. Let V be a variety for which FV(2) is finite. The following are equiva-
lent:

(1) V has a difference term.
(2) For all A ∈ V and α, β, γ ∈ ConA,

α ∩ (β ◦ γ) ⊆ (α ∩ τ) ◦ γ ◦ β



4 KEITH KEARNES, ÁGNES SZENDREI, AND ROSS WILLARD

where τ = τ(α, β, γ).
(3) For some n ≥ 1 there exist idempotent terms fi(x, y, z), gi(x, y, z), 0 ≤ i ≤ 2n,

and p(x, y, z) such that the following are identities of V:

f0(x, y, z) ≈ x

f0(x, x, y) ≈ f1(x, x, y) and g0(x, x, y) ≈ gn(x, x, y)

fi(x, y, x) ≈ gi(x, y, x) for all i ≤ 2n

gi(x, x, y) ≈ fi+1(x, x, y) for 1 ≤ i < n

fn+i(x, x, y) ≈ gn+i(x, x, y) for 1 ≤ i ≤ n

fi(x, y, y) ≈ fn+i(x, y, y) for 1 ≤ i ≤ n

gi(x, y, y) ≈ gn+i(x, y, y) for 1 ≤ i ≤ n

g0(x, y, y) ≈ p(x, y, y) and p(x, x, y) ≈ y.

Moreover, if fi, gi, p are terms satisfying the identities in (3), then p is a difference
term for V and the pairs (fi, gi) witness [6, Theorem 1.2(3)] for p.

Remark 4. We do not claim that (and do not know whether) every difference term p
for V is accompanied by terms fi, gi satisfying (with p) the identities in Theorem 3(3).

Proof. (2) ⇔ (3) is established in the standard way (see Figure 2), and (2) ⇒ (1)
follows from [6, Theorem 1.2 (2) ⇒ (1)] because τ ≤ β2 := β ∨ (α ∧ (γ ∨ (α ∧ β))).

To prove (1) ⇒ (3), we can replace V by the subvariety of V generated by FV(2),
since the identities in (3) are two-variable identities. Thus we can assume that V is
locally finite. Let F = FV(x, y, z) and as usual let α = CgF(x, z), β = CgF(x, y) and
γ = CgF(y, z). Also let τ = τ(α, β, γ). By finiteness of F and [5, Lemma 5.3], α− τ
contains no 2-snags, so α is solvable over α ∧ τ by [2, Theorem 7.2]. Hence there
exists m ≥ 0 such that so that [α]m ≤ τ .

By [3, Lemma 2.7], there exists a term p(x, y, z) such that V |= p(x, x, y) ≈ y
and (x, pF(x, z, z)) ∈ [α]m. Hence (x, pF(x, z, z)) ∈ α ∩ τ , so (x, z) ∈ (α ∩ τ) ◦ γ ◦ β
witnessed by pF(x, z, z) and pF(x, y, z). The identities then follow in the standard
way, and the “Moreover” claim follows from arguments in [6, Theorem 1.2]. �

The theorems above hold in particular for varieties where FV(3) is finite. For a
variety V of this form, it follows from [4, Theorem 2.2] that V has a weak difference
term if and only if it has a 4-ary “Siggers-like” term t, which is a term such that

V |= t(x, x, x, x) ≈ x and V |= t(x, y, z, y) ≈ t(y, z, x, x).

This condition from [4] involves a single 4-ary term and two identities, while our
current Theorem 1, which characterizes the same class of varieties, involves an un-
bounded number of terms and identities. One might wonder whether there is a direct
way to construct the terms of Theorem 1, or even just the weak difference term of
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that theorem, from a Siggers-like term. We explain now why there no is uniform
procedure to do this.

The argument we sketch shows that, given any positive integer k, there is a locally
finite variety with a 4-ary Siggers-like term t such that no weak difference term of the
variety that is constructible from t has a term tree of depth ≤ k. For this argument
we assume that t is a fundamental operation of the variety, and use the fact that any
term constructible from an idempotent fundamental operation t with a term tree of
depth ≤ k may be obtained from the k-fold “∗-product” t ∗ · · · ∗ t by identification
of variables. Here the ∗-product of an m-ary operation f and an n-ary operation g
is defined to be the operation

f(g(x11, x12, . . . , x1n), . . . , g(xm1, xm2, . . . , xmn)),

which is created by applying g to each of the rows of an m × n matrix of distinct
variables and then applying f to the resulting values.

So fix k ≥ 1 and let p be a prime of the form 2k+1 · d− 1 with d ≥ 1. Such a prime
exists for any k and d by Dirichlet’s Theorem on primes in arithmetic progression.
Now define a 4-ary Siggers-like term on Zp by

t(w, x, y, z) = 2kd · (w + z) =
p+ 1

2
(w + z) ≡ w + z

2
(mod p).

On Zp, the operation t agrees with a group term operation that has two equal nonzero
coefficients which sum to 1 modulo p, namely coefficients 2kd. It follows that on Zp the
k-fold ∗-product of copies of t has 2k equal nonzero coefficients which sum to 1 modulo
p; these coefficients are equal to 2d, which is strictly greater than 1. By renaming

variables we may write this operation as 2d
∑2k

i=1 xi. Our goal is to show that it is
not possible to obtain a weak difference term from this operation by identification of
variables.

The operation 2d
∑2k

i=1 xi belongs to the clone of the abelian group Zp, and this
clone contains a unique weak difference operation, namely the Maltsev term x−y+z.
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If this weak difference operation can be obtained by setting variables in 2d
∑2k

i=1 xi to
the values x, y and z, then it must be possible to partition the variables into 3 groups
so that the sum of the coefficients in the three groups are the coefficients +1,−1,+1
of the operation x − y + z. That is, it must be possible to partition the 2k nonzero
coefficients into groups of size u, v, w, each a positive number, so that u+ v+w = 2k

and the sums over the classes are +1,−1,+1 (mod p) respectively. These sums are
2du, 2dv and 2dw respectively. Since 2du ≥ 2d > 1 and 2du ≡ +1 (mod p) we must
have 2du ≥ p + 1 = 2k+1d in Z, or u ≥ 2k. Similarly v ≥ 2k − 1 and w ≥ 2k. This
contradicts the fact that u + v + w = 2k. This proves that x − y + z cannot be
obtained by identifying variables in a k-fold ∗-product of copies of t.
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