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Introduction

The first example of a finite algebra which has no finite basis for its identities was
discovered by R. Lyndon [3] in 1954. Since that time a number of other nonfinitely based
finite algebras have been constructed. (A short summary of these algebras can be found
e.g. in [2] or [1].) More recently, V. L. Murskii [5] and P. Perkins [6] observed that some
of the finite algebras that are nonfinitely based ’spread’ this property to all finite algebras
in the variety they generate.

Following Perkins [6] we call a variety V' inherently nonfinitely based if V is locally
finite and V is contained in no finitely based, locally finite variety. An algebra A (A
is not necessarily finite) is said to be inherently nonfinitely based if the variety V(A) it
generates has this property. Since every finite algebra generates a locally finite variety, it
is clear that, if A is finite and inherently nonfinitely based, then A has no finite basis for
its identities.

In 1976 R. McKenzie [4] asked whether there exists a nonfinitely based finite algebra
which generates a minimal variety. An affirmative answer was given by D. Pigozzi [7],
and to this day his algebras have been the only such examples. Pigozzi’s construction
yields algebras that have a large number of binary operations and (almost) all constants

as nullary operations. Thus the following problem remains open in [7]:

Problem. [7] Does there exist a finite groupoid generating a nonfinitely based minimal

variety?



The aim of this paper is to show that for every integer n > 3 there exists an inherently
nonfinitely based n-element groupoid which generates a minimal variety (Corollary 3).
These groupoids are constructed from a more general class of inherently nonfinitely based
algebras generating minimal varieties (Theorem 1, Corollary 2). In contrast with Pigozzi’s
examples, in these algebras there is only one constant term operation and all other unary
term operations form a permutation group. Nevertheless, this has a similar effect to the
varieties the algebras generate as in Pigozzi’s case: every nontrivial algebra in the variety
has a subalgebra isomorphic to the given algebra, implying that the variety is minimal.
To prove that the algebras are inherently nonfinitely based we make use of the ’shift
automorphism method’ due to K. A. Baker, G. F. McNulty, and H. Werner [2].

Preliminaries and main results

For an algebra A we denote by Aut A the automorphism group of A, and by V(A) the
variety generated by A. A variety V is said to be minimal if it has exactly two subvarieties:
V itself and the trivial variety consisting of one-element algebras only. A variety V is said
to be finitely based (or to have a finite basis for its identities) if there exists a finite set
3. of identities valid in V' such that every identity valid in V' can be deduced from 3:; an
algebra is finitely based if the variety V' (A) has this property. An algebra is called locally
finite if all its finitely generated subalgebras are finite; a variety is locally finite if every
algebra in it is such.

Let A = (A;F) be an algebra. An operation on A is a term operation [polynomial
operation] of A if it can be constructed form the fundamental operations of A and from pro-
jections [resp., form the fundamental operations of A, from projections, and from constant
operations] via composition. The set of unary term operations [polynomial operations| of
A will be denoted by Clo; A [Pol; A, respectively].

Two algebras are called term equivalent if they have the same base sets and the same
term operations. It is well known that the algebraic properties of term equivalent algebras
are very similar (see e.g. [9]). In particular, the varieties they generate are isomorphic as
categories; furthermore, if both algebras have finitely many fundamental operations, then
one of them is finitely based [nonfinitely based, inherently nonfinitely based] if and only
if the other one has the same property. In what follows, we will use these facts without

further reference.

Let G be a group, and consider its extension with a zero element: G° = {0} U G
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(0 ¢ G). For any element g € G define permutations Iy, 74: G® — G as follows:

1 (z) = 0 ifx=0 ro(z) = 0 ifz=0
I Vg fxe@’ IV \xzg freqG’

and put
Leg=A{ly: g€ G}, Rg={ry: g€ G}.

Clearly, Lg and Rg are permutation groups on G°, and both of them act regularly on G,
i.e. for all a,b € G there exists a unique permutation in Lg [resp. Rg| sending a to b.
Making use of this fact one can easily check that for an algebra B with base set G° the

following two conditions are equivalent:

(x) CloyB={0}U Lg;
(xx) {0} U Lg C Cloy B, {0} is a subalgebra of B, and Rg C AutB.

The algebras on G° satisfying these conditions will be called G°-algebras.
Simple G%-algebras were studied in detail in [8]. In particular, the following theorem

was shown.

Theorem A. [8] For every finite group G with |G| > 1 every simple G°-algebra is either

term equivalent to a one-dimensional vector space, or else it has the operation

ifx =1y 0
ANy = {x ! yeG
Ty 0 otherwise (2.y )

among its term operations.

Clearly, A is a semilattice operation: 0 is the least element, and any two distinct
elements xz,y € G are incomparable.

Obviously, every algebra term equivalent to a one-dimensional vector space is simple
and generates a minimal variety. The same holds true also for G%-algebras having A among

their term operations.

Proposition B. (cf. [8]) Let B be a G%-algebra such that A is a term operation of B.

Then B is simple, and V(B) is a minimal variety.

Proof. Let p be a congruence of B. If apb for some elements a,b € G°, a # b —
say a # 0 —, then a = a Aapa AN b = 0, whence for arbitrary element g € G we have

g=lgq-1(a)plye-1(0) = 0. Thus B is simple.
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The set Clo; B of unary term operations of B can be considered, in the usual way, as
an algebra of the same type as B. It is well known that this algebra is the free algebra of
rank 1 in the variety V(B). Further, it is clear, that the natural homomorphism

Clo;B —» B, fr f(1)

is surjective; however, |B| = |Clo; B|, therefore it is an isomorphism. Consequently, B is
the free algebra in V(B) freely generated by {1}.

Let now A be a nontrivial algebra in V/(B). Obviously, all unary terms in the language
of V(B) that induce on B the constant operation 0, induce a unique constant operation
on A as well; the element in their range will also be denoted by 0. Selecting a € A — {0}
we conclude from the freeness of B that there exists a homomorphism ¢: B — A such that
1l = a; moreover, clearly Op = 0. Hence the simplicity of B ensures that ¢ is injective.
Thus B can be embedded in each nontrivial algebra in V(B), whence the minimality of
V(B) follows immediately.

The main result of the paper is that for every finite group G (|G| > 2) there exist
simple G%-algebras that are inherently nonfinitely based.

Theorem 1. For every finite group G with at least 3 elements, the algebra B =
(G Lg,*) with

x*y:{o foelzyforz=y (5 yeqo),
x otherwise

is inherently nonfinitely based.

It is easy to check that B is a G%-algebra. Furthermore, A is a term operation of B;
ideed, if |G| = n and, say, G = {1 = ag, a1,...,a,_1}, then

Ay = (.. ((@*xla, () *lay () --) *la, ,(y) (z,y € GO).
Thus by Proposition B we get the following corollary.

Corollary 2. For every finite group G with at least 3 elements, the algebra B =

(G°; Lg,*) generates an inherently nonfinitely based minimal variety.

Consider now the special case when G is a cyclic group with n elements (n > 3); say,
a € G generates G. Then the algebra B = (G°; Lg,*) has a term operation

zoy=Il(xxl,(y) (z,ye€GY)
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satisfying the following identities:

ly(x)=zex, l,-1(x)= ()" z), zxy=Il-1(zel,—1(y)).
Hence the groupoid (B;e) is term equivalent to the algebra B. Thus we get

Corollary 3. For every finite cyclic group G = {1,a,a?,...,a" "1} with at least 3 ele-
ments, the groupoid (G°;e) with

rey=Il,(zxl,(y) (z,y€ G

generates an inherently nonfinitely based minimal variety.

Proof of Theorem 1

We will use the ’shift automorphism method’ due to K. A. Baker, G. F. McNulty,
and H. Werner [2]. This method applies to algebras with an absorbing element 0. Recall
that 0 is called an absorbing element of an algebra if every fundamental operation f of the
algebra takes on the value 0 whenever at least one of its arguments is 0.

Let A be an arbitrary algebra with absorbing element 0, and let ¢ € Aut A. The
elements of A distinct from 0 will be called proper elements. An n-tulpe will be called
proper if none of its components is 0. Clearly, if A is not unary, then 0 is the only absorbing
element of A, hence 0o = 0. Let f be an n-ary fundamental operation of A. Considering
f as an (n+1)-ary relation we see that f is invariant under (the componentwise action of)
o. Moreover, if 00 = 0, then each orbit of ¢ consists either entirely of proper or entirely
of improper (n + 1)-tuples.

The theorem underlying the method provides a sufficient condition for an infinite

algebra with an absorbing element to be inherently nonfinitely based.

Theorem C. [2] Let A be an infinite algebra with finitely many fundamental operations
such that A is locally finite and has an absorbing element 0. If A has an automorphism o
such that

(a) {0} is the only o-orbit of A that is finite,
(b) for every fundamental operation f of A, the proper part of f is partitioned by o

into only finitely many orbits, and



(¢) ac = p(a) for some proper element a € A and some nonconstant polynomial

operation p € Pol; A,

then A is inherently nonfinitely based.

Now let B = (B; F) be an arbitrary finite algebra with finitely many fundamental
operations, and with an absorbing element 0. Form its direct power BZ with Z the set of

integers; the elements of BZ are doubly infinite sequences
v=...v(=2)v(-1) v(0) v(1) v(2) ...

with v(j) € B for all j € Z. For i € Z the translate v@ of v € BZ is the sequence v
shifted i positions (to the right if i« > 0, or to the left if 7 < 0, or not at all if ¢ = 0); in
symbols, v® (§) = v(j — i) for all 4,5 € Z. Tt is clear that for any fixed integer 4, shifting
all sequences of BZ 4 positions is an automorphism of BZ.

The shift automorphism method can now be described as follows. Suppose we are

given a finite number of non-periodic sequences in BZ such that

the translates of these sequences together with all improper sequences in B# form
g
a subalgebra C in B~.

Then the equivalence relation ® on C such that one block of © consists of all improper
sequences and all other blocks are singletons is a congruence of the algebra C. Moreover,
in the quotient algebra A = C/© the element corresponding to the nontrivial block is an
absorbing element; we will denote it by 0. The right shift (i.e. shifting one position to
the right) induces an automorphism ¢ of A with 0 = 0. Since we selected non-periodical
sequences, condition (a) holds for A (and hence A is infinite). If we can select the starting

sequences in such a way that

() the algebra A described above is locally finite and satisfies conditions (b) and (c)

in Theorem C,

then Theorem C yields that A is inherently nonfinitely based. However, every variety

containing B contains A as well, so B is also inherently nonfinitely based.

Proof of Theorem 1. Let G be a fixed finite group with |G| =n > 3, say G = {1 =

@g,Q1,...,0,_1}, and let B = G°. Consider the periodic sequence
Y=Q1...00,_101...0p_1... € GN,
and for 7 € N let [y]; denote the prefix of length i of v. (Hence the period of v is [y],_1-)
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We will call a sequence v € BZ symmetric if v(—i) = v(i) for all i € N. Let o € BZ

be the symmetric sequence whose 'nonnegative half’ is

alNg =1 [Yln-1 1 [Yln L [V]nt1 1 [Ylng2 1 - -,

and for arbitrary g € G let oy = l4(). Clearly, these sequences are non-periodic, and for
g = 1 we have a; = a. We will show that if we start with the sequences o4 (g € G) and
apply the shift automorphism method sketched above, conditions (1)—(f) hold true.
Observe that for arbitrary v, v’ € BZ the sequence v x v/ is either improper or equals
v. Further, the set of translates of ay (g € G) is closed under all operations in Lg. Thus
(t) obviously holds. In the algebra A, 0 is an absorbing element, and for any elements

v,V distinct from 0 we have

Uy — {I/ if v(l) #v'(l) for all ] € Z
0 otherwise '

In particular, «¥ = a(!) x o, since n > 3 ensures that any two neighbouring components
of a are distinct. Hence (c) is satisfied for the polynomial function p(z) = o™ xz of A.
It is also clear from the operations of A that A is locally finite.

It remains to verify (b) for the fundamental operations of A. For the unary operations

this is trivial, while for x it will be derived from the following claim.

Claim. For arbitrary elements g, h € G' and for every integer 7 > n there exists an index
[ > j such that ag4(l) = agj)(l).

Let I denote the set of all indices ¢ € N such that «(i) =1, and let 0 < k <n —1 be
the (unique) index with g = hag. Then

ag(i) =g forall iel,
ap(iy=g forall iel+k,
agj)(i) =g forall iel+k+j.
In view of k 4+ j > n it is clear from the construction of a that I contains two integers at
a distance k + j. Therefore IN (I +k+j) #0,s0oany l € IN (I + k+ j) is appropriate,
proving the claim.

Now, making use of the fact that a is symmetric, we get from the Claim that for

arbitrary elements g, h € G and for every integer j € Z
agxal? =0, if l7] >
g*xap =Y JiZn.
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This implies that condition (b) holds for x. The proof of Theorem 1 is complete.
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