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Abstract

Let A be a strictly simple algebra generating a locally finite minimal variety,
and let us expand A arbitrarily with new operations to get an algebra A®. We
investigate the question under what conditions A® generates a minimal variety. Our
result shows that if the tame congruence theoretic type label of A is distinct from
5 or if A has a trivial automorphism group, then A® generates a minimal variety if
and only if A® is nonabelian or has a trivial subalgebra.

A variety V is called minimal if V has exactly two subvarieties: V itself and the variety
of trivial (i.e. one-element) algebras. We restrict our attention to locally finite varieties, that
is, varieties in which every finitely generated algebra is finite. If V is a locally finite variety
and A is a nontrivial member of V of minimum cardinality, then A is a strictly simple
algebra, that is, A is finite, simple, and has no nontrivial proper subalgebras. Moreover,
if V is minimal, then ¥V = V(A), the variety generated by A. Thus every locally finite
minimal variety is generated by a strictly simple algebra. In fact, it was proved recently
in [8] that the strictly simple generator of a minimal variety is uniquely determined, up to
isomorphism.

Now let V(A) be a minimal variety with strictly simple generator A, and consider
an algebra A® arising from A by adding new operations to it; such an algebra A® will be
called an expansion of A. Clearly, A® is also strictly simple. For many familiar minimal
varieties V(A) the varieties V(A?®) generated by expansions A® of A turn out almost
exclusively to be also minimal. For example, if V(A) is congruence distributive, then
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V(A®), too, is congruence distributive, as the existence of Jénsson term operations is
inherited by expansions. Hence, by Jénsson’s Lemma [6], V(A®) is a minimal variety for
every expansion A°® of A.

If congruence distributivity is replaced by congruence modularity, we have already
some exceptions A*® to this conclusion. Recall that an algebra C is said to be affine if there
exists an abelian group C' = (C; +) on its base set such that £ —y+z is a term operation of

~C
EndC
(i.e. C considered as a module over its endomorphism ring). By C. Herrmann’s results ([3],
[4], cf. also [2]), if S is a strictly simple algebra such that the variety V(S) is congruence
modular, then either V(S) is congruence distributive or S is an affine algebra; hence V(S)
is minimal if and only if S is not an affine algebra without trivial subalgebras. Therefore it
follows that if V(A) is a congruence modular minimal variety with strictly simple generator
A and A° is an expansion of A, then V(A®) is a minimal variety except for the case when
A* is affine and has no trivial subalgebras.

In congruence modular varieties affine algebras are exactly those algebras which are
abelian in the sense used in commutator theory ([4]). The definition of ‘abelian’, which is
not restricted to the congruence modular case, is the following: an algebra C is abelian if
for all n > 1, for every n-ary term operation ¢ of C and for arbitrary elements u,v € C
and ¢,d € C"! we have

C and every fundamental operation of C is a polynomial operation of the module

f(uvé):f(u7d) g f(v,é):f(v,J).

Our aim in this paper is to look at the question in general: Given a strictly simple
algebra A generating a minimal variety, under what conditions is it true that V(A®) is a
minimal variety for ‘almost all’ expansions A® of A. We show that under mild restrictions
on A, the same conclusion holds as in the congruence modular case: for any expansion
A*® of A, the variety V(A®) is minimal except when A® is abelian and has no trivial
subalgebras. For example, to get this conclusion, it is enough to require that the tame
congruence theoretic type label of A is not 5, or A has a trivial automorphism group, or the
number of trivial subalgebras of A is distinct from 1. (See Corollary 8 and Theorem 11.)

Our arguments are based on the characterization of locally finite minimal varieties in
[8] and the tools applied there. It will be convenient to use the tame congruence theoretic
type labels 1-5 for strictly simple algebras; in particular, this makes it easy to distinguish
between abelian and nonabelian algebras: a simple algebra is abelian if and only if it is
of type 1 or 2 (see [5]). Besides this fact, however, no techniques or results from tame
congruence theory will be explicitly used in the paper.

Algebras are denoted by boldface capitals and their base sets by the corresponding
letters in italics. Since we study expansions, we will often deal with distinct algebras
defined on the same base set. These algebras will be distinguished by superscripts, and
the superscript will be omitted when referring to the base set.

If there is no danger of confusion, we will use the same notation for a term and for
the corresponding term operation; in fact, even in words, we may sometimes talk about
“a term of an algebra A with specific properties” as an abbreviation for “a term in the

2



language of A such that the term operation of A corresponding to ¢ has those specific
properties”.

The clone of term operations of an algebra A is denoted by Clo A. Two algebras A,
A’ on the same base set are called term equivalent if Clo A = CloA’. We will find it
convenient to extend this notion to algebras A, B on arbitrary bases sets as follows: A, B
are called term equivalent if A is isomorphic to an algebra B’ on B such that B’ is term
equivalent (in the narrower sense) to B.

We now introduce the concepts that are needed for the statement of the characteriza-
tion theorem on strictly simple algebras generating minimal varieties. Let A be an algebra,
and let e be a unary term in the language of A. We will say that e is an idempotent term
(operation) of A if A = e? = e (or equivalently, if the term operation e acts identically on
its range e(A)).

An idempotent term e of A is called a minimal idempotent term of A (or briefly: a
minimal idempotent of A) if the term operation e is not constant and its range e(A) is
minimal (with respect to inclusion) among the ranges of all non-constant idempotent term
operations of A. Clearly, every finite algebra has a minimal idempotent. It is not hard to
see (cf. [13]) that if A is a strictly simple algebra, then for any minimal idempotents e, e/
of A there exist unary terms g, h such that

(*) A = ghe' = ¢ hge = e, ge = €'ge, he! = ehe/,

that is, the term operations g, h restrict to mutually inverse bijective mappings e(A4) —
e/(A) and €'(A) — e(A), respectively.
For a variety V and for a term e in the language of V the condition occurring in [8]
that
if CeVand C = e(z) = e(y), then |C| =1

will be referred to as follows: e is nonconstant throughout V.

Theorem 1. ([8]) Let A be a strictly simple algebra and let e be a minimal idempotent
of A. The following conditions are equivalent:

(1) V(A) is a minimal variety;

(2) e is nonconstant throughout V(A) and A has a trivial subalgebra provided it is
abelian.

If A is a strictly simple algebra and e,e’ are minimal idempotents of A, then the
existence of unary terms g, h with (x) immediately implies that e is nonconstant through-
out V(A) if and only if €' is nonconstant throughout V(A). Thus the fact whether
a minimal idempotent term is nonconstant throughout V(A) does not depend on the choice
of the minimal idempotent.

The proof of Theorem 1 in [8] is based on a construction that will also be useful in
the application we are going to discuss. To describe this construction let V be a variety
and let e be a unary term in the language of V such that V |= e? = e. Clearly, for every
term ¢ in the language of V, et is a term of the same arity as ¢, and for each algebra C € V
the term operations of C of the form et are exactly those term operations whose range is
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contained in e(C). We want to define, for all algebras C € V), algebras e(C) — all of the
same similarity type, as C runs over V — such that the base set of e(C) is e(C) and the set
of fundamental operations of e(C) consists of the restrictions et|.(cy of all term operations
et of C to e(C). In [8] this was achieved by fixing the set of fundamental operation symbols
to be

{et: t is a term in the language of V}

and defining the interpretation of et in the algebra e(C) to be et|c(cy. In this paper it will
be more convenient to allow a richer set of fundamental operation symbols, namely

{t: t is a term in the language of V and V |= et = t},

and, as before, define the interpretation of ¢ in the algebra e(C) to be t|,(c). Obviously,
what happens by this modification is merely that instead of each operation symbol we
may take several distinct operation symbols with the same interpretation in all algebras
in question.

For V and e as in the previous paragraph we denote the class {e(C): C € V} of
algebras by e(V). It can be proved that e(V) is a variety (cf. [11; Remark 6]). Moreover,
for every algebra A and for every idempotent term e of A we have e(V(A)) = V(e(A)).

The construction A — e(A) has particularly useful properties if A is a strictly simple
algebra and e is a minimal idempotent term of A. The elementary properties (1)—(3) stated
in the next theorem were established along with the first applications of this construction
in [1] and [12], while (4) was verified in [8].

Theorem 2. ([1], [12], [8]) Let A be a strictly simple algebra and let e be a minimal
idempotent of A. Then

(1) e(A) is a strictly simple algebra;

(2) e(A) has the same trivial subalgebras as A (i.e., for u € A, {u} is a trivial
subalgebra of A if and only if u € e(A) and {u} is a trivial subalgebra of e(A));

(3) e(A) has the same tame congruence theoretic type label as A ;

(4) the automorphism group of e(A) is isomorphic (via restriction) to the automor-
phism group of A.

It is worth noting that if A is a strictly simple algebra and e, e’ are minimal idempo-
tents of A, then the fact mentioned before Theorem 1 that there exist unary terms inducing
mutually inverse bijections between e(A) and e’(A), yields that the algebras e(A) and e’ (A)
are term equivalent. Hence in this case the algebra e(A) is essentially independent of the
choice of e.

The algebras of the form e(A) where A is strictly simple and e is a minimal idempotent,
of A are completely described, up to term equivalence, see [13]. Here we will not need this
description in full details; its consequence stated in Theorem 3 below will suffice.

For a group G, G° will denote the extension of G with a new zero element 0, and we
let Lg [Rg] denote the group of all permutations on G° determined by multiplication on
the left [right] with elements of G. An algebra B will be called a G°-algebra if its base
set is B = G, {0} is a subalgebra of B, the constant with value 0 and the permutations
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in Lg are unary operations of B, and the permutations in Rg are automorphisms of B.
It is easy to show that under these conditions the set of unary term operations of B is
{0} U Lg, while the automorphism group of B is Rg.

Theorem 3. ([13]) Let A be a strictly simple algebra of type i € {1,...,5}, and let e
be a minimal idempotent of A. Then the following condition in (i) holds for the algebra
e(A):
(1) e(A) is term equivalent to a strictly simple unary algebra in which every funda-
mental operation is either constant or a permutation;
(2) e(A) is a strictly simple affine algebra;
(3)-(4) e(A) is a strictly simple algebra that generates a congruence distributive variety;
) either e(A) is term equivalent to a two-element semilattice, possibly with some

bounds added, or e(A) is a strictly simple G°-algebra of type 5 for some group
G, |G| > 1.

In the problem we are going to investigate we are given a strictly simple algebra
A generating a minimal variety, and we study the expansions A® of A. Clearly, A® is
also strictly simple, however, a minimal idempotent term of A may not be a minimal
idempotent term of A®. The first claim of the next lemma shows that A® has a minimal
idempotent term that is convenient to work with. The second claim will not be needed
until Lemma 16 near the end of the paper.

Lemma 4. Let A be a strictly simple algebra and let e be a minimal idempotent of A.

(1) Every expansion A® of A has a minimal idempotent f such that A® = ef =
fe=1F.

(2) If f is a minimal idempotent of an expansion of A satisfying the identities in
(1), then

(i) the expansion AT of A with f is the least expansion of A (up to term equivalence)

which has f as a minimal idempotent, and
(ii) e(AY) is term equivalent to the expansion e(A) of e(A) with f.

Proof. (1) Since e is an idempotent term of A® with |e(A)| > 1, A® has a minimal
idempotent term f’ such that f'(A) C e(A), |f'(A)] > 1. Clearly, A® = ef’ = f'. Let
f = f'e. Tt is straightforward to check that A® = ef = fe = f = f2. Moreover,
F(4) = f(A), because f/(4) = f(f(4)) C f'(e(A)) C F'(4) and here f'{e(4)) = f(A).
Thus f, too, is a minimal idempotent of A*°.

(2) If f is a minimal idempotent of A®, then obviously Clo Af C Clo A®. In partic-
ular, this implies the minimality of f for Af, proving (i).

In (i) the inclusion Cloe(A)f C Cloe(Af) follows immediately from the identity
Af = ef = f and from the definition of e(Af). To prove the reverse inclusion it suffices
to show that every fundamental operation of e(Af) belongs to Cloe(A)f. We proceed by
induction on the number of occurrences of f in the terms of Af, and use the assumption
Af = ef = fe = f. By definition every fundamental operation of e(Af) is of the form
eT'|¢(4) for some term T' of A If f does not occur in T, then T is a term of A and
eT|c(a) is an operation of e(A) (and hence of e(A)f). If f occurs in T, then T has the
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form T = t(f(To), T1,- .., Tk—1) for some term ¢ of A and some terms Tp, T4, ..., Tk_1 of
Af. We have

A‘f ): el = et(ef(eTo), T1, ey Tk—l),

therefore eT'|.4) is a composition of the operations et(-,T1,...,Tk_1)lea), €flea) =
flecay, and €Tpleca). By the induction hypothesis the first and third ones are term opera-
tions of e(A)f, so the same is true for eT’ le(4), as required. o

Let A be a strictly simple algebra generating a minimal variety. Our aim is to show
that under mild restrictions on A, for arbitrary expansion A® of A the variety V(A®) is
minimal if and only if A® is not an abelian algebra without trivial subalgebras. In view
of Theorem 1 we have to check whether a minimal idempotent term of A® is nonconstant
throughout V(A®). The idea of the proof is the following. Let us fix a pair e, f of minimal
idempotent terms of A and A®, respectively, such that the condition in Lemma 4 (1) is
satisfied. First we observe that the condition that f is nonconstant throughout V(A®)
can be verified via the ‘intermediate variety’ e(V(A®)) = V(e(A®)) by showing that f
is nonconstant throughout V(e(A®)) and e is nonconstant throughout V(A®). Then we
check these two conditions separately. For the latter one we can make use of the facts that
A* is an expansion of A and that e is nonconstant throughout V(A), while for the first
one, where e(A*®) is obviously an expansion of e(A), we can apply Theorem 3. The details
of these arguments can be found in Lemmas 5-7.

Lemma 5. LetV be a variety and let e, f be unary terms in the language of V such that
ViEe2=e, f2=ef = f. The following conditions are equivalent:

(1) f is nonconstant throughout V;

(2) f is nonconstant throughout e(V) and e is nonconstant throughout V.

Proof. Notice that under the hypotheses of the lemma f is a fundamental operation
symbol in the language of e(V), so (2) does indeed make sense.

To prove the equivalence assume first that (1) holds. If C = e(z) = e(y) for some
algebra Cin V, then C = f(z) = ef(z) = ef(y) = f(y), hence in view of (1) |C| = 1. This
shows that e is nonconstant throughout V. Now let e(C) € e(V) (C € V), and suppose
e(C) &= f(z) = f(y). For arbitrary elements c¢,d € C, the elements f(c) = ef(c) and
f(d) = ef(d) belong to e(C), therefore we have f(c) = f(f(c)) = f(f(d)) = f(d). Thus
C E f(z) = f(y), whence by (1) we get that |C| = 1. Hence |e(C)| = 1, proving that f is
nonconstant throughout e(V).

Conversely, assume now that (2) holds, and let C be any algebra in V such that
C E f(z) = f(y). Clearly, e(C) = f(z) = f(y). Since f is nonconstant throughout e(V),
we must have |e(C)| = 1. In other words, C = e(x) = e(y). However, as e is nonconstant
throughout V, we get that |C| = 1. Thus (1) holds. o

Lemma 6. Let A be an algebra, A® an expansion of A, and let e be an idempotent
term of A (and hence of A®). If e is nonconstant throughout V(A), then e is nonconstant
throughout V(A®), too.



Proof. Assume e is nonconstant throughout V(A), and consider an algebra D in
V(A®) such that D = e(x) = e(y). Omitting the newly added operations we get a reduct
De° of D of the same similarity type as A. Clearly, D € V(A*) implies that D° € V(A).
Moreover, we have D° = e(z) = e(y). As e is nonconstant throughout V(A), we conclude
that |D| = 1, completing the proof. o

Lemma 7. Let A be a strictly simple algebra generating a minimal variety and let e
be a minimal idempotent of A. Further, let A® be an expansion of A and f a minimal
idempotent of A®. Then f is nonconstant throughout V(A®) unless

(1) e(A) is a GO-algebra of type 5 for some group G with |G| > 1.

Proof. Without loss of generality we may select f as described in Lemma 4 (1). The
assumption that V(A) is minimal implies by Theorem 1 that e is nonconstant throughout
V(A). Hence, by Lemma 6, e is nonconstant throughout V(A*®). Now Lemma 5 shows that
f is nonconstant throughout V(A®) if and only if f is nonconstant throughout e(V(A®)).
According to our remark before Theorem 2, here e(V(A®)) = V(e(A®)).

We show that f is a minimal idempotent of e(A*®). In fact, it is easy to see that every
term operation of e(A®) (not only every fundamental operation) is of the form eglc(a)
where g is a term of A®. In particular, if eg|.(4) is a minimal idempotent of e(A*®) such
that its range eg(e(A)) is contained in the range f(e(A)) = f(A) of fle(a), then ege is
an idempotent term of A® with the same range as egl,(4). So the minimality of f for A®
implies that ege(A) = f(A). That is, the ranges of eg|.(4) and f|(4) coincide, as required.

Let B =e¢(A) and B®* = e¢(A®). In view of Theorem 2 B is strictly simple and of the
same type as A. Moreover, as A generates a minimal variety, A has a trivial subalgebra
provided it is abelian (cf. Theorem 1). Therefore B, too, has a trivial subalgebra provided
it is abelian.

Clearly, B® is an expansion of B, so it is also strictly simple. In the first two paragraphs
of this proof it was shown that f is a minimal idempotent of B®; furthermore, the claim of
the lemma to be proved was reduced to the following: f is nonconstant throughout V(B®)
unless B is a GY-algebra of type 5 for a group G with |G| > 1.

To verify this assertion we make use of Theorem 3. If B is of type 1, then B is abelian,
so it must have a trivial subalgebra. Thus Theorem 3 yields that | B| = 2. Now the identity
mapping is the only possible choice for the term operation f of B®, hence B® | f(z) = z.
It is obvious that in this case f is nonconstant throughout V(B®). If B is of type 5 and
is not a G%-algebra with |G| > 1, then again we get from Theorem 3 that |B| = 2. So the
argument can be finished as in the previous case. Finally, assume B is of type 2, 3, or
4. We see from Theorem 3 that B is either affine or generates a congruence distributive
variety. Applying in the affine case McKenzie’s theorem [9] (cf. [10; Theorem 22]) on
strictly simple algebras in congruence permutable varieties, we see that the expansion B®
of B is also either affine or generates a congruence distributive variety. Hence either B® is
an affine algebra having no trivial subalgebras, or V(B®) is a minimal variety. In the latter
case Theorem 1 implies that f is nonconstant throughout V(B*®). If B® is affine with no
trivial subalgebras, then for any fixed element o € f(B) the algebra

B* = (B;{t € CloB*: {(o,...,0) = 0})
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is a reduct of B® such that B* is strictly simple, affine, and has a trivial subalgebra;
hence B* generates a minimal variety. Clearly, f is a minimal idempotent of B*. Thus a
combination of Theorem 1 and Lemma 6 yields that f is nonconstant throughout V(B®).
o

Corollary 8. Let A be a strictly simple algebra generating a minimal variety. If

— A is of type # 5, or

— A has a trivial automorphism group, or

— the number of trivial subalgebras of A s # 1,
then for every expansion A® of A, A® generates a minimal variety if and only if A® is
nonabelian or has a trivial subalgebra.

Proof. Let A be a strictly simple algebra and let e be a minimal idempotent of A.
By the definition of G°-algebras a G°-algebra has exactly |G| automorphisms. Therefore,
in view of Theorem 3, condition (1) in Lemma 7 holds if and only if e(A) has the following
three properties (the first two of which imply the third): e(A) has type 5, e(A) has a
nontrivial automorphism group, and e(A) has a unique trivial subalgebra. By Theorem 2
all these properties are invariant under the construction A +— e(A), hence (}) is equivalent
to the following condition:

(1) A is of type 5 and A has a nontrivial automorphism group (whence also A has a
unique trivial subalgebra).

Now let A® be an expansion of A and let f be a minimal idempotent of A®. If (1)
fails, then by Lemma 7 f is nonconstant throughout V(A?®), so our claim is an immediate
consequence of Theorem 1. o

The claim of Corollary 8 can be slightly refined if we take into account that abelian
strictly simple algebras generating minimal varieties have a very special structure. The
structure theorem stated below was proved independently in [7] and in [14]-[15] (cf. also
[8] where the same results are deduced directly from Theorem 1).

Theorem 9. ([7], [14], [15]) Let A be an abelian strictly simple algebra.

(1) If A is of type 1, then A generates a minimal variety if and only if A is term
equivalent to BU™ for some integer m > 1 and for some two-element unary algebra B that
has a trivial subalgebra.

(2) If A is of type 2, then A generates a minimal variety if and only if A is affine
and A has a trivial subalgebra.

Recall that for an algebra B and for an integer m > 1 the mth matriz power BI™
of B is the algebra arising from the mth direct power B™ of B by expanding it with an
m-ary operation d and a unary operation p defined as follows: for all z; = (z});<m € B™
(1=0,...,m—1) and for all y = (y?)j<m € B™

d(.’L’o, L1y---, xm—l) = (.%‘8, .’L‘% ceey .’L‘m_l),

p(y) =W .,y L y0)

oo



For more details on this construction and on its applications the reader is referred to [16],
[5] and [11].
We will need the following easy fact on expansions of matrix powers.

Lemma 10. Let B be any algebra and let m be a positive integer. Every expansion of
Bl™ is term equivalent to (B‘)[m] for some expansion B® of B.

Sketch of proof. The coordinates of an m-tuple = will be denoted by z°,...,z™ L.
For every positive integer n an n-ary operation g = g(o, . ..,%n—1) on B™ can be written
in the form g = (go(jz), . ..,gm_l(sﬁ)) where Z = (2])o<i<n, 0<j<m and go,...,gm—1 are
mn-ary operations on B. In this notation, if A is an n-ary operation on B, then the
coordinatewise action of h on B™ is

h(@o, ..., xn1) = (A((z)ogicn); - - -, h((&] Nogicn))-

It is not hard to show that for every operation g = (go(i), . ..,gm_l(a_:)) on B™, g is
contained in the clone generated by the operations d, p, §; (0 < i < m—1), and conversely,
each g; (0 <i <m — 1) is contained in the clone generated by the operations d, p, g. The
proof is based on the observation that d and p allow to form from any given m-tuples a
new m-tuple by selecting for each coordinate any of the coordinates of the given ones.

Now let C be an expansion of Bl (hence C' = B™), and consider the algebra B® on
B whose set of fundamental operations is

U({go(f),...,gm_l(j)}: 9(z0, - -1 Tn1) = (90(&), - - ., Gm—1(%))

is a fundamental operation of C).

The facts in the preceding paragraph imply that (B*)[™! is term equivalent to C, and (up
to adding fictitious variables to the fundamental operations) B® is an expansion of B. ¢

Now we are in a position to prove the main result of the paper.

Theorem 11. Let A be a strictly simple algebra generating a minimal variety, and let
A® be an expansion of A. Then A® also generates a minimal variety unless one of the
following conditions holds:

(1) A is term equivalent to Bl™ for some m > 1 and for some two-element unary
algebra B with at least one trivial subalgebra, while its expansion A® is term equivalent to
(B*)!"™] where B® is an expansion of B which is either

— a unary algebra without trivial subalgebras, or
— an affine algebra without trivial subalgebras (in the latter case A®, too, is an affine
algebra without trivial subalgebras);

(2) A and A* are affine, A has at least one trivial subalgebra, while A® has no
trivial subalgebras;

(3) A isoftype5 and A has a nontrivial automorphism group (hence A has a unique
trivial subalgebra).



Proof. Let e be a minimal idempotent of A and f a minimal idempotent of A®. If A
is nonabelian, then A*® is also nonabelian, and hence by Corollary 8 the variety V(A?®) is
minimal unless (3) holds.

Assume now that A is abelian, and apply Theorem 9 to A. First we consider the case
when A is affine and has a trivial subalgebra. By Corollary 8 the variety V(A®) is not
minimal if and only if A*® is abelian and has no trivial subalgebras. Clearly, the expansion
A*® of A generates a congruence permutable variety, and it is well known that an abelian
algebra in a congruence permutable variety is affine ([9]; cf. [5; Exercise 3.2 (3)]). Therefore
the variety V(A®) is not minimal if and only if (2) holds.

In the remaining case A is term equivalent to B[™! for some m > 1 and some two-
element unary algebra B with at least one trivial subalgebra. Again by Corollary 8 the
variety V(A®) is not minimal if and only if A® is abelian and has no trivial subalgebras.
The expansion A® of A is term equivalent to an expansion of Bl™. Thus by Lemma 10
A* is term equivalent to (B®)I"™ for some expansion B® of B. It is well known that A*®
is abelian and has no trivial subalgebras if and only if B® has the same properties (cf.
[5; Exercise 3.12 (5)]). Since every two-element abelian algebra is either affine or term
equivalent to a unary algebra, it follows that the variety V(A®) is not minimal if and only
if (1) holds. o

Let us look at the ‘exceptions’ listed in Theorem 11, that is, at the pairs A, A® where
A is a strictly simple algebra and A® is an expansion of A such that A generates a minimal
variety, while A® does not. In cases (1) and (2), where V(A*®) is not minimal because A*®
violates the condition that “it has a trivial subalgebra provided it is abelian”, A and A®
are explicitly described. Moreover, it is known that in these cases the variety V(A®) has
a unique non-trivial proper subvariety.

Case (3), where the non-minimality of V(A®) is caused by the failure of the condi-
tion that “a minimal idempotent is nonconstant throughout the variety”, is much less
understood. We have no explicit description for the exceptional pairs A, A®. However, in
Corollary 17 we will prove that every algebra A satisfying condition (3) in Theorem 11
does indeed occur in an exceptional pair A, A®. Furthermore, in Examples 13 and 14 we
will construct algebras showing that in the exceptional pairs A, A® such that A satisfies
condition (3) in Theorem 11,

— there is no restriction on the type of the nonabelian algebra A®, and
— there is no finite bound on the number of subvarieties of V(A®).

In the examples it will be necessary to check for certain algebras A whether
an idempotent term is nonconstant throughout V(A). For this purpose we will apply
a result from (8] stating that this condition is equivalent to a Mal’cev-like condition.

Theorem 12. ([8]) Let A be an arbitrary algebra and let e be an idempotent term of A.
The following conditions are equivalent:

(1) e is nonconstant throughout V(A);
(2) for some n > 1, there exist binary terms t; and unary terms g;, h; (0 < i < n)
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such that

VA) E z=tg (a:, ego(a:)),
ti(z,eh; () = tip1(z,egir1(x)) (0<i<n-—1),
tn(z, ehn(z)) = e(z).

All examples we consider are G°-algebras for some group G with |G| > 1. The unit
element of G will be denoted by 1. Let us recall from [13] some facts on strictly simple
GC-algebras of type 5 that will be needed later on.

— Every nonabelian strictly simple G°-algebra has the following semilattice operation A
as a term operation:

ifr=y 0
Ay = {x ! Ly € GY).
vy 0 otherwise (@,y )

— The term operations of every strictly simple G%-algebra of type 5 are monotone with
respect to the natural order < of the semilattice (G°; A); moreover, they also preserve
the quaternary relation

wo = {(a,a,a,a), (a,a,0,0), (a,0,a,0), (a,0,0,0): a € GO}.

— Every nonabelian strictly simple G%-algebra generates a minimal variety.

— (G% A, Lg,0) is a strictly simple G%-algebra of type 5; in fact, up to term equivalence,
this is the least nonabelian strictly simple G°-algebra.

— The clones of strictly simple G®-algebras of type 5 form an interval in the clone lattice;
hence, up to term equivalence, there exists a largest strictly simple G°-algebra of type
5. The clone of this algebra consists exactly of those operations on G° which preserve
to and admit all permutations in R¢g as automorphisms (in view of |G| > 1 the latter
condition implies that {0} is a subalgebra).

Example 13. Let B = (G% A, Lg,0) (hence B = G°) where G is a group with |G| > 1,
and let W be a nonempty set of operations on B such that each member of W has range
{0,1} or {1}. Then the expansion B® of B with all operations in W fails to generate a
minimal variety.

Proof. Notice first that B® has a minimal idempotent f with range {0,1}. In fact,

for any fundamental operation w € W (say, w is k-ary) we have w(by,...,bx—1) = 1 for
some by, ...,bx—1 € B. If w(0,...,0) = 0, then allowing the notation [y for the constant
operation 0 we get that f(z) = w(ly,(2),...,l,_,(z)) is an idempotent term operation

of B® with range {0,1}. Otherwise, w(0,...,0) = 1 is a constant term operation of B®,
whence f(z) = A1 is an idempotent term operation of B® with range {0,1}. In both
cases f is clearly minimal.

Claim A. If ¢y is a binary term of B® such that B®* = z = ¢, (a:, fgo(ac)) for some
unary term g, then B® =z = to(z, y).
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Proof of Claim A. Clearly, to(B, B) = B (i.e., the range of ¢y is B). However, it is
straightforward to check by induction on the length of the terms that for every term ¢ of
B*, either ¢ is term of B or ¢(B,...,B) C {0, g} for some g € G. Thus t( is a term of B.

Hence
B Eto(z,y) = l.(x), or
to(z,y) = lb(y), or
to(@,y) = la(z) A ls(y)

for some a,b € G, and the same identity holds in B*® as well. Since B® =z = to(z, fg0(z)),
the last two cases cannot occur, while in the first case we get a = 1 and hence B® =z =
tO ('T ’ y) .

Now assume that, in contrary to our assertion, B® generates a minimal variety. Then
by Theorems 1 and 12 there exist terms ¢;, g;, h; (0 < i < n) such that B® satisfies the
identities in Theorem 12 (2) for f in place of e. Suppose these terms are selected so that
the length n of the chain is as small as possible. By Claim A, B® = z = ty(x,y). Thus
to, 9o, ho can be omitted from the Mal’cev chain, contradicting the minimality of n. This
completes the proof. o

Obviously, in Example 13 the two-element algebra f(B*®) has all w|zp) (w € W) as
fundamental operations. Furthermore, for each of the relations p =< and p = pyg, if p is
preserved by all operations in W, then p|f(p) is an invariant relation of f(B®). Therefore
one can easily construct sets W of operations such that B® has type 3, 4 or 5.

Example 14. Let B be as in the previous example, and let {1} = Hy C H; C ... C
Hj_1 C Hx = G be an ascending chain of subgroups of G. For + = 0,1,...,k — 1,k define
a unary operation f; on B by

z ifx e H;
i = ! € B),
filz) { 0 otherwise (2 )
and let B® be the expansion of B with the operations f; (0 < i < k). Then, for i =
0,1,...,k—1,k, the identities f;(x) = f;(y) define pairwise distinct proper subvarieties of

V(B*).

Proof. For 0 < i < k let V; denote the subvariety of V(B®) defined by the identity
fi(z) = fi(y). Since B® = f;f; = f; for j < i, we have Vyx; C Vi1 C ... C V; TV, C
V(B*®). It remains to show that the inclusions are proper. This is obvious for the last
inclusion, because B® [~ fo(z) = fo(y)-

Now let 0 < 4 < k — 1, consider the subset K; of B¢ consisting of all |G|-tuples in
which all coordinates belong to the set {0} U cH; for some left cosets cH; (c € G) of G,
and let p; denote the equivalence relation on B¢ whose only nonsingleton block is Kj;.
It is straightforward to check that p; is a congruence of (B*)®. Furthermore, we have
(B*)%/p; € Vi \ Viy1, completing the proof. o

Our last example is an essential step toward proving the fact that every algebra A
satisfying condition (3) in Theorem 11 occurs in an exceptional pair A, A®.
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Example 15. Let G be a group with |G| > 1, and let B be the largest strictly simple
G-algebra of type 5. Define a unary operation f on B by

z ifxz=1
= B).
f(z) { 0 otherwise (v € B)

The expansion Bf of B with f fails to generate a minimal variety.

Proof. Throughout the proof < denotes the natural order of the semilattice (G°;A).
We will repeatedly need the following three facts stated in Claims B, C, and D.

Claim B. The term operations of Bf are monotone with respect to <, and for every
term operation h(zo,...,Tn_1) of B there exists a term operation g(xo,...,%n_1) of B
such that h(zo,...,Tn_1) < @(z0,...,Tn_1) for all zg,...,z,_1 € B.

Proof of Claim B. The operations of B as well as f are monotone with respect to <,
and f(z) < z for all x € B. Therefore both parts of the claim follow by induction on the
complexity of terms.

Claim C. If

(i) t(xo,--.,TK_1) is a term operation of B such that ¢(c,0,...,0) = ¢ for some c € G =
B\ {0}, or
(i) #(zo,...,Tx_1) is a term operation of B such that #(z,0,...,0) = z for all z € B,
then #(xo, ..., Tx_1) = o for all zg, ..., 251 € B.

Proof of Claim C. First assume (i) holds. Then ¢y(x) = #(x,0,...,0) is a unary term
operation of B, and by the definition of a G'-algebra the only unary term operations of
B are 0 and I, (a € G). Therefore to(c) = ¢ implies that £(z,0,...,0) = to(z) = z for all
r € B.

So it remains to consider the case (ii). We use the monotonicity of the term operations
of B® (see Claim B). The inequality ¢(zg, z1,...,2Zx_1) > t(20,0,...,0) = zo yields that
t(xo,1,...,Tk_1) = xg for all zg € G = B\ {0} and all z1,...,zx_1 € B. Furthermore,
since |G| > 1 and ¢(0,21,...,25—1) < t(xo,21,---,%k—1) = xo if g € G, we conclude
that £(0, 21, ...,2x—1) = 0 holds for all z1,...,z,_1 € B. This completes the proof of the
claim.

Claim D. If 5 is a ternary term operation of B such that s(c, ¢,0) = cand s(d, 0,d) = d
for some elements ¢,d € G = B\ {0}, then s(z,y,2) =« for all z,y,z € B.

Proof of Claim D. Under the assumptions on § Claim C (i) implies that 5(z,z,y) =
5(z,y,z) = z for all z,y € B. Therefore we have 5(1,1,1) > 3(1,1,0) = 1, hence
5(1,1,1) = 1. Since § preserves pg, s applied to the quadruples (1,1,1,1), (1,1,0,0),
(1,0,1,0) from po yields that (1,1,1,5(1,0,0)) € po. Thus 5(1,0,0) = 1, and hence
Claim C (i) implies the required conclusion.

Analogously to Example 13, we want to refute the minimality of the variety V(BY)
via showing that Claim A is true for Bf in place of B®. We work toward this goal by
determining first the unary term operations of B,

Claim E. The unary term operations of B/ are exactly the following:
0, ly(a€e@), and Ipfl. (b,ce€qG).
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Proof of Claim E. It suffices to verify that for every fundamental operation t' of Bf
and for all elements a;, b;, c; € G the unary operation

glz) =1t (0, lag (2)y -yl (2), Lo fleg (), - . oy lbm_lflcm_l(:v))

is one of those listed in Claim E. This is obvious if ¢ = f, so assume ¢’ is a fundamental
operation of B. Using the term operation

t(-T: Yo, -+, ym—l) =t (Oa lao (.T), T la1—1(x)ﬂ lbo (yO)a SRR lbm—1(ym—1))

of B we see that
g(z) = t(a:, fleg(z), ...y flcm_l(x)).

By identifying variables in t and by adding fictitious variables to t if necessary we may
assume that m = |G| and G = {cp,...,cm-1}-

The list in Claim E contains all operations assuming 0 for all but one element of G,
therefore suppose g(z) # 0 for at least two distinct elements z € G, say © = ¢g and x = ¢;.
Our aim is to show that g € Lg. By Claim B there exists an element d € G such that
g(z) < lg(z) for all z € B. Thus, replacing g by l4-1g, we may assume without loss of
generality that g(z) < z for all x € B. In particular, this implies that

t(cg',1,0,...,0) = g(cg ) =gt and t(c;t,0,1,0,...,0) = g(c7!) =7t

Then for the ternary term operation s(z,y,z) = t(z,le(y),le, (2),0,...,0) of B we have
s(cgt,cpt,0) = ¢yt and s(c;',0,¢7") = ¢;'. Therefore applying Claim D we get that
5(1,0,0) = 1, and hence £(1,0,...,0) = 1, so by Claim C (i) ¢ is the (m + 1)-ary projection
onto its first variable. Thus g = [1, and the proof of Claim E is complete.

In case |G| = 2 knowledge of the unary term operations will not be enough to get
the analogue of Claim A, therefore in this case we have to determine the binary term
operations of Bf as well. Let G = {1,2}, and consider the following binary operation o
and quaternary operation 7 on B:

z ifx,yed
= ’ Y € B 3
rey {0 otherwise (2.9 )

x fez=yorz=Ily)=2=u

T,Y,2,u€ B).
0 otherwise (2.y )

T(z,y, 2,u) = {

It is straightforward to check that o and 7 are term operations of B. Furthermore, the
following is a complete list of the binary term operations of B:

0, lo(x), lo(y), lo(z) Nlp(y), lo(z) oy, and l(y)ox (a,b € G).

We will call a binary operation h on B absorptive if h(x,0) = 0 = h(0,z) for all x € B,
and essentially unary if it depends on at most one of its variables.

Claim F. For |G| = 2 and for a binary operation h on B the following conditions are
equivalent:
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(i) h is a term operation of BY;
(ii) A has the following two properties:
(a) there exists a binary term operation ¢ of B such that h(z,y) < ¢(z,y) for all
z,y € B, and
(b) h is either absorptive or essentially unary;
(iii) h is one of the following operations:

Q(-T,y), Q(fla(m)ay)a Q(-Ta flb(y)) or Q(fla(m)’flb(y))

for some a,b € G and some binary term operation ¢ of B; or

laT(lb(x); lc(fU); flb(x); fl2c(y))

for some a, b, c € G.

Proof of Claim F. (iii)=-(i) is obvious and (i)=-(ii)(a) is established in Claim B. The
implication (iii)=-(ii)(b) follows easily by inspecting the definition of 7 and the list of
binary term operations of B (which are all either absorptive or essentially unary). Thus
(iii)=(ii).

We show that (ii)=>(iii). Let us call two binary operations h and h' Lg-equivalent if
W(z,y) = lah(lb(x), lc(y)) for some a, b, c € G. Clearly, this yields an equivalence relation
~ on the set of binary term operations of Bf. Moreover, each family of operations described
in (ii), resp. (iii) is a union of full ~~-blocks. So it suffices to select a representative from
each ~-block of operations h satisfying condition (ii), and exhibit it in a form described
in (iii). If h is essentially unary, then this is easily done, using Claim E. If h is absorptive,
then h(z,y) or h(y, z) is ~-equivalent to one of the absorptive operations x(z,y) indicated

below by the 2 x 2 matrices (x(i, j ))z jec of their ‘essential’ values:
1 0 1 1 1 0 1 0 1 1
0 0 0 0 2 0 0 2 0 2
F@)ANfly)  fl@)oy zof(y)  zAy (2,9, f(2), fla(y))

Below each matrix we present a corresponding term operation form the list in (iii).
So far we have shown that (i)<=(ii)<>(iii), therefore what remains to prove is that Bf
has no other binary term operations than those described by the equivalent conditions (ii)
and (iii). That is, we have to verify that for every fundamental operation ¢ of B and
for all operations h;(x,y) (¢ = 0,1,...) satisfying the equivalent conditions (ii), (iii), the
operation
hz,y) =t (ho(z,y), hi(z,y),...)

also satisfies these conditions. If ' = f, then this is obvious by (ii). Now assume that ¢’ is
a fundamental operation of B. Using the description in (iii) for the operations h;(z,y) we
see that B has a term operation ¢ such that

h(z,y) = t(377 y, fli(z), fla(x), fla(y), flz<y))-
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By Claim B, h satisfies (ii)(a). Hence, by looking at the list of binary term operations of
B we get that at least one of the unary operations h(zx,0), h(0, ) is the constant 0. Let,
say, h(0,y) = 0 for all y € B. If h is absorptive, then (ii) holds, so we are done.

Suppose from now on that h is not absorptive, that is, the unary term operation
h(z,0) of B/ is not the constant 0. We want to prove that h does not depend on its second
variable. Without loss of generality we can replace h with an operation ~-equivalent to
it, therefore we may assume that h(1,0) = 1, whence from the inequality h(1,y) > h(1,0)
it follows that A(1l,y) = 1 for all y € B. If h(2,0) = h(2,1) = h(2,2) = 0, then h does
not depend on y, so we are done. Otherwise, in view of the inequality h(2,0) < h(2,y)
for all y € B, at least one of h(2,1), h(2,2) is distinct from 0. Replacing h(z,y) by
h(z,l2(y)) if necessary we may assume that h(2,1) # 0. Notice that the only possible
binary term operation ¢ of B such that h(z,y) < q(z,y) for all z,y € B (cf. Claim B)
is the first projection, therefore we have h(z,y) < z for all z,y € B. Thus h(2,1) = 2.
Hence for the ternary term operation s(z,y, z) = t(z,2(y), 2, 12(y), l2(y), 0) of B we have
s(1,0,1) = #(1,0,1,0,0,0) = h(1,0) = 1 and s(2,2,0) = ¢(2,1,0,1,1,0) = A(2,1) = 2.
Now Claim D implies that s(1,0,0) = 1, that is, ¢(1,0,0,0,0,0) = 1, and hence by Claim C
(i) t is the 6-ary projection onto its first variable. Thus h(z,y) = z for all z,y € B. This
completes the proof of Claim F.

Now we finish the proof of the assertion in Example 15 by showing that the analogue
of Claim A is true for Bf. As in Example 13, this implies that B/ does not generate a
minimal variety. Let ¢y be a binary term of B such that Bf = z = tg (:E, fgg(:v)) for
some unary term go. Since the term operation fgo occurs in the list in Claim E, there
is an element b € G such that fgo(xz) = 0 for all x € G \ {b}. Hence z = to(x,0) for all
r € G\ {b}. However, to(z,0) is a unary term operation of Bf. In case |G| > 2 the only
unary term operation of Bf with these properties is I1, that is, we have to(x,0) = z for all
x € B. By Claim C (ii) it follows that Bf =z = ty(z,y), as required. Finally, if |G| = 2,
then the description of binary term operations in Claim F (ii) immediately implies that
the only possibility for ¢y is that B/ = z = to(z, ). o

Now we are in a position to settle the question whether every strictly simple algebra
A generating a minimal variety V(A) and satisfying the conditions in Theorem 11 (3)
has an expansion A® such that V(A®) is not minimal. First, in Lemma 16, we reduce
the general question to an analogous question on the corresponding G%-algebras e(A) (cf.
Theorem 3), and then combine this observation with the result in Example 15 to get an
affirmative answer.

Lemma 16. Let A be nonabelian a strictly simple algebra generating a minimal variety,
and let e be a minimal idempotent of A. Furthermore, let f be a unary operation on A
such that f is a minimal idempotent of the expansion Af of A and Af = ef = fe = f.
Then f is a minimal idempotent of e(A)f, and AT generates a minimal variety if and only
if e(A)F generates a minimal variety.

Proof. The arguments in the first two paragraphs of the proof of Lemma 7 show that
f is a minimal idempotent of e(Af), and f is nonconstant throughout V(A/) if and only
if f is nonconstant throughout V(e(A7)). Hence by Theorem 1 A/ generates a minimal
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variety if and only if e(Af) does. In view of Lemma 4 (2)(ii) the algebra e(Af) is term
equivalent to e(A)f, therefore the claims of the lemma follow. o

Corollary 17. Let A be strictly simple algebra generating a minimal variety. If A is of
type 5 and has a nontrivial automorphism group, then A has an expansion A® which does
not generate a minimal variety.

Proof. By Theorem 3 the assumptions on A yield that e(A) is a G%-algebra for some
group G such that |G| > 1. Let us expand e(A) to get an algebra B which is, up to term
equivalence, the largest strictly simple G%-algebra of type 5 on the set e(4) = G° = B.
By Example 15 there exists a unary operation f on B with two-element range such that
f is a minimal idempotent of Bf and B/ does not generate a minimal variety. Clearly, f
is a minimal idempotent of e(A)7 as well, moreover, by Lemma 6 and Theorem 1 e(A)f
does not generate a minimal variety.

It is easy to see that efe is a (well-defined!) unary operation on A with efel.(4) = f
and with the same range as f, so it can be considered as the operation on A denoted by
the operation symbol f. Clearly, f is a minimal idempotent of Af and Af = ef = fe = f.
Hence our claim follows from Lemma 16. o
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