
CLONES CLOSED UNDER CONJUGATION I:
CLONES WITH CONSTANTS

KEITH A. KEARNES AND ÁGNES SZENDREI

Abstract. We show that if G ≤ SA is a permutation group on a finite set A
satisfying |A| ≥ 3, then the set of G-closed clones on A that contain all constant
operations is finite if and only if G = SA, AA, AGL(1, 5) (|A| = 5), PSL(2, 5)
(|A| = 6), PGL(2, 5) (|A| = 6), PGL(2, 7) (|A| = 8), PGL(2, 8) (|A| = 9), or PΓL(2, 8)
(|A| = 9).

1. Introduction

The group SA of all permutations of A acts on the relations on A by the rule: if
ρ ⊆ An and γ ∈ SA, then γ(ρ) := {

(
γ(a1), . . . , γ(an)

)
: (a1, . . . , an) ∈ ρ} ⊆ An . If

ρ is the graph of an operation f : Ak → A, then γ(ρ) is the graph of the conjugate
operation γ

(
f(γ−1(x1), . . . , γ

−1(xk))
)
, which will be denoted by γf in this paper.

A clone on A is a collection C of operations on A that is closed under composition
and contains the projection operations. If γ ∈ SA and C is a clone on A, then
γC := {γf : f ∈ C} is also a clone on A. We say that C is G-closed for a subgroup
G ≤ SA if γC = C for all γ ∈ G. This paper is the first of two which together
answer the question: for which permutation groups G ≤ SA on a finite set A are
there only finitely many G-closed clones? We not only identify which groups G have
this property, but we also identify the corresponding G-closed clones.

Clones arise in algebra. If A = (A; F ) is an algebra, then the closure of F under
composition is the clone of A, denoted by Clo(A). Every clone C on A arises as
the clone of some algebra, e.g. of (A; C). Two algebras on A that have the same
clone are called term equivalent. Conjugation by some γ ∈ SA fixes Clo(A) pointwise
precisely when γ is an automorphism of A. Therefore it is standard to call γ a weak
automorphism of A if conjugation by γ fixes Clo(A) setwise. In this terminology,
Clo(A) is G-closed precisely when G ≤ WAut(A). From this point of view, our
paper may be described in approximate terms as (the first half of) a classification of
all finite algebras that have a high degree of homogeneity. Here A has “a high degree

1991 Mathematics Subject Classification. Primary 08A05, Secondary 08A40, 08A35, 03B50.
Key words and phrases. Clone, conjugation, weak automorphism.
This material is based upon work supported by the Hungarian National Foundation for Scientific

Research (OTKA) grants no. T 034175 and T 037877.
1



2 KEITH A. KEARNES AND ÁGNES SZENDREI

of homogeneity” if WAut(A) is so large that only finitely many term inequivalent
algebras on A have the same weak automorphism group.

The principal antecedents to this paper in chronological order are:

• [18] by Emil Post, which classifies all clones on a 2-element set. This result
allows us to focus exclusively on the cases |A| ≥ 3 in the present paper.

• [13] by S. S. Marchenkov, which classifies up to term equivalence all finite
algebras satisfying Aut(A) = SA.

• [7] by Nguen van Hoa, which proves that there are finitely many SA-closed
clones when |A| = 3.

• [8, 9] by Hoa and [14] by Marchenkov, which prove that there are finitely
many SA-closed clones when 4 ≤ |A| < ω.

• [15, 16] by Marchenkov, which proves that there are finitely many AA-closed
clones when 4 ≤ |A| < ω.

• [21] by László Szabó, which provides a coarse description of the lattice of
G-closed clones ordered by inclusion, when G acts 2-homogeneously on A.

Our results may be viewed as completing the line of research of the last four items
on this list.

It follows from the coarse description of the lattice of G-closed clones for 2-
homogeneous groups in [21] that almost any such clone contains all constant oper-
ations or consists entirely of idempotent operations. Consequently the classification
of these clones divides naturally into these two main cases, one of which is handled
in this paper while the other will be handled in its successor.

The results of this paper were announced in [24].

2. The main theorem

Let G ≤ SA be a permutation group acting on a finite set A. G is k-homogeneous
if for any k-element subsets C and C ′ of A there exists γ ∈ G such that C ′ = γ(C);
i.e., if the action of G on the k-element subsets of A is transitive.

In this paper we will need a weaker notion. Call G weakly k-homogeneous if it has
the following property.

(WHk) For every (k + 1)-element subset B of A, and for every k-element subset
C of B, there exists a k-element subset C ′ of B such that C ′ 6= C and
C ′ = γ(C) for some γ ∈ G.

Call G weakly homogeneous if it is weakly k-homogeneous for every k (1 ≤ k < |A|).
It is clear that if G is k-homogeneous, then it is also weakly k-homogeneous. The

converse is true when k ≤ 2:

Lemma 2.1. Let G be a permutation group acting on a finite set A (|A| ≥ 3).

(1) G is weakly 1-homogeneous if and only if it is 1-homogeneous if and only if it
is transitive.
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(2) G is weakly 2-homogeneous if and only if it is 2-homogeneous.

Proof. The first statement is an immediate consequence of the definitions. The second
statement only has content when |A| ≥ 3, so assume this and that G is weakly 2-
homogeneous. If B = {1, 2, 3} is a 3-element subset of A, then by weak 2-homogeneity
{1, 2} lies in the same G-orbit as some other 2-element subset of B, say {1, 3}. But
the third 2-element subset, {2, 3}, also lies in the same G-orbit as some different
2-element subset of B, which must be either {1, 2} or {1, 3}. Hence all 2-element
subsets of B (or of any 3-element subset of A) lie in the same G-orbit. This shows
that if {a, b} and {c, d} are 2-element subsets of A and |{a, b, c, d}| 6= 4, then {a, b}
and {c, d} lie in the same G-orbit. On the other hand, if |{a, b, c, d}| = 4, then {a, b}
and {c, d} are each in the same G-orbit as {a, c}, so G is indeed 2-homogeneous. �

The main result of this paper is the following theorem.

Theorem 2.2. For a permutation group G acting on a finite set A (|A| ≥ 3) the
following conditions are equivalent.

(i) The number of G-closed clones that contain all constants is finite.
(ii) G is weakly homogeneous.

(iii) G is one of the following groups:
• An, Sn (|A| = n ≥ 3),
• AGL(1, 5) (|A| = 5),
• PSL(2, 5), PGL(2, 5) (|A| = 6),
• PGL(2, 7) (|A| = 8),
• PGL(2, 8), PΓL(2, 8) (|A| = 9).

Since all groups that are k-homogeneous for every k are weakly homogeneous, the
equivalence of conditions (ii) and (iii) in Theorem 2.2 extends the following classical
theorem, the main result of [1].

Theorem 2.3. The permutation groups that act on a finite set A (|A| ≥ 3) k-
homogeneously for every k (1 ≤ k < |A|) are the following:

• An, Sn (|A| = n ≥ 3),
• AGL(1, 5) (|A| = 5),
• PGL(2, 5) (|A| = 6),
• PGL(2, 8), PΓL(2, 8) (|A| = 9).

Theorem 2.2 is concerned only with G-closed clones that contain all constants.
Therefore we will now briefly discuss what is known about G-closed clones that
don’t contain all constants. Throughout this discussion we will assume that |A| ≥ 3
and that G is 2-homogeneous, a property shared by all groups in Theorem 2.2 (see
Lemma 2.1).

We will use the following notation. If F is a set of operations on A, 〈F 〉 will denote
the clone generated by F . The set of unary constant operations on A will be denoted
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by CA. For an algebra A, Ac will stand for the expansion of A by all constants. If
C is a clone on A, C(n) will denote the set of n-ary operations in C, and Cc the clone
generated by C∪CA. Let A be an abelian group. The group of all translations of A is
denoted by TR(A). For an R-module RA with underlying abelian group A, RAid will
denote the corresponding affine module (whose clone consists of all idempotent term
operations of RA), and RAtr will denote the expansion of RAid by all translations of
A.

Lemma 2.4. Let G be a permutation group acting 2-homogeneously on a finite set
A (|A| ≥ 3). Let C be a G-closed clone on A, and let A = (A; C).

(1) G ≤ WAut(A), hence WAut(A) is 2-homogeneous;
(2) C(1) ∩ SA and Aut(A) are normal subgroups of WAut(A);
(3) either C(1) ≤ SA or CA ⊆ C(1);
(4) WAut(A) ≤ WAut(Ac);
(5) if A is not simple, then C(1) ⊆ SA ∪ CA.

Proof. Items (1), (2), and (4) follow from the definition of weak automorphism.
For item (3), assume that C(1) 6≤ SA, and let f ∈ C(1) be a non-permutation, say

f(a) = f(b) for some distinct a, b ∈ A. If f is not constant, say f(c) 6= f(d) for
some c, d ∈ A, then by 2-homogeneity there exists γ ∈ G such that γ maps {a, b}
onto {f(c), f(d)}. Hence γf ◦ f has smaller range than f . This implies that a non-
permutation in C with smallest possible range is a constant operation. Since C is
G-closed and G is transitive on A, it follows that CA ⊆ C(1).

For (5), the 2-homogeneity of G implies that G acts transitively on the principal
congruences Θ(a, b) (a, b ∈ A, a 6= b) of A. Thus all principal congruences are
minimal. Assume that C(1) contains an operation f that is neither constant nor a
permutation. Let B be a kernel class of f with more than one element, and let
C = A−B; C 6= ∅ because f is not constant. For any c ∈ C and distinct a, b ∈ B we
have f(a) = f(b) 6= f(c) and Θ(a, c) ∩ Θ(b, c) ⊇ Θ

(
f(a), f(c)

)
= Θ

(
f(b), f(c)

)
. So

the minimality of the principal congruences yields that Θ(a, c) = Θ(b, c) = Θ(a, b).
Since this holds for arbitrary c ∈ C, we also get that Θ(b, d) = Θ(b, c) = Θ(c, d) for
all distinct c, d ∈ C (if any). This implies that all principal congruences coincide,
that is, A is simple, which contradicts our hypothesis. This completes the proof of
the lemma. �

Theorem 2.5. If G is a permutation group that acts 2-homogeneously on a finite set
A (|A| ≥ 3), then one of the following conditions holds for any G-closed clone C on
A:

(a) C(1) contains all constants and an operation that is neither constant nor a
permutation; moreover, the algebra (A; C) is simple;

(b) C is an idempotent clone such that the algebra (A; C) is simple;
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(c) C is the clone of a quasiprimal algebra with no proper subalgebras, whose
automorphism group is TR(A) for some elementary abelian group A on A;

(d) C = Clo(RAtr) where A is an elementary abelian group on A and R =
End(KA) for a subfield K of End(A);

(e) C = Clo(KAid), C = Clo(KAtr), or C = Clo(KAc) = Pol(KA) for a vector
space KA on A;

(f) C = 〈M〉 or C = 〈M∪CA〉 for a permutation group M ≤ SA whose normalizer
NSA

(M) is 2-homogeneous.

In each case (a)–(f) above, G is a subgroup of the weak automorphism group of
the algebra (A; C) (see Lemma 2.4 (1)). In case (c) the weak automorphism group is
AGL(FpA), in cases (d) and (e) it is AGL(KA), while in case (f) it is NSA

(M).

Proof of Theorem 2.5. Let A denote the algebra (A; C). Then Clo(A) = C and
Clo(Ac) = Cc. By assumption C is G-closed, that is, G ≤ WAut(A). There-
fore by Lemma 2.4 (4), Cc is also G-closed. We also know from Lemma 2.4 (2)
that M = C(1) ∩ SA is a normal subgroup of WAut(A). Since WAut(A) acts 2-
homogeneously on A, it follows that either M is the trivial group {id} or M acts
transitively on A.

Assume first that (Cc)(1) ⊆ SA ∪ CA. Then, by Pálfy’s Theorem [17], either Cc =
Pol(KA), the polynomial clone of a vector space KA on A, or else C is the polynomial
clone of a unary algebra on A; in the latter case C = 〈C(1)〉 and C(1) ⊆ (Cc)(1), hence
C(1) ⊆ M ∪ CA and Cc = 〈C(1) ∪ CA〉 = 〈M ∪ CA〉. According to Lemma 2.4 (3), we
will distinguish two cases. First let CA ⊆ C(1). Then Cc = C, hence it follows from
the facts established so far that C is one of the clones in (e) or (f). Now let C(1) ≤ SA,
that is, C(1) = M . If Cc = 〈M ∪CA〉, then C = 〈C(1)〉 = 〈M〉, so C is among the clones
in (f). If Cc = Pol(KA), then the description of the subclones of Pol(KA) in [22]
(Proposition 2.9) yields that Clo(KAid) ⊆ C ⊆ Pol(KA); moreover, if M = {id} then
C = Clo(KAid), while if M is a transitive permutation group on A then M = TR(A)
and C = Clo(KAtr). In both cases C is among the clones listed in (e).

Now assume that (Cc)(1) 6⊆ SA ∪ CA. By Lemma 2.4 (5) the algebra Ac = (A; Cc)
must be simple. Hence A = (A; C) is also simple. Again, we distinguish two cases
according to Lemma 2.4 (3). If CA ⊆ C(1), then the conditions in (a) hold for C. Now
let C(1) ≤ SA, that is, C(1) = M . If M = {id} then C satisfies condition (b). Finally,
if M is a transitive permutation group on A, then the simple algebra A = (A; C) has

no proper subalgebras, and Clo(1)(A) = M is a permutation group. It was proved in
[23] (Corollary 3.7 and Claims 3.8–3.9) that in this case either

— A is essentially unary and hence C = 〈C(1)〉 = 〈M〉 satisfies condition (f), or
— C = Clo(A) = Clo(RAtr) for an R-module RA as in (d), or else
— A is a quasiprimal algebra such that Aut(A) acts regularly on A.
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In the last case Aut(A) is a normal subgroup of WAut(A) by Lemma 2.4 (2), and
WAut(A) acts 2-homogeneously on A as G ≤ WAut(A). By Burnside’s Theorem
(see Theorem 4.2) a minimal normal subgroup of a finite 2-homogeneous permuta-
tion group is either elementary abelian and regular, or simple and primitive. This
conclusion holds, in particular, for a minimal normal subgroup N of WAut(A) that
is contained in Aut(A). Since Aut(A) is regular and N ≤ Aut(A), therefore N
must be regular. Hence we get that N = Aut(A) and Aut(A) is elementary abelian.
Thus Aut(A) = TR(A) for some elementary abelian group A with universe A. This
concludes the proof that C satisfies condition (c).

The proof of Theorem 2.5 is complete. �

The result in Theorem 2.5 on G-closed clones for 2-homogeneous G will be sufficient
for our purposes, but it is not the sharpest result known about these clones. In [21]
Szabó describes the coarse structure of the lattice of G-closed clones on a finite set
A (|A| ≥ 3) under the weaker assumption that G acts primitively on A. For the case
when G is 2-homogeneous, his description yields that in addition to what is stated
in Theorem 2.5, if C is a G-closed clone that belongs to class (a), then one of the
following conditions holds:

(a)1 C is the clone of all operations, or
(a)2 C = Clo(RAc) = Pol(RA) where A is an elementary abelian group on A and

R = End(KA) for a subfield K of End(A), or
(a)3 C is contained in the S lupecki clone R|A|−1 ∪ 〈TA〉 (see notation in Section 6).

It is easy to see that for each 2-homogeneous permutation group G on a finite set
A there are only finitely many G-closed clones C that satisfy any one of conditions
(c)–(f) in Theorem 2.5. Therefore the lattice of G-closed clones is finite if and only if

• the lattice of G-closed clones containing all constants, and
• the lattice of idempotent G-closed clones

are both finite.
Since all weakly homogeneous groups are 2-homogeneous (see Lemma 2.1), the

observation in the preceding paragraph yields that the assumption in Theorem 2.2
that the clones contain all constants can be replaced by the weaker condition that
the clones are non-idempotent:

Corollary 2.6. For a permutation group G acting on a finite set A (|A| ≥ 3) the
following conditions are equivalent.

(i) There are only finitely many non-idempotent G-closed clones.
(ii) G is weakly homogeneous.

(iii) G is one of the groups listed in Theorem 2.2 (iii).

The idempotent G-closed clones for weakly homogeneous groups G will be discussed
in a forthcoming paper.



CLONES CLOSED UNDER CONJUGATION I 7

t
t

t
t

t
t

t

t
t

t
t

t
t

t

�
�

�
�

�
�

�
�

��

�
�

�
�

�
��

�
�

�
�

�
�

�
�

��

�
�

��

@
@

@
@

@
@@

@
@

@
@

@
@@

@
@

@
@

@
@

@
@

@@

@
@

@@

PPPPPPPPPP

����������

����������

PPPPPPPPPP

〈C2〉 〈S2〉 〈p〉 〈m〉

〈∧,∨〉

clone of all operations
clone of

idempotent
operations

clone of projections

Figure 1. S2-closed clones on {0, 1}

Since the case |A| = 2 is excluded by the assumptions in Theorem 2.2 as well as in
Corollary 2.6, let us mention the analogues of these statements for the case when the
base set A has only two elements. Note first that among the two permutation groups
on A the two-element group S2 is weakly homogeneous, while the one-element group
A2 is not weakly homogeneous.

Post’s classification of all clones on a 2-element set (see [18]) yields that there
are only fourteen S2-closed clones on A = {0, 1}. Figure 1 shows the lattice of
all these clones. In the diagram ∧,∨ denote the lattice operations, m(x, y, z) =
(x∧ y)∨ (x∧ z)∨ (y ∧ z) is the unique majority operation, and p(x, y, z) = x + y + z
is the unique minority operation on {0, 1}. It is easily seen from Figure 1 that
there are eight non-idempotent S2-closed clones on {0, 1}. On the other hand, there
are infinitely many non-idempotent A2-closed clones on {0, 1}. This shows that the
equivalence of conditions (i) and (ii) in Corollary 2.6 remains true for |A| = 2.

However, conditions (i) and (ii) in Theorem 2.2 are not equivalent if |A| = 2.
The reason is that there are only seven clones on {0, 1} that contain both constants.
Figure 2 shows the lattice of these clones. All these clones are G-closed for the 1-
element group G = A2, and the ones denoted by bullets rather than black triangles
(i.e. those that also appear in Figure 1) are G-closed for G = S2 as well.

The rest of the paper is devoted to the proof of Theorem 2.2. In Sections 3, 4, and
6 we will prove the implications (i) ⇒ (ii), (ii) ⇔ (iii), and (iii) ⇒ (i), respectively.
In particular, the implication (iii) ⇒ (i) will be proved by explicitly describing, for
each weakly homogeneous group G acting on a finite set A (|A| ≥ 3), all G-closed
clones C that contain all constants. For all such G, this description can be combined
with the description of the clones in Theorem 2.5 (c)–(f) to get a description of all
non-idempotent G-closed clones as well.
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clone of all
operations

Figure 2. Clones on {0, 1} that contain both constants

3. The necessity of weak homogeneity

In this section we establish the implication (i)⇒(ii) in Theorem 2.2 by proving the
following theorem.

Theorem 3.1. Let G be a permutation group acting on a finite set A (|A| ≥ 3). If G
is not weakly homogeneous, then there exists an infinite descending chain of G-closed
clones on A that contain all constants.

Proof. For an arbitrary relation ρ on A let C(ρ) denote the set of all operations f
on A such that f preserves the relation ρ (that is, ρ is a subalgebra of the algebra
(A; f)n where n is the arity of ρ).

Claim 3.2. Let ρ be a relation on A. Then

(1) C(ρ) is a clone on A, and
(2) γ

(
C(ρ)

)
= C

(
γ(ρ)

)
holds for each permutation γ on A.

It is straightforward to check that C(ρ) contains the projection operations and
is closed under composition; therefore it is a clone, proving (1). Now let γ be a
permutation on A. For every operation f on A, γf preserves γ(ρ) if and only if f
preserves ρ. Therefore

γ
(
C(ρ)

)
= {γf : f preserves ρ} = {γf : γf preserves γ(ρ)} = C

(
γ(ρ)

)
,

since every operation is of the form γf for some operation f . This completes the proof
of (2).

Now assume that G is not weakly homogeneous. This means that there is some
number 1 ≤ k < |A| such that (WHk) fails. In fact, since every weakly 2-homogeneous
group is 2-homogeneous (Lemma 2.1), every 2-homogeneous group on a set A of size
at least 3 is transitive, and every transitive group is weakly 1-homogeneous, there
must exist such a k satisfying 2 ≤ k < |A|. Fix a witness of the failure of (WHk) for
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such a k, i.e., fix a k-element subset C of A, and a (k+1)-element subset B = C∪{0}
of A so that γ(C) 6= C ′ for every γ ∈ G and for every k-element subset C ′ of B that
contains 0. For notational simplicity let us assume that C = {1, 2, . . . , k}.

Using these sets we define an infinite sequence ρn (n = 2, 3, . . .) of relations and
an infinite sequence fn (n = 3, 4, . . .) of operations on A as follows:

• ρn is the (n + k − 1)-ary relation consisting of all tuples

(a1, . . . , an, b1, . . . , bk−1) ∈ An+k−1

such that
– |{a1, . . . , an, b1, . . . , bk−1}| ≤ k + 1 and
– |{a1, . . . , an}| ≥ 2 if {a1, . . . , an, b1, . . . , bk−1} = γ(C) for some γ ∈ G;

• fn is the n-ary operation on A such that

fn(1, . . . , 1,

jth position︷︸︸︷
0 , 1, . . . , 1) = 1 for every j (1 ≤ j ≤ n),

fn(c, . . . , c) = c for c = 2, . . . , k, and

fn(x1, . . . , xn) = 0 for all remaining arguments.

Claim 3.3. C(ρn) is a G-closed clone for each n ≥ 2, and it contains all constants.

Let n ≥ 2. Since γ(ρn) = ρn for all γ ∈ G, it follows immediately from Claim 3.2
that C(ρn) is a clone on A such that γ

(
C(ρn)

)
= C(ρn) for all γ ∈ G. Thus C(ρn) is

a G-closed clone. The fact that the relation ρn is reflexive yields that C(ρn) contains
all constants.

Claim 3.4. C(ρn−1) ⊇ C(ρn) for all n ≥ 3.

Using the definitions of ρn−1 and ρn one can easily check that

(a1, . . . , an−1, b1, . . . , bk−1) ∈ ρn−1 ⇔ (a1, . . . , an−1, an−1, b1, . . . , bk−1) ∈ ρn.

This implies that every operation that preserves ρn also preserves ρn−1, completing
the proof of Claim 3.4.

Claim 3.5. fn ∈ C(ρn−1)− C(ρn) for all n ≥ 3.

To see that fn /∈ C(ρn) notice the following: the (n + k − 1)-tuples

ej = (1, . . . , 1,

jth position︷︸︸︷
0 , 1, . . . , 1︸ ︷︷ ︸

first n positions

, 2, 3, . . . , k︸ ︷︷ ︸
last k − 1 positions

) (1 ≤ j ≤ n)

all belong to ρn; however, fn applied to these elements of ρn yields the (n+k−1)-tuple

fn(e1, . . . , en) = ( 1, . . . , 1︸ ︷︷ ︸
first n positions

, 2, 3, . . . , k︸ ︷︷ ︸
last k − 1 positions

)
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which fails to belong to ρn, since the set of components is {1, 2, . . . , k} = C = γ(C)
for γ = id, but the set of the first n components is a singleton. Thus fn fails to
preserve ρn, so fn /∈ C(ρn).

It remains to show that fn preserves ρn−1, and hence fn ∈ C(ρn−1). Let v1, . . . , vn

be arbitrary (n− 1 + k− 1)-tuples such that fn(v1, . . . , vn) /∈ ρn−1. We have to verify
that at least one of v1, . . . , vn fails to belong to ρn−1. Let

fn(v1, . . . , vn) = (a1, . . . , an−1, b1, . . . , bk−1).

Since the range of fn is the (k + 1)-element set {0, 1, 2, . . . , k} = B = C ∪ {0}, we
have

{a1, . . . , an−1, b1, . . . , bk−1} ⊆ C ∪ {0}.
Thus fn(v1, . . . , vn) /∈ ρn−1 implies that

a1 = · · · = an−1 and {a1, . . . , an−1, b1, . . . , bk−1} = γ(C)

for some γ ∈ G. By our choice of B and C we have γ(C) 6= C ′ for every γ ∈ G and
for every k-element subset C ′ of B that contains 0. Hence

{a1, . . . , an−1, b1, . . . , bk−1} = C = {1, 2, . . . , k}.

Thus fn(v1, . . . , vn) = (a, . . . , a, b1, . . . , bk−1) where 1 ≤ a ≤ k and b1, . . . , bk−1 is a
permutation of the elements 1, . . . , a− 1, a + 1, . . . , k. Since the roles of 2, . . . , k are
symmetric in the operation fn, and ρn is invariant under permuting its last k − 1
coordinates, we may assume without loss of generality that

(3.1) fn(v1, . . . , vn) = ( 1, . . . , 1︸ ︷︷ ︸
first n − 1 positions

, 2, 3, . . . , k︸ ︷︷ ︸
last k − 1 positions

)

or

(3.2) fn(v1, . . . , vn) = ( 2, . . . , 2︸ ︷︷ ︸
first n − 1 positions

, 1, 3, . . . , k︸ ︷︷ ︸
last k − 1 positions

).

Recall from the definition of fn that for 2 ≤ c ≤ k, fn(x1, . . . , xn) = c implies that
x1 = · · · = xn = c, while fn(x1, . . . , xn) = 1 implies that exactly one of x1, . . . , xn

equals 0 and the others equal 1. Thus, if (3.1) holds, then each (n− 1 + k− 1)-tuple
v1, . . . , vn has last k−1 coordinates 2, . . . , k, and for each i = 1, . . . , n−1 exactly one
of v1, . . . , vn has i-th coordinate 0, all others have i-th coordinate 1. Thus at least one
of the (n− 1 + k− 1)-tuples v1, . . . , vn is (1, . . . , 1, 2, . . . , k), and hence fails to belong
to ρn−1. If (3.2) holds, the argument is similar. In that case each (n−1+k−1)-tuple
v1, . . . , vn has first n − 1 coordinates 2, . . . , 2 and last k − 2 coordinates 3, . . . , k.
Furthermore, exactly one of v1, . . . , vn has n-th coordinate 0, all others have n-th
coordinates 1. Thus all v1, . . . , vn but one are equal to (2, . . . , 2, 1, 3, . . . , k), and
hence fail to belong to ρn−1.

This completes the proof of Claim 3.5.
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Claims 3.3–3.5 show that C(ρ2) ) C(ρ3) ) · · · ) C(ρn−1) ) C(ρn) ) · · · is an
infinite descending chain of G-closed clones that contain all constants. This completes
the proof of Theorem 3.1. �

4. Weakly homogeneous permutation groups

The following theorem proves that conditions (ii) and (iii) in Theorem 2.2 are
equivalent. The proof begins after the theorem statement, and spans the entire
section.

Theorem 4.1. A permutation group acting on a finite set A (|A| ≥ 3) is weakly
homogeneous if and only if it is one of the following groups:

• An, Sn (|A| = n ≥ 3),
• AGL(1, 5) (|A| = 5),
• PSL(2, 5), PGL(2, 5) (|A| = 6),
• PGL(2, 7) (|A| = 8),
• PGL(2, 8), PΓL(2, 8) (|A| = 9).

Proof. Let G be a permutation group acting on A (|A| ≥ 3). We will have to show
that if G is one of the groups listed in the theorem then G is weakly homogeneous,
but our main task will be to prove that if G is weakly homogeneous, then it is one of
the groups listed in the theorem. Recall from Lemma 2.1 that under the assumption
|A| ≥ 3 which we will adopt, every weakly homogeneous group is 2-homogeneous.

We will use the classification of 2-homogeneous groups. The first step of the clas-
sification is based on the following theorem of Burnside.

Theorem 4.2. If S is a minimal normal subgroup of a 2-homogeneous group G ≤ SA

(A finite), then S is either elementary abelian and regular, or simple and primitive.

The proof of Burnside’s Theorem, under the slightly stronger assumption that
G is 2-transitive, can be found in [3] (Theorem 4.3). The proof easily extends to
2-homogeneous groups.

Now let G ≤ SA be a 2-homogeneous group, and let S be a minimal normal
subgroup of G. Then G normalizes S, hence

(4.1) S ≤ G ≤ Ŝ where Ŝ = NSA
(S) is the normalizer of S in SA.

If S is simple and primitive, then a group G satisfying this condition is called
almost simple.

If S is regular and elementary abelian, then S = TR(A) = TR(FpA) for an elemen-
tary abelian p-group A, or equivalently, for a vector space FpA over a prime field. Let

d = dim FpA. In this case Ŝ is the affine linear group AGL(d, p). Hence, if S is regular
and elementary abelian, then a group G satisfying condition (4.1) is a subgroup of
some affine linear group AGL(d, p) that contains the group of all translations. Such
a group G is called an affine group.
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The first statement in the next corollary follows immediately from Burnside’s The-
orem. For the second statement, see [11] (Chapter XII, Theorem 6.5).

Corollary 4.3. Let G be a permutation group acting on a finite set A.

(1) If G acts 2-transitively on A, then G is either an affine group or an almost
simple group.

(2) If G acts 2-homogeneously, but not 2-transitively on A, then G is an affine
group.

To show that any weakly homogeneous group is one of the groups listed in The-
orem 4.1 we have to argue that all other 2-homogeneous groups fail to be weakly
k-homogeneous (i.e., fail to satisfy (WHk)) for some k (3 ≤ k < |A|). Many of the
2-homogeneous groups are groups of automorphisms of discrete geometries: affine
geometries, projective geometries, or, in general, Steiner systems. These groups will
fail to be weakly k-homogeneous for some k for the same ‘geometric’ reason, as shown
in Claim 4.4 below.

For other 2-homogeneous groups it will be useful to consider more general set
systems than Steiner systems. A set system is a pair (A;S) such that S is a family
of subsets of A. An automorphism of (A;S) is a permutation γ ∈ SA such that
γ(X) ∈ S for all X ∈ S. A set system (A;S) is called an S(k,m, n) Steiner system if
A is an n-element set, S is a family of m-element subsets of A, and each k-element
subset of A is contained in exactly one member of S.

Claim 4.4. Let (A;S) be a set system such that, for some k,

(i) S contains a set X such that k < |X| < |A| and
(ii) each k-element subset of A is contained in at most one member of S.

If G is a group of automorphisms of (A;S), then (WHk+1) fails for G.

Let C be a (k + 1)-element subset of a fixed member X of S satisfying condition
(i), and let u ∈ A − X. Let B = C ∪ {u}, and let C ′ be a (k + 1)-element subset
of B containing u. We claim that C ′ is not contained in any member of S. Indeed,
the assumptions on C ′ imply that C ′ = (C − {c}) ∪ {u} for some c ∈ C. Since (ii)
holds for (A;S), the only member of S that contains the k-element set C −{c} is X,
which does not contain u. Thus, among the (k + 1)-element subsets of B, C is the
only one that is contained in a member of S. Since G is a group of automorphisms
of (A;S), each set γ(C) (γ ∈ G) in the G-orbit of C will also have the property
that it is contained in a member of S. Thus the G-orbit of C contains none of the
(k + 1)-element subsets of B that are distinct from C. This proves that (WHk+1)
fails for this choice of B and C.

The special case of Claim 4.4 when (A;S) is a Steiner system is the following.

Claim 4.5. If G is a group of automorphisms of an S(k,m, n) Steiner system such
that k < m < n, then (WHk+1) fails for G.
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First we will apply Claim 4.5 to the affine groups.

Claim 4.6. For an affine group G ≤ AGL(d, p) (d ≥ 1, p prime), condition (WH3)
or (WH4) fails unless (d, p) is one of the pairs (1, p), p = 2, 3, 5, or (2, 2).

If d ≥ 2 and p > 2 then the family of all lines of the d-dimensional affine geometry
over Fp is an S(2, p, pd) Steiner system satisfying 2 < p < pd. Moreover, AGL(d, p)
(and hence G) is a group of automorphisms of this Steiner system. It follows from
Claim 4.5 that (WH3) fails for G. Similarly, if d ≥ 3 and p = 2 then the family of all
planes of the d-dimensional affine geometry over F2 is an S(3, 4, 2d) Steiner system
satisfying 3 < 4 < 8 ≤ pd. We get as before that (WH4) fails for G in this case.

Finally, let d = 1, p ≥ 7. We may assume without loss of generality that AGL(1, p)
acts on A = Fp = {0, 1, . . . , p−1}. Let us call a three-element subset of A an isosceles
triangle if it is of the form {a, (a+b)/2, b} for some a, b ∈ A. Since every permutation
in AGL(1, p) maps isosceles triangles into isosceles triangles, the G-orbit of an isosceles
triangle consists of isosceles triangles only. Now, for p ≥ 11, let B = {0, 1, 2, 5} and
C = {0, 1, 2}. Then C is an isosceles triangle, but none of the other 3-element subsets
of B are isosceles triangles. Therefore (WH3) fails for this choice of B, C. For p = 7,
let B = {0, 1, 2, 4} and C = {1, 2, 4}. Then C is not an isosceles triangle, while all
other 3-element subsets of B are isosceles triangles. Hence (WH3) fails for this choice
of B, C.

Claim 4.7. If G ≤ AGL(d, p) is a 2-homogeneous affine group for one of the pairs
(d, p) = (1, 2), (1, 3), (1, 5), or (2, 2), then G is one of the groups Sn, An (2 ≤ n ≤ 4)
or AGL(1, 5). All of these groups are weakly homogeneous.

For q = pd = 2, 3, 4 we have AGL(d, p) = Sq, and the group of translations in
AGL(d, p) is Aq for q = 2, 3, and the Klein group for q = 4. It follows that the
only 2-homogeneous subgroups of AGL(d, p) that contain the translations are Sq and
Aq. For q = pd = 5, the only 2-homogeneous subgroup of AGL(1, 5) that contains
the translations is AGL(1, 5) itself. This shows that G is one of the groups Sn, An

(2 ≤ n ≤ 4) or AGL(1, 5). All these groups are k-homogeneous, and hence weakly
k-homogeneous, for all k ≥ 2 (cf. Theorem 2.3).

Claims 4.6 and 4.7, combined with Lemma 2.1 prove that the weakly homogeneous
affine groups are exactly the affine groups listed in Theorem 4.1. By Lemma 2.1 and
Corollary 4.3 the remaining weakly homogeneous groups are all 2-transitive almost
simple groups. 2-transitive almost simple groups have been classified ([2], or see
Section 4.8 of [3], or Section 7.7 of [5]) by applying the classification of finite simple
groups. Table 1 shows the classification of 2-transitive almost simple groups G by
indicating the size |A| of the set G acts on, the simple normal subgroup S of G, the

index of S in Ŝ, and the transitivity degree of Ŝ. These data are taken from [3]. In

addition to this we will also need an explicit description of the normalizer Ŝ, which
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is usually easy to determine from S and the index [Ŝ : S]. We will discuss Ŝ in each
case separately, as we look at the 2-transitive groups G corresponding to each row of
Table 1. The results are summarized in Table 2.

Alternating and symmetric groups (Row 1 of Table 1)

If S = An then
G = An or G = Sn (n ≥ 5).

Claim 4.8. G is weakly homogeneous.

Projective groups (Rows 2–3 of Table 1)

The action of PSL(d, q) (d ≥ 2) is the natural action on the (d − 1)-dimensional
projective space A over the field Fq. The group PΓL(d, q), which is the extension of
PGL(d, q) by the field automorphisms, acts on the same space, and has PSL(d, q) as
a normal subgroup. Therefore

[PΓL(d, q) : PSL(d, q)] = [PΓL(d, q) : PGL(d, q)] · [PGL(d, q) : PSL(d, q)] = e · (d, q− 1).

Since [Ŝ : S] = e · (d, q − 1) holds by Table 1, we get that Ŝ = PΓL(d, q). Thus

PSL(d, q) ≤ G ≤ PΓL(d, q).

Claim 4.9. If d > 2 then (WH3) fails for G.

To prove the claim notice that the family of all lines of a (d − 1)-dimensional
projective geometry over Fq form an S

(
2, q + 1, (qd − 1)/(q − 1)

)
Steiner system

satisfying 2 < q + 1 < (qd− 1)/(q− 1). Moreover, PΓL(d, q) (and hence G) is a group
of automorphisms of this Steiner system. Therefore it follows from Claim 4.5 that
(WH3) fails for G.

Now let d = 2, so

PSL(2, q) ≤ G ≤ PΓL(2, q) (q = pe 6= 2, 3).

In this case A is the projective line over a finite field Fq, and the elements of A (i.e.,
the points of the projective line) are

(4.2)

〈[
a
1

]〉
(a ∈ Fq) and

〈[
1
0

]〉
.

The cross ratio of four distinct points 〈x〉, 〈y〉, 〈v〉, 〈w〉 ∈ A is defined as follows:

(4.3) crr(〈x〉, 〈y〉, 〈v〉, 〈w〉) =
|w y| · |x v|
|w v| · |x y|

where |s t| denotes the determinant of the 2 × 2 matrix with columns s, t. Clearly,
the right hand side does not depend on the choice of the generators of 〈x〉, 〈y〉, 〈v〉,
〈w〉; therefore the cross ratio is well defined.
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|A| Condition S [Ŝ : S] Tr. Deg.

1 n n ≥ 5 An 2 n

2
qd − 1

q − 1

q = pe (p prime)
d ≥ 3

PSL(d, q) (d, q − 1)e 2

3 q + 1
q = pe (p prime)
q 6= 2, 3

PSL(2, q) (2, q − 1)e 3

4 22d−1 + 2d−1 d ≥ 3 Sp(2d, 2) 1 2

5 22d−1 − 2d−1 d ≥ 3 Sp(2d, 2) 1 2

6 q3 + 1
q = pe (p prime)
q ≥ 3

PSU(3, q) (3, q + 1)e 2

7 q2 + 1 q = 22d+1 > 2 Sz(q) 2d + 1 2

8 q3 + 1 q = 32d+1 > 3 R1(q) 2d + 1 2

9 11 PSL(2, 11) 1 2

10 11 M11 1 4

11 12 M11 1 3

12 12 M12 1 5

13 15 A7 1 2

14 22 M22 2 3

15 23 M23 1 4

16 24 M24 1 5

17 28 PSL(2, 8) 3 2

18 176 HS 1 2

19 276 Co3 1 2

Table 1. 2-transitive almost simple groups ([3])
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|A| Condition S ≤ G ≤ Ŝ Tr. Deg.

1 n n ≥ 5 An ≤ G ≤ Sn n

2
qd − 1

q − 1

q = pe (p prime)
d ≥ 3

PSL(d, q) ≤ G ≤ PΓL(d, q) 2

3 q + 1
q = pe (p prime)
q 6= 2, 3

PSL(2, q) ≤ G ≤ PΓL(d, q) 3

4 22d−1 + 2d−1 d ≥ 3 Sp(2d, 2) ≤ G ≤ Sp(2d, 2) 2

5 22d−1 − 2d−1 d ≥ 3 Sp(2d, 2) ≤ G ≤ Sp(2d, 2) 2

6 q3 + 1
q = pe (p prime)
q ≥ 3

PSU(3, q) ≤ G ≤ PΓU(3, q) 2

7 q2 + 1 q = 22d+1 > 2 Sz(q) ≤ G ≤ Sz(q) 2

8 q3 + 1 q = 32d+1 > 3 R1(q) ≤ G ≤ R1(q) 2

9 11 PSL(2, 11) ≤ G ≤ PSL(2, 11) 2

10 11 M11 ≤ G ≤ M11 4

11 12 M11 ≤ G ≤ M11 3

12 12 M12 ≤ G ≤ M12 5

13 15 A7 ≤ G ≤ A7 2

14 22 M22 ≤ G ≤ M22 3

15 23 M23 ≤ G ≤ M23 4

16 24 M24 ≤ G ≤ M24 5

17 28 PSL(2, 8) ≤ G ≤ PΓL(2, 8) 2

18 176 HS ≤ G ≤ HS 2

19 276 Co3 ≤ G ≤ Co3 2

Table 2. The intervals S ≤ G ≤ Ŝ
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To simplify notation we will identify the points of the projective line listed in (4.2)
with the elements a of the field Fq, and with ∞, respectively. Thus A = Fq ∪ {∞},
and PΓL(2, q) acts on A by fractional semilinear transformations

x 7→ e · σ(x) + f

g · σ(x) + h
(e, f, g, h ∈ Fq, eh− fg 6= 0)

where σ is an automorphisms of Fq, extended to A by σ(∞) = ∞. The cross ratio of
four distinct points a, b, c, d ∈ A becomes

(4.4) crr(a, b, c, d) =
(d− b)(a− c)

(d− c)(a− b)

if a, b, c, d ∈ Fq and

crr(∞, b, c, d) =
d− b

d− c
, crr(a,∞, c, d) =

a− c

d− c
,(4.5)

crr(a, b,∞, d) =
d− b

a− b
, crr(a, b, c,∞) =

a− c

a− b

otherwise.

Claim 4.10. The cross ratio has the following properties. For any four distinct points
a, b, c, d of the projective line A = Fq ∪ {∞} over Fq,

(1) crr(a, b, c, d) ∈ Fq − {0, 1};
(2) the assignment u 7→ crr(a, b, c, u) yields a bijection between A − {a, b, c} and

Fq − {0, 1}; moreover, if a, b, c ∈ K ∪ {∞} for a subfield K of Fq, then

u ∈ K ∪ {∞} ⇐⇒ crr(a, b, c, u) ∈ K;

(3) permutations of the points a, b, c, d have the following effect:

crr(a, c, b, d) = 1/crr(a, b, c, d),

crr(b, a, c, d) = 1− crr(a, b, c, d),

crr(d, c, b, a) = crr(a, b, c, d),

crr(b, a, d, c) = crr(a, b, c, d);

(4) if π ∈ PGL(2, q) then

crr
(
π(a), π(b), π(c), π(d)

)
= crr(a, b, c, d),

that is, permutations from PGL(2, q) preserve the cross ratio;
(5) if σ ∈ Aut(Fq), then the extension of σ to the projective line has the following

effect:

crr
(
σ(a), σ(b), σ(c), σ(d)

)
= σ

(
crr(a, b, c, d)

)
.
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The easiest way to check (4) is to use (4.3) and observe that, because of the
multiplicative property of the determinant, the right hand side is invariant under the
action of GL(2, q). (5) follows immediately from (4.4) and (4.5). Since PGL(2, q) acts
3-transitively on A and preserves the cross ratio, it is enough to prove (1), the first
part of (2), and (3) for a = 1, b = 0, c = ∞. In this case crr(a, b, c, u) = u for any
u ∈ A−{a, b, c} = Fq −{0, 1}, so (1) and the first part of (2) follow immediately. To
check (3) one can use (4.5). The second statement in (2) follows from the first and
the expressions for the cross ratio in (4.4) and (4.5).

Now define an action of S4 on Fq − {0, 1} as follows: all permutations from the
Klein group are in the kernel of the action, and the transpositions (1 2) and (2 3) act
by the permutations α 7→ 1 − α and α 7→ 1/α, respectively. Claim 4.10 (3) implies
that performing a permutation from S4 on four distinct points a, b, c, d ∈ A changes
their cross ratio by the corresponding permutation of Fq − {0, 1}. Therefore we will
call this action of S4 on Fq − {0, 1} the cross ratio action, and its orbits cross ratio
orbits. Thus the cross ratio orbits are the sets of the form

[α] = {α, 1− α, 1/α, 1/(1− α), 1− 1/α, 1− 1/(1− α)} (α ∈ Fq − {0, 1}),

and to each 4-element set {a, b, c, d} ⊆ A we can unambiguously associate its cross
ratio orbit [crr(a, b, c, d)].

It is easy to see that the cross ratio action of S4 on Fq −{0, 1} commutes with the
action of the automorphism group Aut(Fq) of Fq on Fq −{0, 1} (see Claim 4.10 (5)).
The orbits of the combined action of S4 and Aut(Fq), that is, the sets

[[α]] =
⋃(

[σ(α)] : σ ∈ Aut(Fq)
)

(α ∈ Fq − {0, 1}).

will be called extended cross ratio orbits.

Claim 4.11. For any two 4-element subsets {a, b, c, d}, {a′, b′, c′, d′} of A,

(1) {a, b, c, d} and {a′, b′, c′, d′} are in the same orbit of PGL(2, q) if and only if
[crr(a, b, c, d)] = [crr(a′, b′, c′, d′)]; and

(2) {a, b, c, d} and {a′, b′, c′, d′} are in the same orbit of PΓL(2, q) if and only if
[[crr(a, b, c, d)]] = [[crr(a′, b′, c′, d′)]].

First we prove (1). If {a, b, c, d} and {a′, b′, c′, d′} are in the same orbit of PGL(2, q),
then {a′, b′, c′, d′} = {π(a), π(b), π(c), π(d)} for some π ∈ PGL(2, q). Thus the equality
[crr(a, b, c, d)] = [crr(a′, b′, c′, d′)] follows from Claim 4.10 (3) and (4). Conversely,
assume that [crr(a, b, c, d)] = [crr(a′, b′, c′, d′)]. Claim 4.10 (3) and the definition of the
cross ratio orbits imply that for a reordering a′′, b′′, c′′, d′′ of the elements a′, b′, c′, d′

we have crr(a, b, c, d) = crr(a′′, b′′, c′′, d′′). Since PGL(2, q) acts 3-transitively on A,
there is a π ∈ PGL(2, q) such that π(a) = a′′, π(b) = b′′, and π(c) = c′′. Hence we get

crr(a′′, b′′, c′′, d′′) = crr(a, b, c, d) = crr
(
π(a), π(b), π(c), π(d)

)
= crr

(
a′′, b′′, c′′, π(d)

)
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where the second equality follows from Claim 4.10 (3). The equality of the left-
most and rightmost cross ratios implies by Claim 4.10 (2) that d′′ = π(d). Thus
{a′, b′, c′, d′} = {a′′, b′′, c′′, d′′} = {π(a), π(b), π(c), π(d)}, showing that {a, b, c, d} and
{a′, b′, c′, d′} are in the same orbit of PGL(2, q).

The proof of (2) is similar, and uses the fact that PΓL(2, q) is a semidirect product
of its normal subgroup PGL(2, q) and its subgroup that consists of the permutations
induced by the automorphisms of Fq. Thus, if {a, b, c, d} and {a′, b′, c′, d′} are in
the same orbit of PΓL(2, q), then {a′, b′, c′, d′} = {σ(π(a)), σ(π(b)), σ(π(c)), σ(π(d))}
for some π ∈ PGL(2, q) and σ ∈ Aut(Fq). Hence the equality [[crr(a, b, c, d)]] =
[[crr(a′, b′, c′, d′)]] follows from Claim 4.10 (3), (4), and (5). Conversely, assume that
[[crr(a, b, c, d)]] = [[crr(a′, b′, c′, d′)]]. The definition of the extended cross ratio orbits,
combined with Claim 4.10 (5), implies that

[crr(a, b, c, d)] =
[
σ
(
crr(a′, b′, c′, d′)

)]
=

[
crr

(
σ(a′), σ(b′), σ(c′), σ(d′)

)]
for some σ ∈ Aut(Fq). Now it follows from part (1) that the sets {a, b, c, d} and
{σ(a′), σ(b′), σ(c′), σ(d′)} are in the same orbit of PGL(2, q), hence {a, b, c, d} and
{a′, b′, c′, d′} are in the same orbit of PΓL(2, q).

Claim 4.12. Let PSL(2, q) ≤ G ≤ PΓL(2, q) where q = pe 6= 2, 3 (p prime).

(1) If q 6= 4, 5, 7, 8, 11, 32, then (WH4) fails for G.
(2) If q = 11 or q = 32, then (WH5) fails for G.

We will prove (1) as follows. We will select an extended cross ratio orbit O and
four points a, b, c, d of the projective line so that crr(a, b, c, d) ∈ O. Then we will
argue that there exists a fifth point u on the projective line such that u is different
from the solutions of each equation

(4.6) crr(a, b, c, x) = α, crr(a, b, x, d) = α, crr(a, x, c, d) = α, crr(x, b, c, d) = α

(α ∈ O).

Since these solutions include x = d (first equation), x = c (second equation), x = b
(third equation), and x = a (fourth equation, each with α = crr(a, b, c, d) ∈ O), such
a u will be distinct from a, b, c, d. Moreover u will satisfy the conditions

(4.7) crr(a, b, c, u), crr(a, b, d, u), crr(a, c, d, u), crr(b, c, d, u) /∈ O.

By Claim 4.11 (2) these conditions imply that the 4-element set C = {a, b, c, d} is in
a different G-orbit than any other 4-element subset of B = C ∪ {u}, which proves
that (WH4) fails for G.

Suppose first that Fq has a proper subfield K such that |K| ≥ 3. Since every
automorphism of Fq maps K onto itself, each extended cross ratio orbit is either
contained in K or is disjoint from K. Let O be an extended cross ratio orbit such
that O ⊆ K, and let a = ∞, b = 0, c = 1, d ∈ O. Then crr(a, b, c, d) = d/(d−1) ∈ O.
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Now choose u ∈ A such that u /∈ K ∪ {∞}. Then Claim 4.10 (2) implies that u is
not a solution of any of the equations in (4.6).

Recall that q = pe 6= 2, 3. If Fq does not have a proper subfield K such that
|K| ≥ 3, then either q = p is prime (p ≥ 5), or p = 2 and q = 2e for some prime e.
In most of these cases we can prove the existence of u by a counting argument. The
number of equations in (4.6) is 4|O|, and by Claim 4.10 (2) and (3) each of these
equations has a unique solution. Therefore there exists a point u distinct from the
solutions of the equations in (4.6) provided |A| > 4|O|.

If q = p is prime (p ≥ 5), then PΓL(2, p) = PGL(2, p), and the extended cross ratio
orbits are the same as the cross ratio orbits. Choosing O = {2,−1, 1/2} we see that
the required point u exists if p + 1 = |A| > 4|O| = 12. If q = 2e where e is prime,
then let O be an arbitrary extended cross ratio orbit. Since a cross ratio orbit has at
most 6 elements and |Aut(Fq)| = e, we get that |O| ≤ 6e. Hence the required point
u will exist if 2e + 1 = |A| > 24e. It is easy to check that this inequality is true for
e ≥ 11.

Since e is prime, the only case satisfying the assumptions of Claim 4.12 (1) and
not covered by the preceding argument is q = 27 = 128. For this case an appropriate
choice for a, b, c, d, u was found and checked by MAPLE. To describe this choice,
select and fix a root γ ∈ F128 of 1 + x + x7 ∈ F2[x]. Each element of F128 can be
written uniquely as a sum of the form

∑6
i=0 εiγ

i with εi ∈ {0, 1}, and therefore can be

‘coded’ by the natural number n =
∑6

i=0 εi2
i. We will use these codes 0, 1, . . . , 127

as a shorthand notation for the elements of F128. For example, 0 = 0, 1 = 1, γ = 2,
and 1 + γ + γ4 = 19.

The three extended cross ratio orbits are

O1 = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19,

20, 21, 22, 23, 36, 37, 42, 43, 54, 55, 62, 63, 64, 65,

68, 69, 74, 75, 92, 93, 96, 97, 112, 113, 120, 121, 126, 127},

O2 = {12, 13, 14, 15, 26, 27, 38, 39, 40, 41, 50, 51, 52, 53,

56, 57, 60, 61, 66, 67, 78, 79, 80, 81, 84, 85, 88, 89,

94, 95, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 118, 119},

O3 = {24, 25, 28, 29, 30, 31, 32, 33, 34, 35, 44, 45, 46, 47

48, 49, 58, 59, 70, 71, 72, 73, 76, 77, 82, 83, 86, 87

90, 91, 98, 99, 110, 111, 114, 115, 116, 117, 122, 123, 124, 125}.
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Choosing O = O3 and a = ∞, b = 1 = 1, c = γ = 2, d = γ2 + γ3 = 12, u = 0 = 0
we get that

crr(a, b, c, d) = 44 ∈ O,

crr(a, b, c, u) = 65 /∈ O,

crr(a, b, u, d) = 95 /∈ O,

crr(a, u, c, d) = 55 /∈ O,

crr(u, b, c, d) = 88 /∈ O.

This completes the proof of statement (1).
To prove (2), let first q = 11. Since PΓL(2, 11) = PGL(2, 11), the extended cross

ratio orbits are the same as the cross ratio orbits. In fact, there are two cross ratio
orbits:

O1 = {2,−1, 1/2} = {2, 10, 6} and O2 = {3, 4, 5, 7, 8, 9}.

Our goal is to find sets B and C that witness the failure of (WH5). Let C =
{∞, 0, 1, 3, 4} and B = C ∪ {7}. Since

crr(∞, 0, 1, 3) = 3/2 = 7 ∈ O2,

crr(∞, 0, 1, 4) = 4/3 = 5 ∈ O2,

crr(∞, 0, 3, 4) = 4/1 = 4 ∈ O2,

crr(∞, 1, 3, 4) = 3/1 = 3 ∈ O2,

crr(0, 1, 3, 4) = 3(−3)/(−1) = 9 ∈ O2,

crr(∞, 0, 3, 7) = 7/4 = 10 ∈ O1,

crr(∞, 1, 4, 7) = 6/3 = 2 ∈ O1,

crr(0, 1, 3, 7) = 6(−3)/4(−1) = 10 ∈ O1,

therefore the cross ratio orbit associated to each 4-element subset of C is in O2, while
every 5-element subset of B containing 7 has a 4-element subset whose associated
cross ratio orbit is O1. It follows from Claim 4.11 (1) that the G-orbit of C is distinct
from the G-orbits of all other 5-element subsets of B. This proves that (WH5) fails
for G.

Finally, let q = 32. For this case an appropriate choice for sets B, C witnessing
the failure of (WH5) were found and checked by MAPLE. To describe the sets B, C,
select and fix a root γ ∈ F32 of 1 + x2 + x5 ∈ F2[x]. The cross ratio orbits are the
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(u1 . . . , u5) (n1, . . . , n5)

(a, b, c, d, e) (4, 3, 1, 2, 0)

(b, c, d, e, u) (4, 3, 2, 1, 4)

(a, c, d, e, u) (4, 1, 1, 0, 3)

(a, b, d, e, u) (3, 1, 4, 0, 1)

(a, b, c, e, u) (2, 1, 4, 0, 2)

(a, b, c, d, u) (1, 0, 0, 0, 0)

Table 3

following:

O0 = {1 + γ2 + γ3 + γ4, 1 + γ + γ4, 1 + γ, γ, γ2 + γ3 + γ4, γ + γ4},
O1 = {1 + γ3, γ2, 1 + γ + γ2 + γ4, 1 + γ2, γ + γ2 + γ4, γ3},
O2 = {1 + γ4, 1 + γ3 + γ4, γ + γ3, γ3 + γ4, γ4, 1 + γ + γ3}
O3 = {1 + γ + γ2 + γ3, γ + γ2 + γ3, γ + γ2, 1 + γ + γ2, γ2 + γ3, 1 + γ2 + γ3}
O4 = {γ + γ3 + γ4, 1 + γ + γ3 + γ4, 1 + γ2 + γ4,

1 + γ + γ2 + γ3 + γ4, γ + γ2 + γ3 + γ4, γ2 + γ4}

The Frobenius automorphism permutes these orbits cyclically: O0 7→ O1 7→ O2 7→
O3 7→ O4 7→ O0. Therefore F32 − {0, 1} is a single extended cross ratio orbit, which
implies by Claim 4.11 (2) that PΓL(2, 32) is 4-homogeneous.

As before, our goal is to find sets B and C that witness the failure of (WH5). Let
C = {a, b, c, d, e} and B = C ∪{u} where a = ∞, b = 0, c = 1, d = γ, e = 1 + γ + γ3,
and u = 1 + γ. To show that the G-orbit of C is different from the G-orbits of all
other 5-element subsets of B, we look at the 5-element subsets of B, and determine
the cross ratio orbit of each of its 4-element subsets. The results are recorded in
Table 3 in the following form: we represent a 5-element subset of B by a 5-tuple
(u1, . . . , u5) that we get from (a, b, c, d, e, u) by deleting a coordinate. To each such
5-tuple we assign a 5-tuple (n1, . . . , n5) of numbers where, for each i (1 ≤ i ≤ 5), ni is
the subscript of the cross ratio orbit [crr(u1, . . . , ui−1, ui+1, . . . , u5)] of the 4-tuple that
we get from (u1, . . . , u5) by deleting its i-th coordinate. We will refer to (n1, . . . , n5)
as the tuple of cross ratio orbits associated to (u1, . . . , u5).

For any 5-tuple (u1, . . . , u5) of distinct points of the projective line,
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• a permutation of the coordinates of (u1, . . . , u5) yields the same permutation
of the associated tuple of cross ratio orbits (since any permutation of the
arguments of the cross ratio leaves the cross ratio orbit unchanged);

• an application of a permutation from PGL(2, 32) to each coordinate of
(u1, . . . , u5) leaves the associated tuple of cross ratio orbits unchanged (since
permutations from PGL(2, 32) preserve the cross ratio); and

• an application of the Frobenius automorphism of F32 to each coordinate of
(u1, . . . , u5) adds 1 mod 5 to each coordinate of the tuple of cross ratio orbits.

This implies that the property of having a repetition in the tuple of cross ratio orbits
associated to a 5-tuple (u1, . . . , u5) of distinct points is a property of the 5-element set
{u1, . . . , u5} (i.e., does not depend on the ordering of the coordinates of (u1, . . . , u5)),
and is preserved by every permutation in PΓL(2, 32). By Table 3, the tuple of cross
ratio orbits associated to C has no repetition, while the tuples of cross ratio orbits
associated to all other 5-element subsets of B have repetitions. This implies that the
G-orbit of C is different from the G-orbits of all other 5-element subsets of B. The
proof of Claim 4.12 is complete.

Claim 4.13. If PSL(2, q) ≤ G ≤ PΓL(2, q) (q = pe 6= 2, 3, p prime) and q = 4, 5, 7
or 8, then G is one of the following groups:

(4.8)
PGL(2, 4) = A4, PΓL(2, 4) = S4, PSL(2, 5), PGL(2, 5),
PSL(2, 7), PGL(2, 7), PGL(2, 8), PΓL(2, 8).

PSL(2, 7) fails to satisfy (WH4), but the remaining groups are weakly homogeneous.

Indeed, if q = 5 or 7, then PGL(2, q) = PΓL(2, q) and [PGL(2, q) : PSL(2, q)] = 2,
while if q = 2e (e = 2, 3), then PSL(2, 2e) = PGL(2, 2e) and [PΓL(2, 2e) : PGL(2, 2e)] =
e. Therefore the only possibilities for G are the groups listed in (4.8).

The permutation group PSL(2, 7) acting on an 8-element set is a subgroup of the
affine group AGL(3, 2) acting on an 8-element set ([2], p. 9). Since (WH4) fails for
AGL(3, 2) by Claim 4.6, it fails for PSL(2, 7) as well. The weak homogeneity of
PSL(2, 5) and PGL(2, 7) is proved in the next two claims. The remaining groups in
(4.8) are k-homogeneous for all k (1 ≤ k < |A|) by Theorem 2.3, so they are also
weakly homogeneous.

Claim 4.14. The permutation group G = PSL(2, 5), acting on the projective line
A = F5 ∪ {∞} over F5,

(1) is k-homogeneous for every k 6= 3 (1 ≤ k ≤ 5), and
(2) has two orbits of 3-element sets; the two orbits consist of the following sets:

• {a− 1, a, a + 1}, {a + 1,∞, a− 1}
(
a ∈ F5

)
,

• {a− 2, a, a + 2}, {a + 2,∞, a− 2}
(
a ∈ F5

)
.

Hence G is weakly homogeneous.
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Geometrically, we can think of A as a pentagon with vertices a ∈ F5, together with
a point ∞ at infinity. In this interpretation, the two G-orbits of 3-element sets are
the following:

• one of the orbits consists of all isosceles triangles whose base is a diagonal of
the pentagon, and

• the other orbit consists of all isosceles triangles whose base is a side of the
pentagon.

To verify (1) we use that G acts 2-transitively on A. This implies that G is k-
homogeneous, and hence also (6− k)-homogeneous, for k = 1, 2.

To prove (2) consider G as a subgroup of the group of all fractional linear trans-
formations over F5. Since the transformation σ : x 7→ −1/x and the translations
τa : x 7→ x + a belong to G for all a ∈ F5, therefore the G-orbit of the 3-element set
S = {−1, 0, 1} contains S ′ = σ(S) = {1,∞,−1}, and hence all sets

(4.9) τa(S) = {a− 1, a, a + 1} and τa(S ′) = {a + 1,∞, a− 1}
(
a ∈ F5

)
.

These are ten of the twenty 3-element subsets of A. A similar calculation, starting
with the set T = {−2, 0, 2} which is not among those appearing in (4.9), shows that
the G-orbit of T contains the remaining ten of the twenty 3-element subsets of A.
Since G is not 3-homogeneous (by part (1) and Theorem 2.3), therefore the sets in
(4.9) form one of the G-orbits of 3-element sets, and the remaining 3-element sets
form the other orbit. This completes the proof of (2).

Finally we prove that G is weakly homogeneous. By part (1) G is k-homogeneous
for every k 6= 3, therefore it remains to show that G is weakly 3-homogeneous. We
have to verify that for every 4-element subset B of A exactly two of the four 3-element
subsets of B belong to each orbit of 3-element sets. Since G is 4-homogeneous, it
suffices to check this property for one 4-element set B. If B = {1, 2, 3, 4}, then
{1, 2, 3} and {2, 3, 4} belong to the first orbit, while {2, 4, 1} and {4, 1, 3} belong to
the second orbit. This completes the proof of Claim 4.14.

Claim 4.15. The permutation group G = PGL(2, 7), acting on the projective line
A = F7 ∪ {∞} over F7,

(1) is k-homogeneous for every k 6= 4 (1 ≤ k ≤ 7), and
(2) has two orbits of 4-element sets; the two orbits consist of the following sets:

• {a, b, c, d} (⊆ A) such that crr(a, b, c, d) ∈ {3, 5},
• {a, b, c, d} (⊆ A) such that crr(a, b, c, d) ∈ {2, 4, 6}.

Hence G is weakly homogeneous.

G acts 3-transitively on A. Therefore G is k-homogeneous, and hence also (8− k)-
homogeneous, for k = 1, 2, 3. This proves (1).

To show (2) recall from Claim 4.11 that two 4-element sets {a, b, c, d} and {a′, b′, c′, d′}
belong to the same G-orbit if and only if the cross ratios crr(a, b, c, d) and crr(a′, b′, c′, d′)
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are in the same cross ratio orbit of F7 − {0, 1}. The cross ratio orbits of F7 − {0, 1}
are {3, 5} = {3, 35} and {2, 4, 6} = {32, 33, 34}.

Finally we prove that G is weakly homogeneous. By part (1) G is k-homogeneous
for every k 6= 4, therefore it remains to show that G is weakly 4-homogeneous.
We have to verify that for every 5-element subset B of A two of the five 4-element
subsets of B belong to one orbit, and the remaining three to the other orbit. Since
G is 5-homogeneous, it suffices to check this property for one 5-element set B. Let
B = {∞, 0, 1, 2, 3}. Then crr(0, 1, 2, 3) = 4, crr(∞, 1, 2, 3) = 2, crr(∞, 0, 2, 3) = 5,
crr(∞, 0, 1, 3) = 3, and crr(∞, 0, 1, 2) = 2. Hence the sets {∞, 0, 2, 3}, {∞, 0, 1, 3}
belong to one of the orbits, and the sets {0, 1, 2, 3}, {∞, 1, 2, 3}, {∞, 0, 1, 2} to the
other. This completes the proof of Claim 4.15.

Claims 4.9–4.15 prove that among the projective groups (with their usual actions
on projective spaces) the weakly homogeneous groups are exactly those listed in
Theorem 4.1.

Symplectic groups (Rows 4–5 of Table 1)

The symplectic groups Sp(2d, 2) have two different 2-transitive actions, as shown in
Rows 4 and 5 of Table 1. Now we will describe these actions, following [5], pp.
245–248.

Let V = F2d
2 be the 2d-dimensional (column) vector space over the 2-element field,

let

E =

[
0 I
0 0

]
and F = E + ET =

[
0 I
I 0

]
be 2d × 2d matrices over F2 where I denotes the d × d identity matrix, and let
ϕ : V × V → F2 be the bilinear form defined by ϕ(u, v) = uTFv for all u, v ∈ V . Let
Ω denote the set of all functions θ : V → F2 that satisfy

ϕ(u, v) = θ(u + v)− θ(u)− θ(v) for all u, v ∈ V .

For each vector s ∈ V , the quadratic form θs : V → F2 defined by θs(u) = uTEu +
sTFu for all u ∈ V is a member of Ω. In particular, θ0(u) = uTEu for all u ∈ V , and
hence

(4.10) θs(u) = θ0(u) + sTFu for all u ∈ V .

It is easy to see that for each θ ∈ Ω, the function θ− θ0 : V → F2 is linear. Therefore
each element of Ω is of the form θs for a unique vector s ∈ V . Hence V → Ω, s 7→ θs

is a bijection.
The symplectic group Sp(2d, 2) is defined as the subgroup of GL(2d, 2) consisting

of all invertible matrices M ∈ GL(2d, 2) such that MTFM = F . Since ϕ(Mu, Mv) =
ϕ(u, v) for all M ∈ Sp(2d, 2) and u, v ∈ V , it follows that for each θ ∈ Ω, the
function Mθ : V → F2 defined by Mθ(u) = θ(M−1u) is a member of Ω. Thus the
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permutations θ 7→ Mθ (M ∈ Sp(2d, 2)) define an action of Sp(2d, 2) on Ω. It can be
shown (Corollary 7.7A and Theorem 7.7A of [5]) that this action has two orbits:

(4.11) Ω+ = {θs : s ∈ V, θ0(s) = 0} and Ω− = {θs : s ∈ V, θ0(s) = 1};

moreover, Sp(2d, 2) acts 2-transitively on both of them. These are the two 2-transitive
actions of Sp(2d, 2).

For each M ∈ Sp(2d, 2), let rM denote the vector assigned to θ = Mθ0; that is, rM

is the unique vector in V such that Mθ0 = θrM
. Then Mθs = θMs+rM

holds for each
θs ∈ Ω and M ∈ Sp(2d, 2), as the following calculation shows. Indeed, for arbitrary
u ∈ V ,

Mθs(u) = θs(M
−1u) = θ0(M

−1u) + sTFM−1u

= Mθ0(u) + sTMTFu = θ0(u) + rT
MFu + sTMTFu

= θ0(u) + (rM + Ms)TFu = θMs+rM
(u);

here we used the definition of the action of Sp(2d, 2) on Ω, equation (4.10), the fact
that FM−1 = MTF for all M ∈ Sp(2d, 2), and the definition of rM .

Thus the action of Sp(2d, 2) on Ω described earlier is equivalent, via the bijection
V → Ω, s 7→ θs to the action of Sp(2d, 2) on V where each M ∈ Sp(2d, 2) acts by the
affine permutation s 7→ Ms + rM . Since θ0(s) = sTEs, we get from (4.11) that the
orbits of this action are the sets

V + = {s ∈ V : sTEs = 0} and V − = {s ∈ V : sTEs = 1}.

So, the 2-transitive actions of Sp(2d, 2) are these actions G+ and G− of Sp(2d, 2) on
the orbits V + and V −, respectively.

Claim 4.16. (WH4) fails for both 2-transitive actions G+ and G− of S = Sp(2d, 2)
(d ≥ 3).

To prove that (WH4) fails for G+ and G−, we will use Claim 4.4. Let S be the
set of all planes (cosets of 2-dimensional subspaces) of the affine geometry V over F2,
and let

S+ = {V + ∩X : X ∈ S} and S− = {V − ∩X : X ∈ S}.

Then (V ;S) is an S(3, 4, 22d) (d ≥ 3) Steiner system, and (V +,S+), (V −,S−) are its
subsystems induced on the sets V + and V −, respectively. Thus each 3-element subset
of V + is contained in at most one member of S+, and similarly, each 3-element subset
of V − is contained in at most one member of S−. Since G+ and G− act by affine
permutations restricted to V + and V −, respectively, G+ is a group of automorphisms
of (V +,S+) and G− is a group of automorphisms of (V −,S−). It remains to show
that the affine geometry V over F2 has planes X+ and X− such that X+ ⊆ V + and
X− ⊆ V −. Indeed, if such planes exist, then S+ contains the set X+, S− contains
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the set X−, and because of d ≥ 3 we have that 3 < |X+| = |X−| = 4 ≤ 22d−2 <
|V −| < |V +|. Hence it follows from Claim 4.4 that (WH4) fails for both G+ and G−.

To find a plane X+ ⊆ V + we have to find four distinct vectors a, b, c, d ∈ V + such
that a + b + c + d = 0. All vectors we select will have 4th, . . ., dth and (d + 4)th,
. . ., (2d)th coordinates equal to 0, therefore we won’t write out these coordinates. A
possible choice for a, b, c, d is

a = [0 0 0 . . . 0 0 0 . . .]T,

b = [1 1 0 . . . 1 1 0 . . .]T,

c = [1 0 1 . . . 1 0 1 . . .]T,

d = [0 1 1 . . . 0 1 1 . . .]T.

By adding the vector [1 0 0 . . . 1 0 0 . . .]T to a, b, c, d we get four vectors that form
a plane contained in V −. This completes the proof of Claim 4.16.

Unitary groups (Row 6 of Table 1)

The group PSU(3, q) is defined as follows. Let K = Fq2 , and let V = K3 be the 3-
dimensional (column) vector space over K. The field K has a unique automorphism
of order 2, namely K → K, α 7→ ᾱ = αq. This automorphism, acting entry-by-entry,
induces a skew linear transformation of V and an automorphism of GL(3, q2), which
will also be denoted by ¯. Let ϕ : V ×V → K denote the Hermitian form defined by
ϕ(v, w) = vTw̄ for all v, w ∈ V . The unitary group GU(3, q) is defined as the subgroup
of GL(3, q2) consisting of all Hermitian matrices; that is, M ∈ GL(3, q2) belongs
to GU(3, q) if and only if ϕ(Mv, Mw) = ϕ(v, w) for all v, w ∈ V , or equivalently,
MTM̄ = I.

The group GU(3, q) acts on the 1-dimensional subspaces of K (that is, on the points
of the projective plain P over K); the induced group is the projective unitary group
PGU(3, q), which is a subgroup of PGL(3, q2). The subgroup PGU(3, q) ∩ PSL(3, q2)
of PGU(3, q) is the projective special unitary group PSU(3, q). The group PGU(3, q)
can be extended by the field automorphisms of K to yield a group PΓU(3, q); the
construction is analogous to the construction of PΓL(3, q2) from PGL(3, q2).

To describe the 2-transitive action of PΓU(3, q), recall that a vector v ∈ V is called
isotropic if ϕ(v, v) = 0. If v ∈ V is isotropic, then so is Mv for each M ∈ PGU(3, q)
and so is the image of v under (the coordinatewise action of) each automorphism of
K. Therefore the action of PΓU(3, q) on the points of the projective plane P over
K can be restricted to the set A of all isotropic points (1-dimensional subspaces 〈v〉
of V such that v ∈ V is isotropic). The action of PΓU(3, q) on A is faithful and 2-
transitive; in fact, the action of its subgroup PSU(3, q) is also 2-transitive (cf. [5], pp.
248–250). This is the 2-transitive action S of PSU(3, q) with |A| = q3 +1 indicated in
Row 6 of Table 1. Since PSU(3, q)/PΓU(3, q) and [PΓU(3, q) : PSU(3, q)] = (3, q+1)e,
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we get that Ŝ = PΓU(3, q). Therefore

PSU(3, q) ≤ G ≤ PΓU(3, q) (q = pe ≥ 3).

Claim 4.17. (WH3) fails for all such groups G.

Let S be the family of all lines of the projective plane P over K, and let

S = {A ∩X : X ∈ S}.
Then (P ;S) is an S(2, q2 + 1, q4 + q2 + 1) Steiner system, and (A;S) is its subsystem
induced on A. It follows that each 2-element subset of A is contained in at most one
member of S. The facts established in the preceding paragraph show that PΓU(3, q),
and hence also G, is a group of automorphisms of (A;S). Now select two distinct
points a, b ∈ A, and let X ∈ S be the line containing a, b. It can be shown that
|A ∩ X| = q + 1 (see Exercise 7.7.12 in [5]), so A ∩ X is a member of S such that
2 < |A ∩X| = q + 1 < q3 + 1 = |A|. Thus Claim 4.4 implies that (WH3) fails for G,
and completes the proof of Claim 4.17.

Suzuki groups (Row 7 of Table 1)

The 2-transitive action of the Suzuki group Sz(q) (q = 22d+1 > 2), which is referred
to in Row 7 of Table 1, is a group of automorphisms of an S(3, q + 1, q2 + 1) Steiner
system (A;S) that can be defined as follows. Let K = Fq, q = 22d+1 > 2, and let
P be the projective 3-space over K; that is, the points of P are the 1-dimensional
subspaces of the vector space K4. Let A be the subset of P that consists of the point
〈[1 0 0 0]T〉 together with all points

〈[xy + x2d+1+2 + y2d+1

y x 1]T〉, x, y ∈ K.

The set A has q2 + 1 elements. By Theorem 3.3 of Chapter XI of [11], Sz(q) is the
subgroup of PGL(4, q) that leaves A invariant, and Sz(q) acts 2-transitively on A. If
S consists of the intersections of the projective planes in P with A, then (A;S) is a
set system invariant under Sz(q), which is an S(3, q+1, q2 +1) Steiner system (see [4],
p. 104). (A;S) is also invariant under the field automorphisms from PΓL(4, q). Hence
the field automorphisms together with Sz(q)

(
≤ PGL(4, q)

)
generate a subgroup Sz(q)

of PΓL(4, q) such that Sz(q) is also a 2-transitive group of automorphisms of (A;S)

and Sz(q) / Sz(q). Since S = Sz(q) / Sz(q) ≤ Ŝ and [Sz(q) : Sz(q)] = 2d + 1 = [Ŝ : S],

it follows that Sz(q) = Ŝ is the group of all automorphisms of (A;S). Thus

Sz(q) ≤ G ≤ Sz(q) (q = 22d+1 > 2).

Claim 4.18. Condition (WH4) fails for all such groups G.

The fact that Sz(q) is a group of automorphisms of an S(3, q + 1, q2 + 1) Steiner
system where 3 < q + 1 < q2 + 1 (since q > 2), implies by Claim 4.5 that (WH4) fails
for each subgroup G of Sz(q). This completes the proof of Claim 4.18.
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Ree groups (Row 8 of Table 1)

The 2-transitive action of the Ree group R1(q) (q = 32d+1 > 3) is a group of auto-
morphisms of an S(2, q + 1, q3 + 1) Steiner system (A;S). One way to describe this
Steiner system is analogous to the above discussion of the Steiner system associated
to a Suzuki group (see [5], pp. 251–252). We will follow a different description which
is outlined in [4] (pp. 104–105).

The Ree group R1(q) (32d+1 > 3) can be defined as the group of fixed points of
an automorphism of the Chevalley group associated to the Lie algebra of type (G2)
over the field Fq (see [19]). Let P be a Sylow 3-subgroup of R1(q), and let M be the
normalizer of P in R1(q). We will use the following facts on R1(q) from [20] (see p.
797) and from Chapter XI, Theorem 13.2 in [11].

(1) R1(q) acts 2-transitively on the set A = {gM : g ∈ R1(q)} of left cosets of M
by left multiplication, and |A| = q3 + 1. From now on R1(q) will denote the
2-transitive subgroup of SA obtained in this way.

(2) A two-point stabilizer R1(q)x,y in R1(q) is a cyclic group of order q − 1, so it
contains a unique involution ιx,y.

(3) Every involution in R1(q) has at least three fixed points.

For distinct elements x, y ∈ A let Bx,y denote the set of fixed points of ιx,y, and let
S = {Bx,y : x, y ∈ A, x 6= y}. Then (A;S) is a set system that satisfies conditions
(i)–(ii) in Claim 4.4 for k = 2. In fact, it can be shown (see [4], pp. 104–105) that
(A;S) is an S(2, q + 1, q3 + 1) Steiner system.

Now let R1(q) denote the normalizer of R1(q) ≤ SA in SA. We claim that R1(q)
is a group of automorphisms of (A;S). To see this let π ∈ R1(q) and x, y ∈ A,
x 6= y. Since π normalizes R1(q), it conjugates R1(q)x,y into a subgroup of R1(q) that
fixes π(x) and π(y). Therefore π ◦ R1(q)x,y ◦ π−1 = R1(q)π(x),π(y). This implies that
π ◦ ιx,y ◦ π−1 = ιπ(x),π(y) and π(Bx,y) = Bπ(x),π(y). Hence π is an automorphism of
(A;S), as claimed.

Thus, for S = R1(q) from Row 8 of Table 1 we have Ŝ = R1(q), so in this case

R1(q) ≤ G ≤ R1(q) (q = 32d+1 > 3).

Claim 4.19. Condition (WH3) fails for all such groups G.

We saw above that R1(q) is a group of automorphisms of the set system (A;S)
which satisfies conditions (i)–(ii) in Claim 4.4 for k = 2. Thus we get from Claim 4.4
that (WH3) fails for each subgroup G of R1(q).

The Mathieu groups and their subgroups (Rows 9–12 and 14–16 of Table 1)

We will use the following well known facts on the Mathieu groups and their subgroups.

(1) M12 ≤ S12 is 5-transitive, and is the automorphism group of an S(5, 6, 12)
Steiner system. (See Theorem 6.3B in [5].)
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(2) M11 ≤ S11 is 4-transitive, and is the automorphism group of an S(4, 5, 11)
Steiner system. (See Theorem 6.4A in [5].)

(3) M11 has a 3-transitive action on 12, which is a subgroup of M12. (See Theo-
rem 6.18 in [6].)

(4) PSL(2, 11) has a 2-transitive action on 11, which is a subgroup of M11. (See
Proposition 6.22 in [6].)

(5) M24 ≤ S24 is 5-transitive, and is the automorphism group of an S(5, 8, 24)
Steiner system. (See Theorem 6.7C in [5].)

(6) M23 ≤ S23 is 4-transitive, and is the automorphism group of an S(4, 7, 23)
Steiner system. (See Theorem 6.7B in [5].)

(7) M22 ≤ S22 is 3-transitive, and is the automorphism group of an S(3, 6, 22)
Steiner system. (See Theorem 6.6D in [5].)

(8) M22 = (M24){α,β} is the stabilizer of a two-element set in M24. An index 2

subgroup in M22 is M22 = (M24)α,β, the two-point stabilizer of M24. (See
p. 204 in [5].)

By Table 1, if S is one of the groups in (1)–(6), then Ŝ = S, while if S = M22 then

[Ŝ : S] = 2. Since M22 normalizes M22 and [M22 : M22] = 2, we get that Ŝ = M22 in
this case. Hence for S as in Rows 9–12 and 14–16 of Table 1 the 2-transitive groups

G satisfying S ≤ G ≤ Ŝ are exactly the groups listed in (1)–(8) above. All these
groups are groups of automorphisms of Steiner systems, therefore Claim 4.5 implies
the following.

Claim 4.20. • (WH6) fails for M24, M12, and the 3-transitive action of M11 on
a 12-element set.

• (WH5) fails for M23, M11, and the 2-transitive action of PSL(2, 11) on an
11-element set.

• (WH4) fails for M22 and M22.

A7 acting on a 15-element set (Row 13 of Table 1)

The alternating group A7 acting on a 15-element set is a subgroup of PSL(4, 2) with
its natural action on the 15 points of the projective 3-space over F2 (see [2], p. 9).
By Claim 4.9 (WH3) fails for this action of PSL(4, 2), hence (WH3) fails for all of its
subgroups. This proves the following claim.

Claim 4.21. (WH3) fails for the alternating group A7 acting on a 15-element set.
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PSL(2, 8) acting on a 28-element set (Row 17 of Table 1)

For the permutation groups S and Ŝ in Row 17 of Table 1 we will use the description
that appears on pp. 22–24 of [3]. Let P be a Sylow 3-subgroup of the group PΓL(2, 8),
and let M be the normalizer of P in PΓL(2, 8). Then [PΓL(2, 8) : M ] = 28, and
PΓL(2, 8) acts faithfully and 2-transitively on the 28-element set A of left cosets of M
by left multiplication. The image of this action is the 2-transitive permutation group

Ŝ. Its commutator subgroup S has index 3 in Ŝ, and is isomorphic to PGL(2, 8) =
PSL(2, 8). The group S acts primitively, but not 2-transitively on A.

Therefore, if G is a 2-transitive permutation group on A such that S ≤ G ≤ Ŝ,

then G = Ŝ, that is, G is the 2-transitive action of PΓL(2, 8) on a 28-element set.

Claim 4.22. (WH3) fails for the 2-transitive action G of PΓL(2, 8) on a 28-element
set.

This claim can be established with the aid of the computer algebra system GAP,
as we now explain. Let a, b be two distinct elements of A. GAP calculations show
that the two-point stabilizer Ga,b in G is a 2-element group, and the set Ba,b of fixed
points of the nonidentity permutation in Ga,b has 4 elements. Moreover, under the
natural action of G on the 4-element subsets of A the orbit S of Ba,b consists of 63
sets. Since G acts 2-transitively on A, each 2-element subset of A is contained in
some member of S. The number of 2-element subsets of A is

(
28
2

)
= 63

(
4
2

)
where

(
4
2

)
is the number of 2-element subsets of each member of S, therefore each 2-element
subset of A is contained in exactly one member of S. Thus (A,S) is an S(2, 4, 28)
Steiner system. By construction G is a group of automorphisms of (A;S). Thus
Claim 4.5 implies that (WH3) fails for G, and hence proves Claim 4.22.

The Higman–Sims group (Row 18 of Table 1)

The Higman–Sims group HS acting on a 176-element set is the automorphism group
of a combinatorial geometry (A;S) consisting of a set A of 176 points and a set
S of 176 quadrics such that each quadric consists of 50 points, each point is in 50
quadrics, each pair of distinct points is incident with exactly 14 quadrics, and each
pair of distinct quadrics is incident with exactly 14 points (see [5], pp. 252–253). Thus
any 15 points are contained in at most one quadric. Therefore (A;S) is a set system
that satisfies the assumptions of Claim 4.4 for k = 15. Hence we get the following.

Claim 4.23. (WH16) fails for HS acting on a 176-element set.

The Conway group (Row 19 of Table 1)

First we will describe the 2-transitive action of the Conway group Co3. We will follow
the treatment in [6], Chapter 9–10.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

O1 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
O2 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
O3 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0
O4 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0
O5 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0
O6 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1
O7 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
O8 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
O9 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
O10 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
O11 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1
O12 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0 0

Table 4. Standard basis of the Golay code

Let (24,S24) be the S(5, 8, 24) Steiner system whose automorphism group is the
Mathieu group M24. This Steiner system is unique, up to isomorphism, and is deter-
mined by the binary Golay code, which can be defined as follows. Let P (Ω) denote
the set of all subsets of Ω = 24, and let ⊕ denote symmetric difference on P (Ω). The
binary Golay code is the subgroup G of (P (Ω);⊕) generated by the sets O1, . . . , O12

listed by their characteristic functions in Table 4. Alternatively, the binary Golay
code can be described as the subspace of F24

2 generated by the vectors in Table 4.
It can be shown that ∅, Ω ∈ G and every set S ∈ G such that S 6= ∅, Ω has 8, 12,

or 16 elements. The 8-element sets in G are called octads, and the 12-element sets in
G are called dodecads.

Next we will describe the standard Leech lattice. Let (·, ·) denote the standard
inner product in the 24-dimensional R-space RΩ, and let {αi : i ∈ Ω} be a basis of
RΩ such that (αi, αj) = 2δij for all i, j. For any set S ⊆ Ω and i ∈ Ω we will use the
following notation:

αS :=
∑
k∈S

αk and νi := 1
4
αΩ − αi.

The standard Leech lattice Λ is the additive subgroup of RΩ generated by the fol-
lowing vectors:

αi ± αj (i, j ∈ Ω), 1
2
αS (S ∈ G), νi (i ∈ Ω).

It is easy to check that (v, v) is an even integer for each one of these generating
vectors. Hence (v, v) is an even integer for all v ∈ Λ. A vector v ∈ Λ is said to have
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type n if (v, v) = 2n. A triangle of type 223 is a set {u, v, x} of vectors in Λ such that
u + v + x = 0 and u, v are of type 2 while x is of type 3.

The automorphism group of the Leech lattice, denoted Aut(Λ), consists of all
automorphisms of Λ as an abelian group which also preserve the bilinear form (·, ·)
on Λ. For any set S ∈ G the linear map εS : RΩ → RΩ defined by

εS(αi) =

{
−αi if i ∈ S

αi if i /∈ S

restricts to an automorphism of Λ.
We will need the following facts on Λ and Aut(Λ):

(1) If v ∈ 2Λ then (v, v) is divisible by 8.
(2) Aut(Λ) preserves the types of vectors, and maps 2Λ to itself.
(3) The set of vectors of type 2 in Λ is the disjoint union of the following three

sets:

{1
2
εS(αO) : O,S ∈ G, O an octad},
{εS(νi) : i ∈ Ω, S ∈ G},

{±αi ± αj : i, j ∈ Ω, i 6= j}.

(4) For n = 2 and 3, Aut(Λ) acts transitively on the set of vectors of type n.
(5) For any i ∈ Ω, the vector

xi =
1

4

(
5αi +

∑
j 6=i

αj

)
is of type 3.

(6) There are exactly 276 triangles of type 223 in which the type 3 member is xi;
23 of them are of the form

4j = {−νj, −(αi + αj), xi} (j ∈ Ω, j 6= i),

and 253 are of the form

4O = {−1
2
αO, εΩ−O(νi), xi} (O ∈ G an octad, i ∈ O).

Statements (1), (2), and (5) follow from the definitions. Statements (3) and (6) are
taken from Theorem 9.2 and Exercise 10.2 in [6], while (4) is taken from Proposi-
tion 9.9 and Theorem 9.20 in [6].

The Conway group Co3 is the stabilizer in Aut(Λ) of a vector x of type 3. This group
acts 2-transitively on the set of triangles of type 223 containing x (see Theorem 10.3
in [6]). By the transitivity in (4) neither this definition of Co3 nor its 2-transitive
action depends on the choice of x. We will select and fix x to be one of the vectors
xi in (5), and we will use the description, given in (6), of the triangles of type 223
containing xi.
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Claim 4.24. (WH8) fails for Co3 acting on a 276-element set.

To prove the claim let i = 13 and let

A = {4j : j ∈ Ω, j 6= i} ∪ {4O : O ∈ G an octad, i ∈ O}
be the set of triangles of type 223 containing xi (see (6) above). Furthermore, let
T7, T8, T9, T10 be the octads in G defined as follows:

T7 = O1 ⊕O2 ⊕O7, T8 = O5 ⊕O6 ⊕O8,

T9 = O1 ⊕O2 ⊕O9, T10 = O5 ⊕O6 ⊕O10,

and let

I = {O7, O8, O9, O10, T7, T8, T9, T10}.
Since i = 13 is a member of each octad in I ∪ {O5}, we see that

C = {4O : O ∈ I} and B = C ∪ {4O5}
are subsets of A. The nine triangles in B are pairwise distinct, therefore |B| = 9 and
|C| = 8. Our goal is to show that B and C witness the failure of (WH8)

The set C has following property:

(∗) one can select one vertex of type 2 of each triangle in the set so that the sum
of the eight selected vectors is in 2Λ.

Indeed, select the vertices −1
2
αO (O ∈ I). Then

−
(

1
2
αO7 + 1

2
αO8 + 1

2
αT7 + 1

2
αT8

)
+

(
1
2
αO9 + 1

2
αO10 + 1

2
αT9 + 1

2
αT10

)
= −2(α10 + α14) + 2(α11 + α15) ∈ 2Λ.

Hence

∑
O∈I

−1
2
αO ≡ −

(
1
2
αO7 + 1

2
αO8 + 1

2
αT7 + 1

2
αT8

)
+

(
1
2
αO9 + 1

2
αO10 + 1

2
αT9 + 1

2
αT10

)(4.12)

≡ 0 (mod 2Λ),

proving (∗).
It follows from statement (2) above that for every automorphism π ∈ Co3 ≤

Aut(Λ), the set π(C) of triangles shares property (∗). Therefore the failure of (WH8)
will be established if we show that no 8-element subset D of B that contains 4O5

has property (∗).
Let D be an 8-element subset of B such that 4O5 ∈ D. Then D = {4O : O ∈ JS}

where JS = (I − {S}) ∪ {O5} for some S ∈ I. Let vO be a vertex of type 2 of 4O

(O ∈ JS). We want to show that

(4.13)
∑
O∈JS

vO 6≡ 0 (mod 2Λ).
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It follows from statement (6) that for each O, either vO = −1
2
αO or vO = εΩ−O(νi).

In the second case

vO = εΩ−O(νi) = 1
2
αO − xi ≡ −1

2
αO − xi (mod 2Λ),

because the vertices of a triangle sum to 0. Let k be the number of octads O ∈ JS

for which vO = 1
2
αO − xi. Then∑

O∈JS

vO ≡ kxi +
∑
O∈JS

−1
2
αO (mod 2Λ).

Combining this with (4.12) we get that∑
O∈JS

vO ≡
∑
O∈JS

vO −
∑
O∈I

−1
2
αO

≡ kxi +
∑
O∈JS

−1
2
αO −

∑
O∈I

−1
2
αO

≡ (−1)kxi − 1
2
αO5 + 1

2
αS (mod 2Λ).

Let wS = 1
2
αS − 1

2
αO5 and w′

S = wS − xi. To prove (4.13) we have to show that
wS, w′

S /∈ 2Λ. Since

wS =
∑

j∈S−O5

1
2
αj −

∑
j∈O5−S

1
2
αj

and either |S −O5| = |O5 − S| = 4 or |S −O5| = |O5 − S| = 6, we get that

(wS, wS) =
∑

j∈S−O5

(1
2
αj,

1
2
αj)+

∑
j∈O5−S

(−1
2
αj,−1

2
αj) = 2· 1

4
(|S−O5|+|O5−S|) = 4 or 6.

Hence, by statement (1), wS /∈ 2Λ. Notice that i /∈ (S − O5) ∪ (O5 − S) = S ⊕ O5

because i ∈ S ∩O5. Therefore

w′
S = −5

4
αi +

∑
j∈S−O5

1
4
αj +

∑
j∈O5−S

−3
4
αj +

∑
j /∈(S⊕O5)∪{i}

−1
4
αj,

whence

(w′
S, w′

S) = 225
16

+ 2 1
16
|S −O5|+ 2 9

16
|O5 − S|+ 2 1

16
(24− |(S ⊕O5) ∪ {i}|)

= 10 or 12.

Thus we get as before that w′
S /∈ 2Λ. This completes the proof of Claim 4.24 and

also of Theorem 4.1. �
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5. The weakly homogeneous groups that are not homogeneous

By Theorems 2.3 and 4.1, PSL(2, 5) and PGL(2, 7) are the only weakly homogeneous
groups that fail to be m-homogeneous for some m. In fact, by Claims 4.14 and 4.15,
PSL(2, 5) has two orbits of 3-element sets and is k-homogeneous for all k 6= 3, while
PGL(2, 7) has two orbits of 4-element sets and is k-homogeneous for all k 6= 4. In this
section we establish some properties of these groups that are needed in the sequel.

Lemma 5.1. Let G = PSL(2, 5) with its action on the projective line A over F5.

(1) Every partition {B1, B2, B3} of A has transversals in each G-orbit of 3-element
sets.

(2) For every 5-element subset B of A and for any distinct elements b, b′ of B,
each G-orbit of 3-element sets contains a set S such that {b, b′} ⊂ S ⊂ B.

Proof. In the proof we will use the geometrical description of the two PSL(2, 5)-orbits
of 3-element sets; see the remark following Claim 4.14.

(1) Let {B1, B2, B3} be a partition of A. We may assume without loss of generality
that |B1| ≤ |B2| ≤ |B3|. Suppose first that |B1| = 1. Since G is 2-transitive on A, we
may also assume that B1 = {∞} and 0 ∈ B2. Thus {B2, B3} is a partition of F5 with
|B3| ≥ 3. One can check that there exist b, b′ ∈ B3 such that 0, b is a side, while 0, b′

is a diagonal of the pentagon. Consequently the transversals {∞, 0, b} and {∞, 0, b′}
belong to distinct G-orbits.

Now suppose that |B1| > 1. Then |B1| = |B2| = |B3| = 2, so by the 2-transitivity
of G we may assume that B1 = {∞, 0}. It is easy to check that there exist elements
a, a′ ∈ B2 and b, b′ ∈ B3 such that a, b is a side, while a′, b′ is a diagonal of the
pentagon. As before, it follows that the transversals {∞, a, b} and {∞, a′, b′} belong
to distinct G-orbits. This completes the proof of (1)

(2) Let B be a 5-element subset of A. Since G acts transitively on the projective
line A = F5 ∪ {∞} over F5, we may assume that B = F5. For any two distinct
vertices b, b′ of the pentagon B, there exist vertices s, s′ such that {b, b′, s} is an
isosceles triangle whose base is a side, and {b, b′, s′} is an isosceles triangle whose
base is a diagonal of the pentagon. This proves (2). �

Lemma 5.2. Let G = PGL(2, 7) with its action on the projective line A over F7.

(1) Every partition {B1, B2, B3, B4} of A has transversals in each G-orbit of 4-
element sets.

(2) For every 6-element subset B of A and for any distinct elements b, b′ of B,
each G-orbit of 4-element sets contains a set S such that {b, b′} ⊂ S ⊂ B.

Proof. The proof of this lemma relies on the description of the two PGL(2, 7)-orbits
of 4-element sets in Claim 4.15 (2).

(1) Let {B1, B2, B3, B4} be a partition of A = F7 ∪ {∞}. We may assume without
loss of generality that |B2| ≤ |B1|, |B4| ≤ |B3|, that is, |B2| is minimal and |B3| is
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maximal among |B1|, |B2|, |B3|, |B4|. Since G acts 3-transitively on A, we may also
assume that 0 ∈ B1, 1 ∈ B2, ∞ ∈ B4. Thus, for every element u ∈ B3 ⊆ F7, we
have crr(0, 1, u,∞) = u. If B3 intersects both cross ratio orbits {3, 5} and {2, 4, 6},
then we get two transversals of the form {0, 1, u,∞} that belong to distinct G-orbits.
Otherwise, if |B3| ≥ 3 then

(i) B2 = {1} and B3 = {2, 4, 6} = {32, 33, 34},
while if |B3| < 3 then

(ii) |B1| = |B2| = |B3| = |B4| = 2 and B3 is one of the sets {3, 5} = {3, 35},
{2, 4} = {32, 34}, {2, 6} = {32, 33}, or {4, 6} = {34, 33}.

In case (i) the cross ratio orbit {3, 5} has a nonempty intersection with B1 or B4.
Since our assumptions and conclusions on the partition {B1, B2, B3, B4} are invariant
under performing the transformation x 7→ 1/x from G and simultaneously switching
the role of B1 and B4, we may assume that {3, 5} has a nonempty intersection with B1.
Let v ∈ {3, 5}∩B1. Then v+1 ∈ {2, 4, 6} = B3. Thus the transversals {0, 1, v+1,∞}
and {v, 1, v+1,∞} belong to distinct G-orbits, as crr(0, 1, v+1,∞) = v+1 ∈ {2, 4, 6}
and crr(v, 1, v + 1,∞) = 1/(1− v) ∈ {3, 5}.

Now we will consider case (ii). If B3 = {3, 35} then B2 = {1, u} for some
u ∈ {32, 33, 34}. For each such u there exists v ∈ {3, 35} = B3 with v/u ∈ {32, 33, 34};
namely, we can choose v = 3 = 37 for u = 33, 34, and v = 35 for u = 32.
Thus the transversals {0, 1, v,∞} and {0, u, v,∞} belong to distinct G-orbits, as
crr(0, 1, v,∞) = v ∈ {3, 35} and crr(0, u, v,∞) = v/u ∈ {32, 33, 34}. Similarly, if
B3 = {32, 34} then B2 = {1, u} for some u ∈ {3, 33, 35}. For each such u there
exists v ∈ {32, 34} = B3 with v/u ∈ {3, 35}; namely, we can choose v = 32 = 38

for u = 3, 33, and v = 34 = 310 for u = 35. Thus the transversals {0, 1, v,∞}
and {0, u, v,∞} belong to distinct G-orbits, as crr(0, 1, v,∞) = v ∈ {32, 33, 34} and
crr(0, u, v,∞) = v/u ∈ {3, 35}.

Finally, it suffices to consider the case B3 = {32, 33}, because the remaining case
B3 = {34, 33} can be reduced to it by performing the transformation x 7→ 1/x
from G and simultaneously switching the role of B1 and B4. So, let B3 = {32, 33}.
Then B2 = {1, u} for some u ∈ {3, 34, 35}. If u = 3 or u = 34 then there exists
v ∈ {32, 33} = B3 with v/u ∈ {3, 35}; namely, we can choose v = 32 for u = 3, and
v = 33 = 39 for u = 34. Thus the transversals {0, 1, v,∞} and {0, u, v,∞} belong to
distinct G-orbits, as before. If u = 35 = 5, then B1 = {0, w} with w = 3 or w = 4.
Thus the transversals {0, 1, 2,∞} and {w, 5, 2,∞} belong to distinct G-orbits, as
crr(0, 1, 2,∞) = 2 ∈ {2, 4, 6} and crr(w, 5, 2,∞) = (w− 2)/(w− 5) = 3 or 5 if w = 3
or 4, respectively. This completes the proof of (1).

(2) Let B be a 6-element subset of A. Since G = PGL(2, 7) acts 3-transitively on
the projective line A = F7 ∪ {∞}, we may assume without loss of generality that
b = ∞, b′ = 0, and B = A− {1, a} for some element a 6= 1 of the group F×

7 of units.
The group F×

7 is cyclic, and 3 is one of its generators. Therefore a = 3k for a unique
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k with 1 ≤ k ≤ 5, and

B = {∞, 0} ∪ {3i : 1 ≤ i ≤ 5, i 6= k}.

By the description of the two G-orbits of 4-element sets, we need to verify that
for any choice of k (1 ≤ k ≤ 5) and for each one of the two cross ratio orbits
C = {3, 5} = {3, 35} and C = {2, 4, 6} = {32, 33, 34} there exist distinct i, j with
1 ≤ i, j ≤ 5 and i, j 6= k such that crr(0, 3i, 3j,∞) ∈ C. Since crr(0, 3i, 3j,∞) = 3j−i,
what we need to check is that for any choice of k (1 ≤ k ≤ 5) there exist i, j with
1 ≤ i, j ≤ 5 and i, j 6= k such that j − i mod 6 = ±1, and there exist distinct i′, j′

with 1 ≤ i′, j′ ≤ 5 and i′, j′ 6= k such that j′ − i′ mod 6 6= ±1. It is easy to see that
these statements are indeed true, since for any choice of k, among the four numbers
in {1, 2, 3, 4, 5} − {k} there will be two that are consecutive and there will be two
distinct numbers that are not consecutive. This completes the proof of (2). �

6. G-closed clones with constants for weakly homogeneous G

Finally, in this section we establish the implication (iii)⇒(i) in Theorem 2.2. We
will describe explicitly all G-closed clones that contain all constants in the case when
G is a weakly homogeneous permutation group, that is, when G is one of the groups
listed in Theorem 2.2 (iii).

To state the result we need some terminology and notation. We define the kernel
type of a transformation f on A to be the increasing sequence κ = (k1, k2, . . . , kr)
of positive integers that lists the sizes of the kernel classes of f . (Thus 0 < k1 ≤
k2 ≤ · · · ≤ kr and k1 + k2 + · · · + kr = |A|.) A transformation f on A is said to
have even kernel type if in its kernel type κ = (k1, k2, . . . , kr) all numbers ki are even.
Transformations of even kernel type exist on A if and only if |A| is even.

For 2 ≤ m ≤ |A| we will use the notation Rm for the clone consisting of the pro-
jections and all operations whose range has size at most m. Recall from Claims 4.14
and 4.15 that if G = PSL(2, 5), m = 3, or G = PGL(2, 7), m = 4, then G is not
m-homogeneous; in fact, G has exactly two orbits under its natural action on the set
of m-element subsets of A. For each such orbit O, Rm(O) will denote the clone that
we get from Rm by omitting all operations whose range is an m-element set not in
O.

It is easy to see that the projections and those operations on A whose range has
size at most 2 and have the form

(6.1) ϕ
(
ϕ1(x1) + · · ·+ ϕn(xn)

)
(n ≥ 1)

where ϕ1, . . . , ϕn are mappings A → {0, 1}, + is addition modulo 2, and ϕ is any
mapping {0, 1} → A form a clone. This clone will be denoted by B. If |A| is even,
then the projections and all operations of the form (6.1) where each ϕi (i = 1, . . . , n)
has even kernel type form a proper subclone in B; this clone will be denoted by B∗.



CLONES CLOSED UNDER CONJUGATION I 39

Theorem 6.1. Let G be a weakly homogeneous permutation group acting on a finite
set A (|A| ≥ 3). The G-closed clones on A that contain all constants are the following:

(U) 〈T 〉 where T is a G-closed transformation monoid that contains all constants;
(A1) Clo(FqA

c) = Pol(FqA) where FqA is a d-dimensional vector space over the q-
element field, if 3 ≤ qd ≤ 4 and Aqd ≤ G ≤ Sqd, or qd = 5 and G = AGL(1, 5);

(A2) Clo(RAc) = Pol(RA) where RA is a 4-element simple module over the ring R
of 2× 2 matrices over F2, if A4 ≤ G ≤ S4;

(B) B ∪ 〈T 〉 where T is as in (U);
(B∗) B∗ ∪ 〈T 〉 if |A| is even, where T is as in (U) such that each nonpermutation

in T has even kernel type;
(S) the clone Rm ∪ 〈T 〉 where 2 ≤ m ≤ |A|, and T is as in (U);

(SO) the clone Rm(O) ∪ 〈T 〉 if G = PSL(2, 5), m = 3, or G = PGL(2, 7), m = 4,
where O is an orbit of G under its natural action on the m-element subsets of
A, and T is as in (U) such that for all M ∈ O and f ∈ T with |f(M)| = m
we have f(M) ∈ O.

Proof. Let G be a weakly homogeneous permutation group on A.
All clones listed are G-closed and contain all constants. This is clear for the clones

in (U), (B), (B∗), (S), and (SO). For the other two let RA be an R-module such that
for some subfield K of End(A), R = K or R = End(KA). Let K = Fq and let d
be the dimension of the vector space KA. (Hence, in case R = End(KA), End(KA)
can be replaced by the ring of d × d matrices over K.) It is easy to check (see e.g.
[24], Example 2.11) that whether R = K or R = End(KA), the weak automorphism
group of the algebra RAc is the affine semilinear group AΓL(KA) = AΓL(d, q). Since
AGL(1, 3) = S3 and AΓL(1, 4) = AGL(2, 2) = S4, the clones listed in (A1) and (A2)
are G-closed for the groups G indicated. They obviously contain all constants.

To prove that the list of clones in Theorem 6.1 is complete, let C be an arbitrary
G-closed clone on A that contains all constants, and let A = (A; C) be the associated
algebra. Thus C = Pol(A) is the clone of all polynomial operations of A. Our goal
is to prove that C is one of the clones listed in the theorem.

Claim 6.2. Either C is one of the clones described in (U) or (A)1, or the algebra A
is simple but not essentially unary, and C contains a unary operation that is neither
constant nor a permutation.

The assumption that G is weakly homogeneous implies that G is 2-homogeneous
(see Lemma 2.1). Since C is G-closed, Theorem 2.5 applies to C. The assumption
that C contains all constants restricts the possibilities to (a), the clones Pol(KA) in
(e), and the clones 〈M ∪CA〉 in (f). The clones in (f) and some of the clones in (a) are
essentially unary: each such clone C is generated by the monoid T = C(1) of unary
operations in C. Since C is G-closed, so is T . Thus C has the form described in (U).
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If C = Pol(KA) for some vector space KA on A, then WAut(A) = AΓL(KA) =
AΓL(d, q) where K = Fq (q = pe, p prime), and the dimension of KA is d. Thus G is
a weakly homogeneous subgroup of AΓL(d, q) ≤ AGL(de, p). By Claims 4.6, 4.7, and
the assumption |A| ≥ 3 we must have 3 ≤ qd = pde ≤ 5. Thus C is one of the clones
in (A1) with G as described there.

In the remaining cases C is a G-closed clone that is not essentially unary, but
satisfies condition (a) in Theorem 2.5. This completes the proof of Claim 6.2.

The rest of the proof will be concerned with the algebras A specified by the last
option in Claim 6.2. More explicitly we will adopt the following assumption.

Assumption 6.3. A is a simple algebra that is not essentially unary, but has a
unary polynomial operation that is neither constant nor a permutation.

Since A is simple and C is the clone Pol(A) of polynomial operations of A, this is
the perfect setting to apply tame congruence theory (see [10]).

Claim 6.4. For every unary polynomial operation f ∈ Pol(1)(A) of A and for every
subset R of A with |R| = |f(A)| there exists γ ∈ G such that |γf(R)| = |R|.

Let r = |R| = |f(A)|. The kernel of f determines a partition of A into r blocks. We
claim that this partition has a transversal T such that T is in the same G-orbit as R.
This statement is obviously true if G is r-homogeneous. If G is not r-homogeneous
then either G = PSL(2, 5) and r = 3, or G = PGL(2, 7) and r = 4. In these cases
our statement follows from parts (1) of Lemmas 5.1 and 5.2. Let γ ∈ G be such that
γ(T ) = R. Then γf(R) = (γ ◦ f ◦ γ−1)(R) = γ

(
f(T )

)
. Since T is a transversal for

the kernel of f , we get that |γf(R)| =
∣∣γ(

f(T )
)∣∣ = |f(T )| = r = |R|, as required.

Claim 6.5. If f ∈ Pol(1)(A) then A has an idempotent polynomial e2 = e ∈ Pol(1)(A)
such that ker (e) = ker (f).

Let |f(A)| = r. We can construct an infinite sequence g1, g2, . . . ∈ Pol(1)(A) of
operations, each one with an r-element range, as follows: we let g1 = f , and whenever
gk has been constructed with |gk(A)| = r, then we select γf , using Claim 6.4, such
that

∣∣γf(
gk(A)

)∣∣ = r, and let gk+1 = γf ◦ gk.
Since A is finite, there will be a repetition among the ranges of g1, g2, . . . . Let

1 ≤ s < t be such gt(A) = gs(A). Let B denote this common range. By construction,

|B| = r and gt = h ◦ gs for some operation h ∈ Pol(1)(A) where h is a composition
of conjugates γf (γ ∈ G) of f . It follows that h restricts to B as a permutation and
|h(A)| ≤ |f(A)| = r. Thus h(A) = B. Since B is finite, some power ē = hm of h
will act as the identity on B. Hence ē2 = ē is an idempotent unary polynomial of
A such that ē(A) = B and ē is a composition of conjugates γf (γ ∈ G) of f . The
fact |ē(A)| = |B| = r ensures that the kernel of ē coincides with the kernel of its first

factor, a conjugate δf (δ ∈ G) of f . Thus e = δ−1
ē is an idempotent unary polynomial

of A with ker (e) = ker (f).
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Claim 6.6. Let e2 = e be an idempotent unary polynomial of A. If there exists a set
C in the G-orbit of e(A) such that C intersects exactly s kernel classes of e then A
has an idempotent unary polynomial whose range has size s.

Let C be a set in the G-orbit of e(A) such that C intersects exactly s kernel classes
of e. Since C belongs to the G-orbit of e(A), we have C = γ

(
e(A)

)
for some γ ∈ G.

The polynomial f = e ◦ γe of A has range f(A) = e
(

γe(A)
)

= e
(
γ(e(A))

)
. Since

γ
(
e(A)

)
intersects exactly s kernel classes of e, therefore the range of f has size s.

Hence, by Claim 6.5, A has an idempotent unary polynomial whose range has size s.

Claim 6.7. A has an idempotent unary polynomial e2 = e with |e(A)| = 2.

By Assumption 6.3, A has a unary polynomial that is neither constant nor a per-
mutation. Thus Claim 6.5 implies that A has such an idempotent unary polynomial
as well. Our claim will follow if we show that whenever e is a nonsurjective idempo-
tent unary polynomial of A whose range has size r > 2 then A has a nonconstant
idempotent unary polynomial whose range has size less than r. To get this conclu-
sion, it suffices to verify by Claim 6.6 that there exists a set C in the G-orbit of e(A)
such that C intersects at least two, but less than r kernel classes of e.

To prove the existence of such a C suppose first that G is k-homogeneous for some
k, 3 ≤ k ≤ r. Using the fact that e has at least two kernel classes, not all singletons,
we can select a k-element subset S of A such that S intersects at least two kernel
classes of e, and one of the intersections has at least two elements. Since G is k-
homogeneous, there exists γ ∈ G such that γ−1(S) ⊆ e(A). Hence C = γ

(
e(A)

)
belongs to the G-orbit of e(A), and because of S ⊆ C, C intersects at least two, but
less than r kernel classes of e, as required.

Now suppose that G is not k-homogeneous for any k, 3 ≤ k ≤ r. Then G =
PSL(2, 5), A = 6, and r = 3. Let B1, B2, B3 denote the kernel classes of e such that
|B1| ≥ |B2| ≥ |B3|. If |B1| ≥ 3, let S be a 4-element subset of A such that |B1∩S| = 3.
Let {c} = S − B1. Recall that G has two orbits of 3-element sets (see Claim 4.14),
and since G is weakly 3-homogeneous, among the four 3-element subsets of S exactly
two belong to each G-orbit. Therefore it follows that the G-orbit of e(A) contains
a 3-element subset C of S such that c ∈ C. By construction, C intersects exactly
two kernel classes of e. Finally, if |B1| < 3, then the assumption that {B1, B2, B3}
is a partition of A with |B1| ≥ |B2| ≥ |B3| implies that |B1| = |B2| = |B3| = 2.
Let S = B1 ∪ B2. It follows as before that the G-orbit of e(A) contains a 3-element
subset C of S. Clearly, C intersects exactly two kernel classes of e. This completes
the proof of Claim 6.7.

Claim 6.8. Let |A| > 4. If A has an idempotent unary polynomial whose range has
size 4, then A also has an idempotent unary polynomial whose range has size 3.

Let e2 = e be an idempotent unary polynomial of A such that |e(A)| = 4. Since
|A| > 4, e has a kernel class that is not a singleton. To prove that A has an idempotent
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unary polynomial whose range has size 3 it suffices to show, by Claim 6.6, that there
exists a set C in the G-orbit of e(A) such that C intersects exactly 3 kernel classes
of e. Therefore we will be done if we establish that every G-orbit of 4-element sets
contains a set C which intersects exactly 3 kernel classes of e. This is clearly true if
G is 4-homogeneous.

It remains to consider the case when G = PGL(2, 7), |A| = 8. Let B1, B2, B3, B4

be the kernel classes of e such that |B1| > 1. Let S = {a, b, u, v, w} be a 5-element
subset of A such that a, b ∈ B1 and u ∈ B2, v ∈ B3, w ∈ B4. If for some choice
of S there exist 4-element subsets C1, C2 of S, each containing a, b, which belong to
distinct G-orbits, then we are done. Otherwise, for each choice of S, the three sets
{a, b, u, v}, {a, b, u, w}, {a, b, v, w} belong to the same G-orbit. Thus Claim 4.15 (2)
implies that for each such S, crr(a, u, v, w) ∈ {3, 5} and crr(b, u, v, w) ∈ {3, 5}. Hence
every transversal {a, u, v, w} of the partition {B1, B2, B3, B4} belongs to the same G-
orbit of 4-element sets. By part (1) of Lemma 5.2 this is impossible. Therefore the
proof of Claim 6.8 is complete.

Claim 6.9. Let |A| be even. If A has a nonsurjective idempotent unary polynomial
e with kernel type (k1, . . . , kr) such that r ≥ 3 and some ki is odd, then A has an
idempotent unary polynomial ē with kernel type (l1, l2) such that l1, l2 are odd.

Suppose e2 = e ∈ Pol(1)(A) has kernel type (k1, . . . , kr) such that r ≥ 3 and some

ki is odd. It suffices to prove the existence of a polynomial f ∈ Pol(1)(A) such that
f has kernel type (l1, . . . , ls) where s < r and some lj is odd. Once this has been
established, then it follows from Claim 6.5 that f can be chosen to be idempotent.
Hence, if ē is an idempotent unary polynomial of A whose kernel type contains an
odd number and has minimum size range, then the preceding statement shows that
ē has a 2-element range. This proves the statement in the claim.

To show the existence of f we will use the same construction as in Claim 6.6:
f = e ◦ γe where γ ∈ G. Let B1, . . . , Br denote the kernel classes of e, and let
e(Bi) = ai ∈ Bi, |Bi| = ki (1 ≤ i ≤ r). Since |A| is even, the number of odd ki-s is
even. Suppose that k1, k2 are odd and k1 is the minimal odd kernel class size. We
have ker (f) ⊇ ker (γe) where the kernel classes of γe are γ(B1), . . . , γ(Br). Thus each
kernel class of f is a union of some kernel classes of γe. It suffices to find γ ∈ G such
that one of the kernel classes of f is equal to γ(B1), and another kernel class of f
contains a union of two distinct kernel classes of γe.

First we will consider the case when there exists a singleton kernel class. Then
k1 = 1, that is, B1 = {a1}. Note that since |A| is even, G is one of the following
groups:

• G = An or Sn (|A| = n is even, n ≥ 4),
• G = PSL(2, 5) or PGL(2, 5) (|A| = 6),
• G = PGL(2, 7) = G (|A| = 8).

As
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• (An)a1
∼= An−1,

• PSL(2, 5)a1
∼= D5, PGL(2, 5)a1

∼= AGL(1, 5), and
• PGL(2, 7)a1

∼= AGL(1, 7),

the stabilizer Ga1 of G acts 2-homogeneously on A− {a1} unless G = PSL(2, 5) and
Ga1

∼= D5; in the latter case Ga1 has two orbits on the 2-element subsets of the
set A − {a1} of vertices of the pentagon: one orbit consists of the sides and the
other orbit consists of the diagonals of the pentagon. We claim that in all cases
there exists γ ∈ G such that γ fixes a1 and maps two distinct elements as, at of
e(A) − {a1} = {a2, . . . , ar} into the same kernel class Bj (j > 1) of e. If Ga1 acts
2-homogeneously on A − {a1}, then such a γ exists for any choice of as, at (s 6= t)
and Bj with |Bj| ≥ 2. If G = PSL(2, 5) and r = 3, then there exists Bj (2 ≤ j ≤ 3)
such that |Bj| ≥ 3. There are sides as well as diagonals among the 2-element subsets
of Bj, therefore there exists γ ∈ G such that γ fixes a1 and maps a2, a3 into Bj.
Similarly, if G = PSL(2, 5) and r ≥ 4, then there exists Bj (2 ≤ j ≤ r) such that
|Bj| ≥ 2, and there are sides as well as diagonals among the 2-element subsets of
{a2, a3, a4}. Therefore there exists γ ∈ G such that γ fixes a1 and maps some as, at

(2 ≤ s < t ≤ 4) into Bj. This proves the existence of γ in all cases. Since γ(a1) = a1

and γ(ai) /∈ {a1} = B1 for i = 2, . . . , r, one of the kernel classes of f = e◦ γe is γ(B1).
Since γ(as), γ(at) ∈ Bj, therefore another kernel class of f contains γ(Bs) ∪ γ(Bt).
Thus f satisfies our requirements.

Now assume that e has no singleton kernel class. Then every kernel class of odd
size has at least three elements. In particular, k1, k2 ≥ 3. Since r ≥ 3, we must have
|A| ≥ k1 + k2 + k3 ≥ 3 + 3 + 2 = 8. Thus either G = An or Sn (|A| = n), or else
G = PGL(2, 7), r = 3, and |B1| = |B2| = 3, |B3| = 2. If G = An or Sn, then there
exists γ ∈ G such that γ(B1) = B1 and γ(a2), γ(a3) ∈ B2. The same argument as in
the preceding paragraph shows that f satisfies our requirements. In the remaining
case when G = PGL(2, 7), r = 3, and |B1| = |B2| = 3, |B3| = 2, let γ be a cycle
of length 7 that fixes a3 and maps a2 into the unique element of B3 − {a3}. Then
{γ(a2), γ(a3)} = B3, whence γ(a1) ∈ Bi for i = 1 or 2. Thus f = e◦ γe has two kernel
classes: γ(B1) and γ(B2) ∪ γ(B3), hence it satisfies our requirements. The proof of
Claim 6.9 is complete.

Claim 6.10. Every 2-element subset of A is a trace (= minimal set) of A.

By Claim 6.7 A has an idempotent unary polynomial e with 2-element range.
Since C = Pol(A) is G-closed, therefore for each γ ∈ G, γe is an idempotent unary
polynomial of A with 2-element range γe(A) = γ

(
e(γ−1(A))

)
= γ

(
e(A)

)
. Since G

is 2-homogeneous, this implies that every 2-element subset of A is the range of an
idempotent polynomial of A. By Theorem 2.8(6) of [10] it follows that every 2-
element subset of A is a minimal set. Since minimal sets and traces coincide for
simple algebras, the claim is proved.
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The authors of [12] call a subset M of a finite simple algebra A a multitrace of A
if M = p(N, N, . . . , N) for some p ∈ Pol(A) and some trace N of A. The special
case when p is a projection shows that every trace is a multitrace.

Theorem 2.8 (1) of [10] yields that in a finite simple algebra A any two traces (=
minimal sets) N and N ′ are polynomially isomorphic, that is, they satisfy f(N) = N ′

and g(N ′) = N for some f, g ∈ Pol(1)(A). Therefore if M = p(N, N, . . . , N) is a
multitrace of A, then M can also be written in the form M = q(N ′, N ′ . . . , N ′) for
any other trace N ′ and q(x1, . . . , xn) = p

(
g(x1), . . . , g(xn)

)
∈ Pol(A).

Claim 6.11. If M is a multitrace of A and γ ∈ G, then γ(M) is also a multitrace
of A.

If M is a multitrace then M = p(N, . . . , N) for some trace N and some polynomial
p of A. Then γ(M) = γp

(
γ(N), . . . , γ(N)

)
where γ(N) is a trace of A by Claim 6.10

and γp ∈ Pol(A) since Pol(A) is G-closed. Thus γ(M) is a multitrace of A.

For the proof of the next claim on multitraces we will use Yablonskĭı’s Lemma:

Lemma 6.12. [25] Let A be a finite set and f(x1, . . . , xn) be an operation on A that
depends on more than one variable. If |f(A, A, . . . , A)| > r for some r > 1, then
there exist r-element subsets M1, . . . ,Mn ⊆ A for which |f(M1, M2, . . . ,Mn)| > r.

Claim 6.13. Suppose that for some r (2 ≤ r < |A|) all r-element subsets of A are
multitraces of A. If A has a polynomial f such that f depends on more than one
variable and has range of size > r, then A has a multitrace of size > r that is
contained in the range of f .

Let f be a polynomial of A such that f depends on more than one variable and f
has range f(A, . . . , A) of size > r. Yablonskĭı’s Lemma implies that there exist r-
element sets M1, . . . ,Mn ⊆ A such that |f(M1, M2, . . . ,Mn)| > r. By our assumption
M1, . . . ,Mn are multitraces of A, so each Mi equals fi(N, . . . , N) for some polynomial
fi of A and some fixed trace N of A. Hence

f(M1, M2, . . . ,Mn) = f
(
f1(N, . . . , N), . . . , fn(N, . . . , N)

)
is a multitrace of size larger than r, and is contained in the range of f , as claimed.

Multitraces are well behaved only in types 1 ,2 and 3 , so we now reduce to these
cases.

Claim 6.14. A is a simple algebra of type 1 , 2 , or 3 .

The algebra A is simple by Assumption 6.3. Suppose that typ(A) ∈ {4 ,5 }. By
Theorem 5.26 (2) of [10], A has precisely two minimal connected compatible partial
orders; they are inverses of each other, therefore we will denote them by ζ and ζ−1.
Since C = Pol(A) is G-closed, the permutations in G map compatible relations of A
into compatible relations of A. Thus γ(ζ) is a minimal connected compatible partial
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order of A for each γ ∈ G. Hence γ(ζ) = ζ or ζ−1 for each γ ∈ G. This implies that
for arbitrary elements a, b ∈ A that are comparable with respect to ζ (or, equivalently,
with respect to ζ−1), the elements γ(a), γ(b) (γ ∈ G) are also comparable. Since the
partial order ζ is connected, there exist distinct comparable elements a, b in A. Hence
the 2-homogeneity of G implies that any two distinct elements of A are comparable;
that is, ζ is a total order on A. Let 1ζ and 0ζ denote the largest and the smallest
elements with respect to ζ. Since γ(ζ) = ζ or ζ−1 for each γ ∈ G, we get that γ(1ζ)
is equal to 1ζ or 0ζ for each γ ∈ G. But this is impossible, since G is transitive and
|A| ≥ 3. This contradiction proves that A is of type 1 , 2 , or 3 .

Now we are in a position to use the structure theorem for multitraces of types 1 ,2
and 3 . Recall that for any subset M = e(A) of A where e is an idempotent unary
polynomial of A the induced algebra A|M is defined as follows:

A|M = (M ; {ef |M : f is a polynomial operation of A}).

Theorem 6.15. (From Theorems 3.10 & 3.12 of [12]) If N is a trace of the simple
algebra A, typ(A) ∈ {1 ,2 ,3 }, and M = p(N, . . . , N) is a multitrace, then

(1) M = e(A) for some idempotent unary polynomial e ∈ Pol(1)(A), and
(2) the induced algebra A|M is term equivalent to

(i) a matrix power (A|N)[k] if typ(A) ∈ {1 ,2 }; or
(ii) a primal algebra if typ(A) = 3.

Claim 6.16. If typ(A) ∈ {1 ,2 } then either every multitrace has size 2, or else
|A| = 4 and A is term equivalent to (A|N)[2] for some trace N .

Suppose that A is of type 1 or 2 and A has a multitrace of size > 2. Let M
be a multitrace of minimum size with |M | > 2, and let M = p(N, . . . , N) where
N is a trace of A and p ∈ Pol(A). By Claim 6.10 and the discussion preceding
Claim 6.11 we may assume that N ⊆ M . Theorem 6.15 (2) implies that A|M is term
equivalent to (A|N)[k] for some k. It follows from Claim 6.10 that |N | = 2, and hence
from Corollary 4.11 in [10] that A|N is polynomially equivalent to a 2-element unary
algebra or vector space. Thus |M | = 2k. In fact, every multitrace of (A|N)[k] is of
size 2l for some l (2 ≤ l ≤ k), and every such power of 2 is the size of a multitrace
of (A|N)[k]. Since A|M is term equivalent to (A|N)[k], the same conclusion holds for
the sizes of multitraces of A|M . The definition of A|M shows that every multitrace
of A|M is a multitrace of A as well, so the minimality of M yields that k = 2 and
|M | = 4.

Next we show that |A| = 4. Suppose |A| > 4. By Theorem 6.15 (1), A has an
idempotent unary polynomial e whose range is M , a set of size 4. Therefore by
Claim 6.8 A also has an idempotent unary polynomial ē whose range has size 3. We
claim that M has a 3-element subset of the form γ

(
ē(A)

)
for some γ ∈ G. This is

clear if G is 3-homogeneous. It holds also if G is not 3-homogeneous, because then
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G = PSL(2, 5) and the 3-element subsets of the 4-element set M represent both G-
orbits. So, let us fix γ ∈ G such that γ

(
ē(A)

)
⊆ M . The left hand side is the range

of the conjugate γē of ē. Thus γē|M = (eγē)|M is an idempotent unary polynomial
operation of A|M . It follows that γ

(
ē(A)

)
is a multitrace of A|M , since

γ
(
ē(A)

)
= γē|M(M) = γē|M

(
e(M)

)
= γē|M

(
ep|M(N, . . . , N)

)
.

This shows that A|M has a multitrace of size 3. However, we established in the
preceding paragraph that every multitrace of A|M is of size 2 or 4. This contradiction
proves that |A| = 4. It follows that A is term equivalent to A|M , and hence to
(A|N)[2].

Claim 6.17. typ(A) 6= 1.

If typ(A) = 1, then Claim 6.16 proves that either every multitrace has size 2
or else A is term equivalent to (A|N)[2]. In the case where every multitrace has
size 2, we get from Claims 6.10 and from the case r = 2 of Claim 6.13 that every
polynomial operation of A that depends on more than one variable has range in a
trace. But if A is of type 1 and f(x1, . . . , xn) is a polynomial operation of A for which
f(A, . . . , A) ⊆ N for some trace N , then f depends on at most one variable. (See
[10], Theorem 5.6, Claim 3.) We assumed in Assumption 6.3 that A has a polynomial
operation depending on more than one variable, so this case is impossible.

Now assume that A is term equivalent to (A|N)[2]. It follows from Claim 6.10
that A|N is a 2-element unary algebra, hence |A| = 4. This information allows one
to calculate the group of unary polynomial permutations of (A|N)[2] (equivalently
of A): it is a 2-element group or an octic group according to whether the group of
unary permutations of A|N is A2 or S2. None of these groups are normal in G = A4

or S4, so in this case the clone of (A|N)[2] is not G-closed. This finishes the proof of
the claim.

Claim 6.18. If typ(A) = 2 and C contains an operation that depends on at least
two variables and has range of size at least 3, then C is the clone described in Theo-
rem 6.1 (A2).

From Claims 6.10, 6.13, and 6.16 we get that A is term equivalent to (A|N)[2]. From
Claim 6.10 and the fact that typ(A) = 2 we get that A|N is the constant expansion
of a 2-element vector space. It follows that the clone of (A|N)[2] (equivalently of A)
is the clone of polynomial operations of the 4-element module over the 2× 2 matrix
ring over the 2-element field.

Claim 6.19. If typ(A) = 2 and every operation in C that depends on at least two
variables has range of size at most 2, then C is one of the clones described in Theo-
rem 6.1 (B) or (B∗).

According to Claim 6.10, every polynomial operation of A that depends on more
than one variable has range in a trace. Moreover, since traces are polynomially
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isomorphic, the polynomial operations with range in a trace N ′ can be derived from
the polynomial operations with range in a trace N by composing with a polynomial
isomorphism p : N → N ′. It follows from this that C is the clone on A generated by
C(1) and the collection N of polynomials with range in a specific trace N = {0, 1} ⊆ A.

Let x + y denote a polynomial of A whose restriction to N is the vector space
addition on N (which exists since typ(A) = 2 ). In the fourth paragraph of the proof
of Theorem 13.5 of [10] it is shown that any polynomial operation of a type 2 simple
algebra A that has range in a trace N is constructible from unary polynomials of A
and from x + y. In fact, any polynomial in N is a sum of unary polynomials in N(1).
Thus, C is generated by C(1) and N, and N is generated by x+ y and N(1). Therefore
we need to determine the possibilities for N(1).

An element of N(1) is a function f : A → N = {0, 1}, so it can be thought of as a
characteristic function on A which may be identified with its support Uf = {a ∈ A :
f(a) = 1}. The family F of subsets of A that are supports of unary polynomials in
N(1) has the following properties.

(i) F contains ∅, A, and at least one nonempty proper subset of A.
(ii) F is closed under symmetric difference, ⊕.

(iii) F is closed under G; that is, if U ∈ F and V = γ(U) for some γ ∈ G then
V ∈ F .

Item (i) follows from the fact that the constant polynomials into N have support
∅ and A respectively, and the fact proved in Claim 6.10 that N is the image of
some function from C(1). Item (ii) follows from the fact that the support of f + g
(f, g ∈ N(1)) is Uf ⊕ Ug. To prove (iii) let f ∈ N(1) be such that U = Uf , and let
γ ∈ G. Since γ(N) is a trace by Claim 6.10, and traces are polynomially isomorphic,
there exists p ∈ C(1) such that p

(
γ(N)

)
= N . The transposition on N is a polynomial

isomorphism x 7→ x + 1, therefore p can be chosen so that p
(
γ(i)

)
= i for i ∈ N .

Now for g = p ◦ γf we have g ∈ N(1) and Ug = γ(U). Thus γ(U) ∈ F , as claimed.
Now we prove that F contains a nonempty set of size ≤ 2. Let U be a proper

nonempty subset of A that belongs to F . (Such a set exists by (i).) We are done if
|U | ≤ 2. Suppose therefore that |U | ≥ 3, and let c ∈ A−U . By the property (WH) of
G, the G-orbit of U contains a subset V of U ∪ {c} distinct from U . By (iii), V ∈ F .
Thus, by (ii), the 2-element set U ⊕ V also belongs to F . This proves that if W ∈ F
is a nonempty set of least cardinality, then either |W | = 1 or |W | = 2.

If |W | = 1, then by (iii) and by the transitivity of G, all 1-element subsets of A
belong to F , and so by (ii) (using symmetric difference) every subset of A belongs
to F . This means that every function from A into N belongs to N(1). Composing
with polynomial isomorphisms between traces, this implies that C(1) contains all
transformations whose range has size at most 2. The transformations whose range
have size at most 2 and the polynomial x + y belong to Burle’s clone B, and are
sufficient to generate all operations in Burle’s clone. Thus, from the remarks we
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have made, C is generated by B ∪ 〈C(1)〉. Since this union is a clone, we get that
C = B ∪ 〈C(1)〉 = B ∪ 〈T 〉 for some G-closed transformation monoid T . This is a
clone from Theorem 6.1 (B).

Now suppose that |W | = 2. Then all 2-element subsets of A are in F , and taking
symmetric differences we get that all even-element subsets of A are in F . We cannot
have any odd-element sets in F , for if a ∈ U ∈ F and |U | is odd, then by our previous
remark (U − {a}) ∈ F ; hence {a} = U ⊕ (U − {a}) ∈ F . This contradicts the
minimality of W . (In particular, |A| is even when |W | = 2.) Thus, the nonconstant
unary polynomials f ∈ N(1) are precisely the functions f : A → N of even kernel
type. As in the preceding paragraph, the higher arity polynomials in N are sums of
unary polynomials in N(1), and the higher arity polynomials with range N ′ 6= N are
obtained from these by composing with a polynomial isomorphism p : N → N ′. It
follows readily that C = B∗∪〈C(1)〉 = B∗∪〈T 〉 where T is a G-closed transformation
monoid such that a transformation with 2-element range belongs to T if and only if
it has even kernel type. Claims 6.5 and 6.9 imply that each nonsurjective member of
T has even kernel type. Thus C is a clone from Theorem 6.1 (B∗).

It remains to consider the case when typ(A) = 3 .

Claim 6.20. If typ(A) = 3 and M is a multitrace of A then every operation An → A
with range in M is a polynomial operation of A.

Let N ⊆ M be a trace of A, and choose polynomials p1, . . . , pk ∈ Pol(1)(A) with
range in N which separate the points of A. (The existence of these polynomials
is guaranteed by Theorem 2.8(4) of [10].) View π = (p1, . . . , pk) : A → Mk as a
polynomial injection of A into Mk. Now, if f : An → M is an arbitrary function,
then we can try to find h ∈ Pol(A|M) that allows us to factor f as

An πn

−→ (Mk)n h−→ M.

The existence of such a factorization depends on the ability to interpolate the partial
operation f ◦ (πn)−1 : (Mk)n → M by a total operation h : (Mk)n → M that is a
polynomial of A|M . We can do this since A|M is primal (see Theorem 6.15). Thus,
an arbitrary operation f : An → A with range in M agrees with some polynomial
operation of the form h ◦ πn.

Notation 6.21. From now on m will denote the size of the largest multitrace of A,
and m̂ will denote the size of the largest possible range of a polynomial of A that
depends on at least two variables.

Claim 6.22. If typ(A) = 3 then either

(1) all subsets of A of size ≤ m are multitraces of A,

or

(2) the following conditions hold:
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(†) G = PSL(2, 5), m = 3 or G = PGL(2, 7), m = 4,
(‡)1 all subsets of A of size < m are multitraces of A, and
(‡)2 there exists a G-orbit O of m-element subsets of A such that the m-

element multitraces of A are exactly the members of O.

Let M be an m-element multitrace of A, and let O denote the G-orbit of M . By
Claim 6.11

(i) all sets M ′ ∈ O are multitraces of A.

Thus, by Claim 6.20, every operation An → A with range contained in an M ′ ∈ O is
a polynomial of A. Hence

(ii) every subset of any set M ′ ∈ O is a multitrace of A.

If G is m-homogeneous, (i) and (ii) imply (1).
So, suppose that G is not m-homogeneous. Then (†) holds, and G has exactly

two orbits of m-element sets. If A has an m-element multitrace in each G-orbit,
then the facts established in the preceding paragraph show that (1) holds. If A
has an m-element multitrace in one G-orbit O only, then (i) shows that (‡)2 holds.
Furthermore, by (ii), A has a k-element multitrace for each k < m. Since G is k-
homogeneous for all k < m, Claim 6.11 implies that (‡)1 holds as well. This proves
(2), and completes the proof of Claim 6.22.

Claim 6.23. If typ(A) = 3 and m = m̂ then C is one of the clones in Theo-
rem 6.1 (S) or (SO).

The assumption m = m̂ implies that

C ⊆ Rm ∪ 〈C(1)〉.
If all m-element subsets of A are multitraces of A then we get from Claim 6.20 that
Rm ⊆ C. Thus C = Rm ∪ 〈C(1)〉, and C satisfies Theorem 6.1 (S) with T = C(1).

If not all m-element subsets of A are multitraces of A, then conditions (†), (‡)1,
and (‡)2 in Claim 6.22 (2) hold for G and A. In view of (‡)1 and (‡)2, Claim 6.20
yields that Rm(O) ⊆ C. Denoting the other G-orbit of m-element sets by O′ we get
that

Rm(O) ∪ 〈C(1)〉 ⊆ C ⊆ Rm ∪ 〈C(1)〉 = Rm(O) ∪Rm(O′) ∪ 〈C(1)〉.
The difference between the rightmost and leftmost clones is the set of all operations
f on A such that f(A, . . . , A) ∈ O′ and f depends on at least two variables. Such an
operation cannot belong to C, since otherwise (‡)1, combined with Claim 6.13 (for
r = m − 1), would imply that f(A, . . . , A) ∈ O′ is a multitrace of A, contradicting
(‡)2. This proves that C = Rm(O) ∪ 〈C(1)〉 = Rm(O) ∪ 〈T 〉 with T = C(1). To
see that C satisfies Theorem 6.1 (SO) it remains to verify the requirements on T .
Clearly, T satisfies the conditions in (U). Now let M ∈ O and let f ∈ T be such that
|f(M)| = m. Since M is a multitrace of A, we have M = p(N, . . . , N) for some trace
N and some p ∈ Pol(A) = C. Hence f(M) = f

(
p(N, . . . , N)

)
is also a multitrace of
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A. Therefore, if |f(M)| = m, then (‡)2 forces f(M) ∈ O. This completes the proof
of Claim 6.23.

Claim 6.24. If typ(A) = 3 and m 6= m̂ then m̂ > m, and conditions (†), (‡)1, and
(‡)2 in Claim 6.22 (2) hold for G and A.

Let M be an m-element multitrace of A. Then M = p(N, . . . , N) for some trace N
and some polynomial p ∈ Pol(A) = C. Hence m = |M | ≤ |p(A, . . . , A)| ≤ m̂. Since
we assumed m 6= m̂ we get that m < m̂. The definition of m̂ yields the existence of
an operation f ∈ Pol(A) = C such that f depends on at least two variables and has
range of size m̂ > m. Claim 6.13 (for r = m) implies that not all m-element subsets
of A are multitraces of A. Thus, by Claim 6.22, conditions (†), (‡)1, and (‡)2 hold
for G and A.

The proof of Theorem 6.1 will be complete if we show that m̂ > m and conditions
(†), (‡)1, and (‡)2 from Claim 6.22 (2) cannot hold simultaneously for G and A. We
will assume that this is not the case, and work towards a contradiction.

Assumption 6.25. Let G be as in (†), and assume that A has a G-closed clone C =
Pol(A) such that conditions (‡)1 and (‡)2 hold for the multitraces of A. Furthermore
we assume that m̂ > m, and we fix an operation f ∈ Pol(A) = C such that f depends
on at least two variables and has range R of size |R| = m̂. Without loss of generality,
we will assume that f is n-ary (n ≥ 2) and depends on all of its variables.

For each i (1 ≤ i ≤ n) and z̄ = (z1, . . . , zn−1) ∈ An−1 let fi,z̄ denote the unary term
operation of A defined by

fi,z̄(x) = f(z1, . . . , zi−1, x, zi, . . . , zn−1).

The range of each fi,z̄ is a subset of R.

Claim 6.26. Let fi,z̄ have range V .

(1) If V = R then V has distinct elements v, v′ such that all m-element subsets
of V that contain {v, v′} are multitraces of A.

(2) If V ( R then for every element r ∈ R − V there exists an element v in V
such that all m-element subsets of V ∪ {r} that contain {r, v} are multitraces
of A.

(3) If V ( R and m = 4, then for every element r ∈ R−V there exists an element
v in V such that the 4-element subsets of V ∪ {r, r′} that contain {r, v} are
multitraces of A for all r′ ∈ R− V , r′ 6= r.

Without loss of generality, we may assume throughout the proof of the claim that
i = 1. Let Y1, . . . , Ys denote the kernel classes of f1,z̄, and v1, . . . , vs the values of f1,z̄

on these classes.
(1) Suppose first that V = R. Since f depends on more than one variable, there

exists ȳ ∈ An−1 such that the function f1,ȳ differs from f1,z̄. Let us choose and fix such
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a ȳ. We may assume without loss of generality that there exists x1 ∈ Y1 such that
f1,ȳ(x1) 6= v1; say f1,ȳ(x1) = v2. Thus, choosing elements xj ∈ Yj for j = 2, . . . , s, we
get that

f(x1, z̄) = v1, f(x1, ȳ) = v2, and f(xj, z̄) = vj for j = 3, . . . , s.

If G = PSL(2, 5), then by condition (‡)1 all 2-element sets {x1, xj}, {yl, zl} are multi-
traces of A, whence we get that all 3-element subsets {v1, v2, vj} (j = 3, . . . , s) of V
that contains {v1, v2} are multitraces of A. If G = PGL(2, 7), then by condition (‡)1

all sets {x1, xj, xk}, {yl, zl} are multitraces of A, therefore we get that all 4-element
subsets of V that contain {v1, v2} are multitraces of A.

(2) Now let V ( R, r ∈ R−V , and let r = f(x1, ȳ). We have x1 ∈ Yk for a unique
k (1 ≤ k ≤ s). We may assume without loss of generality that k = 1. Choosing again
elements xj ∈ Yj for j = 2, . . . , s, we get that

f(x1, z̄) = v1, f(x1, ȳ) = r, and f(xj, z̄) = vj for j = 2, . . . , s.

This is the same situation as in the preceding paragraph. Thus we get the same way
as before that all m-element subsets of V ∪ {r} that contain {v1, r} are multitraces
of A.

(3) Suppose that, in addition to the assumptions in part (2), we have m = 4. With
the notation from part (2) we have that all 4-element subsets of V ∪{r} that contain
{v1, r} are multitraces of A. Now let r′ ∈ R − V be an arbitrary element distinct
from r, and let r′ = f(p, q̄). By condition (‡)1, all 3-element sets {x1, xj, p}, {yl, zl, ql}
are multitraces of A, therefore we get that all 4-element subsets of V ∪ {r, r′} of the
form {v1, r, vj, r

′} (j = 2, . . . , s) are multitraces of A as well. Hence every 4-element
subset of V ∪ {r, r′} that contains {v1, r} is a multitrace of A, as claimed.

Now let t denote the largest number that is the size of the range of fi,z̄ for some
z̄ and i. Clearly, t ≥ 2 since f is not constant. We may assume without loss of
generality that the range of f1,ā has size t for some ā. We select such an ā and will
keep it fixed. Let X1, . . . , Xt denote the kernel classes of f1,ā, and u1, . . . , ut the values
of f1,ā on these classes. Further, let U = {u1, . . . , ut}.

Claim 6.27. U ( R.

Suppose not. Then U = R, whence t = m̂. Claim 6.26 (1) applied to the operation
f1,ā yields that U has two distinct elements, say u1 and u2, such that all m-element
subsets of U that contain {u1, u2} are multitraces of A. By condition (‡)2 all these
multitraces belong to the orbit O. By parts (2) of Lemmas 5.1 and 5.2 this is
impossible if |U | = t > m + 1. Thus t = m + 1. By parts (1) of Lemmas 5.1
and 5.2 the partition of A with m blocks X1 ∪ X2, X3, . . . , Xt has a transversal T
that belongs to the orbit O. Thus, by condition (‡)2, T is a multitrace of A. Hence
f1,ā(T ) is also a multitrace of A. It follows from the choice of T that f1,ā(T ) is equal
to U −{u1} or U −{u2}. Thus |f1,ā(T )| = m, so again by condition (‡)2 f1,ā(T ) must
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belong to O. This means that U −{u1} or U −{u2} belongs to O. But then m of the
m + 1 m-element subsets of U belong to the G-orbit O, which is impossible, since G
is weakly homogeneous. This completes the proof of Claim 6.27.

Claim 6.28. t < m.

Suppose that t ≥ m. Since U ( R by Claim 6.27, we can choose and fix an
element r ∈ R − U . Claim 6.26 (2) applied to the operation f1,ā yields that U has
an element, say u1, such that all m-element subsets of U ∪ {r} that contain {u1, r}
are multitraces of A. By condition (‡)2 all these multitraces belong to the orbit O.
By parts (2) of Lemmas 5.1 and 5.2 this is impossible if |U ∪ {r}| > m + 1. Thus
|U ∪ {r}| ≤ m + 1. By assumption we have |U | = t ≥ m, therefore t = m. By parts
(1) of Lemmas 5.1 and 5.2 the partition of A with m blocks X1, X2, . . . , Xt has a
transversal T that belongs to the orbit O. Thus, by condition (‡)2, T is a multitrace
of A. Hence U = f1,ā(T ) is also a multitrace of A, which by condition (‡)2 must
belong to O. But then m of the m + 1 m-element subsets of U ∪ {r} belong to the
G-orbit O, which is impossible, since G is weakly homogeneous. This completes the
proof of Claim 6.28.

Since t ≥ 2 and m = 3 or m = 4, the only possibilities that are not ruled out by
Claims 6.27 and 6.28 are the following: either t = 3 for G = PGL(2, 7), m = 4, or
t = 2.

Claim 6.29. t = 3 is impossible for G = PGL(2, 7), m = 4.

Suppose that G = PGL(2, 7), m = 4, and t = 3. Since |R| = m̂ > 4, there exist
distinct elements r, r′ ∈ R − U . Applying Claim 6.26 (3) to the operation f1,ā and
to both of the elements r ∈ R − U and r′ ∈ R − U we get that there exist elements
u, u′ ∈ U such that all 4-element subsets of U ∪ {r, r′} that contain {u, r} or {u′, r′}
are multitraces of A. This implies that if u 6= u′ then all 4-element subsets of the
5-element set U ∪ {r, r′} are multitraces of A, while if u = u′ then four of the five
4-element subsets of U ∪ {r, r′} are multitraces of A. This is impossible, because by
condition (‡)2 all multitraces have to belong to the same G-orbit O of 4-element sets.

Claim 6.30. t = 2 is impossible for both G = PSL(2, 5), m = 3 and G = PGL(2, 7),
m = 4.

Suppose that t = 2. If G = PSL(2, 5), m = 3, then an application of Claim 6.26 (2)
to the operation f1,ā yields that {r, u1, u2} is a multitrace of A for every element
r ∈ R − U . If G = PSL(2, 7), m = 4, then an application of Claim 6.26 (3) shows
that {r, r′, u1, u2} is a multitrace of A for any distinct elements r, r′ ∈ R− U . Thus,
in both cases,

(∗) all m-element subsets of R that contain the range U of f1,ā are multitraces of
A.
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By condition (‡)2 all these multitraces belong to the orbit O. It follows from parts
(2) of Lemmas 5.1 and 5.2 that |R| ≤ m + 1. But |R| = m̂ > m, so |R| = m + 1.

Now choose n-tuples d̄ = (d1, . . . , dn) and ē = (e1, . . . , en) ∈ An so that f(d̄) ∈ U
and f(ē) ∈ R − U . The sequence d̄(i) = (e1, . . . , ei, di+1, . . . , dn) (i = 0, . . . , n) of
n-tuples has two consecutive members d̄(k−1) and d̄(k) such that f(d̄(k−1)) ∈ U and

f(d̄(k)) ∈ R−U . Thus, for d̂ = (e1, . . . , ek−1, dk+1, . . . , dn) the unary operation fk,d̂ has
range containing a member of U and a member of R−U . However, by the maximality
of t, the range of fk,d̂ has at most two elements. Thus fk,d̂ has a 2-element range,

which we may assume to be equal to {u1, r1} where r1 ∈ R−U . The argument in the
preceding paragraph that led to conclusion (∗) works for the operation fk,d̂ as well,
in place of f1,â. Thus we get that

(∗∗) all m-element subsets of R that contain the range {u1, r1} of fk,d̄ are multi-
traces of A.

(∗) and (∗∗) imply that m of the m + 1 m-element subsets of R are multitraces of
A. By condition (‡)2 all these sets have to belong to the same G-orbit O, which is
impossible, since G is weakly homogeneous. This contradiction completes the proof
of Claim 6.30, and hence the proof of Theorem 6.1. �
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