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Abstract

A Rosenberg-type completeness criterion is proved
for a semi-affine algebra to be a simple affine algebra.

Introduction

Affine algebras, i.e. algebras polynomially equiv-
alent to modules, and their reducts, called semi-affine
algebras, are of interest in universal algebra as well as
in multiple-valued logic: in universal algebra they play
an important role in the study of congruence modular
varieties and in the structure theory of finite algebras,
while in multiple-valued logic they come up most nat-
urally as algebras whose clones are contained in one
of the maximal clones of linear type in Rosenberg’s
Theorem [3].

In both of these areas it is a basic question: what
operations can be constructed from a given set F' of
operations by composition, or, alternatively, given a
clone (a composition closed set) C of operations, un-
der what conditions a subset F' of C generates C (via
composition); if it does, then F is said to be complete
in C.

In a more algebraic setting, the question is: under
what conditions a reduct (A; F') of an algebra (A4;C) is
term equivalent to (4;C). The most important result
of this type is Rosenberg’s Theorem [3] solving the
problem for primal algebras (i.e., for C the clone of all
operations on a finite set A), and it is typical, too, in
that completeness is characterized in terms of exluded
compatible relations of (A;F). It is clear that the
structure of the algebra (A4;C) and its reducts (4; F)
might be essential in these considerations, therefore an
algebraic approach proves often useful.
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In this paper we consider a semi-affine algebra
‘complete’ if it is a simple affine algebra, and investi-
gate the question under what conditions a semi-affine
algebra is complete. We get the following Rosenberg-
type completeness criterion (Theorem 2.1): a finite
algebra A that is semi-affine with respect to an ele-
mentary Abelian group A is complete if and only if A
admits no nontrivial congruence of A and no g-regular
relation corresponding to a g-regular family of congru-
ences of A, and A is not isomorphic to a matrix power
of a unary semi-affine algebra.

We note that Stupecki-type completeness crite-
ria for reducts of certain simple affine algebras were
proved earlier in [8].

Preliminaries

An algebra is a pair A = (A4; F) with A a nonvoid
set called the universe of A, and F a set of finitary
operations on A called the set of fundamental opera-
tions of A. An operation f on A is a term operation
[polynomial operation] of A if f can be constructed
from the fundamental operations of A and from pro-
jection operations [from the fundamental operations
of A, from projections, and from constant operations]
via composition.

A set C of operations on A is called a clone if
it contains the projections and is closed under com-
position. Obviously, the term operations [polynomial
operations] of any algebra form a clone.

If not stated otherwise, algebras are denoted by
boldface capitals and their universes by the corre-
sponding letters in italics. The clone of term oper-
ations [the set of n-ary term operations] of an algebra
A is denoted by Clo A [resp., Clo, A]. Similarly, the
clone of polynomial operations [the set of n-ary poly-
nomial operations] of A is denoted by Pol A [resp.,
Pol, A].



We will call an algebra A surjective if every fun-
damental operation of A is surjective. For algebras
A = (A4 F) and A' = (A} F'), we say that A is
a reduct [polynomial reduct] of A" if A = A’ and
F C CloA' [F C PolA']. The algebras A = (A; F)
and A’ = (A'; F') are called term equivalent [poly-
nomially equivalent] if A = A’ and CloA = Clo A’
[PolA = Pol A'].

For a set N, let Ty, Sy, and C'y denote the full
transformation monoid on N, the full symmetric group
on N and the set of (unary) constant operations on N,
respectively. The identity mapping and the equality
relation on N are denoted by id and A, respectively
(N will be clear from the context). For convenience
we identify every natural number n with the set n =
{0,1,...,n—1}.

For a set A and for k > 1, the nonvoid subsets of
AF will also be called k-ary relations (on A), and for
an algebra A the universes of subalgebras of A*F will
be called compatible relations of A. An operation f
on A is said to preserve a relation p if p is a compatible
relation of the algebra (4; f).

We say that an algebra A is semi-affine with re-
spect to an Abelian group A = (A;+) if A and A have
the same universe and

QX:{(anJcad) €A43 a—b+c:d}

is a compatible relation of A (or equivalently, the op-

erations of A commute with  — y + z). Furthermore,

A is said to be affine with respect to A if it is semi-

affine with respect to A and, in addition, x —y + z is

a term operation of A. It is well known (cf. [10; 2.1,
2.7- 2.8]) that

— an algebra A is semi-affine with respect to an

Abelian group A if and only if A is a poly-

nomial reduct of the module ~A (ie.

(End A)

A considered as a module over its endomor-
phism ring End A), and

— A is affine with respect to Aif and only if A
is polynomially equivalent to a module rA
for some subring R of End A.

Let ¢ > 3. Afamily T = {Oq,...,0p_1} (m >1)
of equivalence relations on A is called g-regular if each
0; (0 < i < m —1) has exactly g blocks and O =
B N...NO,, 1 has exactly ¢" blocks. A relation on
A is called g-regular if it is of the form

Ar = {(ag,...,a51) €A%: foralli (0<i<m-—1),
ap, - .- ,0q—1 are not pairwise

incongruent modulo ©;}

for a g-regular family T of equivalence relations on A.



Let U be a g-element set and m > 1. The ker-
nels of the m distinct projections U™ — U form a
g-regular family of equivalences on U™, which will be
called the standard g-regular family of equivalences on
U™; the corresponding g-regular relation is called the
standard g-regular relation on U™. It is well known
that the mth matrix power U™ of any unary algebra
U = (U; F) admits the standard g-regular relation as
a compatible relation. We recall that the universe of
U™l is U™, and its operations are exactly all opera-
tions h{,[go, - - -, gm 1] defined for arbitrary mappings
o:m — m, p:m — n and gg,...,gm_1 € Clo; U as
follows: for z; = (z9,..., 27 1) € U™ (0<i <n—1),

hZ[g()a .. '7gm—1](m0; RN mn—l)

= (gO(xgz)a .- ngfl(ng:B:))

The mappings o, u will be called the component map-
ping and the variable mapping of hf,[go, - - -, gm—1], Te-
spectively. For unary operations the subscript indicat-
ing the variable mapping m — 1 will be omitted.

In the lemma below we collect some well-known
facts on finite algebras admitting g-regular compatible
relations.

Lemma 1.1. Let A = (A; F) be a finite algebra, and
let T ={0Oy,...,0,_1} be a g-regular family of equiv-
alence relations on A such that A\t is a compatible re-
lation of A.

(1.13) T/01r = {©0/OT,...,01_1/O7} is a q-
regular family of equivalences on A/Or, and there ex-
ists a bijection @: A/Or — ™ carrying T /Ot into the
standard q-regular family of equivalences on g™ .
(1.1ii) If f € F is an n-ary operation whose range
meets each block of some ©;, then there exist j,l
0 <ji<m-1,0<1 < n-—1) such that for
L0s- -y Tm—1,Y0s5--->Ym—1 € A we have

flxoy o, 2m-1) ©i f (Yo, ..., Ym—1) whenever z; 0; y;.

(1.1.iii) If A is a surjective algebra, then

(1) ©r is a congruence of A,

(2) the relation Ay, is a compatible relation of
A/Or, and

(3) the bijection ¢ yields an isomorphism between
A/O7 and a reduct of the matriz power (g; Sq)[m].

The proof of (1.1.ii) can be found, e.g. in [5;
Lemma 7.3]. The claims in (1.1.iii) are well-known
consequences of (1.1.i) and (1.1.ii); see [6], [4]. We
note that Rousseau [6] (cf. also [4]) proved (1.1.iii)(3)
for the case ©7 = A, however, in view of (1.1.iii)(1)—
(2) the more general claim follows immediately from
this special case.



Our basic tool in proving the main result of this
paper is a strong version of Rosenberg’s primal alge-
bra characterization theorem [3]. Recall that a finite
algebra A is called quasiprimal ([1], [2]) if every oper-
ation on A preserving the internal isomorphisms (i.e.
isomorphisms between subalgebras) of A is a term
operation of A. Further, a k-ary relation p on A is
said to be central if p # A¥, p is totally reflexive, to-
tally symmetric, and there exists a ¢ € A such that
(c,a1,...,a5—1) € pfor all ay,...,ax_1 € A.

Theorem 1.2. [11] Let A be a finite simple al-
gebra having no proper subalgebra. Then one of the
following conditions holds:

(1.2.a) A is quasiprimal;

(1.2.b) A is affine with respect to an elementary
Abelian p-group (p prime);

(1.2.c) A is isomorphic to a reduct of (2;T5)!"™
for some integer m > 1;

(1.2.d) A has a compatible q-regular relation for
some q > 3;

(1.2.e) A has a compatible k-ary central relation
for some k > 2;

(1.2.f) A has a compatible bounded partial order.

Main results

On the base set p (p prime), + and - will always
denote addition, resp. multiplication modulo p. Fur-
ther, we let L, denote the set of all unary linear oper-
ations on p, i.e.

L,={cx+a 0<c,a<p-1}.

Our main result is

Theorem 2.1. For arbitrary finite algebra A that
is semi-affine with respect to an elementary Abelian
p-group A = (A;+4) (p prime), one of the following
conditions holds: R

(2.1.a) A is affine with respect to A;

(2.1.b) A has a nontrivial congruence which is
a congruence of Z; R

(2.1.c) there is a group isomorphism A —
(p; +)™ which is simultaneously an isomorphism be-
tween A and a reduct of (p; L,)™;

(2.1.d) A has a compatible relation At for some
g-regular family T of congruences of A with q>p.

Clearly, if for an algebra A as in Theorem 2.1
condition (2.1.c) or (2.1.d) holds, then A cannot be
affine. Thus Theorem 2.1 yields a necessary and suf-
ficient condition for simple semi-affine algebras to be
affine.



Corollary 2.2. Let A be a finite simple algebra that
is semi-affine with respect to an elementary Abelian p-
group A = (4;+) (p prime). Then A is affine with

respect to A if and only if both of conditions (2.1.c)
and (2.1.d) fail for A.

The rest of this section is devoted to the proof of
Theorem 2.1.

Let A = (A4;+4) be an Abelian group. The group
{z + a: a € A} of all translations of A will be denoted
by T(A). For an algebra A = (A;F) that is semi-
affine with respect to 2, A* will stand for the algebra

(A; F,T(A)) arising from A by adding all translations
of A as unary operations.

Lemma 2.3. For an algebra A that is semi-affine
with respect to an Abelian group A = (A;4), A* is
affine with respect to A if and only if A is such.

Proof. It is straightforward to check that the clone
of A* is
n—1
CloA* = {Zr,xZ +a:n>1, a€ A, and
i=0
n—1
Z r;%; + ag € Clo A for some ag € A}.
i=0

This implies the claim of the lemma. o

In view of this lemma, when we want to prove
Theorem 2.1 via applying Theorem 1.2 for semi-affine
algebras A, we can always replace A by A*, ie. we
may assume that the translations in T'(A) are oper-
ations of A. Thus, in what follows, we look more
closely at the relations preserved by all translations
of an Abelian group.

For equivalence relations the following fact is easy
and well-known.

Lemma 2.4. For an Abelian group A= (4;4), if ©
is an equivalence relation on A such that © is preserved
by all translations in T (A), then © is a congruence of

A.

For studying g-regular relations we shall need a
group theoretical result. First we recall some notions
and notation. Let G C Sy be a permutation group
acting on a set N. The orbits of G are the minimal
nonvoid subsets of N that are closed under all permu-
tations in G. Clearly, the orbits of G yield a partition
of N. We say that G is transitive on N if N is an orbit
of G, and G acts regularly on N if it is transitive and
no non-identity permutation in G' has fixed points.

Let k£ and m be arbitrary positive integers, and
let P be a subgroup of S,. Clearly, the unary term



operations h%[go,...,gm 1] of (k;Sk)"™ with o € P
form a permutation group acting on the set k™. In
group theory this group is called the general wreath
product of Si and P, and is denoted by S Wr P (cf.
[7; p- 272]). In S Wr P the elements hi[go, . .., gm—1]
form a normal subgroup (isomorphic to the mth direct
power of Sy), which will be denoted by (S;)™, while
the elements h™[id,...,id] form a subgroup (isomor-
phic to P), which will be denoted by P. Obviuosly, P
is a complement of (S;)™ in S Wr P in the sense that
(Sk)™ N P = {id} and (S;)™P = S}, Wr P.

If P is a regular permutation group on m, then
S Wr P essentially coincides with the so-called com-
plete wreath product of Sy and P (cf. [7; pp. 270,
272)).

Lemma 2.5. Let G be a subgroup of the permutation
group Sq Wr Sy, where q is a power of a prime number
p and m is an arbitrary positive integer. If G is an el-
ementary Abelian p-group which acts regularly on g™,
then G is a subgroup of (S,)™.

Proof. Let G be a subgroup of S, Wr S, satis-
fying the assumptions of the lemma, and let P de-
note the group of component mappings of permuta-
tions in G. Thus G is an elementary Abelian p-
subgroup of S, Wr P acting regularly on ¢™. Let
Iy, ..., I;_1 denote the orbits of P. Then each mem-
ber h%[go,-..,9m-1] of G acts componentwise, via
h""t[gi: i€ ] =0,...,t—1) on the set ¢™ =
g x ... x gl-1. By the well-known fact that every
commutative, transitive permutation group is regular,
it follows that in each component we have a regular
permutation group. Consequently, for cardinality rea-
sons, G splits into a direct product of ¢ regular, elemen-
tary Abelian p-subgroups of S, Wr Sy, (I =0,...,t—1),
respectively. Hence it suffices to prove that if P is tran-
sitive, then m = 1.

Assume that P is transitive. Since P is a ho-
momorphic image of G, therefore P is an elementary
Abelian p-group. From the transitivity and commuta-
tivity of P it follows that P is regular as well.

Consider the subgroup Go = G N (S;)™ of G.
Since G is finite and Abelian, it has a subgroup P that
is a complement of Gy in G (that is, Go N Py = {id}
and GoPy = G). Clearly, for each o € P, Py contains
exactly one permutation with component mapping o.
Thus P, is a complement of (S;)™ in the complete
wreath product S, WrP. It is known (cf. [7; 10.7
in Chapter 2]) that any two complements of (S;)™
in S; Wr P — specifically P and Py — are conjugate.
Since all assumptions on G and the required conclu-
sion as well are invariant under conjugation, we may
assume without loss of generality that P C G. How-



ever, as (G is Abelian, G is contained in the centralizer
of P in S, Wr P, which is easily seen to be equal to

{h°lg,...,9]: g€ Sy, 0 € P}

(cf. [7; Exercise 2 on p. 277]). Obviously, this group
is transitive only if m = 1, completing the proof. ¢

Lemma 2.6. Let A be a finite elementary Abelian
p-group (p prime), and let T = {Oq,...,Om_1} be a
q-regular family of equivalences on A such that At is
preserved by all translations in T (A). Then

(2.6.1) ©Og,...,0,_1, and hence their intersec-
tion O as well, are congruences of 2, and

(2.6.i1) for any elementary Abelian p-group
(g;+), there exists an isomorphism A\/QT = (g;+)™
carrying T /Oy into the standard g-regular family of
equivalences on q™.

Proof. Consider the unary algebra A =
(A;T(A)). By our assumption Ar is a compatible
relation of A. Since A is surjective, we get from
Lemma 1.1 (1.1.ii)(1) that ©7 is a congruence of A.
So by Lemma 2.4 ©r is a congruence of A. Apply-
ing Lemma 1.1 (1.1.i) and (1.1.iii)(3) we get also that
there exists an isomorphism ¢ between the algebra
A/Or = (A/©;T(A/O)) and a reduct of the matrix
power (g; Sq)[m] such that ¢ carries T/Or into the
standard g-regular family {®g,...,®,_1} of equiva-
lences on ¢™. Let G denote the subgroup of Sy~ cor-
responding to the group T(A\/G)) under ¢. Clearly,
G is a subgroup of S; Wr Sy,. Furthermore, by con-
struction, G is an elementary Abelian p-group, which
acts transitively on ¢™. Now Lemma 2.5 states that
G C (S,)™, whence it follows that ®g,...,®,,_; are
congruences of (¢"™;G). Via the isomorphism ¢ we get
that ©9/Or,...,0,_1/O7 are congruences of A/Or,
and hence Qg,...,0,,_1 are congruences of A. Now
by Lemma 2.4 we conclude that (2.6.i) holds.

Since the family T of congruences of A is q-
regular, the natural embedding

A/Or = A/Og X ... x A)Op_4

is an isomorphism, and all quotient groups on the right
are elementary Abelian p-groups with ¢ elements. Up
to isomorphism, we can replace them with the given
group (gq; +), and the requirements in (2.6.ii) obviously
hold. o

Lemma 2.7. Let A be a finite algebra that is semi-
affine with respect to an elementary Abelian p-group
A = (4;4) (p prime), and let T be a p-regular fam-
ily of congruences of A such that A\t is a compatible
relation of A*. Then



(2.71) ©Or is a congruence of A, and

(2.7.ii) if O = A, then there is a group iso-
morphism A — (p; +)™ which is simultaneously an
isomorphism between A and a reduct of (p; L,)™.

Proof. Let T = {©,...,0,,_1}. By the previous
lemma, these equivalences are congruences of g, and
so is their intersection Or.

To prove (2.7.i) let f be an n-ary operation of A,
and let zg,...,Tn_1,Y0,---,Yn—1 € A be arbitrary el-
ements of A such that z, Oy, foral 0 <k <n-—1.
Let 0 < ¢ < m — 1. Assume first that the range of
f meets at least two blocks of ©;. Since A/0; is a
p-element_cyclic group and A is semi-affine with re-
spect to A, it is clear that the range of f meets each
block of ©;. Thus we get from Lemma 1.1 (1.1.ii) that
f(xoy.. s®r_1)0; f(yo,-.-,yn—1). The same conclu-
sion is obvious, if the range of f meets only one
block of ©;. Since ¢ was arbitrary, we conclude that
f(zo,.. ., 2n-1)O1 f(Y0,---,Yn_1), as required.

Now let ©r = A. By Lemma 2.6 (2.6.i) there
exists an isomorphism A (p; +)™ carrying T into
the standard p-regular family of equivalences on p™.
Let B = (p™; F) be the algebra corresponding to A
under this isomorphism. Notice that the standard
p-regular relation on p™ is a compatible relation of
B, and apply Lemma 1.1 (1.1.ii) to each operation f
of B. Let, say, f be n-ary. For b € p™ the com-
ponents of b will be denoted by 8°,...,b™ 1. Let
0 < i < m — 1 be arbitrary. As in the previous
paragraph, we see that the set of ith components of
f(bg,...,b,_1) as the arguments run over all elements
of p™ is either p or a one-element set. In the first
case we get from (1.1.ii) that there exist indices j;,!;
0<ji<m-=1,0<1I; <n—1) and a permutation
9i € Sp such that the ith component of f(bo,...,bn_1)
equals g;(b;!) for all by, ...,b,—1 € p™. In the second
case the same holds with g; constant (and j;,I; arbi-
trary). Thus f = hf[go,---,gm 1] Where o and p are
the mappings o:m — m, ¢ —= j; and u:m — n, i — [;.
Hence B is a reduct of (p; S,UC,)l™. Taking into con-
sideration that B is semi-affine with respect to (p; +)™,
one can easily derive that B is a reduct of (p; L,)I™],
completing the proof. o

Now we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Let A be a finite alge-
bra that is semi-affine with respect to an elementary
Abelian p-group A = (A;+) (p prime), and consider
the algebra A*. Because of the translations, A* has
no proper subalgebra, no compatible bounded partial
order and no compatible central relation. If A* is not
simple, then by Lemma 2.4 (2.1.b) trivially holds, so
assume A* is simple. Now we can apply Theorem 1.2



for A*. Since a semi-affine algebra cannot be quasipri-
mal, condition (1.2.b), (1.2.c) or (1.2.d) in Theorem
1.2 holds for A*.

Assume first that (1.2.b) holds for A*. Tt is well
known that if an algebra is affine with respect to an
Abelian group, then (because of the term operation
x —y + z) this group is uniquely determined up to the
choice of the element 0. Thus (2.1.a) holds for A* and
hence for A as well.

Now let us consider the case when (1.2.c) holds
for A*, that is, there exists an isomorphism ¢ between
A* and a reduct of the matrix power (2; 7)™ (hence
p = 2). Let G denote the subgroup of Sym corre-
sponding to the group T(A\) under ¢. Clearly, G is a
subgroup of Ss Wr S,,,, and G is an elementary Abelian
2-group acting transitively on 2. By Lemma 2.5 we
have G C (S2)™, so for cardinality reasons G = (S2)™.
Let w be the image of 0 € A under ¢, and let 7 be
the translation z + w of the Abelian group (2;+)™.
It is straightforward to check that the mapping 7 is
a group isomorphism A — (2;+)™ which is simulta-
neously an isomorphism between A and a reduct of
(2; T»)™.  Obviously, T = Lj, hence (2.1.c) holds
with p = 2.

Finally, suppose condition (1.2.d) holds for A*,
and let T be a g-regular family of equivalences on A
such that Ar is a compatible relation of A*. vai—
ously, Ar is preserved by all translations in T'(A4), so
by Lemma 2.6 T consists of congruences of A. Tt fol-
lows now that ¢ is a power of p. If ¢ > p, then (2.1.d)
trivially holds, while if ¢ = p, then by Lemma 2.7 and
by the simplicity of A we have ©7 = A and condition
(2.1.¢) holds for A. o

Concluding remarks

~

1. For an elementary Abelian p-group 4 =

(A;+) (p prime) let Q(A) denote the clone consist-
ing of all operations on A preserving the relation ) n

in other words, Q(A) is the largest one among the
clones of those algebras on A that are semi-affine with
respect to A. These clones constitute one of the six
classes of maximal clones in Rosenberg’s theorem [3].
Making use of Theorem 2.1 one can easily determine
the maximal subclones of Q(A). There are three types:
— those containing the operation x — y + z; to
find them explicitly one can apply the de-
scription of the clones of affine algebras (cf.
(9, [10; 2.6));
— the inverse images of Clo (p; Lp)[m] under all
isomorphisms A — (p; +)™; and



— for each g-regular family T of congruences of
A with ¢ > p, the clone of all operations in
Q(A) preserving Ar.

2. Let A be a surjective, finite, simple alge-
bra that is semi-affine with respect to an elementary
Abelian p-group A = (A;+) (p prime). Combining
Corollary 2.2 and the claims in Lemma 1.1 (1.1.iii) we
get that either A is affine with respect to A\, or it is
isomorphic to a reduct of (g; Sq)[m] for some power q of
p. An application of this observation yields an alterna-
tive proof for the result shown in [12] stating that all
surjective, finite, simple algebras of type 2 are affine.

Acknowledgement. 1 am indebted to P. P. Pélfy for
pointing out reference [7] for the proof of Lemma 2.5.
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