A classification of strictly simple algebras

with trivial subalgebras

Agnes Szendrei

An algebra A is called strictly simple if A is simple and every proper subal-
gebra of A is trivial (i.e. one-element). Since each locally finite minimal variety
is generated by a finite strictly simple algebra, it is hoped that they will be bet-
ter understood by studying the structure of strictly simple algebras (cf. Problem
10 in [3]). In [16] and [17] we investigated finite simple algebras without proper
subalgebras, and determined them, up to term equivalence, when all fundamental
operations are surjective. The proof is based on a strong version of Rosenberg’s
primal algebra characterization theorem [10].

This paper starts the study of finite strictly simple algebras having trivial
subalgebras with the analogue of the main result of [16]. We present a classification
determining the maximal clones of all those finite strictly simple algebras with trivial
subalgebras which do not generate a congruence permutable variety (Theorem 1;
cf. also Corollary 2). The proof does not make use of (major parts of) the proof of
Rosenberg’s theorem. In fact, it is much simpler than the latter, which is shown also
by the fact that, with some modifications, the proof given here works for infinite
algebras (and local term operations replacing term operations) as well, provided
they have at least two trivial subalgebras.

As a consequence of Theorem 1, we get for every finite set A and for every

nonvoid subset U of A the full list of maximal subclones of the clone consisting of
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all operations f on A with f(u,...,u) = u for all u € U (Corollary 2). We note
that the special case |U| =1 was proved earlier by D. Lau [5], and the case U = A
was also known before (see [15]). Further, we apply Theorem 1 to get a necessary
and sufficient condition for a finite strictly simple algebra A having at least one
trivial subalgebra and such that the fundamental operations of A are surjective
to generate a congruence permutable variety (Corollary 3), and for a functionally
complete algebra A with at least one trivial subalgebra to be quasiprimal (Corollary

6). It turns out that in both cases the condition involves only subalgebras of A2.

1. Main results

We adopt the convention that algebras are denoted by boldface capitals and
their universes by the corresponding letters in italics. Two algebras are called term
equivalent [polynomially equivalent], if they have the same clone of term [polyno-
mial] operations. The clone of term operations of an algebra A is denoted by Clo A.
For a set A and for k > 1, the nonvoid subsets of A* will also be called k-ary rela-
tions (on A), and for an algebra A the universes of subalgebras of A will be called
subuniverses of A. (Hence a subuniverse is always nonempty.)

Recall that a finite algebra A is called quasiprimal if every operation on A
preserving the internal isomorphisms (i.e. isomorphisms between subalgebras) of A
is a term operation of A. The concept as well as the following characterization of

quasiprimal algebras is due to A. F. Pixley [7], [8].

A finite algebra A is quasiprimal if and only if the ternary discriminator

t(z,y,2) = {z i ,
(2,9,2) T otherwise

on A is a term operation of A.

An algebra A is said to be affine with respect to an Abelian group Aif A and

A have the same universe, the quaternary relation
Qz= {(a,b,c,d) € A*: a —b+c=d}

is a subuniverse of A%, and z — y + z is a term operation of A. The algebras that

are affine with respect to A are well known to be related to the module (End K);L

i.e. A considered as a module over its endomorphism ring End A.
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An algebra A is affine with respect to an Abelian group A on its universe if
and only if A is polynomially equivalent to a module rA for some subring R of

End A.

A k-ary relation B on A is called totally reflexive if it contains each k-tuple
from A* whose components are not pairwise distinct. Further, B is called totally
symmetric if it is closed under permuting the components. (As a rule, “totally” is
omitted if £ = 2.) A totally reflexive, totally symmetric relation B C A* is called
central if B # A* and there exists a ¢ € A such that (c,ai,...,a;_1) € B for all
ai,...,ap—1 € A. The set of all such elements c is called the centre of B. Observe
that every unary relation is totally reflexive and symmetric, hence the unary central
relations are exactly the nonvoid proper subsets of A. For a fixed subset U of A4, a
central relation will be called U-central if U is contained in its centre.

For an element a € A we set
Xo = (A x {a}) U ({a} x A).

As usual, a binary relation on A is called irreflexive, if none of the pairs (a,a),

a € A, belongs to it. For a fixed subset U of A, the binary relations of the form
X,UY withu € U and Y an irreflexive binary relation on A — U
will be called U-crosses on A.
The principal result of the paper is the following theorem.

THEOREM 1. Let A be a finite strictly simple algebra having at least one
trivial subalgebra, and let U be the set of all elements u of A for which {u} is a
trivial subalgebra of A. Then one of the following conditions holds:

(a) A is quasiprimal;

(b) A is affine with respect to an elementary Abelian p-group (p prime);

(c) there is a U-central relation among the subuniverses of A* for some k > 2;

(d) there is a bounded partial order among the subuniverses of A% such that
every element of U is a bound (consequently |U| < 2);

(e) there is a symmetric U-cross among the subuniverses of AZ.
We present some applications.

(A) Theorem 1 can be used to determine the maximal subclones of the clone

Cuy consisting of all operations f on A with f(u,...,u) = uforallu € U. For a k-ary
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relation B and an operation f on A, f is said to preserve B if B is a subuniverse
of the algebra (4; f)*. The operations preserving a fixed relation B form a clone,

which will be denoted by Pg.

COROLLARY 2. Let A be a finite set and U a nonvoid subset of A. The
maximal subclones of Cy are exactly the clones Cy N Pp where B is one of the
following relations.

(I) B is a nonempty proper subset of A distinct from the singletons {u},
u € Uj;

(IT) B is a nontrivial equivalence relation on A such that {u} is a singleton
block of B for all u € U;

(III) B is a permutation of A of prime order such that U is invariant under
B, B has at most one fixed point in U and no fixed point in A — U;

(IV) B = {(a,b,a +b): a,b € A} for an elementary Abelian 2-group A=
(A;+,0), and U = {0};

(V) B is a k-ary U-central relation (k > 2);

(VI) B is a bounded partial order such that every element of U is a bound
(consequently |U| < 2);

(VIT) B is a symmetric U-cross.

The case |U| = 1 was proved earlier by D. Lau [5], while the case U = A (when
Cu = C4 is the clone of all idempotent operations on A) was solved independently by
several participants of the Séminaire de Mathématiques Supérieures on “Universal
algebra and relations” (Montreal, 1984), among others R. W. Quackenbush and the
author. In [15] the result is derived from a more general theorem on idempotent
algebras. An interesting feature of this proof is that it works for infinite base sets as
well, thus yielding a description for the so-called maximal locally closed subclones
of C4. Keeping this in mind, we give a proof for Theorem 1 (and hence for Corollary
2) which can be modified with some effort to yield the infinite analogues as well,

provided |U| > 2 (see the Rermark at the end of Section 2).

(B) We call an algebra surjective if all its fundamental operations are surjec-
tive. For example, every strictly simple groupoid (or, more generally, every strictly
simple algebra with a single fundamental operation) is surjective, unless its opera-

tion is constant.

COROLLARY 3. Let A be a finite, surjective, strictly simple algebra having

at least one trivial subalgebra, and let U be the set of all elements u of A for which
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{u} is a trivial subalgebra of A. Then A generates a congruence permutable variety
if and only if none of the following relations B occurs among the subuniverses of
AZ:

(o) B is aU-cross;

(8) B is a binary U-central relation with centre U, |U| = 1;

v) B is a bounded partial order such that U is the 2-element set consisting
of the bounds.

This shows that for an algebra A satisfying the assumptions of Corollary 3, A
generates a congruence permutable variety if and only if A? has no subuniverse B
with |A| < |B| < |A]?>. We note that none of the relations (a)—(7) can be omitted

in Corollary 3, as is shown by the following proposition.

PROPOSITION 4. Let A be a finite set and U a nonvoid subset of A. For
each of the binary relations B in (a)—(7y), there exists an algebra A of finite type
such that

(i) A is strictly simple and the trivial subalgebras of A are exactly the sin-
gletons {u}, u € U;

(ii) A is surjective; and

(iii) A and B (and in case () also B~!) are the only subuniverses of A? that

are not direct products of subuniverses of A.

REMARKS. 1. If B is of type (@) or (8), then the algebra A satisfying the
requirements of Proposition 4 can be chosen to be term equivalent to (A4;Cy NPg).
2. If B is of type (7), then the analogous claim is not true in general. In fact,

if |A| = 8 and B is the partial order

then G. Tardos’s proof [18] for the fact that Pp is not finitely generated yields also
that Cgo,13 NPp is not finitely generated; hence (4;Cy N'Pp) is not term equivalent
to any algebra of finite type.

(C) Recall that an algebra A is said to be functionally complete if it is finite
and every operation on A is a polynomial operation of A. Recently K. Kaarli [4]

proved that every functionally complete algebra having no proper subalgebras is
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quasiprimal. If the algebra has trivial subalgebras, then the conclusion is no longer

true; namely we have the following

PROPOSITION 5. Let A be a finite set and U a nonvoid subset of A. For
arbitrary U-cross B on A, A = (A;CyNPg) is a functionally complete algebra whose

subalgebras are exactly the singletons {u}, v € U, and A is not quasiprimal.

It follows from Theorem 1 that every nonquasiprimal, functionally complete

algebra having trivial subalgebras is a reduct of these algebras.

COROLLARY 6. Let A be a functionally complete algebra having no nontrivial
proper subalgebras. Assume A has a trivial subalgebra, and let U be the set of all
elements u of A for which {u} is a trivial subalgebra of A. Then A is quasiprimal

if and only if there is no symmetric U-cross among the subuniverses of A2.

In a forthcoming paper we will apply Theorem 1 for the investigation of strictly

simple Abelian algebras (i.e. strictly simple algebras satisfying the Term Condition).

2. Proof of Theorem 1

The cardinality of a set A is denoted by |A|. For convenience we identify every
natural number n with the set n = {0,...,n — 1}. The full symmetric group on n
is denoted by S,,.

We introduce some operators on relations that will be needed in the sequel.

For B C A™ and for ig,...,ix_1 € n,

P(ig,....in_1) B ={(%igy---,%ir_,): (To,...,2n_1) € B}

is the projection of B onto its components ig,...,ix—1- In particular, if I =
{i0,..-,ix_1} is a subset of n with iy < ... < ix_1, then we write pr; B instead
of pr;y, .. in_,) B- Furthermore, for any m € S,,, we set B™ = pr(g,  (n—1)r) B, i-e.
B™ arises from B by permuting its components according to w. In particular, if
n = 2 and 7 is the transposition, then we write B~' instead of B™.

For B C A™ and for an equivalence relation € on n, we set
B. = {(zo,...,Zn-1) € B: z; = xj whenever (i,j) € e}.

Let I. denote the subset of n consisting of the least elements of the blocks of ¢, and
put
eq. B = pr;_ B..
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In the subscript, instead of ¢, it will often be more convenient to write the list of

nonsingleton blocks of ¢; e.g.
€dpy B = {(.’23'0,5171 A ,Z‘n_g) € Ant (1'0,23'0,5171 A ,Z‘n_g) € B}

For BC A", 1 <1l < n, and a,...,a,-1 € A, we define the [-ary relation

arising from B by ‘fixing the jth component at a; for j =1,...,n — 1" as follows:
B(xo,---yZTi—1,01, - ,Gn—1)

= {(zo,...,z1_1) € A": (20,...,z1_1,01,...,an_1) € B}.

It is straightforward to check that if for some algebra A, B is a subuniverse
of A", then the relations pr; B, B, eq, B described above are also subuniverses of
the corresponding powers of A, provided they are nonempty. If, in addition, {a;}
(I € j <n—1) are singleton subalgebras of A, then B(zo,...,%-1,01,...,an_1) is
a subuniverse of A!, provided it is nonempty.

With the foregoing notations, an n-ary relation B on A is totally reflexive if
and only if eq;; B = A™=1 for all i,j € m, i < j, and totally symmetric if and
only if B™ C B for all # € S,,. An n-ary relation B will be called reflexive if
eqg. n—1 B = A. It will be convenient to consider the permutations o of A as
binary relations {(z,z0): € A}, and conversely, to call every relation of this form
a permutation. The identity permutation, considered as a binary relation (i.e. the
diagonal of A?) will be denoted by A.

In what follows, we will need a concept generalizing the automorphisms of

algebras. Before the definition we prove a lemma.

LEMMA 7. Let A be a finite set. For a k-ary relation C on A (k > 2), the
following conditions are equivalent:

(i) |IC|=|A*"", and pr),_g; C = A*~" for all i € k;

(ii) for all i € k, the projection mapping of C' omitting the ith component is
one-to-one and onto A*1;

(iii) for every j € k there exists a (k — 1)-ary operation T'%, on A such that

_ J .
(1) C_{(:EO’"'5£L.j—1;FC(x05"'axj—lax]'-i-l;'"axk—1)7$j+la"'amk—1)-
k—1
(.CL'(),...,wj_1,$j+1,...,$k_1) GA },
(2) T4 (ao,---,@i—1,2,0i41,---,0j_1,Qj41,---,ak_1) IS a permutation of A for all
i €k, i+# j, and for all elements ay,-..,Q;—1,@i41,---,0j—1,0j41,---,0p—1 €
A, and



(3) the identities
i J
To(o, - s Tic1, Tit1, -+, Tj—1, T (T0s - - 5 Bic 1, Tiy Tig 1y - -5 Tt

.’L'j+1, .. -;mk—l);wj-i—l; - ,.’L'k_l) =T;

hold for arbitrary distinct indices ©,j € k .

PROOF. The equivalence (i)<(ii) and the implication (iii)=(ii) are obvious,
so assume (ii) holds for C. By symmetry it suffices to prove (1), (2) for j =k — 1.
Since the projection mapping C — pr;,_; C = AF~! is bijective, there is a uniquely
determined operation T'% " satisfying (1) (for j = k — 1). Also, for arbitrary index
i € (k—1) and for arbitrary fixed elements ag,...,ai 1,@it1,..-,a0x-2 € A the
mapping

C(ag, .-, Qi—1,T, Qjx1,---,05-2,y) > A, (z,9) =y
is bijective. Here
C(ag,---,8i 1,T,Qiq1,---,05_2,Y)
= {(z,T% (a0, .- -, ai_1,2,aiy1,... a5 2)): = € A},
implying that the unary operation I"é‘l(ao, ey Qie1, Ly Ajg1,- -+, Af—2) IS & permu-

tation of A. This proves (2).

To show (3) let, say, 7 < j, and consider the permutations

_ i
Tr(x)_FC(aoa'"aai—laai—i—l;'"7aj—laxaaj+la'"5ak—1)7
—_1J
o(z) =T¢(ao, - -, Qi-1,4, Qi1 -, Qj—1,Qj41, - - -5 Q1)
Clearly,
C(a0, -y Qim1, Y Qi1 e ooy i1, Ty Qg1 e vy Q—1)

={(n(z),2): v € A} ={(y,0(y)): y € A}.
Thus 7 and o are inverses of each other, proving the equality in (3) for
(:L'(],.. 3 Li—19 L4159 Lj—15 L5415 - ,IL‘k_l)
= (ao, ey Q1505415 - - ,aj,]_,a]q_l, . ,ak,l).

The latter is an arbitrary (k — 2)-tuple, hence (3) follows.

DEFINITION. Let A be a finite algebra. For k¥ > 2 a k-automorphism (or, if
k is clear from the context, a multi-automorphism) of A is a subuniverse C' of A*

satisfying the equivalent conditions of Lemma, 7.
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Note that the 2-automorphisms of A are just the automorphisms of A. Further,
the quaternary relation @ ; occurring in the definition of an affine algebra A is a

4-automorphism of A.

LEMMA 8. Let B be a subuniverse of A™. If pr; B is a multi-automorphism
of A for some I Cm, |I| > 2, then there exists i € m such that |B| = |pr,,_;; B|.

PROOQOF. For simplicity, assume I = k, 2 < k < m. Then
B = pry,_toy B, (To:%1,. s Th—1, Ty - Tm1) 2 (T1, e T 1, Ty -+ Trn)
is bijective, since the component xy of B is uniquely determined by z1,...,Zg_1-

LEMMA 9. Let A be a finite algebra, and let m > 2. Assume that every
subuniverse of A™~! has cardinality a power of |A|. If B is a subuniverse of A™

whose cardinality is not a power of |A|, then

(4) Pl iy B=A™"" for alli € m.

PROOF. Note first that for every I < m, every subuniverse C' of A! has cardi-
nality a power of |A|, since A™ /=1 x C' is a subuniverse of A™~! and its cardinality
|A|™~t-1|C| is a power of |A|. In particular, the only subuniverses of A are A and
singletons (if any).

We prove that pr; B = All for all proper subsets I of m. First let, say, I = {i}.
If pr;; B is distinct from A, then it is a singleton, implying that

B = (pry;y B) x (prp_iy B)-

By assumption both factors have cardinality a power of | A, hence so is B, a con-
tradiction. Thus pry;; B = A for all ¢ € m.

Suppose our claim is false and let, say, £ be a minimal proper subset of m
such that pr, B # A*. By the foregoing observation we have k > 2. So by the
minimality of k, pr,_ @B = AF=1 for all 4 € k. Since k < m, the subuniverse
prj, B has cardinality a power of |A|. Thus |pr, B| = |A|¥~!, whence pr), B is a
k-automorphism of A. By Lemma 8 we conclude that |B| = |pr,,_y;; B| for some
j € m. However, by assumption the right hand side is a power of | A|, while the left

hand side is not. This contradiction completes the proof.
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LEMMA 10. Let A be a finite algebra having a trivial subalgebra {0}, and
assume that for some m > 3 every subuniverse of A™~! has cardinality a power of

|A|. Let B be a subuniverse of A™ such that |B| is not a power of |A|, and let

BI = B(.Z'(), .- .,.’L’m_Q,O),

B ={(zg,...,Zm—-1) € A™: there is ay € A such that
(Tm_2,T1,..,Tm_3,y) € B" and (zo,...,Tm_3,Y,Tm_1) € B}.

If B' # A™~! then
(i) B'is an (m — 1)-automorphism of A;

(ii) B is a subuniverse of A™,
B={(0,. > Zm-1) € A™: (€0, ,Tm—3, 1 2(Tm—2,T1, - Tm—3),Tm_1) € B} ]
and we have

(z0,-..,Zm_2,0) € B if and only if zg = xp,_2;
(iii) the mapping
©: B— B, (%0,--sTm-1) = oy, T3, DB 2 (Tm—2,T1, oy Tin—3)s Tn—1)

is bijective, and hence |B| = |B).

PROOF. (i) By Lemma 9 (4) holds, and therefore

(5) pr(m_l)_{i} BI = Am—2 fOI' all 4 € (m - 1)

Since B’ is obviously a subuniverse of A™ 1 |B’| is a power of |A|, implying |B’| =
|A|™=2 (as B' # A™~1!). This proves (i).

(ii) Tt is straightforward to check that B is a subuniverse of A™, and in view
of (i), the equality for B holds. For xy, ..., 2Zm_2 € A we have (2, ...,Tm_2,0) € B
if and only if

m—2 !
(.CL'(],...,.’L'm_g,FB, (.’L‘m_z,.CL'l,...,IL'm_g)) EB,
or equivalently,
— FO Fm_2
o = B/(.’L'l,...,.’L'mfg, B! (.’L‘m,2,1‘1,...,1‘m,3)).

However, by Lemma, 7 the right hand side is z,,_2, proving the last claim in (ii).
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(i) Fixing zo,...,%m_3,Zm_1 arbitrarily, we know that the mapping

Lo Fg,_Q(mm_g,xl,...,xm_3) of the remaining component is a permuta-
tion of A, hence ¢ is one-to-one. For arbitrary m-tuple (xo,...,Zm—3,Y, Tm—1) €
B there exists z,, » € A such that y = I'%7*(z_2,%1,..-,Tm_3), SO that
(%o, - -, Tm—3,Tm_2,Tm_1) € B, proving that ¢ is onto.

LEMMA 11. Let A be a finite algebra having a trivial subalgebra {0}, and
assume that for some m > 3 every subuniverse of A™~! has cardinality a power of
|A|. If B is a subuniverse of A™ whose cardinality is not a power of | A|, then

() B(zo,-.-, i 1,0,Ziz1,--,Tm_1) = A™ ! for all i € m, and

(ii) B is totally reflexive.

PROOF. We use the notations of the previous lemma.
(i) By symmetry it suffices to show that B’ = A™ 1. Suppose B’ # A™ L.
Consider the subuniverse C' = pryg ., 5 ;n_13 B of A3. Using (4), (5) one can easily

see that

Prio} € =Priop O =pr s C = 4%

Furthermore, by the property of B established in Lemma 10 (ii), (a,b,0) € C if
and only if @ = b. Thus C # A3. If 3 < m — 1, then by the assumption on the
subuniverses of A™~! we get that |C| = |A|?, and hence C is a 3-automorphism of

A. Now it follows from the bijectivity of ¢ in Lemma 10 (iii) that the projection
B = pr, 0y B, (z0,Z1,---,Tm—1) = (T1,-- -, Tm1)

is bijective. By Lemma 9 we have pr,, (o, B = A™ ', implying |B| = [A[™,
which contradicts the assumptions of the lemma.
It remains to settle the case m = 3. Replacing B with B (which is now equal

to C') we may assume without loss of generality that B(z,y,0) = A, in other words,
(6) (z,9,0) e B& x=y.

Then, clearly, B(0,z,y) # A2, which implies by Lemma 10 (i) (with the components
interchanged) that B(0,z.y) is a permutation. Hence the subuniverse eqy B of
A? contains only one pair with first component 0 (namely (0,0)), yielding that
eqq; B # A?. However, A x {0} C eqy; B, therefore by the assumption on the

subuniverses of A2 we conclude that equality holds here, that is,

) (z,z,y) € By =0.
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Now let
R ={(z,y) € A% (c,d,x),(c,d,y) € B for some c,d € A}.

Clearly, R is a subuniverse of A2, A C R since prsy B = A, and R # A? since
(0,y) € R holds only if y = 0. Indeed, if (0,y) € R, then (c,d,0),(¢c,d,y) € B for
some ¢,d € A, hence applying (6) and (7) we get ¢ = d and y = 0. Thus R = A,

which means that the projection

B — pr{O,l} Ba (Z’,y,Z) = (xay)

is bijective. By Lemma 9 we have pry, ;3 B = A?, yielding |B| = |A]*, which
contradicts the assumptions of the lemma. This completes the proof of (i).

(ii) Leti < j € m. By (i) the subuniverse eq;; B of A contains every (m — 1)-
tuple with one component 0, whence |A|™? < |eq;; B| < |A|™". The assumption
on the cardinalities of subuniverses of A™ ! yields that eq;; B = A™ '. Hence B

is totally reflexive, as claimed.
Now we look at the subuniverses of A2.

LEMMA 12. Let A be a finite, strictly simple algebra having at least one
trivial subalgebra. If B is a subuniverse of A? such that pryoy B=pry, B= A and
|A| < |B|, then there exists an element 0 € A such that {0} is a trivial subalgebra
of A and B(z,0) = A or B(0,z) = A.

PROOF. Let U be the set of all elements u € A such that {u} is a trivial
subalgebra of A. For arbitrary v € U, B(z,u) and B(u,x) are subuniverses of A,
hence each of them is A or a singleton contained in U. Assume that, in contrary
to our claim, B(z,u) and B(u,z) are singletons for all u € U. Then BNU? is a

permutation of U. Hence
C = {(z,y) € A% (=,2),(y,2) € B for some z € A}

is a reflexive, symmetric subuniverse of A% such that C(z,u) = C(u,z) = {u} for
allw € U. Further, C' # A, since equality here together with prygy B =pry;3 B=A
would imply that B is a permutation of A, contradicting |B| > |A|. Therefore the
transitive closure of C is a congruence of A distinct from A, in which every element

of U forms a singleton block. However, this is impossible, as A is simple.

LEMMA 13. Let A be a finite algebra such that every proper subalgebra of
A is trivial, and let {0} be a fixed trivial subalgebra. If A® has a subuniverse B

12



such that pryoy B = pryyy B = A, [A| < |B|, B(z,0) = {0}, then either some finite
power A¥ of A has a totally reflexive, totally symmetric subuniverse distinct from

AF and A (if k = 2), or there exists an element e € A — {0} such that B(z,e) = A.
PROOF. For k£ > 1 let
Ry = {(z0,...,25_1) € AF: there exists an a € A with (x;,a) € B for all i € k}.

Clearly, R1 = A and A C R as prygy B = A; moreover, Ry # A since otherwise
prygy B = pry;; B = A would imply that B is a permutation of A4, contradicting
|B| > |A].

Let |A| = n, A = {ag,...,an—1}. If R, = A", then there exists an element
e € A such that (a;,e) € B for all i € n, that is, B(z,e) = A. Otherwise, let k > 2
be the least integer such that Ry # A*. Since Ry_; = A*~!, therefore Ry is totally
reflexive. Clearly, Ry is totally symmetric. Furthermore, it is easily seen to be a

subuniverse of A*. As we have seen before, Ry # A, so the proof is complete.

LEMMA 14. Let A be a finite, strictly simple algebra having at least one
trivial subalgebra, and let U be the set of all elements u € A such that {u} is a
trivial subalgebra of A. Assume no finite power A*¥ (k > 2) of A has a totally
reflexive, totally symmetric subuniverse distinct from A¥ and A (if k = 2).

(i) If B is a non-reflexive subuniverse of A* such that pryg, B = pry;; B = A
and |A| < |B|, then B is a U-cross.

(ii) If B is a reflexive subuniverse of A% with |A| < |B| < |A|?, then its
transitive closure is a bounded partial order on A such that every element of U is

a bound.

PROOF. (i) By Lemma 12, there exists an element 0 € U such that, say,
B(0,z) = A. Since B is not reflexive, the subuniverse eqy, B of A is a singleton,
namely {0}, as (0,0) € B. Thus B(z,0) D {0}. Supposing equality holds here we
would get from Lemma 13 that there exists an element e € A with B(z,e) = A.
Then (e,e) € B, implying e = 0, whence B(z,0) = A.

Thus Xo C B. For arbitrary element u € U — {0}, the subuniverses B(u,z)
and B(z,u) of A contain 0 and do not contain u, hence B(u,z) = B(z,u) = {0}.
Therefore the relation Y = B — Xj is contained in (4 — U)?2. Since eqy, B = {0},
Y is irreflexive on A — U. Thus B is a U-cross.

(ii) Again by Lemma 12, there exists an element 0 € U such that, say,

B(0,z) = A. Since BN B! is a reflexive, symmetric subuniverse of A%, we have
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BN B! = A, that is, B is antisymmetric. Hence B(z,0) = {0}. Let B be the
transitive closure of B. It is easy to check that B is a subuniverse of A%, B C 3,
and B(0,z) = A, B(x,0) = {0}. By the same reason as above, B is antisymmetric.
Thus B is a partial order with least element 0. Applying Lemma 13 for B we get
that it has a greatest element e as well. If there existed an element u € U such that
u # 0, e, then B (z,u) would be a proper, nontrivial subuniverse of A, as it contains

0,u, and fails to contain e. This completes the proof.

LEMMA 15. Let A be a finite, strictly simple algebra having at least one trivial
subalgebra, and let U be the set of all elements v € A such that {u} is a trivial
subalgebra of A. Assume some finite power A™ (m > 2) of A contains a totally
reflexive, totally symmetric subuniverse distinct from A™ and A (if m = 2). If m
is chosen minimal with this property and B is a totally reflexive, totally symmetric

subuniverse of A™ distinct from A™ and A (if m = 2), then B is U-central.

PROOF. For arbitrary u € U, B(zg,...,Tm_2,u) is a totally reflexive, totally
symmetric subuniverse of A™~1. If m = 2, then Lemma 12 combined with the
symmetry of B implies Xy C B for some 0 € U. Thus B(zg,u) = A is obvious if
u = 0, and in view of 0,u € B(zo,u) it follows also if u # 0. If m > 3, then the
minimality of m yields that B(zo,...,Zm_2,u) = A™~1. Hence in either case B is

central and u belongs to the centre of B. Thus B is U-central.

Now we are in a position to conclude the proof of Theorem 1. Let A be a
finite strictly simple algebra having at least one trivial subalgebra, and let U be
the set of all elements u of A for which {u} is a trivial subalgebra of A. If each
subuniverse of each finite power of A has cardinality a power of A, then, by a result
of R. W. Quackenbush [9] A generates a congruence permutable variety, and hence
by a theorem of R. McKenzie [6] (cf. also [13], [2]) one of conditions (a), (b) holds
for A. If some finite power A™ (m > 2) of A contains a totally reflexive, totally
symmetric subuniverse distinct from A™ and A (if m = 2), then by Lemma 15, (c)
holds for A. So assume no finite power A*¥ (k > 2) of A has a totally reflexive,
totally symmetric subuniverse distinct from A*¥ and A (if k¥ = 2), and some power
A™ of A has a subuniverse B with |B| not a power of |4|. Suppose m is chosen
minimal with respect to the existence of such B. We have m > 2, as A has no
nontrivial proper subalgebras. Were m > 3, we would get from Lemma 11 (ii) that
B is totally reflexive, and hence the subuniverse (((B™: w € S,,) of A™ is totally

reflexive and totally symmetric, which is impossible. Thus m = 2. Now by Lemma
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9 the hypotheses of Lemma 14 (i) or (ii) are satisfied. Hence applying the lemma,
and in case (i) taking BN B~!, we see that (d) or (e) holds for A.

REMARK. Observe that the role of Lemma 13, where we made essential use
of the finiteness of A, is restricted merely to the proof of Lemma 14. However,
if |U| > 2, then both of the claims (i), (ii) in Lemma 14 can be proved directly,
without any assumption on the totally reflexive, totally symmetric subuniverses of
finite powers of A. (It suffices to look at the subuniverses B(z,u), B(u,z) (u € U)
of A.)

Apart from this, finiteness is apparently crucial throughout the section because
of the arguments using the cardinalities of subuniverses of finite powers of A. How-
ever, applying multi-automorphisms, one can modify these arguments so that they
work for infinite algebras as well. Namely, for not necessarily finite algebras, multi-
automorphisms can be defined by the equivalent conditions (ii) and (iii) in Lemma
7. Lemmas 9-10, 12, 14 (for |U| > 2) go through, with occasional slight changes in
the proofs, for all algebras having no nontrivial proper subalgebras, if one takes for

m the least positive integer for which A™ has a subuniverse B such that

(*) B# A™, pry;3 B = A for all i € m, and pr; B is not a multi-automorphism of
A for any subset I Cm, |I| > 2.

For Lemma, 11 we have to assume, in addition, that none of the projection mappings
B = pr, 3 B= A™=1 i € m, is bijective. The following claim shows that should
this fail for the B we started with, we can always replace it with another subuniverse

of A™ having the required property.

CLAIM. Let B be a subuniverse of A™ (m > 2) such that pr,,_(; B = Am-1
for all © € m, and the projection mapping B — pr(,,, 1)B = A™1 s bijective,
while the projection mapping B — pr,,, 1oy B = A™=1! s not bijective. Then for

the subuniverse
B* = {(z0, %4, %1, -, Tm—2) € A™: thereis ay € A such that

(w07$17" '7$m727y)7 (1'6,1'1,.. '7wm727y) € B}
of A™, none of the projection mappings B* — pr,,_n B* = A™' i € m, is
bijective, and B* # A™.
Lemma 8 becomes superfluous, and Lemma 15 remains valid without change. Fi-

nally, if no finite power A™ of A has a subuniverse B satisfying (*), then, instead of
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Quackenbush’s theorem [9], one can apply the results of [14] on locally paraprimal
algebras, and hence conclude that A is either locally quasiprimal, or locally affine.
In this manner, if |U| > 2, then Theorem 1 can be extended to infinite algebras

as well.

3. Proofs of the corollaries

(A) First we prove that every proper subclone of Cy is contained in Ppg,
or equivalently, for every algebra A with CloA C Cy, B is a subuniverse of the
corresponding power of A, for at least one of the relations B in (I)-(VII). So assume
A is an algebra such that Clo A C Cy. If A has a proper subalgebra distinct from
the singletons {u}, v € U, then its universe B clearly satisfies (I). If A is not
simple, say B is a nontrivial congruence of A, then either (II) holds for B, or for
some u € U, the block B(z,u) of B containing u is a subuniverse of A as described
in (I).

From now on we assume that A is strictly simple and the trivial subalgebras
of A are exactly {u}, u € U. So we can apply Theorem 1. If (a) holds, then A has
a nontrivial automorphism (as it has no nontrivial proper subalgebras), and hence
it has an automorphism ¢ of prime order. Clearly, o carries trivial subalgebras
into trivial subalgebras, hence U is invariant under . Furthermore, since the fixed
points of ¢ form a subalgebra in A, it follows that o has at most one fixed point,
and the fixed point (if any) belongs to U. Thus o is as described in (IIT).

Now suppose (b) holds for A. It is well known that for an affine algebra A
and for arbitrary element 0 € A there exists an (unique) Abelian group A with
neutral element 0 such that A is affine with respect to ﬁ; namely, the operation
+ of A is defined by z + y = p(z,0,y) where p is the unique term operation of A
satisfying Mal’'tsev’s identities p(z,y,y) = p(y,y, ) = x. Therefore there is no loss
of generality in assuming that A is affine with respect to an elementary Abelian
p-group (p prime) A= (A;+,0) such that 0 € U. Since {0} is a subalgebra of A,
A is a reduct of the module ~ A. Hence every fundamental operation of A is

(End A)
of the form

Z rix; (r; € End]l\, i €m).

i€m
Now it is easy to verify that U is a subgroup of A. Further, if |U| > 1 and u €
U — {0}, then the mapping A — A, z — x + u is an automorphism of A satisfying
the requirements in (III). If U = {0} and p > 2, then selecting an integer ¢ > 1
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that is of prime order modulo p, we get that the mapping A — A, z — cz is
an automorphism of A satisfying the requirements in (III). In the remaining case
U = {0}, p = 2, the subuniverse Q ;(z,0,y, z) of A3 is as described in (IV).

Finally, if (c), (d), or (e) holds for A, then we have nothing to prove: the same
relations are listed in (V), (VI), (VII), respectively.

It is easy to see that for every relation B in (I)-(VII), Cy N Pg is a proper
subclone in Cy. To prove their maximality in Cy, it suffices now to verify that there
are no proper inclusions between any two of them. In fact, the argument shows
also that equality can hold only in the ‘obvious’ cases, namely when either both
relations are of type (IIT) and are powers of each other, or both relations are of type
(VI) and are inverses of each other.

So let B, B' be two distinct relations in (I)—(VII). We intend to prove that,

except for the cases just mentioned,
(8) CuNPs & CuNPs.

Consider the algebras A = (A4;Cy NPp) and A’ = (4;Cy N Ppr).

First let B be as described in (I) or (IIT). Then A is quasiprimal, and (8) holds
for every B’ which is not of type (I) or (III). So assume B’, too, is as described in
(I) or (III), and hence A’ is also quasiprimal. Observe that in case (I) the algebras
have no nontrivial automorphisms, and the proper subalgebras are exactly B [resp.
B'] and {u}, u € U; in case (III) the automorphisms are exactly the powers of B
[resp. B'], and the algebras have no proper subalgebras other than {u}, v € U.
Thus (8) holds unless B, B' are both of type (III) and are powers of each other.
(End X)Al
hence A is simple and has no proper subalgebras other than {0}. Moreover, as A

Now let B be of type (IV). Then A is term equivalent to the module

is a 2-group, A has no nontrivial automorphisms. This implies (8) unless B’ is also
of type (IV). In that case (8) follows by checking that the term operation + of A
does not preserve B' if B’ # B.

The remaining cases can be handled in a uniform way. We illustrate the method
on the case when B is of type (VII). So let B be a U-cross such that Xo C B,0 € U.

We consider n x t matrices M with entries in A such that

(9)  the rows are pairwise distinct, and

none of the vectors (u,...,u), u € U, occurs among the rows.

The rows of M will be denoted by M;, i € n. If (9) holds for M, then for arbitrary
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n-tuple a = (ag,...,a,_1), we can define a t-ary operation on A as follows:

a; if (.’L'(), P ,.’Et_l) = Mt for some i € n,
Ima(®os- -y 2i-1) = u  if (zo,...,2¢-1) = (u,...,u) for some u € U,
0 otherwise.

It is easy to see that if
(10) (ai,aj) € B whenever (Mi,Mj) S Bt, 1,] €En, i 75],

then far,, € CuyNPg. (For t-tuples v,w € A!, (v,w) € B* denotes that v and w are
componentwise in relation B.)

Now let B’ be one of the relations in (I)—(VII) distinct from B, say B’ is n-ary,
and select a matrix M such that the set of columns of M is exactly B'. Clearly, (9)

and (10) are now equivalent to requiring that
(9)n pr; ;B €A forall i,jen, i#j

prijy B #{u} forall ien, uel,

and
(10", (ai,a;) € B whenever pr(; ; B'CB, i,jeEn, i#j,

respectively. Thus (9) holds, and (8) follows by verifying that we can always select
an n-tuple a ¢ B’ with (10), implying far,, € Cu N Pp and fu,. ¢ Pyr.

A similar argument works also if B belongs to the families (II), (V) or (VI).
We note that if B is of type (VI), then the existence of the required monotone

operations gar,q such that gare(u,...,u) = u for u € U and
gume(M;) =a; forall i=0,...,n—1

follows from the fact that the rows of the matrices M corresponding to the relations
B' in (I)—~(VII) are pairwise incomparable under B (componentwise) unless B’, too,

is of type (VI) and B’ C B. The details are left to the reader.

(B) The necessity in Corollary 3 is obvious. For the sufficiency we apply
Theorem 1. Let A be a strictly simple algebra such that the trivial subalgebras are
exactly {u}, u € U, and A does not generate a congruence permutable variety. By
Theorem 1 one of conditions (c¢)—(e) holds for A. If, in addition, A is surjective,

then we can apply the following well-known and easy lemma (cf. [11], [12]).
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LEMMA 16. Let A be a finite surjective algebra. If B is a subuniverse of A*
(k > 2), then for arbitrary | (1 <1 <n—1),

(B)l = {(1’07 . -,-’El—l) c Al: (.’Eo, .. .,ZL'k_l) € B for all Zy,...,Tp—1 € A}
is a subuniverse of Al provided it is not empty.

Thus, if B is a U-central subuniverse of A*, then (B);, the centre of B, is a
proper subuniverse of A containing U. Hence U is the centre of B and |U| = 1.
Now (B)s is a U-central subuniverse of A2 with the same centre as B. If B is a
bounded partial order, then (B); and (B~!); are the two singletons containing the
bounds, hence |U| = 2. This completes the proof of Corollary 3.

For the proof of Proposition 4 we slightly modify the construction used at the
end of the proof of Corollary 2. First let B be a U-cross with Xo C B, 0 € U, or
a binary U-central relation with centre U = {0}. Let B’ be a binary relation on
A satisfying (9')2. We show that for n = max(|A|,3) + 2 and for some t > |B’|,
there exists an n x ¢ matrix M such that the set of columns of the submatrix of M

consisting of the first two rows equals B’, and
(11) (M;, M;) ¢ Bt forall i,j€n,i#j, {i,j}#{0,1}.

By the assumption on B’ there exist (b,b'),(c,c') € B’ such that b # 0, ¢/ # 0.
Hence there exist elements d,d’ € A such that d # b, d' # ¢’ and one of the pairs
(b,b), (d,b) and one of the pairs (¢, '), (d', ¢') fails to belong to B. Thus any matrix
M whose first 2(n — 2) colums are as shown below, and is such that the columns
of the submatrix consisting of the first two rows equals B’, otherwise arbitrary,

satisfies the requirements.

b b b b v b b b e .
c ¢ c c cd ¢ ¢ cd e .
d b b b d ¢ ¢ c
b d b b  d ¢ c
b bbb ... d d d ... d

In view of (11), for arbitrary n-tuple a = (aq, . .., a,—1) with (ag,a1) € B provided
B' C B, the operation far,, belongs to Cy N Pp. Hence to each B’ satisfying (9'),
and distinct from B and A?, there exists a surjective operation fys, such that
fa,a € CuNPp and fpr,, ¢ Prr. Thus the algebra A whose operations are these

fm,o while B' runs over
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(i) all binary relations S x A with 1 < |S| < |A|, S # {u} for all uw € U,

(ii) all nontrivial equivalences on A, and

(iii) all relations in (a)—(v) distinct from B,
has the properties stated in the proposition.

A similar idea works also if B is a bounded partial order with bounds 0, 1.
Now the last n rows of M are to be constructed so that they be incomparable (by
the componentwise order) to the first two rows and to one another as well. They
can always be chosen so that they consist of 0’s and 1’s. The role of fur,, is to be

taken by monotone operations gar,q such that
9m,a(0,...,0) =0, gma(l,...,1) =1,

and

9m,e(M;) =a; foral i=0,...,n—1

It can be shown that such a g, exists if for the n-tuple a = (ao,-..,an—1) we
have (ag,a;) € B provided B' C B, and (ag,a;) € B~! provided B’ C B~!. The

details are left to the reader.

To see the claim in the first remark, observe that for B a U-cross with Xy C B,
0 € U, or a binary U-central relation with centre U = {0}, Cy N Pp contains a
majority operation, e.g. the one defined below:

m(%y;z): Y ify:z:

{x ifz=yorz=z,
0 otherwise.

Adding this operation to A, we get an algebra A', which inherits properties (i)—(iii)
in Proposition 4, and has a majority operation as well. Hence by a theorem of

K. A. Baker and A. F. Pixley [1] A’ is term equivalent to (4;Cy N Pg).

(C) The only nontrivial statement in Proposition 5 is that the algebra A =
(4;Cy NPp) is functionally complete. However, as we have seen in part (B), A
has a majority operation, and the only reflexive subuniverses of A? are A and A2.
Thus it follows from the theorem of K. A. Baker and A. F. Pixley [1] that A is
functionally complete.

In Corollary 6 the necessity is obvious, while the sufficiency follows from Theo-
rem 1 by observing that conditions (b)—(d) cannot hold for a functionally complete

algebra.
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