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Chief Factor Sizes in Finitely Generated
Varieties
K. A. Kearnes, E. W. Kiss, Á. Szendrei, R. D. Willard

Abstract. Let A be a k-element algebra whose chief factor size is c. We show that if B is in the variety
generated by A, then any abelian chief factor of B that is not strongly abelian has size at most ck−1.
This solves Problem 5 of The Structure of Finite Algebras, by D. Hobby and R. McKenzie. We refine
this bound to c in the situation where the variety generated by A omits type 1. As a generalization,
we bound the size of multitraces of types 1, 2, and 3 by extending coordinatization theory. Finally, we
exhibit some examples of bad behavior, even in varieties satisfying a congruence identity.

1 Introduction

A chief factor of an algebra A is a minimal congruence β/α of a factor algebra A/α.
The size of this chief factor is the supremum #(β/α) of the cardinalities of its con-
gruence blocks. The chief factor size of A is the supremum, c(A), of the sizes of all
chief factors of A.

In this paper we investigate bounds on the sizes of chief factors of algebras in
varieties generated by a finite set of finite algebras. If V is a variety and S ∈ V is
simple, then S has only one chief factor and its size is |S|. Hence the supremum of the
sizes of simple algebras in V is a lower bound on the supremum of the sizes of chief
factors in V. On the other hand, if B ∈ V has a chief factor β/αwith #(β/α) = κ, and
γ is a congruence that is maximal for the property of being above α and not above β,
then it can be shown that B/γ is subdirectly irreducible with monolith µ = (β∨γ)/γ
and that #(µ/0) ≥ κ. This shows that the largest chief factors in a variety occur as
monoliths of subdirectly irreducible algebras, and that any cardinality bound on the
sizes of subdirectly irreducible algebras in V is an upper bound on the sizes of the
chief factors in V.

The study of chief factor sizes in universal algebra has been generally related to the
investigation of the sizes of simple and subdirectly irreducible algebras, and specif-
ically related to the investigation of the Quackenbush Conjecture. This conjecture
from [10] asks if a finitely generated residually finite variety has only finitely many
subdirectly irreducible algebras. W. Taylor resolved the Quackenbush Conjecture
positively for congruence regular, congruence permutable varieties in [12]. His proof
required an analysis of chief factor sizes in finitely generated congruence permutable
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varieties [12, Lemma 3]. R. Freese and R. McKenzie resolved the Quackenbush Con-
jecture positively for congruence modular varieties in [2]. Their paper extended ear-
lier results on chief factor sizes [2, Theorems 15 and 16, Corollary 17]. D. Hobby and
R. McKenzie resolved the Quackenbush Conjecture positively for varieties that satisfy
a nontrivial congruence identity in [4, Chapter 10]. They further extended results on
chief factor sizes [4, Chapter 14], and posed the problem which led to this paper [4,
Problem 5]. The Quackenbush Conjecture was finally answered negatively in [9].

The theorem of Freese and McKenzie is the model for what one hopes to prove
about chief factors in finitely generated varieties:

Theorem 1.1 ([3, Theorem 10.16]) If |A| = k and V(A) is congruence modular, then
the chief factor size of any B ∈ V(A) is at most k.

It is clear from the proof of this theorem that one can replace the assumption that
|A| = k with the assumption that A is finite and c(A) ≤ k. That is: the biggest chief
factor in the variety already occurs in the generating algebra. The theorem remains
valid if one replaces the generating algebra A with a finite set {A1, . . . ,An} of finite
algebras with c(Ai) ≤ k for all i.

Congruence modularity is essential to the proof of Theorem 1.1, and without this
assumption it is possible to construct finite algebras that generate varieties containing
a proper class of simple algebras (cf. [11]). However, one of the results of Hobby and
McKenzie is that all big finite simple algebras are of type 5.

Theorem 1.2 ([4, Theorem 14.5]) Every finitely generated variety has, up to isomor-
phism, only a finite set of finite simple algebras of types 1, 2, 3, 4.

This theorem does not bound the sizes of the chief factors in these four types. In
fact, it is possible to construct a finite algebra that generates a variety containing alge-
bras with strongly abelian chief factors with no bound on size (see [7, Corollary 10]).
Since a chief factor of a finite algebra is strongly abelian if and only if it is of type 1,
the results mentioned show that we cannot expect to bound chief factors whose type
is 1 or 5. On the other hand, tame congruence theory produces the following positive
result for types 3 and 4.

Theorem 1.3 ([4, Lemma 14.4]) If |A| = k, then any chief factor of type 3 or 4 in a
finite algebra in V(A) has size at most k.

It is not possible to replace the assumption that |A| = k with the assumption that
A is finite and c(A) = k in this theorem. (See Example 6.1.) However, the theorem
remains valid if one replaces the generating algebra A with a finite set {A1, . . . ,An}
of finite algebras with |Ai | ≤ k for all i.

Problem 5 of [4] asks whether there is a finite bound on the sizes of abelian but
not strongly abelian chief factors in a finitely generated variety. This is equivalent to
asking if there is a finite bound on the sizes of the chief factors of type 2 in the finite
members of the variety. The following theorem, one of the main results of the paper,
answers this positively. (See Theorem 4.4 for a generalization.)
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Theorem 1.4 Assume that |A| = k and c(A) = c. If B ∈ V(A), then any abelian but
not strongly abelian chief factor of B has size at most ck−1.

Problem 1.5 Can the exponential upper bound ck−1 of Theorem 1.4 be improved
to a polynomial of c and k? (See Example 6.3 for a quadratic lower bound.)

If the variety omits type 1, then this bound can be improved to c (see Corol-
lary 5.5). This result is proved in a more general form: we bound the sizes of multi-
traces (see Theorem 5.4). Multitraces were introduced in [5]; they play an important
role in the investigation of the Quackenbush Conjecture (see [6]). Lemma 5.6 and
Theorem 5.7 establish properties of multitraces of independent interest, which are
crucial to our proof of Theorem 5.4.

There is a limit, however, to these improvements to Theorem 1.4. This is demon-
strated in Section 6, where counterexamples to some plausible conjectures are exhib-
ited.

Our references for tame congruence theory are the handbook [4] and the intro-
ductory paper [8]. We use Section 3 of [5] as a source for some of the information
on multitraces in Section 5. Our notation is standard (see [1] and [4]). A boldface
lower case letter x usually denotes a sequence (x1, . . . , xn) of unspecified length. If
p(x) = t(x, a) is a polynomial on some algebra A, where t is a term and a is a vec-
tor in A, then for a congruence α of A, the notation p/α denotes the polynomial
t(x, a1/α, . . . , an/α) of A/α.

2 Elementary Observations

To obtain a finite bound on the sizes of abelian-but-not-strongly-abelian chief factors
in a finitely generated variety, it suffices to prove a finite bound for the finite algebras
in the variety. This observation, which we record, can be proved with arguments
from the first paragraph of Lemma 14.1 of [4]

Lemma 2.1 Let V be a locally finite variety, and suppose that an algebra B ∈ V has
a chief factor β/α such that #(β/α) ≥ n for some integer n. Then there exists a finite
algebra C ∈ V, and a chief factor ν/µ of C such that #(ν/µ) ≥ n. The algebra C can
be chosen so that ν/µ is strongly abelian if and only if β/α is, and abelian if and only if
β/α is.

A congruence quotient 〈α, β〉 of an algebra B is a pair of congruences α < β.
Quotients 〈α, β〉 and 〈δ, θ〉 are perspective if α ∧ θ = δ and α ∨ θ = β. The fact
that they are perspective may be denoted by 〈α, β〉 ↘ 〈δ, θ〉, or 〈δ, θ〉 ↗ 〈α, β〉. The
following lemma is proved in the first paragraph of the text on p. 429 of [2].

Lemma 2.2 Let B be a finite algebra.

(1) If γ ≤ α ≺ β, and α̂ = α/γ and β̂ = β/γ are the congruences on B/γ corre-

sponding to α and β, then #(β/α) = #(β̂/α̂).
(2) If 〈α, β〉 ↘ 〈δ, θ〉, then #(β/α) ≥ #(θ/δ).
(3) If 〈α, β〉 ↘ 〈δ, θ〉 and α permutes with θ, then #(β/α) = #(θ/δ).
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Let K = {A1, . . . ,Am} be a finite set of finite algebras. We intend to prove that
there is a finite bound on the sizes of abelian-but-not-strongly-abelian chief factors
of algebras in the variety V(K). Lemma 2.1 shows that it suffices to prove this for the
finite members of this variety, and for finite algebras the abelian-but-not-strongly-
abelian chief factors are exactly those of type 2 (according to [4, Theorem 4.23]).
By Birkhoff ’s Theorem, a typical finite algebra in V(K) has the form B/γ for some
B ∈ SP(K). Lemma 2.2 (1) proves that the coimage of a chief factor of B/γ is a chief
factor in B of the same size, and the type will be the same according to the way the
type is defined at the top of p. 54 of [4]. Thus it suffices for us to bound the chief
factors of type 2 in finite algebras in SP(K). Our approach to this will be to choose
an arbitrary finite product X of algebras in K, and an arbitrary subalgebra B ≤ X
which has a large chief factor β/α of type 2. Then we choose a congruence θ ≤ β
that is minimal for θ � α. Any such θ is join-irreducible. If the lower cover of θ is δ,
then 〈α, β〉 ↘ 〈δ, θ〉 and typ(δ, θ) = typ(α, β) = 2. The points of X are separated
by homomorphisms into members of K, so at least one of these homomorphisms has
kernel not containing θ. We denote one such kernel by η ∈ Con(B). This situation is
pictured in Figure 1.

β

α

δ

θ

η

θ ∧ η

Figure 1: The congruence lattice of a typical B.

So, we have a finite algebra B ≤ X ∈ Pfin (K) that has quotients 〈α, β〉 ↘ 〈δ, θ〉
of type 2, with θ join-irreducible, and a congruence η � θ that is the kernel of
a homomorphism of B into some A ∈ K. Our plan is to compare #(β/α) and
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#(θ/δ) via the perspectivity 〈α, β〉 ↘ 〈δ, θ〉, and then try to bound #(θ/δ) via the
homomorphism of B into A.

The notation established in the last two paragraphs will be used throughout this
section.

Lemma 2.3 Suppose that A and B are finite algebras and θ is a join-irreducible con-
gruence of B with lower cover δ. If there is a homomorphism π : B → A with kernel
η � θ, then #(θ/δ) ≤ c(A).

(It is not assumed here that π is surjective. It would not be sufficient to consider
that case only, because it is not true that the chief factor size of an algebra bounds the
chief factor sizes of its subalgebras, see Example 6.5.)

Proof If n = #(θ/δ), then it is possible to pick n elements b1, . . . , bn that are θ-
congruent and pairwise δ-incongruent. Since θ is join-irreducible, each pair (bk, b�)
with k �= � generates θ. Hence there are Maltsev chains witnessing that (bi , b j) ∈

Cgb(bk, b�) whenever k �= �. Let ci = π(bi) for i = 1, . . . , n. Since π maps Maltsev
chains of B to Maltsev chains of A, we get that (ci, c j) ∈ Cga(ck, c�) whenever k �= �.
The congruence Θ := Cga(c1, c2) contains all of the pairs (ci , c j), and is not the

zero congruence since θ = Cgb(b1, b2), θ � η and η = ker(π). If ∆ is any lower
cover of Θ, then∆ contains none of the pairs (ck, c�) with k �= �, since each of these
pairs generate Θ. Thus Θ/∆ has a block containing at least n distinct elements:
c1/∆, . . . , cn/∆. Hence c(A) ≥ #(Θ/∆) ≥ n = #(θ/δ).

Recall that an E-trace of an algebra B with respect to a congruence β is the inter-
section of the range of an idempotent unary polynomial of B with a β-block.

Corollary 2.4 Suppose that A and B are finite algebras, 〈α, β〉 ↘ 〈δ, θ〉 are perspec-
tive prime quotients of B, and θ is a join-irreducible congruence of B with lower cover
δ. Assume that N is an E-trace with respect to β such that the induced algebra B|N has
a Maltsev polynomial. If there is a homomorphism π : B → A with kernel η � θ, then
|N/α| ≤ c(A).

Proof As N is an E-trace with respect to β, we get θ|N∨α|N = β|N = 1N . Since B|N
is Maltsev, Lemma 2.2 (3) implies that #(β|N/α|N) = #(θ|N/δ|N ). By the definition
of an E-trace we have #(β|N/α|N ) = |N/α|. Clearly #(θ|N/δ|N ) ≤ #(θ/δ), so by the
previous lemma we have |N/α| = #(β|N/α|N ) = #(θ|N/δ|N ) ≤ #(θ/δ) ≤ c(A).

Corollary 2.5 Let K = {A1, . . . ,Am} be a finite set of finite algebras. In every finite
algebra in the variety V(K), every trace of a minimal congruence of type 2 has size at
most max1≤i≤m c(Ai).

Proof Let γ be a minimal congruence of type 2 in a finite algebra C ∈ V(K). Then
C ∼= B/α, where B is a subalgebra of some X ∈ Pfin (K) and γ = β/α for a suitable
congruence β � α. By [4, Lemma 2.18], every 〈0C , γ〉-trace is of the form N/α,
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where N is an 〈α, β〉-trace. In particular, N is an E-trace with respect to β. The
induced algebra B|N is Maltsev by [4, Lemma 4.20].

Choose a prime quotient 〈δ, θ〉 such that 〈α, β〉 ↘ 〈δ, θ〉 and θ is join-irreducible.
Since B ≤ X ∈ Pfin (K), there is a homomorphism from B into some Ai ∈ K with
kernel η � θ. Now Corollary 2.4 implies that c(Ai) bounds the size of the 〈0C , γ〉-
trace N/α.

This corollary will be extended by Theorem 5.4.

3 Dimension

In this section we analyze linear independence among traces of type 2, and define
the dimension of a simple algebra of type 2. First we recall, and slightly reformulate
Theorem 13.5 of [4].

Let K be a field, and n ≥ 1 an integer. The vector space Kn is made into a module
over the full n× n matrix ring Kn×n by letting the matrices act via matrix multiplica-
tion on the left. The resulting (simple) module will be denoted by Kn.

Theorem 3.1 Let A be a finite simple algebra of type 2, and N a trace of A. Then the
following conditions hold for some integer n ≥ 1 and finite field K.

(1) There exists a Kn×n-module M that is isomorphic to Kn such that:

• A is a subset of M;

• N contains the zero element 0 of M;

• every polynomial of A is the restriction of a polynomial of M; and

• the set A spans M (considered as a vector space over K).

We shall identify M with Kn.
(2) N is a one-dimensional subspace of the vector space Kn, and the polynomials of A

whose range is contained in N are exactly the mappings r1x1 + · · ·+ rmxm + c, where
c ∈ N and the ri are k× k matrices satisfying riKn ⊆ N. In particular, the number
of unary polynomials of A mapping into N is |N|n+1.

(3) Every trace in A is a coset of a one-dimensional subspace of Kn.

Proof The trace N is polynomially equivalent to a one-dimensional vector space
over a finite field K. Let 0 denote its zero element, and + its addition. The proof of
Theorem 13.5 of [4] proceeds in the following way. The functions from A to N form
a vector space under pointwise operations. It is first shown that the subspace of this
vector space generated by the idempotent polynomials of A that fix 0 is equal to the
subspace of all polynomials of A that fix 0. Now a basis e1, . . . , en of A consisting
of idempotent unary polynomials is chosen from this subspace. Then the mapping
π(x) =

(
e1(x), . . . , en(x)

)
maps A bijectively onto a subset E of Nn. If the operations

of A are transformed over to E using π, then we get restrictions of the polynomials of
the matrix power (A|N )[n] to E. From the fact that the ei are linearly independent it
follows that the subspace of Nn generated by E is all of Nn.
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The algebra (A|N )[n] is polynomially equivalent to the module Kn. One can obvi-
ously choose this equivalence so that π(0) = (0, . . . , 0) becomes the zero element of
this module. Then identifying every a ∈ A with π(a) we see that statement (1) of the
theorem has been established.

The set N corresponds to {(a, . . . , a) ∈ Kn | a ∈ K}, so it is a one-dimensional
subspace of Kn. The fact that the space of unary polynomials of A that map into
N and fix 0 has a basis {e1, . . . , en} of n elements shows that the number of such
polynomials is |K|n. On the other hand, every unary polynomial of A that fixes 0 is
the restriction of a module polynomial that fixes 0. That is, it has the form rx where r
is an n× n matrix satisfying rKn ⊆ N . Such matrices are determined by their action
on n basis vectors, so the number of these matrices is at most |N|n = |K|n. We have
already established that we have this many polynomials mapping into N and fixing 0,
so rx is a polynomial of A for every matrix r satisfying rKn ⊆ N . The abelian group
operations on N are given by polynomials, so all module polynomials mapping into
N are polynomials of A. This gives us the statement in (2).

Every trace M of A is a polynomial image of N , and thus has the form rN + c for
some matrix r and c ∈ A. As N is a one-dimensional subspace, so is rN , and so rN +c
is a coset, proving (3).

The construction of the module Kn from A in this proof depended on the choice
of a trace N and of a basis {e1, . . . , en}. In the rest of this section we will describe
some features of the module Kn which reflect intrinsic properties of A. The notation
of the previous proof is used in the next definition.

Definition 3.2 If M is a trace of A, then a direction of M is a nonzero vector in Kn

from the subspace of which M is a coset (cf. Theorem 3.1 (3)). A set of traces is
linearly independent if the set of their directions is linearly independent in Kn. The
dimension of A is the dimension n of Kn.

The dimension of A is an intrinsic property of the algebra since n = dim(Kn) oc-
curs in Theorem 3.1 (2) in the count of unary polynomials mapping A into N . This
count is an invariant of A since all traces are polynomially isomorphic. While the no-
tion of “direction” is not intrinsic to A, part (1) of the next lemma proves that linear
independence is. Thus, it always makes sense to refer to directions being the same or
different. Part (3) of the next lemma suggests an alternate definition of dimension.

Lemma 3.3 Let A, N, Kn and Kn be as in Theorem 3.1.

(1) A set {N1, . . . ,Nm} of traces is linearly independent if and only if there exist m
unary polynomials fi of A mapping A to N such that fi maps Ni onto N and is
constant on N j when j �= i.

(2) If N1, . . . ,Nm are linearly independent, then there exists a unary polynomial f of
A that maps A to N, and maps every Ni onto N.

(3) Every maximal set of linearly independent traces in A has n members.

Proof We still consider A embedded into Kn. To prove (1), pick elements ci �= di

from Ni . Then these traces are linearly independent if and only if so are the vectors
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bi = ci − di . If these vectors are independent, then (although they are not necessarily
in A), we can find linear transformations f j of Kn whose range is contained in N , and
map exactly one of the vectors bi to a nonzero element. By Theorem 3.1 (2), these
are unary polynomials of A, and they clearly satisfy the conditions. Conversely, the
existence of such polynomials f j implies that the vectors bi are linearly independent.
Thus (1) is proved. A similar argument proves (2), one has to choose a linear map
that maps each bi to a nonzero element of N .

To prove (3), pick a set N1, . . . ,Nm of linearly independent traces with m < n. Let
W be the (m-dimensional) subspace of Kn generated by the directions of these traces.
Since A spans Kn, which properly contains W , there is an element b ∈ A−W . Pick a
matrix r mapping Kn to N such that rW = {0} but rb �= 0. The mapping r is a unary
polynomial of A, which maps 0 to 0, and b to a nonzero element. It collapses every
trace Ni to 0. Connect 0 to b by a chain of traces. Then at least one member of this
chain, named M, will not be collapsed to 0 by r. This means that the direction of M
is not contained in W , and hence the family N1, . . . ,Nm,M is still independent.

We close this section by pointing out that if γ is a minimal congruence of type 2
on a finite algebra C, then the induced algebra on every γ-block is simple of type 2,
and so the concept of independence makes sense for any family of 〈0C , γ〉 traces that
lie in the same γ-block.

4 Cycles

We are now in the position to prove Theorem 1.4. We shall investigate the follow-
ing situation. Let B be a finite algebra, 〈α, β〉 a prime quotient of type 2 of B, and
N1, . . . ,Nn a family of 〈α, β〉-traces in the same β-block. Assume that the family
Ni/α is linearly independent.

Lemma 4.1 There exist idempotent unary polynomials h1, . . . , hn of B such that Ni

is contained in the range of hi , the identities h1hi = h1 and hih1 = hi hold for all i,
and h1(Ni) = N1 and hi(N1) = Ni for all i. There also exists an idempotent unary
polynomial e of B, which contains N1 in its range, and which collapses every other Ni

into an α-block in N1.

Proof Let N = N1/α, and apply Lemma 3.3 (2) to the induced algebra on the β/α-
block containing all Ni/α. The lemma shows that there exists a unary polynomial f
of B/αwhose range on this β/α-block is N , and maps every Ni/α bijectively onto N .

Let Ui be an 〈α, β〉-minimal set in which Ni is a trace, and let k be an idempotent
polynomial of B whose range is U1. Let g be a unary polynomial of B such that
g/α = f . Then kg maps each Ni into a trace within U1 (since it does not collapse
Ni into an α-block), and the fact that Ni and N1 are in the same β-block implies that
kg maps each Ni bijectively onto N1. Thus kg is a permutation of U1. Let h be an
idempotent power of kg. Then h is the identity map on U1, and still maps each Ni

onto N1.
By Theorem 2.8 of [4], there exist unary polynomials ki of B for each i ≥ 2 such

that ki(B) = Ui , and ki is an inverse of h : Ui → U1, that is, kih is the identity map
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on Ui , and hki is the identity map on U1. Letting h1 = h, and hi be an idempotent
power of kih for i ≥ 2, we get the desired polynomials.

To construct e, we apply Lemma 3.3 (1). That is, we pick the polynomial f so that
it is the identity map on N , but collapses each Ni/α, i �= 1, to a point within N . The
same lifting argument yields now a polynomial kg whose idempotent power e works.

The following observation shows that linearly independent traces cannot form a
nontrivial cycle in any factor.

Lemma 4.2 Let η be a congruence of B. Suppose that there exist ci, di ∈ Ni such that
di η ci+1 for every 1 ≤ i ≤ n (with the understanding that cn+1 = c1). Then ci η di for
every i.

Proof If the lemma is not true, then there is a nonzero congruence θ that is minimal
among the congruences of B for the property that (ci, di) inθ ∨ η for every i. If δ is
a lower cover of θ, then the minimality of θ implies that (ci , di) /∈ δ ∨ η for some i
which we may assume to be i = 1. We plan to use the fact that the induced algebra
on N1 is E-minimal (see [4, Theorem 4.31]), hence every unary polynomial of B that
maps N1 to N1 is either a permutation of N1, or collapses θ|N1 to δ|N1 .

By Lemma 4.1, there is a unary polynomial e of B such that e is the identity map on
N1, but collapses every other Ni into a proper subset of N1. Consider also the unary
polynomials hi provided by this lemma. Then ehi is a unary polynomial of B that
collapses N1 into a proper subset. Thus, by the previous remark, ehi collapses θ|N1 to
δ|N1 . Therefore e|Ni = ehih1|Ni collapses θ|Ni to δ|N1 . From (ci , di) ∈ (θ ∨ η)|Ni =
θ|Ni ∨ η|Ni we get that

(
e(ci), e(di)

)
∈ δ|N1 ∨ η|N1 . On the other hand, di η ci+1

implies e(di) η|N1 e(ci+1). Thus

e(d1) η|N1 e(c2) (δ|N1 ∨ η|N1 ) e(d2) η|N1 e(c3) · · · e(cn) (δ|N1 ∨ η|N1 ) e(dn) η|N1 e(c1)

shows that
(

e(d1), e(c1)
)
= (d1, c1) ∈ δ ∨ η, which is a contradiction.

Lemma 4.3 Let B be a finite algebra, 〈α, β〉 ↘ 〈δ, θ〉 be prime quotients of type 2
with θ join-irreducible, and η a congruence of B satisfying η � θ. Then the dimension
of the induced algebra on any β/α-block is at most |B/η| − 1.

Proof Let k = |B/η|. Choose an arbitrary linearly independent set {N1, . . . ,Nm}
of 〈α, β〉-traces from the same β-block. By Lemma 3.3 (3), it is sufficient to show
that m ≤ k− 1.

The facts that η � θ, θ is generated by the square of any 〈δ, θ〉-trace, and 〈α, β〉-
traces contain 〈δ, θ〉-traces, jointly imply that η|Ni has at least two blocks for every i.
We use this to define a graph. The vertices are the different η-blocks V1, . . . ,Vk. For
every 1 ≤ i ≤ m we let Ei be an edge that connects two different (arbitrarily chosen)
η-blocks that intersect Ni . This produces a graph of k vertices and m edges that has
no loops (by definition) and no cycles or multiple edges (by Lemma 4.2). Hence this
graph is a forest, and so the number m of its edges is at most k− 1.
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Theorem 4.4 Let K = {A1, . . . ,Am} be a finite set of finite algebras. The sizes of
abelian but not strongly abelian chief factors of algebras in the variety V(K) are at most

c = max1≤i≤m c(Ai)
|Ai |−1.

Proof As noted earlier, it suffices to show that #(β/α) ≤ c whenever 〈α, β〉 is a
prime quotient of type 2 of some B ≤ X ∈ Pfin (K). To show that this is true, choose
a join-irreducible congruence θ with lower cover δ such that 〈α, β〉 ↘ 〈δ, θ〉, and
choose a congruence η � θ that is the kernel of a homomorphism of B into some
Ai ∈ K.

Let C be any β/α-block. Theorem 3.1 proves that the simple algebra (B/α)|C is
embeddable into a module, and so C may be identified with a subset of Nn for some
〈0, β/α〉-trace N and some number n. Corollary 2.4 proves that |N| ≤ c(Ai) while
Lemma 4.3 proves that we may take n ≤ |B/η| − 1 ≤ |Ai | − 1. Hence |C| ≤ c.

5 Multitraces

The purpose of this section is to prove the refinement of Theorem 1.4 mentioned
in the Introduction: the sizes of abelian chief factors in a finitely generated variety
that omits type 1 does not exceed the maximum chief factor size in the generating
algebras. The arguments require us to recall definitions from [5].

Definition 5.1 Let A be a finite algebra, 〈α, β〉 a prime quotient of A, and N an
〈α, β〉-trace. For any polynomial f of A, a set of the form M = f (N, . . . ,N) is called
an 〈α, β〉-multitrace of A.

Definition 5.2 Let A be a finite algebra containing subsets N and S, and let g1, . . . ,
gn ∈ Pol1(A), and f ∈ Poln(A). If properties (i)–(iv) below hold, then we shall say
that S is coordinatizable (of rank n) by N . If properties (i)–(iii) hold, then we shall say
that S is weakly coordinatizable (of rank n) by N .

(i) f (N, . . . ,N) ⊆ S;
(ii) gi(S) ⊆ N for 1 ≤ i ≤ n;
(iii) f

(
g1(x), . . . , gn(x)

)
= x for all x ∈ S.

(iv) gi f (x1, . . . , xn) = xi for every x1, . . . , xn ∈ N and 1 ≤ i ≤ n.

The four conditions of this definition mean the following: (i) says that the polyno-
mial f restricts to a function from Nn to S; (ii) says that the sequence of polynomials
ĝ = (g1, . . . , gn) may be considered to be a function from S to Nn; (iii) says that f ◦ ĝ
is the identity function on S; while (iv) says that ĝ ◦ f is the identity function on
Nn. Thus S is coordinatizable by N precisely when the polynomials f , gi describe a
bijection between Nn and S.

Lemma 5.3 When S and N are finite, then S is coordinatizable of rank n by N if and
only if S is weakly coordinatizable of rank n by N and |N|n ≤ |S|.
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Proof Clearly rank n coordinatization of S by N implies rank n weak coordinatiza-
tion and |S| = |N|n. Conversely, if S is weakly coordinatizable by N of rank n, then
there are polynomials f : Nn → S and ĝ : S → Nn such that f ◦ ĝ = idS. This equa-
tion forces f to be a surjective function from the finite set Nn to the set S, which is
not a smaller set. Hence f and ĝ are inverse bijections between S and Nn, establishing
that f and ĝ coordinatize S by N .

The basic properties of (weak) coordinatization are explored in [5, Lemma 3.6].
It is shown in Lemmas 3.8 and 3.9 of [5] that 〈0, γ〉-multitraces of types 1 and 2
are coordinatizable with respect to a 〈0, γ〉-trace, while in Lemma 3.11 of [5] it is
shown that 〈0, γ〉-multitraces of type 3 are weakly coordinatizable with respect to a
〈0, γ〉-trace.

The main result of this section is the following.

Theorem 5.4 Let K = {A1, . . . ,Am} be a set of finite algebras, c = max1≤i≤m c(Ai),
and k = max1≤i≤m |Ai |. Let C ∈ V(K) be a finite algebra, and M a multitrace for a
minimal congruence γ on C.

(1) If the type of 〈0C , γ〉 is 2 or 3, then |M| ≤ c.
(2) Suppose that the type of 〈0C , γ〉 is 1. Then the rank of M is at most log2(c), and
|M| ≤ (k!)log2(c).

This theorem yields the refinement of Theorem 1.4 that we promised in the Intro-
duction.

Corollary 5.5 Let K = {A1, . . . ,Am} be a finite set of finite algebras, and c =
max1≤i≤m c(Ai). If V(K) omits type 1, then every abelian chief factor in this variety
has size at most c.

Proof By Lemma 2.1, it suffices to prove that any abelian chief factor in a finite
member of V(K) has size at most c. Let C be a finite algebra in V(K) and let γ be a
minimal congruence of C of type 2. Theorem 9.6 of [4] shows that the γ-blocks are
Maltsev, hence they are multitraces by [6, Theorem 4.5]. Thus Theorem 5.4 shows
that the size of each γ-block is at most c.

We prove Theorem 5.4 by showing that coordinatization and weak coordinatiza-
tion can be lifted from a factor.

Lemma 5.6 Let B be a finite algebra, α < β congruences of B, and N an E-trace
of B with respect to β. Suppose that the algebra B/α has a subset M that is weakly
coordinatizable of rank n with respect to N/α. Then there exists a set S ⊆ A that is
weakly coordinatizable of rank n with respect to N such that S/α = M.

Proof The fact that M is weakly coordinatizable of rank n with respect to N/α
means that there exist unary polynomials gi of B, and an n-ary polynomial f of B
such that
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(1) ( f /α)(N/α, . . . ,N/α) ⊆ M;
(2) (gi/α)(M) ⊆ N/α for 1 ≤ i ≤ n;
(3) f

(
g1(x), . . . , gn(x)

)
α x for every x ∈ B with x/α ∈ M.

Hence f /α : (N/α)n → M and ĝ/α = (g1/α, . . . , gn/α) : M → (N/α)n are func-
tions such that ( f /α) ◦ (ĝ/α) = idM . This shows that f /α is a surjective function
from (N/α)n onto M, hence that f (N, . . . ,N)/α = M. So, if S0 is the set of all ele-
ments s for which s/α ∈ M, then f (N, . . . ,N) ⊆ S0. It is clear from the definition of
S0 that it is a union of α-blocks, and it is clear from the the fact that f /αmaps onto
M that each α|S0 -block is represented by some element of f (N, . . . ,N). Hence, the
fact that the set N is contained within a single β-block implies that the same is true
for f (N, . . . ,N), and hence also for S0. Of course, S0/α = f (N, . . . ,N)/α = M.

We shall modify the polynomials gi and f . First, as N is an E-trace with respect to
β, there exists an idempotent unary polynomial whose range intersects the β-block
containing N in N . Prefix each gi with this idempotent unary polynomial, but retain
the notation gi for this polynomial. Then the conditions in (1)–(3) still hold, but we
now have that gi(S0) ⊆ N for every i.

Now let g(x) = f
(

g1(x), . . . , gn(x)
)

, and choose an integer k ≥ 2 such that e = gk

is idempotent. In the factor modulo α, the function g is the identity map on M.
Hence if we replace f (x) by g2k−1 f (x), then the conditions in (1)–(3) will still hold,
but for the new f the polynomial e(x) = f

(
g1(x), . . . , gn(x)

)
is idempotent. We also

have the identity e f (x1, . . . , xn) = f (x1, . . . , xn).
Let S = e(S0). The facts that S0 is a union of α-blocks, S0/α = M, and (e/α)(x) =

x on M, imply that S ⊆ S0. Moreover, we have S/α = e(S0)/α = (e/α)(S0/α) =
(e/α)(M) = M. From the fact that e is idempotent, we get that f

(
g1(s), . . . , gn(s)

)
=

e(s) = s for every s ∈ S, so condition (iii) of Definition 5.2 holds. Since S ⊆ S0 and
gi(S0) ⊆ N (as we showed above), we get that gi(S) ⊆ N . This verifies condition (ii)
of Definition 5.2. We have already shown that f (N, . . . ,N) ⊆ S0, e f = f , and
e(S0) = S, and these imply that f (N, . . . ,N) ⊆ S. This verifies that condition (i) of
Definition 5.2 holds.

Theorem 5.7 Let B be a finite algebra, α < β congruences of B, and N an E-trace
of B with respect to β such that the induced algebra B|N is 〈α|N , β|N〉 = 〈α|N , 1N〉-
minimal. Suppose that the algebra B/α has a subset M that is coordinatizable of rank n
with respect to N/α. Then there exists a set S ⊆ A that is coordinatizable of rank n with
respect to N such that S/α = M.

Proof The fact that M is coordinatizable of rank n with respect to N/αmeans that
there exist unary polynomials gi of B, and an n-ary polynomial f of B such that
conditions (1)–(3) of the proof of the previous lemma hold along with

(4) gi f (x1, . . . , xn) α xi for every x1, . . . , xn ∈ N and 1 ≤ i ≤ n.

The modifications that we made to gi and f in the previous proof did not change
them modulo α, and therefore, doing the same modifications, we can assume that
the polynomials gi and f satisfy (i)–(iii) of Definition 5.2 together with (4).
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The previous proof provides us with a set S such that S/α = M and S is weakly
coordinatizable of rank n by N via the polynomials f and gi . Under the additional
hypotheses of this theorem S is actually coordinatized by N with these polynomials.
To show this it suffices (by Lemma 5.3) to prove that |N|n ≤ |S|. Our method for
showing that |N|n ≤ |S| will be to construct a right inverse to the function

ĝ = (g1, . . . , gn) : S→ Nn.

That is, we will construct an n-ary polynomial h(x) satisfying h(Nn) ⊆ S for which
gih(x) = xi on N for 1 ≤ i ≤ n.

Before starting the construction we make a remark that will be used below. Sup-
pose that t is an n-ary polynomial such that t(N, . . . ,N) ⊆ N , and we have t(x, y) α
x for every x ∈ N and y ∈ Nn−1. Then using the fact that N is 〈α|N , 1N〉-minimal,
we see that t is a permutation in its first variable (and this permutation is the identity
map modulo α). Therefore if we iterate t in its first variable in the usual manner (see
[4, Lemma 4.4]), we get the identity map on N for every choice of y. Doing one less
iteration than this, we get a new polynomial t−(x, y) such that t

(
t−(x, y), y

)
= x =

t−
(

t(x, y), y
)

is an identity on N . We shall call this polynomial t− the inverse of t in
its first variable.

We define auxiliary polynomials in order to arrive at the definition of h. First set

ei(x)
def
= gi f (x).

From f (Nn) ⊆ S and gi(S) ⊆ N we get that ei(Nn) ⊆ N . As f
(

g1(s), . . . , gn(s)
)
= s

holds for every s ∈ S, the fact that f (Nn) ⊆ S implies that the identity

ei

(
e1(x), . . . , en(x)

)
= ei(x)

holds on N for every 1 ≤ i ≤ n. From (4) above we get that ei(x) α xi holds for every
x ∈ Nn and 1 ≤ i ≤ n.

Next we define n-ary polynomials t j,i (1 ≤ i, j ≤ n), and f j (1 ≤ j ≤ n) by
induction on j. Set

t1,i(x)
def
= xi

for 1 ≤ i ≤ n. It will be clear from the inductive definition we give that t j,i(x) α xi

holds on N for all i, j. Thus it will follow that e j

(
t j,1(x), . . . , t j,n(x)

)
α x j for each j,

and so if the polynomials t j,i are already defined for some j and all i we can let f j be
the inverse of

e j

(
t j,1(x), . . . , t j,n(x)

)
in its j-th variable. Since e j(Nn) ⊆ N , and by induction we will see that t j,i(Nn) ⊆ N ,
it follows that f j(Nn) ⊆ N . Now, still assuming that the polynomials t j,i are already
defined for this j and all i, set

t j+1,i(x)
def
= t j,i

(
x1, . . . , x j−1, f j(x), x j+1, . . . , xn

)
.
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Next we recursively define polynomials hi , 1 ≤ i ≤ n. Let

hn(x)
def
= fn(x),

and if hn, hn−1, . . . , h j+1 are already defined, then set

h j(x)
def
= f j

(
x1, . . . , x j , h j+1(x), h j+2(x), . . . , hn(x)

)
.

It is clear by induction that t j,i , fi , and hi are all equal to the i-th projection modulo
α on N , and all map Nn into N . Finally, let

h(x)
def
= f
(

h1(x), . . . , hn(x)
)
.

Since f is on the outside and all hi map Nn into N , it is clear that h(Nn) ⊆ S. To
finish the proof we only have to verify that g jh(x) = x j for 1 ≤ j ≤ n. From the
definitions of h and ei , this is exactly the same as showing that

e j

(
h1(x), . . . , hn(x)

)
= x j

holds on N for every 1 ≤ j ≤ n.

Claim 5.8 For all i, j we have t j,i

(
x1, . . . , x j−1, h j(x), . . . , hn(x)

)
= hi(x).

From t1,i(x) = xi one can prove by induction on j that t j,i(x) = xi if j ≤ i.
Therefore the claim is true when j ≤ i. If the claim holds for some j, then using the
definition of t j+1,i we get that

t j+1,i

(
x1, . . . , x j , h j+1(x), . . . , hn(x)

)
= t j,i

(
x1, . . . , x j−1, f j

(
x1, . . . , x j , h j+1(x), . . . , hn(x)

)
, h j+1(x), . . . , hn(x)

)
.

But the definition of h j shows that

f j

(
x1, . . . , x j , h j+1(x), . . . , hn(x)

)
= h j(x),

and so by the induction hypothesis, the result is indeed hi(x).
We now apply this claim to complete the proof. Since f j(x) is the inverse of the

polynomial e j

(
t j,1(x), . . . , t j,n(x)

)
in its j-th variable (on N), substituting f j(x) for

x j into this polynomial produces a polynomial that is projection onto the j-th vari-
able on N . Do this substitution. Now replace each xi with hi(x) for every i > j. This
has no further effect, because our polynomial was already independent of these other
variables on N . Thus we have

e j

(
u j,1(x), . . . , u j,n(x)

)
= x j
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on N , where u j,i(x) equals

t j,i

(
x1, . . . , x j−1, f j

(
x1, . . . , x j−1, x j , h j+1(x), . . . , hn(x)

)
, h j+1(x), . . . , hn(x)

)
.

By definition, the inner f j

(
x1, . . . , x j−1, x j , h j+1(x), . . . , hn(x)

)
equals h j(x), so

u j,i(x) actually equals

t j,i

(
x1, . . . , x j−1, h j(x), h j+1(x), . . . , hn(x)

)
.

By Claim 5.8 this is just hi(x). Thus the first displayed line of this paragraph reduces
to e j

(
h1(x), . . . , hn(x)

)
= x j , which we had to show to complete the proof.

Now we prove Theorem 5.4. Let K = {A1, . . . ,Am} be a finite set of finite alge-
bras, c = max1≤i≤m c(Ai), and k = max1≤i≤m |Ai |. Suppose that C ∈ V(K) is a finite
algebra, and M is a multitrace for a minimal congruence γ on C. Then C ∼= B/α,
where B ≤ X ∈ Pfin (K), and γ = β/α for a suitable congruence β � α.

If the type of 〈α, β〉 is 2 or 3, then by Theorem 3.10 or Lemma 3.11 of [5], M
is weakly coordinatizable by an N/α where N is an 〈α, β〉-trace. Hence Lemma 5.6
can be applied to M. We get a set S that is weakly coordinatizable by N and which
satisfies S/α = M. Since the 〈α, β〉-traces in types 2 or 3 are Maltsev, Lemma 3.6 of
[5] implies that B|S is Maltsev. Now Corollary 2.4 proves that |M| = |S/α| ≤ c(Ai)
for some Ai ∈ K.

Now assume that the type of 〈α, β〉 is 1. By [5, Theorem 3.10], M is coordinatiz-
able by N/α where N is an 〈α, β〉-trace. The argument proving Theorem 14.7 of [4]
shows that the trace N/α has size ≤ k! (the details are left to the reader). To use this
to bound the size of M we need to determine how large the rank n of M can be with
respect to N/α. Theorem 5.7 yields a set S satisfying S/α = M that is coordinatizable
of the same rank n with respect to N . By [5, Corollary 3.7], the induced algebra on S
is polynomially equivalent to the full matrix power (B|N )[n].

Consider the projection kernels on X resulting from the fact that B ≤ X ∈
Pfin (K). Their intersection is zero, so there is one of them, called η, that does not
contain S × S. Let θ ≥ η be a congruence on X that is maximal for not containing
S × S. Then X/θ is an algebra which contains a set S/θ of size > 1 that supports
(matrix) polynomials expressing the fact that this set is the n-th matrix power of a
smaller set. It follows that |S/θ| = |N/θ|n ≥ 2n. But it also follows from the choice of
θ that any minimal congruence of X/θ contains S/θ in a block. Thus, some minimal
congruence of X/θ is a chief factor of size at least 2n. Since X/θ is a quotient of X/η,
which is isomorphic to some Ai ∈ K, it follows from Lemma 2.2 that 2n ≤ c(Ai), or
n ≤ log2

(
c(Ai)

)
. Hence |M| = |N/α|n ≤ (k!)log2(c).

6 Examples

6.1 Example

Let V be a variety generated by finitely many finite algebras, and let c be the maximum
of the chief factor sizes of these generators. By Corollary 5.5, if V omits type 1, then
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the chief factors of type 2 in V have sizes bounded by c. If V is congruence modular,
then all chief factors are bounded by c. We present an example of a variety satisfying
a congruence identity (in fact, omitting types 1, 2, and 5, which is stronger), where
the bound c does not bound the chief factor sizes. (They are still bounded by the size
of the biggest generating algebra by the refined version of Theorem 1.3.)

Our variety is V = V({A,B}) where A has underlying set A = {0, 1} and the
basic operations of A are the following Boolean operations:

d(x, y, z) = x ∧ (y ⊕ z) ′, e(x, y, z) = x ∧ y ∧ z,

f (x) = 0, g(x) = 1, h(x) = k(x) = x.

Here ∨ is join, ∧ is meet, prime is complementation, and ⊕ is symmetric difference.
The underlying set of B is B = {0, 1, 2, 3}. The basic operations of B are defined with
reference to the lattice operations of the order 0 < 1 < 2 < 3. Let d(x, y, z) = x,
let e(x, y, z) = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) be the median operation, and define the
operations f , g, h, k by the following table.

x f (x) g(x) h(x) k(x)
0 0 1 3 1
1 1 1 2 0
2 0 2 0 0
3 1 2 1 0

Both c(A) and c(B) equal 2. However, in the algebra A × B there is a chief factor
of type 3 that has size 3. This can be seen in Figure 2 below that illustrates the con-
gruence lattice of A × B. If we throw out the operation k, then the only difference
is that the type of this chief factor of size 3 changes from 3 to 4 (but the arguments
below will still work).

We now justify the claim that V omits types 1, 2 and 5. The argument depends on
a modified version of Theorem 9.11 of [4], which asserts that a locally finite variety
omits types 1, 2 and 5 if and only if it satisfies an idempotent linear Maltsev condition
that fails in the variety of semilattices and in every nontrivial variety of vector spaces
over a finite field. The modification of this statement that we need is:

Claim 6.1.1 A locally finite variety omits types 1, 2 and 5 if and only if it satisfies
an idempotent Maltsev condition that fails in the variety of semilattices and in every
nontrivial variety of modules over a finite ring.

The claim differs from Theorem 9.11 of [4] in that linearity of the Maltsev con-
dition is not assumed, at the expense of considering varieties of modules rather than
vector spaces.

To prove Claim 6.1.1, note that if V omits types 1, 2 and 5, then by Theorem 9.11
of [4] is satisfies an idempotent linear Maltsev condition that fails in the variety of
semilattices and in every nontrivial variety of vector spaces over a finite field. This
Maltsev condition must also fail in every nontrivial variety of modules over a finite
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Figure 2: The congruence lattice of A× B.

ring. (The indirect argument for this is that if the Maltsev condition forces the omis-
sion of type 2, then it must fail in every locally finite variety of modules since modules
have type 2. The direct argument is supplied by Lemma 9.2 of [4].)

Now suppose that V is a locally finite variety that satisfies an idempotent Maltsev
condition that fails in the variety of semilattices and in every nontrivial variety of
modules over a finite ring. By [4, Lemma 9.5], V satisfies a linear idempotent Maltsev
condition that fails in the variety of semilattices, so V omits types 1 and 5 according
to [4, Theorem 9.8]. But if V omits type 1, then Theorem 7.12 of [4] implies that
the restrictions of idempotent operations of any A ∈ V to a block of a minimal
abelian congruence are idempotent module operations. Thus, since V omits type 1
and satisfies an idempotent Maltsev condition that fails in every variety of modules,
we get that no algebra in V can have a nontrivial abelian congruence. Hence V omits
type 2. This proves Claim 6.1.1.

Now we apply Claim 6.1.1 to show that V omits types 1, 2 and 5. A sufficient list
of equations for this is

(1) d(x, y, y) = x = e(x, x, x),
(2) d(x, x, y) = d(x, y, x) = e(x, x, y),
(3) e(x, y, z) = e(x, z, y) = e(y, z, x), and
(4) e

(
e(x, y, z), y, z

)
= e(x, y, z).

To model these equations in a nontrivial module, the fact that e is idempotent (equa-
tion (1)) and totally symmetric (equation (3)) forces e(x, y, z) = bx+by+bz for some
ring element b satisfying 3b = 1. Using this representation in equation (4) leads to
b2 = b = 0. Hence 1 = 3b = 0, forcing triviality of the module. To model these
equations in a 2-element semilattice, note that the total symmetry of e (equation (3))
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forces e(x, y, z) = x∧ y∧ z. By equation (1), d cannot depend on its second two vari-
ables in the 2-element semilattice, so it must be that d(x, y, z) = x. Now equation (2)
fails. Thus, V omits types 1, 2, and 5.

6.2 Example

In Corollary 5.5 we showed that if V is finitely generated and omits type 1, then the
maximum of the chief factor sizes of the generating algebras bounds the sizes of the
chief factors of type 2 in the variety. It is natural to ask whether one can bound
the sizes of the chief factors of type 2 in the variety by the sizes of the chief factors
of type 2 in the generators. The answer is no, as this example shows. We describe
algebras with no chief factors of type 2 that generate a variety omitting types 1 and 5,
but a chief factor of type 2 appears in the variety.

We again define two algebras A and B, this time both have underlying set {0, 1}.
Define the operations in the following way on A:

d1(x, y, z) = x, d2(x, y, z) = x, p(x, y, z) = x ⊕ y ⊕ z,

e0(x, y, z) = z, e1(x, y, z) = z, g(x, y) = x ∧ y,

and in the following way on B:

d1(x, y, z) = x ∨ (y ′ ∧ z), d2(x, y, z) = x ∨ z, p(x, y, z) = x ∨ y ∨ z,

e0(x, y, z) = x ∨ z, e1(x, y, z) = (x ∧ y ′) ∨ z, g(x, y) = 1.

Then A and B are simple algebras of type 3. The variety they generate omits types 1
and 5, as one can verify by checking that, with d0(x, y, z) = x and e2(x, y, z) = z, the
operations d0, d1, d2, e0, e1, e2, p satisfy the equations listed in [4, Theorem 9.8]. The
congruence lattice of A×B, pictured in Figure 3, is isomorphic to N5, and its critical
quotient has type 2.

2

3
3

3
3

1

0
0 1

B

A

Figure 3: The congruence lattice of A× B.
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6.3 Example

In relation to Problem 1.5, we exhibit a finite simple algebra A that has size (and
hence chief factor size) n + 1, but in the variety generated by A there exists a chief
factor of type 2 whose size is 1 + (n2 + n)/2.

Let K = Z2 be the two-element field, and let A be the set of all vectors in Kn that
contain at most one coordinate that is 1 (and all other coordinates are zero). Then
|A| = n + 1, and A is the union of n one-dimensional subspaces. Any two elements
of A lie in a coset modulo some one-dimensional subspace.

The basic operations of A are the polynomials of the module Kn whose range is in
a 2-element subset of A. With this choice A is a finite simple algebra of type 2 whose
traces are exactly the two-element subsets.

Let∆ be the restriction of the diagonal congruence of K2
n to A2 (so (a, b) ∆ (c, d)

if and only if a−b = c−d, where− is the subtraction operation of Kn). If a �= b and
c �= d, then (a, b) ∆ (c, d) if and only if the traces {a, b} and {c, d} have the same
direction. But A does not have a pair of distinct traces with the same direction, hence
if a �= b and (a, b) ∆ (c, d) then {a, b} = {c, d}. This shows that the nondiagonal
blocks of∆ have the form {(a, b), (b, a)}. In particular, |A2/∆| = 1

2 (|A|2−|A|)+1 =
n(n + 1)/2 + 1.

To see that A2/∆ is simple, choose elements (a, b)/∆ �= (c, d)/∆ arbitrarily. As-
sume first that a �= b and c �= d. Then {a, b} and {c, d} are traces of A that have
different directions, so A has an idempotent polynomial e that has range {a, b} and
is constant on {c, d} (by the second part of Lemma 4.1). The function that is e acting
coordinatewise modulo∆ is a polynomial mapping the pair

(
(a, b)/∆, (c, d)/∆

)
to(

(a, b)/∆, (a, a)/∆
)

. It follows that any nontrivial congruence on A2/∆must relate
some nondiagonal block to the diagonal block. Conversely, if a �= b, then any con-
gruence of A2/∆ which relates (a, b)/∆ to (a, a)/∆ relates every nondiagonal block
(c, d)/∆ to the diagonal block. To see this, pick a polynomial isomorphism p from
the trace {a, b} to the trace {c, d}. Then p acting coordinatewise modulo∆ is a poly-
nomial mapping the pair

(
(a, b)/∆, (a, a)/∆

)
to
(

(c, d)/∆, (c, c)/∆
)

. This shows
that A2/∆ is simple. That it has type 2 is clear from the fact that it is a simple mem-
ber of a variety generated by a finite abelian algebra, so it is abelian, but it cannot be
strongly abelian since∆ does not collapse all traces of type 2 of A2.

6.4 Example

Theorem 1.4 shows that there exists a finite bound for all chief factors of type 2 in any
finitely generated variety. We show that the hypothesis “finitely generated” cannot be
weakened to “locally finite”.

We define an algebra A with two binary operations · and + as follows. For n ∈ N
define fn : N→ N ∪ {∞} by

fn(i) =

{
n if |n− i| ≤ 1

∞ otherwise.

Let A = N ∪ {∞} ∪ { fn | n ∈ N}. Also let ⊕ be the group operation on {∞, 0}
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having∞ as the identity element, and let e : A→ {∞, 0} be defined by

e(x) =

{
0 if x ∈ {0, 1}

∞ otherwise.

Finally, define

x · y =

{
x(y) if x ∈ { fn | n ∈ N} and y ∈ N

∞ otherwise

x + y = e(x)⊕ e(y).

Let µ = (N ∪ {∞})2 ∪ 0A.

Claim 6.4.1 The algebra A is subdirectly irreducible with monolith µ. The congruence
µ is abelian but not strongly abelian. V(A) is locally finite (but not finitely generated).

Proof The relation µ is a congruence of A because the fundamental operations of
A are constant modulo µ. The reduct 〈A, ·〉 is a graph ∗-algebra in the sense of [7],
and is already subdirectly irreducible with monolith µ because of the nature of the
underlying graph.

Since {∞, 0} is a 1-snag in µ, it is not strongly abelian. To see that µ is abelian,
note that any failure of the term condition can be localized in a finitely generated sub-
algebra of A, which in turn is contained in An for some n, where An is the subalgebra
of A having universe {0, 1, . . . , n} ∪ {∞} ∪ { f0, f1, . . . , fn}. The restriction µ|An

is a minimal congruence of An (in fact, it is the monolith), and obviously {∞, 0}
is a 〈0An , µ|An〉-minimal set. A routine analysis of the polynomials of A shows that
A|{∞,0} is abelian.

One can see by inspection that A is uniformly locally finite; in fact, each n-gener-
ated subalgebra of A has at most 2n + 2 elements. Since A has finite signature, there
are only finitely many isomorphism types among the n-generated subalgebras of A,
hence, V(A) is locally finite. It is not finitely generated by Theorem 1.4.

6.5 Example

We show that the chief factor size of a subalgebra of an algebra B is not necessarily
bounded by the chief factor size of B. For any algebra A we define a new algebra C in
the following way. Add a new element 1 to the universe of A, extend all the operations
of A arbitrarily, and define a 4-ary operation d such that d(x, y, z, 1) is the ternary
discriminator, while d(x, y, z, a) = x if a ∈ A. The new algebra C has a discriminator
polynomial, and therefore B = Cn has only the 2n obvious congruences. Hence the
chief factor size of Cn is |C| = |A| + 1. On the other hand, An is a subalgebra of Cn,
and its subalgebras can have arbitrarily large chief factors (if A is chosen to be one of
the examples referred to in the introduction).
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References
[1] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra. Springer-Verlag, 1981.
[2] R. Freese and R. McKenzie, Residually small varieties with modular congruence lattices. Trans. Amer.

Math. Soc. 264(1981), 419–430.
[3] , Commutator Theory for Congruence Modular Varieties. London Math. Soc. Lecture Note

Ser. 125, Cambridge University Press, Cambridge-New York, 1987.
[4] D. Hobby and R. McKenzie, The Structure of Finite Algebras. Contemp. Math. 76, Amer. Math.

Soc., 1988.
[5] K. A. Kearnes, E. W. Kiss, and M. A. Valeriote, Minimal sets and varieties. Trans. Amer. Math. Soc.

350(1998), 1–41.
[6] , A geometric consequence of residual smallness. Ann. Pure Appl. Logic. 99(1999), 137–169.
[7] K. A. Kearnes and R. D. Willard, Inherently nonfinitely based solvable algebras. Canad. Math. Bull.

37(1994), 514–521.
[8] E. W. Kiss, An easy way to minimal algebras. Internat. J. Algebra Comput. 7(1997), 55–75.
[9] R. McKenzie, The residual bounds of finite algebras. Internat. J. Algebra Comput. 6(1996), 1–28.
[10] R. W. Quackenbush, Equational classes generated by finite algebras. Algebra Universalis 1(1971),

265–266.
[11] C. Shallon, Non-finitely based algebras derived from lattices. Ph.D. thesis, UCLA, 1978.
[12] W. Taylor, Subdirectly irreducible algebras in regular permutable varieties. Proc. Amer. Math. Soc.

75(1979), 196–200.

Department of Mathematics
University of Colorado
Boulder, CO 80309-0395
USA
email: kearnes@euclid.colorado.edu
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