The set of types of a finitely generated variety
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Abstract. The paper presents an algorithm of polynomial time complexity to compute the type
set of a finite algebraic system A, as defined in the monograph of R. McKenzie and D. Hobby:
“The Structure of Finite Algebras”. To do so, it introduces the concept of a subtrace, and
uses subtraces to characterize the type set of A. Tt is also shown that to calculate the type
set of the variety generated by A is more difficult, by presenting various examples, in which
a given type occurs only in subalgebras of high powers of A.

1. INTRODUCTION
R. McKenzie and D. Hobby in their monograph “The Structure of Finite Algebras”

provide important new structural invariants for algebras and for locally finite varieties.
Their work shows that in a finite algebra A each covering pair of congruence relations of
A can be assigned one of five types: (1) unary, (2) affine, (3) Boolean, (4) lattice, and (5)
semilattice. The set of types that appear among all the covering pairs of congruences is
denoted typ{A}. For a class of algebras K, typ{K} denotes the union of the sets typ{A}
where A ranges over the finite algebras in K. Much of the book [4] is devoted to showing
how for an algebra A and a variety (equational class) V, the sets typ{A} and typ{V} are
strongly linked to diverse algebraic properties. For example, if 1 or 5 appears in typ{V},
then V satisfies no nontrivial congruence identity. If 3 or 4 occurs in typ{A} then the
cardinality of the free algebras on n free generators in the variety generated by A grows
as a doubly exponential function of n. If 4 or 5 are in typ{V} then V is hereditarily
undecidable. Other results relate varietal properties to a particular type not appearing in
typ{V}. Mal’cev conditions for a variety V that are equivalent to typ{)} omitting certain
sets of types are presented and utilized in many ways.

Therefore, given a finite algebra A it is of considerable interest to compute typ{A} and
to know what types appear in V(A), the variety generated by A. In Section 2 we provide
two algorithms for computing typ{A}. The first one is a straightforward application of
the definition of typ{A} as given in [4]. We discuss this algorithm and briefly describe
a computer implementation that we have for it. This algorithm is of exponential time
complexity. The second algorithm we present is more subtle. We introduce the notion of
a subtrace of an algebra and we use two-element subtraces in order to compute typ{A}.
The use of two-element subtraces allows us to compute typ{ A} without having to compute
the congruence lattice and the unary polynomials of the algebra A. This second algorithm
is of polynomial time complexity.

The final section deals with typ{V (A)} for a finite algebra A. Basically, our results show
how types not present in A or its subalgebras can appear in V(A). Our main examples are
given in Theorems 3.4 and 3.5, where algebras C with at most five elements are constructed
for every type in {2, 3,4, 5} and positive integer m such that the first occurrence of the given
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type in the variety generated by C is in a subalgebra of C™. The subdirectly irreducible
algebras in these varieties show an interesting distribution. Two-element subtraces also
figure in our proofs in this section. The results in Section 3 complement some of the results
in [6] in which conditions are given that guarantee that no new types appear in V(A) that
are not already present in the subalgebras of A.

We have tried to write this paper so that it is accessible to someone not familiar with
[4]. The basic notation and the definitions are developed in this introductory section and
elsewhere through the paper as needed. The notation and the few facts from universal
algebra that we use are found in the dozen pages that comprise Chapter 0 of [4].

For an algebra A with universe A, Pol A 1s the set of all polynomial operations of A
and Pol,, A is the set of n-ary polynomials of A. If S is a nonvoid subset of A and if f is a
polynomial of A such that S is closed under f, then f|s denotes the restriction of f to S.
The set (Pol A)|g is the set of all such f|s for which f preserves S and A|g is the algebra
(S, (Pol A)|s). A unary polynomial e is called idempotent if e(e(a)) = a for all a € A and
E(A) denotes the set of all idempotent unary polynomials of A.

A nontrivial finite algebra M is called minimal if every unary polynomial of M is either
a permutation or a constant. In [7], P.P. Palfy proved that if M is a minimal algebra then
up to polynomial equivalence exactly one of the following is true:

1) M is a unary algebra in which each basic operation is a permutation.
2) M is a vector space.

3) M is a two-element Boolean algebra.

4) M is a two-element lattice.

5) M is a two-element semilattice.

Then, depending on which of these five cases hold, the type of a minimal algebra, denoted
by typ(M), is 1, 2, 3, 4, or 5 respectively.

For any algebra A, Con A denotes the set of congruence relations of A and Con A 1is
the congruence lattice of A. For o, € Con A, [ covers « if @ < 3 and for no v € Con A
does a@ < 7 < B hold. If 3 covers a, then we write a <  and the ordered pair («, 3) is
called a covering pair.

Let A be a finite algebra and let o be covered by 3 in Con A. Let e € E(A) be such
that e(A) is minimal (under inclusion) for e(3) € a. Then U = e(A) is called an (o, 3)-
minimal set of A. If N is of the form U Nz/3 and if N*> € a, then a series of results in [4]
culminating in Corollary 5.2 show that the algebra M = (A|y)/(e|n) is a minimal algebra
and that typ(M) is the same regardless of how ¢ and N are chosen. The set N is called an
(a, B)-trace in A. The type of the covering pair («, 3) is assigned the value i if typ(M) =i,
and this is written typ(a, ) = i. The set typ{A} is defined to be {typ(a,3) : @ < § in
Con A}. If K is a class of algebras, then typ{K} = {typ{A} : A is a finite member of K}.

2. DETERMINING typ{A}

In this section we present two algorithms for determining typ{A} for a finite algebra A.
We also introduce the notion of a subtrace. Two-element subtraces are used for the second
of our two algorithms and they also appear in the proofs in Section 3.

We begin by explaining how to represent the n-ary polynomials of an algebra. Take a
finite algebra A = (A, F) with |A| = k, and consider AA" . This can be viewed as the set
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of all n-ary functions defined on A. Let z; be the j-th projection function, which assigns
aj to (ay,...,ay). Then it is easy to see that all k" members of A" appear exactly once
among (x1(2),z2(2),... ,zn(?)), where ¢ runs over the elements of A". Moreover, Pol,, A
is just the universe of the subalgebra of A4" generated by 1,...,z, and the k constant
functions from A" to A (the “diagonal” of AAH). In particular, Pol; A corresponds to the
subuniverse of the subalgebra of A4 generated by the k constants and the identity map.

For a non-empty subset S of A, the set (Pol,, A)|s can be characterized similarly. To
get it, take the projections yq,... ,y, from S™ to S and the & constant functions from S"
to A, and intersect the universe of the subalgebra generated by these elements of A" with
S5, For a # b in A, we will have occasion to view (Poly A)|{a,) as the intersection of
{a,b}* with the subuniverse of the subalgebra of A* generated by the |A| constants and the
two 4-tuples (a,a,b,b) and (a,b, a,b).

So to calculate induced algebras we have to generate subalgebras of the powers of A. The
details of a computer implementation of this subuniverse generation procedure, which uses
hashing to recognize distinct elements, is given in [3].

The following lemma provides a method of distinguishing between the five types of min-
imal algebras.

LEMMA 2.1. Let M be a finite algebra that is minimal and suppose |M| = m, |Poly M| = py
and |Poly M| = py. Then typ(M) is completely determined by the following chart.

m P1 P2 typ(M)

2 3 5 5

2 3 6 4

2 4 16 3

2 4 8 2

2 3 4 1

2 4 6 1

> 2 1 ifp,=2p,—m
> 2 2 ifpr>2p—m

PRrOOF: The m = 2 cases exhaust the possibilities of p; and py for 2-element algebras. For
m > 2, M has an essentially binary polynomial if and only if po > 2p; — m. 1

The description of typ{ A } given in the final paragraph of Section 1 provides the following:
Algorithm for determining typ{A} for a finite algebra A.

The input is all operation tables for the basic operations of A.
The output is a list of all covering pairs @ < 3 in Con A and for each the value of typ(c, 3).
1. Compute Poly A.
2. Compute E(A).
3. Compute Con A and determine all covering pairs (a, 3) in Con A.
4. For each covering pair (a,3) in Con A do
5. Find an e € E(A), ¢(8) € «, with |e(A)| minimal.
6. Find an (a, 8)-trace N in e(A).



7. Reduce modulo « to find a minimal algebra M.
8. Compute |Poly M| and |Pol, M.
9. Use Lemma 2.1 to compute typ(M). This is typ(a, 3).

We briefly discuss some aspects of each step of this algorithm.

Suppose the universe of A is A = {0,1,... .,k — 1}. Elements of Poly A computed in
step 1 are represented as k-tuples of integers in A. Pol; A is generated by the elements
(0,...,0),... ,(k—1,... ;k=1)and (0,1,... ,k—1). The basic operations of A are applied
coordinatewise. If f is a basic operation that is m-ary and if |Poly (A)| = p, then f will be
applied p™ times.

The computation in step 2 can be done with one pass through the list of Pol; A.

One way to find Con A is to first find all principal congruence relations ©(z, ) for
0 <i¢ < j < k. Since Poly A has been found in step 1, ©(7,7) may be computed as
the transitive closure of {(¢,d) : {¢,d} = {g(1),9(j)}, g € Pol; A}. Once all principal
congruences have been found, Con A can be found by taking the transitive closure of
sets of these principal congruences. For small A an alternate approach is to generate all
equivalence relations on A and test each one to see if it is a congruence relation of A.

The computation in step 8 can be handled in the following manner. Suppose a|y has m
classes. Let S = {aq,... ,am} € N be a family of representatives, one from each a|y class.
Then p; = |Poly M| is the number of distinct m-tuples (s1,... ,sm,) € S™ for which there
exists f € Poly A with (f(a;),s;) € a for all i, 1 < i < m. The value of p, = |Poly M| is
computed in an analogous fashion. Note that if m > 3, then the computation of p; can be
halted once it 1s determined that p, > 2p; — m.

An alternate approach in step 5 is to scan Poly A for a polynomial g with ¢(3) € o and
such that |g(A)| is minimal with this property. Then by Lemma 2.8 (2) of [4], the trace
needed in step 6 will be any set N = g(A)Na/B for some a € g(A) with a/FNg(A) € a/c.

A computer program implementing this algorithm has been written by the first author.
For algebras having a small universe, say, up to ten elements, and having only binary and
unary operations, this program provides a practical way of computing typ{A} and in so
doing it gives a complete labeling of the covering pairs in the congruence lattice of the
algebra.

Although the algorithm works satisfactorily for small algebras A, for larger algebras it
has some serious drawbacks. Firstly, Poly A may be intractably large. For example if A is
functionally complete, i.e. Pol,, A consists of all n-ary operations on A, then A is a simple
algebra and typ(A) = 3. However, in this case |Pol; A| = |A|l4] and for |A| larger than 10,
say, step 1 becomes intractable. Another serious problem with the algorithm is that Con A
may become very large even for relatively small algebras. For example, if A has only the
projections and constants as its basic operations, then Con A is the full partition lattice
and every covering pair of congruences has type 1. However, in this case the cardinality of
Con A grows exponentially fast. For n = 12 this is already 4,213,597 congruence relations.

We present an alternate algorithm for computing typ{A}; an algorithm in which neither
Pol; A nor Con A need be computed. This algorithm uses a local analysis of the 2-element
subsets of the algebra.

We first need to define polynomial isomorphism. Let A be an algebra and let B and C
be nonvoid subsets of A. The sets B and C' are called polynomaially isomorphic, if there
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exist f,g € Poly A such that (i) f(B) = C, (i) ¢(C) = B, (iii) gf|p = idp, and (iv)
fglc = ide. If B and C are polynomially isomorphic, then this is denoted B ~ (', and if
the role of f is to be emphasized, f : B ~ C is written.

If B and C are finite nonvoid subsets of A and if there exist f,g € Pol; A for which
f(B) = C and ¢(C) = B hold, then f : B ~ C. To prove this we note that f|p and g|¢ are
one-to-one, and since B and C' are finite, there exists an integer n such that (¢f)"|p = idp.
Let h denote the polynomial (¢f)" 'g. Then h(C) = B and hf|g = idp. Also fh|c = idc,
since for every ¢ € C, g(¢) = (gf)"g(c) = g(fh(c)), and so ¢ = fh(c), since g is one-to-one
on C.

Therefore, for a nonvoid subset S of a finite algebra A, if f € Poly A, then f: S ~ f(S5)
if and only if S ~ f(.5). Also, if S % f(.5), then for no g € Poly A does ¢gf(S) ~ S hold.

DEFINITION 2.2. Let A be a finite algebra with a <  in Con A. A subset S of A is
called an (a, 3)-subtrace of A if S* € a and S is a subset of an (a, 8)-trace of A. The set
S is a subtrace of A if there exist a < 3 in Con A for which S is an («, 3)-subtrace.

For an algebra A the relation >~ of polynomial isomorphism is an equivalence relation
on the set of subsets of A. For @ < 3 in Con A all (o, 3)-traces of A are in the same ~
equivalence class (e.g. 5.2.2 in [4]). For (a, #)-subtraces we have the following.

LEMMA 2.3. Let S be an («a, 3)-subtrace of A.
(1) If S ~ T, then T is an (o, 3)-subtrace.
(i) If f € Pol; A is such that f(S)? € «, then S ~ f(S).

PROOF: Both of these claims follow by an application of Theorem 2.8(3) of [4], or more
precisely, the version of this theorem relativized to traces in Exercise 5.11(3). 1

DEFINITION 2.4. For a nonempty subset S of an algebra A let o(S) denote the transitive
closure of {f(S)* : f € Pol; A, f(S) % S}.

LEMMA 2.5. Let S with |S| > 2 be a subset of a finite algebra A. Then

(1) o(9) is a congruence relation on A and o(S) < O(S);
(i) if S ~ T, then o(S) = o(T).

PRrOOF: The relation o(S) is reflexive since |S| > 2 and the constant operations are in
Poly A. If g € Poly A is arbitrary and if f(S) # S, then gf(S) # S as well. So if
(a,b) € f(S)* with f(S) % S, then (g(a),g(b)) € (S). This shows o(S) is a congruence
relation. For any f € Poly A, f(S)? C O(S). To prove (ii), we let g : T ~ S and we
suppose f € Poly A is such that f(S) % S. We wish to show that (f(a), f(b)) € o(T) for
all a,b € S. Let ¢,d € T be such that g(¢) = a and g(d) = b. Then fg(T) # T and

(f(a), £(b)) = (fg(e), fg(d)) € o(T). W
LEMMA 2.6. Let A be a finite algebra and let S be a nontrivial subset of A. Then S is a
subtrace of A if and only if S* Z o(S).

PrROOF: Let S be an (o, 8)-subtrace for o < 8 in Con A. If f € Pol; A and f(5)? € a,
then S ~ f(5) by Lemma 2.3. The contrapositive of this statement shows o(S) < @ and
since $?  a we are done. Conversely, suppose S? Z o(S). Let 8 denote ©(S) and let «
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be any congruence with o(S) < a < 3 in Con A. Let (a,b) € S? — a be arbitrary. By
2.8 (4) of [4] there exists an f € Pol; A such that (f(a), f(b)) € 8 — a and f(S) is an
(a, 3)-subtrace. It must be the case that S ~ f(S) for otherwise f(S)* C o(S) < a. An
application of Lemma 2.3 yields that S is a subtrace. |

We focus on subtraces that consist of two elements. For a finite algebra A and for a # b
in A we write o(a,b) in place of o({a,b}). For S = {a,b}, Lemma 2.6 reduces to:

{a,b} is a subtrace if and only if (a,b) & o(a,b).

It follows from Definition 2.4 and Lemma 2.5 that (¢, d) € o(a,b) if and only if there exist
n > 1 and z9,21,... ,2n € A with ¢ = 20, d = z,, and there are f1,..., fn € Pol; A such
that for each 1, 1 < ¢ < n, {zi,zi-1} = {fi(a), fi(b)} and {a,b} % {fi(a), fi(b)}. Two
special instances of this description of o(a,b) are contained in the next lemma. They will
be used in Section 3.

LEMMA 2.7. Let a # b in a finite algebra A.
(1) If a € {f(a), f(b)} fmplies that {a,b} D {f(a), f(b)} for every f € Poly A, then

{a,b} is a subtrace.
(ii) {a,b} is not a subtrace if there exist f,g € Pol; A and ¢ € A such that {a,c} =

{f<a)’f(b)}7 {b,c} = {g(a),g(b)} and {a,b} # {f(a),f(b)}, {a,b} # {9(“)’9<b)}'

Proor: If the condition in (i) holds then a/o(a,b) = {a}. If the condition in (ii) holds
then (a,c) and (¢,b) are in o(a,b) so (a,b) € o(a,b). 1

Let A be an algebra and let (a,b) € A% with a # b. The ordered pair (a,b) is called
a I-snag if there exists f € Poly A such that f(b,b) = b and f(a,b) = f(b,a) = a.
The pair (a,b) is called a 2-snag if there exists f € Poly A such that f(b,b) = b and
fla,b) = f(b,a) = f(a,a) = a. By Theorem 7.2 of [4] if @ < # in Con A for a finite
algebra A, then typ(a,) = 1 if and only if § — a contains no 1-snags and typ(a, 8) = 2
if and only if 3 — a contains no 2-snags and contains at least one 1-snag.

We now assign to every two-element subset of an algebra one of five types.

DEFINITION 2.8. Let S = {a,b}, a # b, be a subset of an algebra A and let S denote the
algebra Als. We define the type of S in the following way.

(1) If S is polynomially equivalent to a Boolean algebra, then S has type 3.

(ii) If'S is polynomially equivalent to a distributive lattice, then S has type 4.

(iii) If'S is polynomially equivalent to a semilattice, then S has type 5.

(iv) If none of the previous cases hold but (a,b) or (b,a) is a 1-snag in A, then S has
type 2.

(v) In all other cases, S has type 1.

— e

We write typ{a,b} = i if the type of {a,b} is i. Note that in case (iv) typ{a,b} is
determined by the induced partial algebra. We will frequently use the fact that typ{a,b} =
3, 4 or 5 if and only if at least one of (a,b) or (b,a) is a 2-snag.

ExampLE 2.9: Let A = {0,a,b, 1}, consider the partial ordering on A given by 0 < a,b < 1
and a, b incomparable, and let A be the algebra whose operations are all operations that
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are monotonic in this partial order. It is easily verified that A is simple, every trace in A
has two elements, and typ(A) = 4. Except for {a,b}, every two-element subset of A is a
subtrace of type 4. Note that A|, ) is polynomially equivalent to a Boolean algebra.

EXAMPLE 2.10: Let p > 2 be a prime number, let Z, = ({0,1,... ,p — 1},+) with +
addition modulo p, and let U, = ({0,1,... ,p —1},5,) with S, the set of all permutations
on{0,1,...,p—1}. Then Z, and U, are minimal algebras, with typ(Z,) = 2, typ(U,) = 1.
Any two-element subset of either algebra is a subtrace. If 0 <4 < j < p, then U,|y; ;y is
an essentially unary algebra and it can be argued that Z,|y; ;) is essentially unary as well.
However, (i,7) in Z, is a 1-snag, so the type of {¢,7} in U, is 1 and in Z, the type of {i, 7}
is 2.

EXAMPLE 2.11: It is easily checked that if M is a minimal algebra and if S is a two-element
subset of M, then S is a subtrace of M and the type of S is the same as typ(M). This
observation is crucial in the following result.

THEOREM 2.12. Let A be a finite algebra and let o« < [ in Con A. Then every two-
element (a, #)-subtrace has type typ(a, ). Moreover, i € typ{A} if and only if there is a
two-element subtrace of A having type i.

Proor: Let {a,b} be an (a, 3)-subtrace of A. So (a,b) € # — « and there exists ¢ € E(A)
with a,b € e¢(A) = U such that U is an (, #)-minimal set. If N denotes the trace U Na/[3,
then the algebra M = (A|x)/a|n is minimal and typ(M) = typ(a, (). If ' = a/a|n and
b' = b/a|n, then, as noted in Example 2.11, {a’, b’} is a subtrace of M and typ(M) is the
same as the type of {a’,b'}. We also note that for f € Pol A with f|;44) € (Pol A)|14},
if g denotes the operation induced by ef on the quotient N/a|n, then g € Pol (M) and
9l{arpy behaves as f|i,5y. Similarly if (a,b) is a l-snag in A, then (a’,0’) is a l-snag in
M. With these observations made we commence the proof.

If typ(e, ) = 3, then by 4.17 of [4] N = {a,b} and M is N, so the type of {a,b} in A is
the same as the type of {a,b} in M, and this is 3. Conversely if the type of {a,b} in A is
3, then every member of (Pol A)[y, 3} induces an equivalent polynomial on (Pol M)|{a/ 41}
So the polynomial structure of {a’,b'} in M is at least as rich as that of Boolean algebras.
So the type of {a’,b'} in M is 3.

If typ(a, ) = 4, then as in the previous case M = N = {a,b}. So the type of {a,b} in
A is 3 or 4. By the previous case this type cannot be 3. Conversely if the type of {a,b}
in A is 4, then the set {a’,0'} in M admits lattice polynomials, so the type of {a’,b'} in
M is 3 or 4. By the previous case, 3 is not possible, so we conclude typ(a, 3) = 4.

If typ(a, ) = 5, then by 4.15 of [4] (a,b) or (b, a) is a 2-snag of A. If both (a,b) and (b, a)
were 2-snags, then (a/,b') and (b',a’) would be 2-snags in M, contradicting typ(a, 3) = 5.
So {a, b} has type 5. Conversely, suppose typ{a,b} = 5 with say (a,b) a 2-snag in A. Then
(a’,b") is a 2-snag in M and hence typ(M) = 3, 4 or 5. By virtue of the previous cases,
typ(M) = 5.

If typ(e, ) = 2, then by 7.2 and 4.20 of [4], neither (a,b) nor (b, a) are 2-snags and A|y
admits a Mal’cev term d. The polynomial d(z,a,y) shows that (b,a) is a 1-snag. So the
type of {a,b} is 2. Conversely if the type of {a,b} in A is 2 and, say, (a,b) is a 1-snag of
A, then (a/,b') is a 1-snag in M. So typ(M) # 1 and from the previous cases we conclude
typ(M) = 2.



Finally, if typ(a, 3) = 1, then by 7.2 of [4], neither (a,b) nor (b,a) are l-snags (or 2-
snags). So the type of {a,b} is 1. The converse follows from the previous four cases and

from our definition of the type of {a,b}. I

A development of tame congruence theory by means of two-element subtraces, i.e. {a,b}
such that (a,b) ¢ o(a,b), is the subject of the paper [2].
An algorithm for computing typ{A} based on two-element subtraces is now clear:

Algorithm for determining typ{A} for a finite algebra A.

The input is all operation tables for the basic operations of A.
The output is typ{A}.
1. For each a #b in A do

2. If {a,b} is a subtrace do
3. Determine typ{a,b}.

These computations can be done without computing Con A or Poly A. In fact, for
finite algebras A of a fixed finite similarity type, we show that the time complexity of this
computation is a polynomial function of the size of A.

We present some details for this algorithm. Let A be a finite algebra of cardinality k.
Let G(A) denote the directed graph whose nodes are all (’;) two-element subsets of A and
in G(A) there is an edge from {a,b} to {c,d} if and only if there is a unary polynomial f
with {¢,d} = {f(a), f(b)}. Note that ({a,b},{c,d}) and ({¢,d},{a,b}) are both edges of
G(A) if and only if {a,b} an {c,d} are polynomially isomorphic in A. The graph G(A)
is transitive and reflexive. Strongly connected components of G(A) correspond to blocks
of the equivalence relation ~ on the set of two-element subsets of A. For {a,b} C A, let
Gab(A) be the graph with vertex set A and having edge (¢, d) if and only if ({a, b}, {c, d})
is an edge of G(A) and {a,b} % {c,d}. Then {a,b} is a subtrace in A if and only if there
is no path from a to b in the graph G4 (A). There exist standard path algorithms of time
complexity O(]A|?) that decide if such a path exists (see for example [1], Section 5.10).

In order to determine the edges of G(A) that originate at node {a,b}, it suffices to
consider the subalgebra of A? generated by (a,b) and the k elements (i,7) for 1 € A. If this
algebra has t elements and if ¢ 1s a basic operation of arity m, then testing all ¢ elements as
the arguments of ¢ contributes time complexity O(t™) to the computation of G(A). Here
we assume that a decision on whether a generated element is new or not can be made using
a table look—up. This is realistic since t < |A|?>. We will assume that the similarity type is
fixed, so if there are b basic operations in the similarity type and if m is the largest arity
of a basic operation, then G(A) has a worst case time complexity of ¢ - b - (g)(kZ)m7 for
some constant ¢. Thus for fixed similarity type a worst case time complexity for G(A)
is O(k*™*2%). Note that this dominates the path algorithm time complexity, so with the
algorithm we have described O(k?*™%2) is the total time complexity for finding all two-
element subtraces of A. The input is of size at least k™ so the complexity is bounded by
a cubic function of the length of the input.

A certain amount of speed up in this algorithm is possible. If at some stage in the
computation it is discovered that {a,b} ~ {¢,d}, then for all nodes {z,y}, ({a,b},{z,y})
is an edge in G(A) if and only if ({¢,d},{z,y}) is an edge and {a,b} is a subtrace if
and only if {c,d} is a subtrace. Moreover, if {a,b} ~ {c,d} then typ{a,b} = typ{c,d}.
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So if the equivalence relation ~ is dynamically maintained during computation, only one
representative from each ~ class is required for computing typ{A}.

For another possible speed up, we note that if Pol; A is known to be not too large for
computation, then it might be faster to compute Pol; A first and then use it to determine
G(A). If say Pol; A has p elements, Pol; A can be computed as a subalgebra of A* in
O(p™) applications of basic operations to k-tuples, and thus in time O(kp™) (again using
table look—ups to decide if an element is new or not). If p is not much larger than &, then
this approach might improve the time for computing G(A) by a factor of k& or more. E.g.
if m =2 and p < k? this gives O(k°) in comparison to O(k%).

The type of a two-element set {a, b} can be found by an examination of the 4-tuples that
appear when computing the subalgebra C of A* generated by (a,b,a,b); (b,a,a,b); and
the k constants (i,1,i,1), 1 € A. If the subalgebra C has t elements, then ¢t < k*, hence an
m-ary basic operation will contribute t™ < k%™ towards the total time complexity. This
dominates the other steps, so the computation of the type of {a,b} is bounded above by the
fourth power of the size of the input. However, in many cases when C is large, for example
when C = A*, the type of {a,b} can be computed without computing all of C. To this end,
when computing G(A) it is easy to flag those pairs {a,b} for which (Poly A)|s, 3y contains
an involution f, i.e. f(a) = b and f(b) = a. When generating C for the pair {a,b}, if
a 2-snag arises (i.e. (b,b,a,b) or (a,a,a,b)) and if {a,b} has been flagged as having an
involution, then computation may be halted, the type is 3. Conversely, if C' = A*, then the
type of {a,b} is 3 and in the computation, the involution and 2-snag will be generated, so
it is not necessary to generate all of C. Similarly, if (Pol; A)|;, 3y has no involution and
both 2-snags are generated, then the computation may be halted since typ{a,b} = 4.

3. DETERMINING typ{V(A)}

Let A be a finite algebra and let V(A) denote the variety generated by A, i.e. V(A) =
HSP(A). What types can appear in typ{V(A)} that are not in typ{A}? Is there a
computationally feasible method to determine typ{V(A)} for a given A? This section
deals with these questions.

We first note that for a class K of finite algebras, typ{K} = typ{HK} so we may
concentrate on the class SP(A) when we investigate typ{V(A)}. Although types not
appearing in A can appear in subalgebras of A, the algorithins described in Section 2 may
be applied to subalgebras of A. Hence our focus is on how types not in S(A) can occur in
SP(A). Since we are interested in finite algebras, we can in fact focus on the class SPf(A)
(subalgebras of finite products).

Two results contained in [6] are worth mentioning at this point. If A is finite and if V(A)
is congruence modular, then typ{V(A)} = typ{S(A)}. So in this situation typ{S(A)},
which can be determined using the algorithms of Section 2, provides complete information
about typ{V(A)}. Note that if V(A) is congruence modular, then typ{V(A)} C {2, 3,4}.
A general problem is this: Provide other general algebraic conditions on A or V(A) that
guarantee typ{V(A)} = typ{S(A)}. A recent related result of K. Kearnes [5] states that
if V is a locally finite variety that has the Congruence Extension Property, then typ{V} C
typ{Fy(2)} U {3}, and if 4 ¢ typ{Fy(2)}, then typ{V} = typ{Fy(2)}.

The second result of [6] that we mention is that if a type occurs in P(A), then it already
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occurs in A" for an r < |A|>. Thus we have an a priori bound on the number of factors
needed to produce new types in algebras in P(A). The more general problem is to find a
bound on the number of factors of A needed to determine typ{SPs(A)}.

Our main results in this section are negative in that they show there is no small bound

m for which typ{SPs(A)} = |J typ{S(A™)}.
n<m

Suppose i € typ{B} for a finite algebra B € S(A™). Then there are @,b € B such that
{a,b} is a subtrace of B with typ{a,b} = i. Let @ = (a1,... ,a,) and b = (by,... ,by)
and let j be such that a; # b; in A. It is immediate that if (a,b) is a 1-snag (or 2-snag)
in B, then (aj,b;) is a 1-snag (or 2-snag) in A. If typ{a,b} = 3, then {a;,b;} has type 3
as well. However, {a;,b;} in A can have a richer polynomial structure than {a, b} in B,
i.e. typ{a;,b;} can be higher than typ{a,b} in the partial order of types 1 < 2 < 3 and
1 < 5 < 4 < 3. The other critical difference between {a,b} and {a;,b;} is that {a;,b;}
need not be a subtrace in A.

We cite the following result that is contained in Corollary 7.6 of [4].

PROPOSITION 3.1. Let A be a finite algebra.

(1) Iftyp(A) = {1}, then typ{V(A)} = 1.
(i) Iftyp{A} C {1,2}, then typ{V(A)} C {1,2}.

Proor: If typ{A} =1, then A has no 1-snags by 7.2 of [4]. So no finite algebra in SP(A)
has a 1-snag either. Thus typ{V(A)} = {1}. If typ{A} C {1,2}, then A has no 2-snags
and again typ{V(A)} C {1,2}. I

If typ{A} = {2}, then it is possible for 1 to appear in typ{V (A)}. For example, Exercise
6.23.8 of [4] exhibits a simple algebra A with typ(A) =2, yet 1 € typ(A'Al).

As an interesting example of typ{S(A)} # typ{SP(A)} we first mention a result of R.
McKenzie that is described in [6]. A is the algebra whose universe is the eight-element
Tardos poset P (e.g. [8] or Exercise 10.5 of [4]) and the basic operations of A are all
monotonic operations on P. A is simple and A has no proper subalgebras and typ{A} = 4,
yet 3 € typ{S(A®)}. This construction can be extended to other types by using reducts
of A. Namely, for every i € {4,5} and for every j € {1,2,3,4,5} there is a set F}; of
operations monotonic on P such that if A;; = (P, F;;), then A;; is simple of type i, A;;
has no proper subalgebras, and there exists Q € S(A?j) such that j € typ{Q}. In this
construction a subtrace {a,b} of Q is found with @ = (ay,... ,as), b = (b1,... ,bg) such
that if a; # b; in A, then {a;,b;} is the pair of incomparable middle-level elements of P.
Since traces in A consist of two-element ordered sets, {a;,b;} is not a subtrace of A.

Our first result of this section gives a uniform construction for all the non-Abelian types.

THEOREM 3.2. For every 1 € {3,4,5} and every j € {1,2,3,4,5} there exists a seven-
element algebra C;; which is simple, has no proper subalgebras, has type i, and Clz]- contains

a subalgebra D with j € typ{D}.

PROOF: The universe of C;; is C' = {ay,as, b1, bz, s1,2,€e}. The set of basic operations of
C;j is denoted F;;, so C;; = (C, F;;). We denote by Uy the set of constant operations on C
and by Uj the set of all unary operations f such that |f(C')| = 2 and f(e) = e. For all choices
of 7 and 7, F}; includes Uy and U;. Thus C;; is simple and C,;; has no proper subalgebras.
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For j € {1,2,3,4,5} let m; be a ternary operation on C defined by m;(z,y,z) = e except
if {z,y} C{ak,bx}, 2 = sg, k= 1 or 2, in which case m;(z,y, 5t )|{a, b,} 15 given by

ar b arp by ar by
ap | ag ag ap | ag by, ar | by, ag
by | by by by | by ag by | ag ag
J=1 J=2 J=3

ar bk ag bk

ar | ar  ak ar | ap by

b | ar bk by | b by

J=4 J=295

Let M denote the set of operations {mi,ma, ms, ms,ms}. Note that the range of each
m € M is {e,ay,as,b1,b2} and that the element e is an absorbing element for all the
operations in U and in M. Also, any nonconstant unary operation in the clone generated
by Uy U U UM has e as a fixed point. For j € {1,2,3,4,5} we include m; in Fj; and for
J = 4 we include mjs in Fjj as well. Thus for any choice of j, {a1, e} is a trace of C;; and
(e,ar) is a 2-snag.

To complete the description of Fj;, if 1 = 3 we include the unary operation p3 defined by
p3(e) = ay and p3(z) = e for all © # e and if ¢ = 4 we include in Fj; the binary operation
pa(x,y) such that py induces a 2-snag on (ay, €) and py(z,y) = e for {z,y} Z {as,e}. Thus
typ(Ci;) = typ{a1,e} =1, for i = 3,4 or 5.

We consider the subalgebra D of CZQ-]- generated by the three elements a = (ay,a2),
b = (b1,b2) and s = (s1,s2). A series of claims will establish that {a,b} is a trace in
D and that the type of {a,b} is j. We will repeatedly use the fact that in C;; no basic
operation has both sy and s; in its range and that any basic operation that has more than
two elements in its range is in M.

CLAIM 1: D consists of the elements a, b and s, together with (¢, ¢), (e, ¢), (¢, e) for all
ceC. 1

It is clear that each of these 22 elements is in D. Moreover, it is easy to check that the
set of these 22 elements is closed under each of the operations in Fj;.
Cram 2: If p € Poly D and p(a) € {a,b}, then p(b) € {a,b}.

To verify this claim we use induction on the complexity of p. If the polynomial p is a
projection or a constant, we are done. Write p(z) = ¢(r1(z),...,r(z)) with g a k-ary basic
operation of C;; and rq,...,r; € Poly D. Since both @y and ay or both b; and by are in the
range of p, the basic operation ¢ must be anm € M. So p(z) = m(rq(z),r2(z), rs(z)) where
Claim 2 holds for the r;. Now p(a) € {a,b} implies rs(a) = s, but the only unary polynomial
whose range contains s is a projection or constant, so r3(b) = s as well. If p(a) € {a,b},
then rq(a) and ro(a) are in {ay, by} X {az,by} and by Claim 1 we get rq(a),r2(a) € {a,b}.
By the induction hypothesis 4 (b),r2(b) € {a, b} as well, so p(b) € {a,b}. 1
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From Claim 2 and Lemma 2.7 it follows that {a,b} is a subtrace of D.

It remains to show that the type of {a, b} is j. We first note that if g € Pol, D induces a
1-snag on {a, b}, then by Claim 2, g({a,b}?) C {a,b}. Next we let g; denote m(z,y, 5)|{a,b}
and if j = 4 we define G4 = ({a,b},94,95) and if 7 # 4, G; = ({a,b},g;). Then Gj is a
minimal algebra of type j. An induction similar to that used in Claim 2 proves the following
claim and thereby shows that the type of {a,b} is j in the subalgebra D of C?]-.

Cramm 3: If p € (Pol D),y then p € Pol Gj;. I
Thus the proof of Theorem 3.2 is complete. i

REMARK 3.3: With a little more effort it can be shown that in the construction in Theorem
3.2, {a,b} is an (e, 3)-trace in D in which the congruence relation a has only one nontrivial

block, D — {a, b}, and 3 has two blocks, D — {a,b} and {a,b}.

We have presented examples of algebras A and integers m > 1 for which typ{S(A™)}
includes elements not in typ{S(A)}. In Theorem 3.2, m = 2; in the McKenzie exam-
ple, m = 6 with |A| = 8; and in the example based on 6.23.8 of [4], m = |A|. These
results suggest that perhaps there is a bound mg, depending on the size of A, such that
typ{V(A)} = U typ{S(A™)}. The next two results show that for types other than 1

m<mg
there is no such bound. In each case, statement (3) may be also of interest to those who
work on the distribution of subdirectly irreducible algebras in finitely generated varieties.
Readers unfamiliar with this topic may consult [4], especially Chapter 10 and Problem 12

(page 192), while readers not interested in this topic should skip (3) and its proof.

THEOREM 3.4. Foreachk € {2,3,4} and for each integer m > 1 there exists a five-element
algebra C such that

(1) typ{V(C)} = {L,k,5};
(2) k € typ{S(C™)} but typ{S(C")} ={1,5} for allr, 1 <r < m;
(3) The variety generated by C contains arbitrarily large finite and arbitrarily large

infinite subdirectly irreducible algebras of type k monolith, but the smallest such
algebra has m + 3 elements.

ProOF: Let C' ={0,1,2,a,b} and let ¥ be the set of all sequences in {1,2}™ that contain
exactly one occurrence of 2. Define f : C™%% — C as follows: for ¢ € C™ and u,v € C

a ifceX\{(2,1,1,...,1)}, u=v=a;
fle,u,v)=<¢ b ifeeB\{(2,1,1,...,1)}, u=v=10

0 otherwise.

Let H = {hy,hy,hn, b} be a set of (m + 2)-ary operations on C such that for h € H,
¢ € C™, and u,v € C, the value of h(¢,u,v) = 0 except if ¢ € ¥ and {u,v} C {a,b} in
which case the value of h(¢, u,v) is determined by the values of u and v according to the
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following scheme:

a b a b a b a b
a | a b a | a b a | a a a | b a
b | b a b | b b b | a b b | a a
h_|_ h/\ h\/ hJ,

Ifk =2welet C=(C, f,hy);ifk=3,C=(C, f,h);andif k =4, C = (C, f,hn,hy). We
shall prove that the algebra C defined this way satisfies the requirements of the Theorem.

Let us outline the argument. We start investigating a subtrace {¢,d} of type different
from 1 and 5, in a subalgebra B of C". We show that the elements of B N {1,2}" must
satisfy a certain condition. This condition will imply that r > m, and that the type of this
subtrace is k. Then we show that every subdirectly irreducible factor of B having type k
monolith must have at least m + 3 elements.

In the second part of the proof we construct a particular subalgebra B, of C”", which
contains a subtrace of type k, and which has a large subdirectly irreducible factor of type k
monolith.

First we note the following easily verified facts.

(1) Except for the projection operations and constants, every polynomial of C has range
contained in {0, a,b}. Furthermore, every nontrivial polynomial of C" has its range
contained in {0, a,b}".

(ii) Every 1l-snag (c¢,d) of C has {c¢,d} C {0,a,b}.

(iii) The element 0 is an absorbing element for C, i.e. for every non-constant unary
polynomial p of C we have p(0) = 0.

(iv) Corresponding to k = 2, 3, and 4, respectively, the induced algebra C|, ) is poly-
nomially equivalent to a group (with =z +y = h4(2,1,...,1,2,y)), to a Boolean
algebra, and to a distributive lattice.

(v) 1,5 € typ{C}, namely {1,2} and {a,0} are subtraces of type 1 and 5, respectively.

To see (iv), use the polynomials h(2,1,1,... ,1,z,y) to construct the basic operations of
this induced algebra. If k = 4, then C?\{(a,b)} is a subalgebra of C?, hence the induced
algebra on {a, b} is not a Boolean algebra (it cannot contain an induced unary operation
switching a and b). If k = 2, then the subalgebra C*\{(z,y,u,v) € {a,b}* |z +y # u + v}

proves the same. Statement (v) follows from Lemma 2.7, using (i) and (iii) above.

Now let 1 < r and suppose B is a subalgebra of C" with ¢,d € B such that {c, d} is
a subtrace and the type of {¢,d} is not 1 or 5. So we can assume that (d,¢) is a 1-snag
by virtue of a polynomial p € Poly B, that is, P(E’ ¢) = ¢ and p(¢,d) = p(d,¢) = d. The

elements ¢ and d are in the range of p so & and d are in {0,a,b}". Also, for each 1 < j <r
we have either {¢;,d;} C {a,b}, or ¢; = d; = 0. Indeed, if, say ¢; = 0 but d; # 0, then ¢
would be an absorbing element of the induced algebra on {¢,d}, which cannot happen in
types 2, 3, or 4. Let J ={j |1 <7 <r,{¢;,d;} C{a,b}}.

The polynomial p(z,y) may be written as either h(t!(z,y),... ,#"%(z,y)) for h € H or
as f(t'(z,y), ... ,t™T%(z,y)). If the polynomial t!(z, y) is not constant for some 1 < i < m,
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then t(¢,¢) and t(¢,d) are contained in {0,a,b}", hence p(¢,&) = p(¢,d) = 0, which
contradicts ¢ # d. Therefore ti(x,y) is a constant #' for 1 <4 < m. A similar argument
works in each of the coordinates of B, showing that for each j € J, the sequence (t}, coes )
must be in ¥, and if the outermost basic operation of p is f, then this sequence is not equal
to (2,1,1,...,1).

Suppose that one of the elements ' (1 < i < m) satisfies that for every j € J, t;- # 2.
Notice that if the outermost operation of p is f, then ¢! is such an element. Since every
operation h € H 1s totally symmetric in its first m variables, in the case when the outermost

basic operation of p is h, we can also assume that ¢ = 1, by suitably rearranging ¢ ',... , ™.
We shall get a contradiction from this assumption.
Let g(z,y) = f(#',... ,#™,2,y). By the properties of ' ... ,#™ listed above, and the

fact that ¢ and d are contained in {a,b,0}", we see that g(c,¢) = ¢ and g(d,d) = d.
Furthermore, we have g(c, J) = g(J, ¢), call this element €. The polynomials g(z,¢) and
g(d,y) send {¢,d} to {¢,€} and to {€ d}, respectively. Since we assumed that {¢,d} is
a subtrace, by Lemma 2.7 either {¢,d} ~ {¢, &} or {¢,d} ~ {d,€}. Let j be such that
¢j # d;. Then e¢; = 0 by the definition of g. Hence either of the above polynomial
isomorphisms imply, as 0 is absorbing, that ¢; = 0 or d; = 0, which is a contradiction,
since {c¢;,d;} = {a, b} for all such j.

So our assumption was wrong, hence for each 1 < i < m there exists a j(z) € J such
that t;(i) = 2. We have also seen that for every j € J the sequence (t}, e ,t;”) must be in
Y, hence contains exactly one occurrence of 2. Therefore the numbers j(1),...,j(m) are
all different, proving m < |J| < r. Thus we have proved that typ{S(C")} C {1,5} for all
1 <1 < m. This, together with (v), gives the second part of statement (2) of the theorem.

In order to show that typ{V(C)} C {1,k, 5} we prove that typ{c¢,d} = k. Notice that
for every h € H that is a basic operation of C, the binary polynomial h(t!,... ™ z,y) is
in the induced algebra on {¢,d}. On the other hand, take a j with ¢j # d;. By projecting
B to its j-th coordinate, observation (iv) above shows that the subtrace {¢,d} indeed has
type k.

So far, we have been chasing type k subtraces. The next task is to actually construct
them, and this 1s easy, based on the knowledge above. Let m < r and define the set S, to
consist of those elements of {1,2}" which contain at least one occurrence of 2 and at least
m — 1 occurrences of 1. Let B, be the union of 5, and the set of those sequences from
{a,b,0}", which are either constant or contain at least one 0. This is clearly the underlying
set of a subalgebra of C". Let a, b be the corresponding constant vectors. We show that
{a,b} is a subtrace in B, of type k.

First notice that if ¢!,... ,é™*2 € B,, then f(c!,...,e™%?) always has a coordinate

! cannot be constant 1). Hence @, b are not in the range of f. Next we

which is 0 (since ¢
show that for every unary polynomial p, if p(a@) € {a, b}, then p(b) € {a@,b}. (In other words,
{@,b} is a class of the congruence ©(a,b).) Indeed, the same argument as above yields that
if such a p is not a constant or the identity map, then p(z) = h(t',... ,#™ pi(z), p2(x))
such that for each 1 < j < r we have (t}, ..., t]") € B. Moreover, p1(a), p2(a) must be in
{a,b}", hence the definition of B, implies that p;(a@),ps(@) € {a@,b}. Thus we are done by
induction. Therefore, by Lemma 2.7, {@,b} is a subtrace. Finally choose t1,... ,#™ from

S, to satisfy that for each 1 < 7 < r we have (t}, e ,t;”) € Y. This can be done easily, in
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many ways. Then the polynomials h(t',... ,#™ z,y) for the basic operations h € H of C
show that the type of this subtrace cannot be 1 or 5, so it must be k by the results above.
We have proved all assertions of Theorem 3.4, except (3) on the distribution of subdirectly
irreducible algebras.

Suppose that B/« is a subdirectly irreducible factor of B with type k monolith 3/a.
Then (a,3) is a type k prime quotient of B. Let {¢,d} be a corresponding subtrace.
Choose this subtrace so that the set K = {j |1 < j < r,¢; # d;} is as small as possible.
Let p(z,y) be a polynomial inducing a 1-snag on (d, ¢), so p and the corresponding vectors
t' have all the properties established above. We prove that the elements #',... ,#™,& d,0
are pairwise incongruent modulo «, which yields that |[B/a| > m + 3 as desired.

Take a pair (#,0) € # which is not in . We can define the set K’ corresponding to
this pair as above: K' = {j | 1 < j < ryu; # vj}. By 2.8 (4) of [4], there exists a
unary polynomial g of B such that {g(@),g(?)} is an (o, 3)-subtrace. If u; = v;, then
this equality holds for the g-images, too, hence j is not in the set K" corresponding to
the subtrace {g(u),¢(v)}. Hence the set K is minimal for all pairs in 3\a, not just for
subtraces.

First suppose that t'at/ for some i £ j. To simplify notation we may assume that 7 = 1

and j = 2. With p(z,y) = h(#1,#2,43,... 4™, ™ (2, y), ™% (2,y)) as given above, set
Plz,y) = h(tl,tl_,tg,... ST T (g y), 472 (2, y)), and let @ = p/(E,¢), v = p'(E,d).
Then @ac and vad, so by transitivity, (z,0) € f\a. Let K' = {7 | 1 < j < rju; # v;}.

Choose any 1 < j < r, and consider the altered sequence (t},t},t;’-, e ,t;n). There are
two cases. The first case 1s, when this altered sequence is still in ¥. Then u; = ¢; and
v; = dj. For such a j we therefore have that 7 € K’ implies j € K. In the second case,
when this altered sequence is not in ¥, we have u; = v; = 0. Thus K’ C K. This latter
case occurs for every 53 € K with t} = 2, and here ¢; # dj. Thus K’ is a proper subset of
K, contradicting the minimality of K.

This contradiction proves that (¢,#/) ¢ o if i # j. Now assume that #'a®, where @ is
one of €, d, 0. Then replace t' by @ in the second coordinate of the definition of p/. The new
p' vields @ = © = 0, hence éad by transitivity, which is a contradiction. Finally, to show
that a0 and da0 are also impossible, use h(f!,... ,#™ z,y) for the basic operations h € H
of C to show that ¢a0 and da0 imply each other, hence both imply éad by transitivity,
which is again a contradiction. Thus B/« indeed has at least m + 3 elements.

Finally, to construct large subdirectly irreducible algebras, let o be the congruence on
B, with a single nontrivial block that contains all sequences having a 0 entry. Add the
class {@,b} to a to get the congruence 3. Then 3 covers a, and the type of this quotient is
k. We show that B, /a is subdirectly irreducible.

Let ¢ be a congruence of B strictly containing or. We need to show that 3 C . First

assume that ¢ and 5 are different elements of S,., which are t-congruent. We can assume,

say, that t; = 2 and s; = 1. There are at least m — 1 occurrences of 1 in t, so we
can choose t2,... ,t™ from S, such that for each 1 < 7 < r we have (t},... ,t;”) € X,
where ¢! = ¢. Consider the polynomials p(z) = h(t',t%,¢3,... ,#™ 2, 2), and p'(z) =
h(5,t%,¢%, ... ;™ x, z) for some basic operation h € H of C. Then p(b) € {a,b} while the

first coordinate of p/(b) is 0, hence it is congruent to 0 modulo a. The same conclusion
holds if § is any other element of B,. Finally, using the basic operations h € H of C we
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see that @a0 and ba0 imply each other, hence @aab by transitivity, showing that 3 C .
Thus B/« is indeed subdirectly irreducible. In this proof we did not use that r is finite, so
this method yields infinite subdirectly irreducibles, too. Thus the proof of Theorem 3.4 is
complete. [

THEOREM 3.5. For each integer m > 1 there exists a four-element algebra D such that
(1) typ{V(D)} ={1,3,5};
(2) 5 € typ{S(D™)} but typ{S(D")} ={1,3} forall r, 1 <r < m;
(3) The variety generated by D contains arbitrarily large finite and arbitrarily large
infinite subdirectly irreducible algebras of type 5 monolith, but the smallest such
algebra has m + 2 elements.

PROOF: Let D = {1,2,a,b} and let ¥ be as in the proof of Theorem 3.4. Define f :
D™*? 4 D as follows: for d € D™ and u,v € D
_ b oifde S\{(2,1,1,..., 1)}, {u,v}={a,b};

fld,u,v) = { _
a otherwise.
We let h: D™t? — D be such that h(dy,... ,dmt2) = a except b = h(dy,... ,dm,b,b) for
all (dy,...,dm) € ¥. So finduces on {a, b} the binary operation + given by a+a = b+b = a
and a + b =b+ a = b, and (a,b) is a 2-snag by virtue of h. We show that D = (D, h, f)
satisfies the conditions. The main ideas of the proof of this theorem are the same as the
ones in the previous proof. Therefore we only outline the argument, present the new tricks,
and leave the details to the reader.

Consider the ordering given by a < b on {a,b}, this induces a partial order on {a,b}",
which we shall also denote by <. Take a subtrace {¢/,d'} of a subalgebra B of D", which
has type different from 1, say (d’,¢') is a 1-snag. Then by arguments similar to those given
at the start of the proof of Theorem 3.4 one may construct & d € {a,b}" such that {&,d'}
and {¢,d} are polynomially isomorphic (thus {e, d} is also a subtrace of B of the same
type), and moreover, we have that ¢ < d, and h(t!,... | #™ z,y) induces a 2-snag on {¢,d}
for appropriate elements th ... t™of BN{1,2}".

As in the proof of Theorem 3.4, suppose that ¢! satisfies that t} # 2 for j € J, where
J={j|1<j<rdj# a}. Consider the polynomials g(z,y) = f(t',... ,#™,z,y) and
g(z,y) = q(q(x,&),y). Then g yields an Abelian group addition on {¢,d} with & being the
zero element. Indeed, it is true for the coordinates belonging to J, since ¢ induces + for
these, and the other coordinates of all relevant elements are a. Thus the type of {¢,d} is 3
in this case.

Therefore, if the type of { d} is 5, then, as in the proof of Theorem 3.4, we have
m < |J| < r. The type of this subtrace cannot be 2, since it has a 2-snag. To prove that
it cannot be 4 either, it is easy to check that if p is a non-constant unary polynomial of
B with p(¢) > d, of least possible complexity, then p(z) = f(t',... ™, pi(z), p2(z)) such
that ¢1,... ,#™ satisfy the condition of the previous paragraph, hence {¢,d} has type 3.
Thus the type set of this variety is a subset of {1,3,5}. The rest of the proof is similar to
the proof of Theorem 3.4, and is left to the reader. |

For any ordered pair of positive integers (p, ¢) there are, up to polynomial equivalence,
only finitely many algebras of cardinality p in which all the basic operations have arity
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at most ¢. Therefore, there is an integer—valued function #(p,q) such that if A is any
algebra of size p in which every basic operation has arity at most ¢, then typ{V(A)} =
U typ{S(A")}. For example, it is immediately verified that ¢(p,1) = #(2,¢q) = 1 for

r<t(p,q)
all p and ¢. Indeed, if ¢ = 1, then our algebra is unary, and the variety it generates

contains only type 1. If p = 2, then using the description of minimal algebras quoted in the
Introduction it can be shown that for types 2, 3 and 4 our two element algebra generates a
congruence modular variety, and we are done by the theorem in [6] quoted at the beginning
of this section, while for type 5 our algebra is polynomially equivalent to a semilattice,
and the meet operation is given by a term. Although it is probably unlikely that an exact
formula for #(p, q) will be found, it would be of interest to have a good upper bound for
this function.

A consequence of the next result is that for every finite algebra A, if 1 € typ{V(A)},
then 1 € typ{S(A")} for a choice of r < |A|*>. A slightly different proof of Theorem 3.6 is
found in [6].

THEOREM 3.6. Let W be a locally finite variety.

(1) If1 is in typ{W}, then 1 is in typ{Fw(2)}.
(ii) If 2 is in typ{W}, then either 1 or 2 is in typ{Fw(2)}.

PrOOF: Let A € W be a finite algebra with 1 occurring in typ{A}. Without loss of
generality we may assume 0 < 3 in Con A and that typ(0,3) = 1. By 7.2 of [4], there are
no l-snags in 8. Let (a,b) € f — 0 and let C be the subalgebra of A generated by {a,b}.
We denote by 3’ the congruence §|¢ of C. Since (a,b) € §', 8’ > 0¢. If (¢,d) € ' is a
l-snag in C, then (¢, d) is also a 1-snag in A. So ' contains no 1-snags and 7.2 of [4] shows
typ{0,3'} = {1}. We conclude 1 € typ{F(2)} since C is 2-generated.

If typ{W} includes 2 then a similar argument gives that there are no 2-snags in 3 and
no 2-snags in 3. Thus typ{0,5'} C {1,2} by 7.2 of [4]. 1

We conclude with an easy construction that shows that the result of Theorem 3.6 (i)
cannot be extended to types other than 1. (This result is related to Example 3 in K.
Kearnes [5].)

THEOREM 3.7. For eachi € {2,3,4,5} and for each m > 1 there exists an algebra A such
that i € typ{A} and for 1 < n < m, typ{Fy(a)(n)} = {1}.

PROOF: Let A betheset {0,1,...,m,a,b}. Define the operation f; : A™*? — A by setting
filer, .o yemyCma1, Cma2) = 0 except if ¢; = 7 for all j < m and {¢m41,¢m+2} C {a,b} in
which case f(1,2,... ,m,z,y) € (Poly A)|{, sy is given by:

a b a b a b a b

a | a b b | b o« a | a b a | a a

b | b b | a b | b b b | a b
1 =2 1 =3 1 =4 1 =9
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For 1 # 4 we let A = (A, f;) and for i = 4 we let A = (A, f4, f5). Note that the range of
each f; is {0,a,b}. If 3 is the equivalence relation on A for which {a,b} is the only non-
singleton equivalence class, then [ is easily seen to be a congruence of A and typ(0, 3) = i.
If n<mandp= f(zi,...,%i,,,) s a term involving the variables x1,... , 25, then p is
identically equal to 0 since there exist 1; = 1} for 1 <y < k < m. From this it follows that
Fy(a)(n) is essentially unary for every n < m. i
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