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Abstract. We prove that if G is a 2-step nilpotent group, then an operation f : Gn → G is a local term
operation of G if and only if f preserves the subgroups of G4.

1. Introduction

The clone of an algebra A in a language L is the collection Clo(A) of operations on A that are
the interpretations of the L-terms. The members of Clo(A) are called term operations of A. A
κ-ary algebraic relation on A is a subalgebra of Aκ. It is known that an operation on A belongs to
Clo(A) if and only if it preserves the |A|m-ary algebraic relations of A for all m < ω. The following
three properties of an operation f : An → A are related by the implications (i) ⇒ (ii) ⇒ (iii)d:

(i) f preserves the algebraic relations of A (i.e., f ∈ Clo(A));
(ii) f preserves the finitary algebraic relations of A;
(iii)d f preserves the d-ary algebraic relations of A (for some fixed d < ω).

These implications are irreversible in general, but from the third sentence of this paragraph (i) and
(ii) are equivalent for every f if A is finite.

If, for a particular algebra A, there is a finite d such that every operation f on A satisfies
(i) ⇔ (iii)d, then we say that Clo(A) is determined by the d-ary algebraic relations of A. When
A is finite, this means exactly that there is a d < ω such that (iii)d ⇒ (ii) holds for every operation
f on A. We consider it desirable for Clo(A) to be determined by the d-ary algebraic relations for
some d < ω when A is finite, since this yields a useful finite description of Clo(A).

It is proved in [1] that if G is a finite group with abelian Sylow subgroups, then Clo(G) is
determined by the 3-ary algebraic relations of G. It is also proved that if G is a finite nilpotent
group, then Clo(G) is determined by the d-ary algebraic relations of G for d = |G|[G:Z(G)]−1. In this
paper we refine a special case of the last result to show that if G is a finite 2-step nilpotent group,
then Clo(G) is determined by the 4-ary algebraic relations of G. (It is shown in [1] that if Q is the
quaternion group, then Clo(Q) is not determined by the 3-ary algebraic relations of Q.)

In fact, our arguments also apply to some infinite groups. For this, denote the collection of all
operations on A that preserve the finitary algebraic relations of A by Clo(A), and call this collection
the local clone of A. The members of Clo(A) are called local term operations of A. We prove
that if G is a (possibly infinite) 2-step nilpotent group, then the local clone of G is determined by
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its 4-ary algebraic relations (i.e., f : Gn → G is a local term operation of G if and only if f preserves
the 4-ary algebraic relations of G).

2. Statements of Results

IfH is a group, thenH2×2 will denote the group of 2×2 matrices of elements ofH under pointwise
operations. This is a subgroup of the fourth power of H, hence is a 4-ary algebraic relation of H. If
A and B are normal subgroups of H, then MH(A,B) will denote the subgroup of H2×2 generated
by the set {[

a a
b b

]
,

[
c d
c d

]
∈ H2×2 : a ≡ b (mod A) and c ≡ d (mod B)

}
. (2.1)

For a group G, we will use the phrase the basic relations of G to refer to the collection of all
binary algebraic relations of G together with all 4-ary algebraic relations of the form MH(A,B)
where H is a subgroup in G and A and B are normal in H.

Every local term operation of a group G preserves all finitary algebraic relations of G, hence
preserves the basic relations of G. The main result of this paper is that if G is 2-step nilpotent,
then the converse statement also holds.

Theorem 2.1. If G is a 2-step nilpotent group, then every operation on G that preserves the basic
relations of G is a local term operation of G.

We will prove Theorem 2.1 in a stronger form which explicitly describes the local term operations
of G. To be able to state that version of the result we need some notation. Let Ẑ denote the profinite
completion of the ring Z. To describe this object, let Λ be the directed set whose elements are the
positive integers and whose order is defined by m � n if m divides n. Let Zm = Z/mZ, and for
k ∈ Z let k denote its residue class in Zm. Ẑ is the inverse limit of the inverse system (Zm)m∈Λ

where the transition maps ϕn,m : Zn → Zm (m � n) are the natural surjective homomorphisms.
This inverse limit may be realized concretely as the subring of the product

∏
m∈Λ Zm consisting of

all tuples (km)m∈Λ satisfying

km ≡ kn (mod m) whenever m � n.

The elements of Ẑ will be called profinite integers.
Let G be a group, and let a ∈ G be an element of finite order |a|. For any profinite integer

κ = (k̄m)m∈Λ ∈ Ẑ the sequence (akm)m∈Λ is a tuple that is eventually constant with respect to the
direction on Λ. Namely, for any n ∈ Λ that is above |a| in the �-order we have k|a| ≡ kn (mod |a|),
hence ak|a| = akn whenever |a| � n. We will denote the eventually constant value ak|a| of the
sequence (akm)m∈Λ by aκ.

Claim 2.2. If G is a torsion group and κ is a profinite integer, then the unary operation u(x) = xκ

is a local term operation of G.

Proof. Suppose that R ≤ Gn is a finitary algebraic relation of G. R itself is a torsion subgroup,
since if a = (a1, . . . , an) ∈ R, then |a| = lcm(|a1|, . . . , |an|) (=: r). We have

u(a) = aκ = (aκ
1 , . . . , a

κ
n) = (a

k|a1|
1 , . . . , a

k|an|
n ) = (akr

1 , . . . , a
kr
n ) = akr ,

and akr ∈ R since R is a subgroup containing a. Thus, u preserves R. Since R was an arbitrary
finitary algebraic relation of G, u is a local term operation. �

Theorem 2.1 follows from the stronger statement below.
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Theorem 2.3. Let G be a 2-step nilpotent group, and let f be an n-ary operation on G. The
following conditions on f are equivalent.

(a) f preserves the basic relations of G.
(b) f is a local term operation of G.
(c)

f(x1, . . . , xn) = xκ1
1 · · ·xκn

n

∏
1≤i<j≤n

[xi, xj ]λij

where
• κi (1 ≤ i ≤ n) are profinite integers if G is a torsion group and ordinary integers

otherwise; and
• λij (1 ≤ i < j ≤ n) are profinite integers if G′ is a torsion group and ordinary integers

otherwise.

It follows from Claim 2.2 that the operations in (c) are local term operations of G. Therefore (c)
⇒ (b) in Theorem 2.3. The implication (b) ⇒ (a) holds because local term operations preserve all
finitary algebraic relations. The main assertion of Theorem 2.3 is therefore the implication (a) ⇒
(c) whose proof will occupy the remaining sections of this paper.

3. Some reductions

In this section we will reduce the proof of implication (a) ⇒ (c) in Theorem 2.3 to a study of
some special operations f that we will call ‘absorptive’, and will establish some basic properties of
these operations. We will also discuss statements that will allow us to carry over results proved for
operations on certain subgroups or quotients of G to operations on G.

An operation f(x1, . . . , xn) on G is absorptive in variable i if

f(x1, . . . , xi−1, 1, xi+1, . . . , xn) = 1 for all x1, . . . , xi−1, xi+1, . . . , xn ∈ G. (3.1)

An operation is absorptive if it is absorptive in variable i for all i. According to this definition a
nullary operation c is absorptive if c = 1, and a unary operation f(x) is absorptive if f(1) = 1.

Lemma 3.1. Let G be a group, and let C be a clone on the set G. If Clo(G) ⊆ C, then every
operation f ∈ C such that f(1, . . . , 1) = 1 can be written as a product of absorptive operations from
C.

Proof. Suppose that the lemma is false, and that n is the least arity of an operation f ∈ C satisfying
f(1, . . . , 1) = 1 that cannot be written as a product of absorptive operations of C. Necessarily
n > 1. Among such operations of arity n in C, choose a particular operation f that is absorptive in
a maximum number of variables. Rearranging variables if necessary, it may be assumed that (3.1)
holds for 1 ≤ i < k, but that any operation in C of arity n that satisfies (3.1) for k or more variables
is a product of absorptive operations of C.

Let g(x1, . . . , xk−1, xk+1, . . . , xn) = f(x1, . . . , xk−1, 1, xk+1, . . . , xn). Since g ∈ C has arity less
than n, our assumptions guarantee that g is a product of absorptive operations from C. The
operation

h(x1, . . . , xn) := g(x1, . . . , xk−1, xk+1, . . . , xn)−1 · f(x1, . . . , xn) ∈ C
is n-ary and satisfies (3.1) in its first k variables, hence is also a product of absorptive operations
from C. Thus f = gh is a product of absorptive operations from C, contrary to assumption. �

Lemma 3.1 allows us to restrict our attention to absorptive operations. The next lemma shows
that implication (a) ⇒ (c) in Theorem 2.3 holds for unary operations.
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Lemma 3.2. Let G be a group, and let f be a unary operation on G such that f preserves the
subgroups of G2.

(1) If G is a torsion group, then there exists a profinite integer κ such that f(x) = xκ for all
x ∈ G.

(2) If G has an element of infinite order, then there exists an integer k such that f(x) = xk for
all x ∈ G.

Proof. For this proof let |a| denote the order of an element a ∈ G of finite order, and let |a| = 0
if a ∈ G is of infinite order. Furthermore, we extend the notation Zm = Z/mZ and ≡ (mod m)
to the case m = 0 in the natural way: Z0 is the ring of integers, and ≡ (mod 0) is the equality
relation on Z.

To prove the lemma let f be a unary operation on G that preserves the subgroups of G2. For
every cyclic subgroup C = 〈a〉 of G, f preserves C2 and therefore also C, so f(C) ⊆ C. Hence there
exists an integer r(a) such that f(a) = ar(a). Similarly, for arbitrary cyclic subgroup H = 〈(a, b)〉
of G2 we have f(H) ⊆ H, therefore

f
(
(a, b)

)
= (a, b)k = (ak, bk) for some integer k.

However,
f
(
(a, b)

)
=

(
f(a), f(b)

)
= (ar(a), br(b)),

so
r(a) ≡ k (mod |a|) and r(b) ≡ k (mod |b|) for some integer k. (3.2)

In particular, it follows that

r(a) ≡ r(b) (mod |a|) whenever |a| divides |b|. (3.3)

If G has an element b of infinite order, then |b| = 0 and |a| divides |b| for all elements a ∈ G.
Therefore we get from (3.3) that f(a) = ar(a) = ar(b) for all a ∈ G. This proves that statement (2)
holds for k = r(b).

From now on we will assume that G is a torsion group, that is, |a| is a positive integer for
all a ∈ G. Let I denote the subset of Λ that consists of all positive integers |a| (a ∈ G). It
follows from (3.3) that r(a) ≡ r(b)(mod m) whenever m = |a| = |b|. Hence there exists a sequence
δ = (d̄m)m∈I ∈

∏
m∈I Zm such that

r(a) ≡ d|a| (mod |a|) for all a ∈ G. (3.4)

Moreover, (3.2) implies that δ has the following property:
(∗) the system

z ≡ dm (mod m)

z ≡ dn (mod n)

of simultaneous congruences has a solution for all m,n ∈ I.
(3.4) implies that f(a) = ar(a) = ad|a| for all a ∈ G. Using property (∗) of δ we will show in
Claim 3.3 below that there exists a profinite integer κ = (k̄m)m∈Λ ∈ Ẑ such that d̄m = k̄m for all
m ∈ I. Thus

f(a) = ad|a| = ak|a| = aκ for all a ∈ G,
proving statement (1).

So, it remains to verify the following claim.

Claim 3.3. If I is a subset of Λ and δ = (d̄m)m∈I ∈
∏

m∈I Zm satisfies condition (∗), then there
exists a profinite integer κ = (k̄m)m∈Λ ∈ Ẑ such that d̄m = k̄m for all m ∈ I.
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For each i ∈ I let N (i) denote the set of all profinite integers κ = (k̄m)m∈Λ ∈ Ẑ such that d̄i = k̄i.
Since δ satisfies condition (∗), the Chinese Remainder Theorem implies that for every finite subset
F of I the system

z ≡ dm (mod m), m ∈ F,
of |F | simultaneous congruences has a solution kF . Hence κF =

(
kF

)
m∈Λ

∈ Ẑ is a profinite integer
such that d̄m = kF for all m ∈ F . Thus κF ∈

⋂
m∈F N

(m). This shows that
⋂

m∈F N
(m) 6= ∅ for all

finite subsets F of I. We will use a compactness argument to conclude from this that
⋂

m∈I N
(m) 6= ∅.

This will finish the proof, because every profinite integer κ = (k̄m)m∈Λ in
⋂

m∈I N
(m) satisfies

d̄m = k̄m for all m ∈ I.
Each Zm (m ∈ Λ) with the discrete topology is a compact Hausdorff space, therefore their product∏

m∈Λ Zm is a compact Hausdorff space. Ẑ is a closed subset of
∏

m∈Λ Zm, so Ẑ with the subspace
topology is also a compact Hausdorff space. The sets N (i) are clopen in Ẑ. Therefore

⋂
m∈I N

(m)

is an intersection of a family of closed sets in Ẑ such that the intersection of any finite subfamily
is nonempty. Since Ẑ is compact, it follows that the intersection

⋂
m∈I N

(m) is not empty. This
completes the proof of Claim 3.3 and also of Lemma 3.2. �

The next lemma will allow us to carry over results proved for operations on certain subgroups or
quotients of G to operations on G.

Lemma 3.4. Let G be a group, H a subgroup of G, and H/N a quotient of H. If f is an operation
on G such that f preserves the basic relations of G, then

(1) restriction to H yields a natural action fH of f on H, and fH preserves the basic relations
of H;

(2) fH has a natural action on the set H/N , and the resulting operation fH/N preserves the
basic relations of H/N .

Moreover, if f is absorptive then so are fH and fH/N .

Proof. If f preserves all subgroups of G2, then it preserves the subgroup H2 as well, hence f
preserves H. Thus f can be restricted to H to yield an operation fH on H. Each basic relation of
H is a basic relation of G, therefore fH preserves the basic relations of H. This proves assertion
(1).

To prove assertion (2) let ν : H → H/N be the natural homomorphism. Its kernel ker (ν) is the
congruence of H that corresponds to the normal subgroup N , so ker (ν) is a basic relation of H.
Hence fH preserves ker (ν) by part (1) of this lemma. Thus ker (ν) is a congruence of the algebra
(H; fH). Hence there is a unique way to define an operation fH/N on the set H/N so that ν is a
homomorphism from (H; fH) to (H/N ; fH/N ); namely:

fH/N (x1N, . . . , xnN) := fH(x1, . . . , xn)N for all x1, . . . , xn ∈ H.

To establish that fH/N preserves the basic relations of H/N we will use the following claim.

Claim 3.5. For arbitrary subset S of (H/N)m, fH/N preserves S if and only fH preserves the
preimage R of S under the coordinatewise action of ν.

This claim is an easy consequence of the correspondence theorem for general algebras. To see this
recall that fH/N preserves S means that S is a subalgebra of (H/N ; fH/N )m, while fH preserves
R means that R is a subalgebra of (H; fH)m. Since fH/N was defined so that ν : (H; fH) →
(H/N ; fH/N ) is a homomorphism, it follows from the correspondence theorem that S is a subalgebra
of (H/N ; fH/N )m if and only if R is a subalgebra of (H; fH)m. Thus the claim follows.
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Now we will show that fH/N preserves the basic relations of H/N . Let S be a basic relation of
H/N , and let R denote the preimage of S under the coordinatewise action of ν. By Claim 3.5 it
suffices to verify that fH preserves R. If S is a subgroup of (H/N)2, then R is a subgroup of H2,
so fH preserves R by part (1) of this lemma.

Now let S be a quaternary basic relation of H/N of the form S = MH/N (C,D) where C,D are
normal subgroups of H/N . Hence C = A/N and D = B/N for some normal subgroups A,B of H
that contain N . Therefore MH(A,B) is a basic relation of H. For later reference we describe the
relationship between MH(A,B) and MH/N (C,D) = MH/N (A/N,B/N) in a separate claim.

Claim 3.6. If H is a subgroup of G and A,B,N are normal subgroups of H such that N ≤ A∩B,
then

(1) the natural homomorphism ν : H → H/N maps MH(A,B) onto MH/N (A/N,B/N), and
(2) the preimage of MH/N (A/N,B/N) under ν consists of all 2× 2 matrices that are related by

ker (ν) (entry-by-entry) to some matrix in MH(A,B).

Part (1) of the claim follows from the fact that ν maps the generating set (2.1) of MH(A,B) onto
the generating set{[

aN aN
bN bN

]
,

[
cN dN
cN dN

]
∈ (H/N)2×2 :

aN ≡ bN (mod A/N) and cN ≡ dN (mod B/N)
}

of MH/N (A/N,B/N). Part (2) is an easy consequence of (1).

By Claim 3.6 the preimage R of S = MH/N (C,D) = MH/N (A/N,B/N) under ν is

R =
{[
u1 u2

u3 u4

]
∈ H2×2 : there exists

[
v1 v2
v3 v4

]
∈ MH(A,B)

such that (ui, vi) ∈ ker (ν) for i = 1, 2, 3, 4
}
.

Here MH(A,B) and ker (ν) are basic relations of H, therefore fH preserves these relations by part
(1) of Lemma 3.4. Using this fact and the description of R above one can easily check that fH also
preserves R. This proves that fH/N preserves S = MH/N (C,D).

Finally, let S be an arbitrary quaternary basic relation of H/N , that is, S = MJ(C,D) where J
is a subgroup of H/N and C,D are normal subgroups of J . Hence J = K/N for some subgroup K
of H that contains N . Now we can apply the fact proved in the preceding paragraph to K in place
of H to conclude that fK/N preserves S = MK/N (C,D). Since fK/N is the restriction of fH/N to
K/N we get that fH/N also preserves S = MK/N (C,D). This completes the proof of part (2) of
Lemma 3.4.

The last statement of Lemma 3.4 follows easily from the definitions of fH and fH/N . �

Later on in this section it will be useful to have an explicit description for the basic relations
MH(A,B) of G.

Lemma 3.7. If H is a subgroup of a group G, and A,B are arbitrary normal subgroups of H, then

MH(A,B) =
{[

t u
v w

]
∈ H2×2 : t ≡ v (mod A), t ≡ u (mod B), (3.5)

and tu−1 ≡ vw−1 (mod [A,B])
}
.
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In particular, if [A,B] = {1}, then for every matrix
[
t u
v w

]
∈ MH(A,B) we have

t = u ⇔ v = w.

Proof. Let R denote the subset of H2×2 on the right hand side of (3.5). First we will verify the
equality MH(A,B) = R under the additional assumption that [A,B] = {1}. In this case

R =
{[

t u
v w

]
∈ H2×2 : t ≡ v (mod A), t ≡ u (mod B), and tu−1 = vw−1

}
.

Since R contains the generating set (2.1) of MH(A,B), the inclusion MH(A,B) ⊆ R will follow if
we establish that R is a subgroup of H2×2. It is easy to see that

Ř =
{[

t u
v w

]
∈ H2×2 : t ≡ v (mod A), t ≡ u (mod B)

}
is a subgroup of H2×2 and R ⊆ Ř. Therefore if

[
t u
v w

]
,

[
t̃ ũ
ṽ w̃

]
∈ R, then the matrices[

t u
v w

]−1

=
[
t−1 u−1

v−1 w−1

]
and

[
t u
v w

]
·
[
t̃ ũ
ṽ w̃

]
=

[
tt̃ uũ
vṽ ww̃

]
are in Ř. To see that they are in R as well, we need to show that t−1u = v−1w and tt̃(uũ)−1 =

vṽ(ww̃)−1. The assumptions that
[
t u
v w

]
,

[
t̃ ũ
ṽ w̃

]
∈ R and [A,B] = {1} imply the following:

(1) tu−1 = vw−1 and hence also ut−1 = wv−1;
(2) t̃ũ−1 = ṽw̃−1;

moreover, since t−1v ∈ A and t−1u, t̃ũ−1 ∈ B, therefore
(3) t−1v commutes with t−1u, and
(4) t−1v commutes with t̃ũ−1.

Thus

v−1w = v−1wv−1v
(1)
= v−1ut−1v = v−1t(t−1u)(t−1v)

(3)
= v−1t(t−1v)(t−1u) = t−1u,

and

vṽ(ww̃)−1 = vṽw̃−1w−1 (2)
= vt̃ũ−1w−1 = t(t−1v)(t̃ũ−1)w−1

(4)
= tt̃ũ−1t−1vw−1 (1)

= tt̃ũ−1t−1tu−1 = tt̃ũ−1u−1 = tt̃(uũ)−1.

This proves that R is a subgroup of H2×2, and hence MH(A,B) ⊆ R. To prove the reverse inclusion

we will argue that for every matrix
[
t u
v w

]
∈ R the decomposition[

t u
v w

]
=

[
1 ut−1

1 wv−1

]
·
[
t t
v v

]
on the right hand side has both factors in the generating set (2.1) of MH(A,B). Since

[
t u
v w

]
∈ R,

the entries satisfy t ≡ v (mod A), t ≡ u(mod B), and tu−1 = vw−1. The first condition here

shows that
[
t t
v v

]
belongs to the generating set (2.1). The second and third conditions imply that

ut−1 ≡ 1(mod B) and wv−1 = ut−1. Hence
[
1 ut−1

1 wv−1

]
also belongs to the generating set (2.1).
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This completes the proof of equality (3.5) for the case when [A,B] = {1}. The last statement of
Lemma 3.7 is an immediate consequence of this equality.

Now we will prove equality (3.5) for arbitrary normal subgroups A,B of H. As before, R will
denote the right hand side of (3.5). Furthermore, let N = [A,B] and let ν : H → H/N denote
the natural homomorphism. Since [A/N,B/N ] = {1} in H/N , the special case of Lemma 3.7
just established implies that MH/N (A/N,B/N) = ν(R). Clearly, R is the preimage of the sub-
group MH/N (A/N,B/N) = ν(R) of (H/N)2×2 under ν. By Claim 3.6 ν maps MH(A,B) onto
MH/N (A/N,B/N). Thus it follows that MH(A,B) is a subgroup of R. To prove the equal-
ity MH(A,B) = R it remains to show that MH(A,B) contains all matrices whose entries are in
N = [A,B].

For arbitrary elements a ∈ A and b ∈ B[
[a, b] 1

1 1

]
=

[
a−1 a−1

1 1

]
·
[
b−1 1
b−1 1

]
·
[
a a
1 1

]
·
[
b 1
b 1

]
,

and all four matrices on the right hand side belong to the generating set (2.1) of MH(A,B).

Hence
[
[a, b] 1

1 1

]
∈ MH(A,B). Similarly,

[
1 [a, b]
1 1

]
,

[
1 1

[a, b] 1

]
,

[
1 1
1 [a, b]

]
∈ MH(A,B). Since

MH(A,B) is closed under multiplication, it follows that MH(A,B) contains all matrices whose
entries are in [A,B]. This completes the proof of (3.5). �

In the last two lemmas of this section (Lemmas 3.10 and 3.11) we will use Lemma 3.7 to establish
some properties of absorptive operations that preserve the basic relations of a 2-step nilpotent group
G. The following terminology will be useful.

Let G be a group and K be an abelian group. A function h : G×G→ K is linear in its first
variable if h(−, a) : G → K, x 7→ h(x, a) is a homomorphism for all a ∈ G, linear in its second
variable if h(a,−) : G → K, x 7→ h(a, x) is a homomorphism for all a ∈ G, and bilinear if it is
linear in both variables. We call h alternating if h(a, a) = 1 for all a ∈ G.

Lemma 3.8. Let G be a group, K an abelian group, and let h : G×G→ K be a function.
(1) If h is alternating and bilinear, then for all a, b, x ∈ G

(i) h(a, 1) = 1 = h(1, a),
(ii) h(a, x−1) = h(a, x)−1 = h(a−1, x),
(iii) h(b, a) = h(a, b)−1, and
(iv) the homomorphisms h(−, a), h(a,−) : G→ K have the same image.

(2) If h is bilinear, then G→ KG, a 7→ h(a,−) is a group homomorphism.
(3) If h is bilinear, then for every subgroup H ≤ K,

{a ∈ G : the image of h(a,−) is contained in H}
is a subgroup of G.

Proof. Items (i) and (ii) of (1) are parts of the definition of ‘bilinear’. For item (iii), the bilinearity
of h implies that h(ab, ab) = h(a, a)h(a, b)h(b, a)h(b, b). This reduces to 1 = h(a, b)h(b, a) if h is
alternating, from which item (iii) follows. Item (iv) is a direct consequence of (iii).

For (2) we must show that h(a, x)h(b, x) = h(ab, x) for all a, b, x ∈ G. This follows from the
linearity of h in its first variable.

The set in (3) is the preimage of the subgroup HG ≤ KG under the homomorphism from part
(2), so it is a subgroup of G. �

Of course, the claims in Lemma 3.8 (2) and (3) hold in the second variable of h as well as in the
first.
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Lemma 3.9. If G is a 2-step nilpotent group, then
(1) G′ ⊆ Z(G);
(2) the commutator operation [−,−] on G is alternating and bilinear;
(3) for an arbitrary element a ∈ G the normal subgroup Na generated by a is contained in

〈a〉Z(G), and is therefore abelian;
(4) for an arbitrary element a ∈ G, CG(a) = CG(Na) is a normal subgroup of G.

Proof. Items (1) and (2) are well known, so we prove (3) and (4) only. For (3), Na = 〈ab | b ∈ G〉 is
the group generated by the conjugates ab := b−1ab of a, and ab = b−1ab = a(a−1b−1ab) = a[a, b] ∈
〈a〉Z(G), so Na ⊆ 〈a〉Z(G).

For (4) we have a ∈ Na ⊆ 〈a〉Z(G), so

CG(a) ⊇ CG(Na) ⊇ CG(〈a〉Z(G)) = CG(a),

forcing CG(a) = CG(Na). This group is normal in G since the centralizer of any normal subgroup is
normal. (The normality of CG(a) also follows from the fact that it is the kernel of the homomorphism
[a,−].) �

Lemma 3.10. Let G be a 2-step nilpotent group, and let f be an absorptive operation of arity n > 1
that preserves the basic relations of G.

(1) The image of f is contained in G′.
(2) If (a1, a2, . . . , an) and (b1, b2, . . . , bn) are n-tuples in Gn such that a1 = b1 and ai ≡ bi

(mod CG(a1)) for all i (2 ≤ i ≤ n), then f(a1, a2, . . . , an) = f(b1, b2, . . . , bn).

Proof. To prove part (1) let a1, a2, . . . , an be arbitrary elements of G. Since f preserves the basic
relation MG(G,G) and [

a1 a1

1 1

]
,

[
ai 1
ai 1

]
∈ MG(G,G) (i = 2, . . . , n),

therefore the matrix obtained from these matrices by applying f also belongs to MG(G,G). Using
the assumptions that n ≥ 2 and f is absorptive, we get that[

f(a1, a2, . . . , an) 1
1 1

]
= f

([
a1 a1

1 1

]
,

[
a2 1
a2 1

]
, . . . ,

[
an 1
an 1

])
∈ MG(G,G).

Thus the description of MG(G,G) in Lemma 3.7 yields that f(a1, a2, . . . , an) ∈ [G,G].
For part (2) we will use the basic relation MG

(
Na1 , CG(a1)

)
where Na1 is the normal subgroup

of G generated by a1. Recall from Lemma 3.9 (4) that CG(a1) is a normal subgroup of G and
CG(a1) = CG(Na1). The latter implies that [Na1 , CG(a1)] = {1}.

If a1 = b1 and ai ≡ bi (mod CG(a1)) for all i (2 ≤ i ≤ n), then[
a1 b1
1 1

]
,

[
ai bi
ai bi

]
∈ MG

(
Na1 , CG(a1)

)
(i = 2, . . . , n).

Since f preserves MG

(
Na1 , CG(a1)

)
and f is absorptive of arity n ≥ 2, we get as before that[

f(a1, a2, . . . , an) f(b1, b2, . . . , bn)
1 1

]
= f

([
a1 b1
1 1

]
,

[
a2 b2
a2 b2

]
, . . . ,

[
an bn
an bn

])
∈ MG

(
Na1 , CG(a1)

)
.

Here [Na1 , CG(a1)] = {1}, therefore the second statement of Lemma 3.7 implies that
f(a1, a2, . . . , an) = f(b1, b2, . . . , bn). �
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Lemma 3.11. Let G be a 2-step nilpotent group, and let f be a binary absorptive operation on G
that preserves the basic relations of G. For each a ∈ G and for every abelian normal subgroup A of
G the mapping

ϕ : ACG(a) → G′, y 7→ f(a, y)
is a group homomorphism whose kernel contains CG(a).

Proof. First we will prove the following claim.

Claim 3.12. Under the same assumptions on G, a, and A, the mapping

ψ : A→ G′, y 7→ f(a, y)

is a group homomorphism whose kernel contains A ∩ CG(a).

To prove the claim notice first that ψ maps into G′ by Lemma 3.10 (1). Next we will show
that ψ is a group homomorphism. Since A is abelian, therefore [A,A] = {1}. It follows from the
description of MG(A,A) in Lemma 3.7 that for arbitrary elements x, y ∈ A,[

a a
a a

]
,

[
xy y
x 1

]
∈ MG(A,A).

Since f(a, 1) = 1 and f preserves MG(A,A), we get that[
f(a, xy) f(a, y)
f(a, x) 1

]
= f

([
a a
a a

]
,

[
xy y
x 1

])
∈ MG(A,A).

Hence the description of MG(A,A) in Lemma 3.7 yields that f(a, xy) ·f(a, y)−1 = f(a, x) ·1−1, that
is, f(a, xy) = f(a, x)f(a, y) for all x, y ∈ A. Thus ψ is a group homomorphism. It follows from
Lemma 3.10 (2) that f(a, x) = f(a, y) whenever x ≡ y (mod CG(a)). Thus A ∩ CG(a) is contained
in the kernel of ψ, as claimed.

Now we will prove that ϕ is a group homomorphism. Let ν : ACG(a) → ACG(a)/CG(a) and
µ : A → A/

(
A ∩ CG(a)

)
be the natural homomorphisms, and ι : ACG(a)/CG(a) → A/

(
A ∩ CG(a)

)
the natural isomorphism. By Claim 3.12 the kernel of ψ contains A ∩ CG(a), so there is a unique
group homomorphism ψ̄ : A/

(
A ∩ CG(a)

)
→ G′ such that ψ = ψ̄ ◦ µ. In fact,

ψ̄
(
x(A ∩ CG(a))

)
= f(a, x) for all x ∈ A.

It follows that
(ψ̄ ◦ ι ◦ ν)(x) = f(a, x) for all x ∈ A.

Thus ψ̄ ◦ ι ◦ ν : ACG(a) → G′ is a group homomorphism that is constant on each coset of CG(a) in
ACG(a) and restricts to A as ψ. By definition the mapping ϕ : ACG(a) → G′ also restricts to A as
ψ, and by Lemma 3.10 (2) ϕ is constant on each coset of CG(a) in ACG(a). Thus ϕ = ψ̄ ◦ ι ◦ ν, so
ϕ is a group homomorphism whose kernel contains CG(a). �

4. Cyclic G′

In this section we will consider 2-step nilpotent groups G whose commutator subgroups are cyclic.
Our aim is to prove that if f is an absorptive operation of arity n ≥ 2 on such a group G and f
preserves the basic relations of G, then either

• f(x) = 1 for all x ∈ Gn, or
• f is binary and there exists an integer k such that f(x, y) = [x, y]k for all x, y ∈ G.

Lemma 4.1. Let G be a 2-step nilpotent group such that G′ is cyclic. If δ = [a, b] generates the
image of [a,−] then the set {c ∈ G : [a, c] = δ} = bCG(a) generates G. Consequently G = 〈b〉CG(a).
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Proof. It is a general fact that if f : G→ H is a group homomorphism, and X ⊆ G has the property
that f(X) generates f(G), then f−1(f(X)) = X · ker (f) generates f−1(f(G)) = G. The first claim
of this lemma is exactly this statement in the situation where f = [a,−], H = G, and X = {b}.
The second assertion of the lemma follows from the first. �

Lemma 4.2. If G is a 2-step nilpotent group such that G′ is cyclic, then every element of G′ is a
commutator.

Proof. G′ is cyclic, hence satisfies ACC on subgroups. Therefore we may choose and fix a ∈ G so
that the image H of [a,−] is maximal among the images of all homomorphisms [a′,−] (a′ ∈ G). H
is a subgroup of G′, so H is cyclic. Let χ be a generator of H, and let b be an element of G such
that [a, b] = χ. It follows from Lemma 4.1 that {c ∈ G : [a, c] = χ} = bCG(a) generates G.

Claim 4.3. G = {c ∈ G : the image of [−, c] is contained in H}.

To prove this equality let G1 denote the right hand side. By Lemma 3.8 (3), G1 is a subgroup of
G. Since bCG(a) generates G, the equality G = G1 will follow if we show that bCG(a) ⊆ G1.

Let c ∈ bCG(a). Since [a, c] = χ, the image of the homomorphism [−, c] contains χ, and hence
H. But [−, c] has the same image as [c,−] by Lemma 3.8 (1)(iv), therefore the maximality of H
implies that the image of [−, c] is H. Thus c ∈ G1, which completes the proof of Claim 4.3.

By Claim 4.3 [x, c] ∈ H for all x, c ∈ G. Thus G′ ⊆ H. Since H ⊆ G′, we get that H = G′. This
implies that G′ is the image of [a,−] for the element a ∈ G that was chosen at the beginning of the
proof. Hence for every γ ∈ G′ there exists b ∈ G such that γ = [a, b]. �

Lemma 4.4. Let G be a 2-step nilpotent group such that G′ is cyclic. If f is an absorptive binary
operation on G that preserves the basic relations of G, then f : G×G→ G′ is bilinear. In fact, for
every element a ∈ G there exists an integer k such that f(a, x) = [a, x]k for all x ∈ G.

Proof. It suffices to prove the last statement. Choose a ∈ G. The image K of [a,−] is cyclic,
since it is a subgroup of G′. By Lemma 4.1, if [a, b] generates K then G = 〈b〉CG(a). Hence
also G = NbCG(a). Here Nb is an abelian normal subgroup of G by Lemma 3.9 (3). Therefore
Lemma 3.11 for A = Nb implies that f(a,−) : G → G′ is a group homomorphism whose kernel
contains CG(a).

We claim that the image of f(a,−) is contained in K. To show this let c be an arbitrary element
of G. Lemma 3.4 (1), applied to the subgroup H = 〈a, c〉 of G, yields that the restriction fH of f to
H is an absorptive operation on H that preserves the basic relations of H. Hence by Lemma 3.10 (1)
the image of fH is contained in H ′ = 〈[a, c]〉. This implies that f(a, c) ∈ 〈[a, c]〉 ⊆ K.

Thus [a,−] : G→ K is a surjective homomorphism whose kernel is CG(a), while f(a,−) : G→ K
is a homomorphism whose kernel contains CG(a). It follows that f(a,−) = ϕ ◦ [a,−] for some
homomorphism ϕ : K → K. Since K is cyclic, there exists an integer k such that ϕ(z) = zk for all
z ∈ K. Hence f(a, x) = [a, x]k for all x ∈ G. �

Now we are ready to prove the main result of this section.

Theorem 4.5. Let G be a 2-step nilpotent group such that G′ is cyclic, and let f be an absorptive
operation of arity n that preserves the basic relations of G.

(1) If n ≥ 3, then f(x) = 1 for all x ∈ Gn.
(2) If n = 2, then there exists an integer k such that f(x, y) = [x, y]k for all x, y ∈ G.

Proof. We first consider the case when n ≥ 3. Let (a1, . . . , an) ∈ Gn be an arbitrary n-tuple. Our
aim is to prove that f(a1, . . . , an) = 1. The image of [a1,−] is cyclic, since it is a subgroup of G′. By
Lemma 4.1, if b is chosen so that [a1, b] generates the image of [a1,−] then G = 〈b〉CG(a1). Hence
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there exist integers mj (j = 2, . . . , n) such that aj ≡ bmj (mod CG(a1)) for all j (2 ≤ j ≤ n). It
follows from Lemma 3.10 (2) that

f(a1, a2, . . . , an) = f(a1, b
m2 , . . . , bmn).

Now we apply Lemma 3.10 (2) again in the second variable of f , using that a1 ≡ a1 (mod CG(bm2))
and bmj ≡ 1 (mod CG(bm2)) for all j (3 ≤ j ≤ n). Thus we get that

f(a1, b
m2 , bm3 , . . . , bmn) = f(a1, b

m2 , 1, . . . , 1).

Since n ≥ 3 and f is absorptive, the displayed equalities imply that f(a1, . . . , an) = 1, as claimed.
This proves assertion (1).

Now we consider the case when n = 2. By Lemma 4.2 every element of G′ is a commutator,
therefore we may choose and fix a, b ∈ G so that [a, b] generates G′. By Lemma 4.4 there exists
an integer k such that f(a, y) = [a, y]k for all y ∈ G. Now we define a binary function g on G as
follows:

g(x, y) = f(x, y)[x, y]−k (x, y ∈ G).
g preserves the basic relations of G, since it is obtained from f and from the group operations by
composition. Furthermore, g is absorptive and satisfies g(a, y) = 1 for all y ∈ G.

Claim 4.6. G = {c ∈ G : the image of g(−, c) is {1}}.

To prove this equality let G1 denote the right hand side. Since g preserves the basic relations
of G and is absorptive, we know from Lemma 4.4 that g : G × G → G′ is bilinear. Hence we get
from Lemma 3.8 (3) that G1 is a subgroup of G. Since [a, b] generates G′, Lemma 4.1 implies that
bCG(a) generates G. Therefore the equality G = G1 will follow if we show that bCG(a) ⊆ G1.

Let c be an arbitrary element of bCG(a). By Lemma 4.4 there exists an integer l such that
g(x, c) = [x, c]l for all x ∈ G. Thus g(a, c) = [a, c]l. Here g(a, c) = 1 because g(a, y) = 1 for all
y ∈ G. Furthermore, [a, c] = [a, b], because c ≡ b (mod CG(a)). Therefore we get that 1 = [a, b]l.
Since [a, b] generates G′, this equality implies that l is a multiple of |G′|. Hence g(x, c) = [x, c]l = 1
for all x ∈ G. This shows that c ∈ G1, which completes the proof of Claim 4.6.

The equality in Claim 4.6 proves that g(x, y) = 1 for all x, y ∈ G. Hence we get from the
definition of g that f(x, y) = [x, y]k for all x, y ∈ G. This completes the proof of assertion (2) in
Theorem 4.5. �

5. General G′

In this section G will be an arbitrary 2-step nilpotent group. Our goal is to prove that if f is an
absorptive operation of arity n ≥ 2 on G and f preserves the basic relations of G, then either

• f(x) = 1 for all x ∈ Gn, or
• f is binary and f(x, y) = [x, y]κ for all x, y ∈ G where κ is a profinite integer or an ordinary

integer according to whether G′ is a torsion group or not.
We will start by proving these statements under the additional assumption that G′ is finitely gen-
erated.

Lemma 5.1. Let G be a 2-step nilpotent group such that G′ is finitely generated. If f is an absorptive
operation of arity n ≥ 3 that preserves the basic relations of G, then f(x) = 1 for all x ∈ Gn.

Proof. G′ is a finitely generated abelian group, therefore it is a direct product of finitely many cyclic
subgroups. We will prove the lemma by induction on the number r of cyclic direct factors of G′.
Let f be an absorptive operation of arity n ≥ 3 that preserves all basic relations of G. If r = 1,
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that is, if G′ is cyclic, then f(x) = 1 holds for all x ∈ Gn by Theorem 4.5 (1). Therefore from now
on we will assume that r ≥ 2 and that the conclusion of the lemma is true for all 2-step nilpotent
groups whose commutator subgroup is a direct product of fewer than r cyclic subgroups.

To prove that the conclusion of the lemma is true for G whose commutator subgroup is a direct
product of r cyclic subgroups, we choose and fix a direct decomposition ofG′ with cyclic direct factors
C1, . . . , Cr. For arbitrary i (1 ≤ i ≤ n), Ci is a normal subgroup of G because Ci ⊆ G′ ⊆ Z(G).
Thus, by Lemma 3.4 (2), the operation fG/Ci induced by f on G/Ci is absorptive and preserves
the basic relations of the quotient group G/Ci. Furthermore, the group G/Ci is 2-step nilpotent,
and its commutator subgroup (G/Ci)′ = G′/Ci is a direct product of r− 1 cyclic subgroups. Hence
it follows from the induction hypothesis that fG/Ci(u) = 1 for all u ∈ (G/Ci)n. By the definition
of fG/Ci this is equivalent to the condition that f(x) ∈ Ci for all x ∈ Gn. Since i (1 ≤ i ≤ r) was
chosen arbitrarily and r ≥ 2, we get that f(x) ∈ C1 ∩ C2 = {1} for all x ∈ Gn. �

Lemma 5.2. Let G be a 2-step nilpotent group such that G′ is finitely generated. If f is a binary
absorptive operation on G such that f preserves the basic relations of G, then there exists an integer
k such that f(x, y) = [x, y]k for all x, y ∈ G.

Proof. First we will prove the lemma under the stronger assumption that G′ is finite. We will
proceed by induction on the order of G′. By Theorem 4.5 (2) the conclusion of the lemma is true if
G′ is cyclic. Therefore we may assume from now on that G′ is not cyclic, and that the conclusion
of the lemma is true for all 2-step nilpotent groups with commutator subgroups of order less than
|G′|.

To prove that the conclusion of the lemma is true for G′ we choose and fix a prime p such that
the Sylow p-subgroup P of G′ is not cyclic. Such a p exists, since G′ is not cyclic. The condition
that P is not cyclic implies that P has an elementary abelian subgroup of order p2, and hence P
has p + 1 subgroups C0, C1, . . . , Cp of order p such that Ci ∩ Cj = {1} for all 0 ≤ i < j ≤ p. As
in the preceding lemma we get that for arbitrary i (0 ≤ i ≤ p), Ci is a normal subgroup of G. By
Lemma 3.4 (2), the operation fG/Ci induced by f on G/Ci is absorptive and preserves the basic
relations of the quotient group G/Ci. Furthermore, the group G/Ci is 2-step nilpotent, and its
commutator subgroup (G/Ci)′ = G′/Ci has order less than |G′|. Hence we get from the induction
hypothesis that there exists an integer ki such that fG/Ci(u, v) = [u, v]ki for all u, v ∈ G/Ci. By
the definition of fG/Ci this is equivalent to the condition that

f(x, y) ∈ [x, y]kiCi for all x, y ∈ G. (5.1)

Since Ci ⊆ Z(G) and |Ci| = p, we get that

f(x, y)p = [x, y]kip for all x, y ∈ G.

This holds for each i (0 ≤ i ≤ p), hence

[x, y]k0p = [x, y]k1p = · · · = [x, y]kpp for all x, y ∈ G.

Let e denote the exponent of G′. Since the Sylow p-subgroup of G′ is nontrivial, e is a multiple of
p. By the last displayed equalities the numbers k0p, k1p, . . . , kpp are congruent modulo the order of
each pure commutator [x, y] ∈ G′. Since these elements generate G′, the numbers k0p, k1p, . . . , kpp
are congruent modulo e. Equivalently,

k0 ≡ k1 ≡ · · · ≡ kp (mod e/p).

Every number that is congruent to k0 modulo e/p is congruent to one of the numbers k0 + (e/p)l
(l = 0, 1, . . . , p− 1) modulo e. These are p different numbers, while k0, k1, . . . , kp are p+ 1 numbers
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each of which is congruent to k0 modulo e/p. Thus there exist r 6= s (0 ≤ r, s ≤ p) such that kr ≡ ks

(mod e). Consequently, [x, y]kr = [x, y]ks for all x, y ∈ G. Now we get from (5.1) that

f(x, y)[x, y]−kr = f(x, y)[x, y]−ks ∈ Cr ∩ Cs = {1} for all x, y ∈ G.

Hence f(x, y) = [x, y]kr for all x, y ∈ G. This proves Lemma 5.2 for the case when G′ is finite.
Now assume that G′ is infinite. Since G′ is a finitely generated abelian group, it has an element

of infinite order. Therefore for some a, b ∈ G the commutator γ = [a, b] has infinite order. The
subgroup H = 〈a, b〉 of G has cyclic commutator subgroup H ′ = 〈[a, b]〉, and by Lemma 3.4 (1) the
restriction fH of f to H is an absorptive operation that preserves the basic relations of H. Thus,
by Theorem 4.5 (2), there exists an integer k such that f(x, y) = fH(x, y) = [x, y]k for all x, y in H.

Our aim is to show that f(x, y) = [x, y]k for all x, y in G. Suppose that this is not the case, select
c, d ∈ G such that f(c, d) 6= [c, d]k, and let K = 〈c, d〉. Repeating the argument in the preceding
paragraph for c, d in place of a, b we get that there exists an integer l such that f(x, y) = fK(x, y) =
[x, y]l for all x, y in K. Since [c, d]k 6= f(c, d) = [c, d]l, therefore l 6= k; moreover, l and k are
incongruent modulo the order of [c, d] if [c, d] has finite order.

To continue the proof we need to establish a fact that is true for any finitely generated abelian
group F . First, for any abelian group A and positive integer n let A[n] denote the group of all
n-th powers of elements of A. The fact we need is that there is a ‘degree’ function d assigning to
each nontorsion element u ∈ F a positive integer d(u) such that for any positive integer n that is a
multiple of d(u) the order of uF [n] in F/F [n] is a multiple of n/d(u). We prove this first when F is
torsion free. We begin by defining the set of ‘possible degrees’ of u ∈ F \ {1}: let D(u) be the set of
positive integers r such that xr = u has a solution in F . D(u) is closed under least common multiple
since F is abelian, and D(u) is finite since F is finitely generated. We take d(u) = lcm

(
D(u)

)
. Let

u0 ∈ F be such that ud(u)
0 = u. We have d(u0) = 1, because if v ∈ F is such that vd(u0) = u0, then

vd(u0)d(u) = u, and hence, by the definition of d(u), d(u0)d(u) is a divisor of d(u). Now let n be a
multiple of d(u), say n = d(u)n′, and assume that uF [n] has order r in F/F [n]. This implies that
ur = zn for some z ∈ F . Hence (ur

0)
d(u) = u

d(u)r
0 = ur = zn = zd(u)n′

= (zn′
)d(u). Since F is torsion

free, we get that ur
0 = zn′

. Thus r, n′ ∈ D(ur
0), which implies that m := lcm(r, n′) is an element of

D(ur
0). Therefore ur

0 = ym for some y ∈ F , so we get that ur
0 = (ym/r)r. Since F is torsion free,

we conclude that u0 = ym/r. But d(u0) = 1, therefore m/r = 1. Hence lcm(r, n′) = m = r, and
it follows that r is divisible by n′ = n/d(u), as claimed. This proves our claim for the case when
F is torsion free. For the general case, let T be the torsion subgroup of F , let ν : F → F/T be
the natural map, and let dF/T denote the degree function on the torsion free group F/T described
earlier in this paragraph. We define the degree function on F to be d = dF/T ◦ ν. The function d
is defined for all nontorsion elements u ∈ F , since ν(u) = uT is a nontorsion element of F/T and
dF/T is defined for such elements. If u is a nontorsion element of F and n is a multiple of d(u), then
uT is a nontorsion element of F/T and n is a multiple of dF/T (uT ). Hence by the claim proved
for the torsion free case we know that the order of (uT )(F/T )[n] in (F/T )/(F/T )[n] is a multiple
of n/dF/T (uT ). Since F/F [n] → (F/T )/(F/T )[n], xF [n] 7→ (xT )(F/T )[n] is a homomorphism that
maps uF [n] to (uT )(F/T )[n], it follows that the order of uF [n] in F/F [n] is also a multiple of
n/dF/T (uT ) = n/d(u).

We return to our main argument. Recall that our assumptions ensure that G′ is a finitely
generated abelian group, hence the torsion subgroup of G′ is finite. Furthermore, we have selected
elements a, b, c, d ∈ G such that [a, b] is a nontorsion element of G′ and [c, d] is another element
of G′ such that f(a, b) = [a, b]k, f(c, d) = [c, d]l, k 6= l, and l and k are incongruent modulo
the order of [c, d] if [c, d] is a torsion element. Using the degree function on G′ introduced in
the preceding paragraph we now choose and fix a positive integer m that satisfies the following
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conditions: m > |k − l|, m is a multiple of the exponent of the torsion subgroup of G′, m is a
multiple of the degree of the nontorsion element [a, b] ∈ G′, and if [c, d] is a nontorsion element,
then m is also a multiple of the degree of [c, d]. Since G is 2-step nilpotent, (G′)[m

2] is a normal
subgroup of G. In Ḡ := G/(G′)[m

2] the commutator subgroup is finitely generated and has exponent
dividing m2, so it is finite. By Lemma 3.4 (2), the operation f Ḡ is absorptive and preserves the
basic relations of Ḡ, so there is an integer r such that f Ḡ(x̄, ȳ) = [x̄, ȳ]r for all x̄ = x(G′)[m

2] and
ȳ = y(G′)[m

2] in Ḡ (by the first part of this proof). This implies that

[ā, b̄]r = f Ḡ(ā, b̄) = [ā, b̄]k and [c̄, d̄]r = f Ḡ(c̄, d̄) = [c̄, d̄]l. (5.2)

Since the degree of [a, b] ∈ G′ divides m, the claim we proved in the preceding paragraph implies
that the order of [ā, b̄] in Ḡ = G/(G′)[m

2] is a multiple of m. Therefore the first equality in (5.2)
implies that r ≡ k (mod m). Similarly, if [c, d] is a nontorsion element in G′, then the order of [c̄, d̄]
in Ḡ = G/(G′)[m

2] is a multiple of m, so the second equality in (5.2) yields that r ≡ l (mod m).
Hence in this case k ≡ l (mod m), which is impossible, since k 6= l and m > |k− l|. Therefore [c, d]
is a torsion element in G′. As m is a multiple of the exponent of the torsion subgroup of G′, it
follows that the order of [c, d] is a divisor of m and is equal to the order of [c̄, d̄] in Ḡ = G/(G′)[m

2].
So in this case the second equality in (5.2) yields that r ≡ l (mod |[c, d]|). Since m is a multiple
of |[c, d]| and r ≡ k (mod m), we get that k ≡ l (mod |[c, d]|). But this contradicts the fact that
k and l are incongruent modulo the order of [c, d] if [c, d] is a torsion element. This contradiction
completes the proof of the lemma. �

Now we are ready to prove the result stated at the beginning of this section.

Theorem 5.3. Let G be a 2-step nilpotent group, and let f be an absorptive operation of arity
n ≥ 2 that preserves the basic relations of G.

(1) If n ≥ 3, then f(x) = 1 for all x ∈ Gn.
(2) If n = 2 and G′ is a torsion group, then there exists a profinite integer κ such that f(x, y) =

[x, y]κ for all x, y ∈ G.
(3) If n = 2 and G′ has an element of infinite order, then there exists an integer k such that

f(x, y) = [x, y]k for all x, y ∈ G.

Proof. By Lemma 3.4 (1) f restricts to every subgroup H of G as an absorptive operation fH that
preserves all basic relations of H2. Since H is 2-step nilpotent, the function [−,−] : H ×H → H ′

is bilinear. Hence if H is finitely generated, say H = 〈c1, . . . , cp〉, then H ′ is generated by the
commutators [ci, cj ] (1 ≤ i < j ≤ p), so H ′ is also finitely generated. Therefore Lemmas 5.1 and 5.2
imply the following.

Claim 5.4. Let H be a finitely generated subgroup of G.
(1) If f has arity n ≥ 3, then f(x) = 1 for all x ∈ Hn.
(2) If f is binary, then there exists an integer k such that f(x, y) = [x, y]k for all x, y ∈ H.

To prove part (1) of Theorem 5.3 assume that n ≥ 3, and let a1, . . . , an be arbitrary elements of
G. We have to verify that f(a1, . . . , an) = 1. Let H = 〈a1, . . . , an〉. By Claim 5.4 f(x) = 1 for all
x ∈ Hn. In particular, f(a1, . . . , an) = 1, which completes the proof of (1).

To prove parts (2) and (3) of Theorem 5.3 let f be binary. We will use the conventions introduced
in the first paragraph of the proof of Lemma 3.2. Applying Claim 5.4 to an arbitrary 2-generated
subgroup H = 〈a, b〉 of G we see that there exists an integer r(a, b) such that f(a, b) = [a, b]r(a,b).
Similarly, applying Claim 5.4 to an arbitrary 4-generated subgroup H = 〈a, b, c, d〉 of G we get that

f(a, b) = [a, b]k and f(c, d) = [c, d]k for some integer k.
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But
f(a, b) = [a, b]r(a,b) and f(c, d) = [c, d]r(c,d),

so
r(a, b) ≡ k (mod |[a, b]|) and r(c, d) ≡ k (mod |[c, d]|) for some integer k. (5.3)

In particular, it follows that

r(a, b) ≡ r(c, d) (mod |[a, b]|) whenever |[a, b]| divides |[c, d]|. (5.4)

G′ is abelian, and each of its elements is a product of finitely many commutators of elements of
G. These properties imply that if G′ has an element of infinite order, then some commutator [c, d]
(c, d ∈ G) is of infinite order. Hence |[c, d]| = 0 and |[a, b]| divides |[c, d]| for all elements a, b ∈ G.
Therefore we get from (5.4) that f(a, b) = [a, b]r(a,b) = [a, b]r(c,d) for all a, b ∈ G. This proves that
statement (3) holds for k = r(c, d).

From now on we will assume that G′ is a torsion group, that is, |[a, b]| is a positive integer for
all a, b ∈ G. Let I denote the subset of Λ that consists of all positive integers |[a, b]| (a, b ∈ G). It
follows from (5.4) that r(a, b) ≡ r(c, d)(mod m) whenever m = |[a, b]| = |[c, d]|. Hence there exists
a sequence δ = (d̄m)m∈I ∈

∏
m∈I Zm such that

r(a, b) ≡ d|[a,b]| (mod |[a, b]|) for all a, b ∈ G. (5.5)

Moreover, (5.3) implies that δ has the following property:
(∗) the system

z ≡ dm (mod m)

z ≡ dn (mod n)

of simultaneous congruences has a solution for all m,n ∈ I.
It follows from Claim 3.3 that there exists a profinite integer κ = (k̄m)m∈Λ ∈ Ẑ such that d̄m = k̄m

for all m ∈ I. This fact together with (5.5) implies that

f(a, b) = [a, b]r(a,b) = [a, b]d|[a,b]| = [a, b]k|[a,b]| = [a, b]κ for all a, b ∈ G.
This completes the proof of statement (2) and hence of Theorem 5.3. �

The main result of this paper, Theorem 2.3, follows from Lemmas 3.1, 3.2, and Theorem 5.3, as
we will show below.

Proof of Theorem 2.3. At the end of Section 2 we argued that (c) ⇒ (b) and (b) ⇒ (a). Now we
will prove that (a) ⇒ (c). Let f(x) = f(x1, . . . , xn) be an n-ary operation on G that preserves
the basic relations of G. Since f preserves the one-element subgroup {(1, 1)} of G2, it follows
that f(1, . . . , 1) = 1. Applying Lemma 3.1 to the clone C of all operations that preserve the basic
relations of G we get that f(x) can be written as a product

f(x) =
∏
q

fq(xq) (5.6)

of absorptive operations fq(xq) that preserve the basic relations of G. Assume that some variable
y 6= x1, . . . , xn occurs on the right hand side of (5.6). If we substitute 1 for all such variables y, the
factors on the right hand side that involve such variables become 1 (and can be omitted), while the
other factors and the left hand side remain unchanged. Therefore we may assume without loss of
generality that each fq depends only on some of the variables x1, . . . , xn.

By Theorem 5.3 (1) each fq with more than two variables satisfies fq(xq) = 1 for all arguments
xq from G, therefore each such factor can be omitted from the product in (5.6). So we may assume
without loss of generality that each fq is either unary or binary. By Lemma 3.2 each unary fq has
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the form fq(xi) = xκ
i for some i (1 ≤ i ≤ n) and κ where κ is a profinite integer if G is a torsion

group, and an ordinary integer otherwise. Similarly, by Theorem 5.3 (2) and (3), each binary fq

has the form fq(xi, xj) = [xi, xj ]λ for some i < j (1 ≤ i, j ≤ n) and λ where λ is a profinite integer
if G′ is a torsion group, and an ordinary integer otherwise.

The well-known identities

yβxα = xαyβ [yβ , xα] = xαyβ [y, x]αβ = xαyβ [x, y]−αβ ,

[x, y]γz = z[x, y]γ ,

xαxβ = xα+β , x0 = 1,

[x, y]α[x, y]β = [x, y]α+β , [x, y]0 = 1

for 2-step nilpotent groups hold even if some of the exponents α, β, γ are profinite integers, because
if G or G′, respectively, are torsion groups, then on their finitely generated subgroups the profinite
integer exponents can be replaced by ordinary integer exponents. Using these identities we get
that the product representation of f in (5.6) can be rewritten in the form described in (c). This
completes the proof of Theorem 2.3. �
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