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STABILITY SWITCHES INDUCED BY IMMUNE SYSTEM
BOOSTING IN AN SIRS MODEL WITH DISCRETE AND

DISTRIBUTED DELAYS∗

M. V. BARBAROSSA† , M. POLNER‡ , AND G. RÖST‡

Abstract. We consider an epidemiological model that includes waning and boosting of im-
munity. Assuming that repeated exposure to the pathogen fully restores immunity, we derive an
SIRS-type model with discrete and distributed delays. First we prove usual results, namely that
if the basic reproduction number, R0, is less or equal than 1, then the disease-free equilibrium is
globally asymptotically stable, whereas for R0 > 1 the disease persists in the population. The in-
teresting features of boosting appear with respect to the endemic equilibrium, which can go through
multiple stability switches by changing the key model parameters. We construct two-parameter sta-
bility charts, showing that increasing the delay can stabilize the positive equilibrium. Increasing R0,
the endemic equilibrium can cross two distinct regions of instability, separated by Hopf bifurcations.
Our results show that the dynamics of infectious diseases with boosting of immunity can be more
complex than most epidemiological models, and calls for careful mathematical analysis.
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1. Motivation and background. Classical approaches in mathematical epi-
demiology present a population divided into susceptibles (S), infectives (I), and re-
covered (R), and consider interactions and transitions among these compartments.
Susceptibles are those hosts who either have not contracted the disease in the past
or have lost immunity against the disease-causing pathogen. When a susceptible host
gets in contact with an infective one, the pathogen can be transmitted from the infec-
tive to the susceptible and, with a certain probability, the susceptible host becomes
infective himself. After pathogen clearance, that is, when the infective host recovers,
a population of memory cells remains in the body. In this way, the host remains
immune to the pathogen for a certain time. In case of secondary infection, mem-
ory cells respond quickly, inducing a boost in the immune system of the host who
might show mild or no symptoms. Though persisting for long time after pathogen
clearance, memory cells slowly decay, and in the long run recovered hosts could lose
pathogen-specific immunity [18].

Waning immunity is possibly one of the factors which cause, in particular in highly
developed regions, recurrent outbreaks of infectious diseases such as chickenpox and
pertussis. On the other side, immune system boosting due to contact with infectives
prolongs the time during which immune hosts are protected.
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A general modeling framework for disease dynamics with waning immunity and
immune system boosting in hosts was proposed in [3]. The paper introduces a hybrid
system of equations in which the immune population is structured by the level of im-
munity, whereas the susceptible and the infective populations are nonstructured. The
mathematical model (M2) in [3] presents the special case in which immune system
boosting restores the maximal immune status, that is, the same immunity level as
those induced by natural infection. It was shown in [3] that such a special case yields
a class of systems with one constant delay (τ > 0) and one distributed delay (nonzero
only on a finite interval [−τ, 0]), where τ represents the duration of immunity after
natural infection. Results in [3] were limited to investigation of existence, uniqueness,
and non-negativity of solutions, as well as properties of the unique disease-free equi-
librium. In the present work we shall consider a generalization of such systems with
constant and distributed delay. The model ingredients and the system of equations are
introduced in section 2. Results related to existence, uniqueness, and non-negativity
of solutions of the delay system are presented in section 3. Equilibria and criteria for
the persistence of the disease are studied in section 4. In section 5 we consider the
limit case τ = 0. Stability switches and regions of stability in two-parameter planes
are computed numerically in section 6.

2. The model. Throughout this paper we assume that the birth rate and
the natural death rate are equal and constant (d ≥ 0), and we neglect disease-
induced deaths. Further, newborns are assumed to be susceptible. The total pop-
ulation (N = S + R + I) is constant over time and can be normalized, N(t) ≡ 1
for all t ≥ 0.

Upon contact with infectives, susceptible hosts contract the disease with trans-
mission rate βI, β > 0. Infected hosts recover at rate γ > 0, that is, 1/γ is the average
infection duration. Disease-induced immunity lasts for τ > 0 years, after that hosts
become susceptible again. Re-exposure to the pathogen boosts the immune system
in immune hosts, resetting the clock of the immunity, meaning that hosts who expe-
rience immune system boosting are again immune for additional τ years. A similar
assumption was previously proposed in [2]. Compared to the model suggested in [3],
we include here a generalized boosting force ν ≥ 0, as previously done in [1, 8]. From
a biological point of view, it makes sense to assume ν ∈ [0, 1], meaning that secondary
exposures might have milder effects than primary ones on the immune system. Nev-
ertheless for numerical interest in section 6 we shall consider any ν > 0. Under these
assumptions, we find two cohorts of individuals entering the susceptible compartment
at time t because of immunity loss. On the one side we have hosts who recovered at
time t− τ and since then did not receive immune system boosting nor die,

γI(t− τ) exp
(
−dτ − νβ

∫ 0

−τ
I(t+ u) du

)
.

On the other side, we have hosts whose immune system was boosted at time t − τ
and who did not die in the time interval [t− τ, t],

νβI(t− τ)R(t− τ) exp
(
−dτ − νβ

∫ 0

−τ
I(t+ u) du

)
.

All in all, using R = 1− S − I, we obtain the system
S′(t) = d(1− S(t))− βI(t)S(t) + I(t− τ) (γ + νβ (1− S(t− τ)− I(t− τ)))(2.1)

× exp
(
−dτ − νβ

∫ 0

−τ
I(t+ u) du

)
, t ≥ 0,
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I ′(t) = βI(t)S(t)− (γ + d)I(t), t ≥ 0,

S(t) = φS(t), −τ ≤ t ≤ 0,
I(t) = φI(t), −τ ≤ t ≤ 0,

with given initial functions φS(t) ≥ 0, φI(t) ≥ 0, such that φS(t) + φI(t) ≤ 1 for all
t ∈ [−τ, 0]. For more details on the derivation of system (2.1) from a hybrid model
with structured immune population we refer the reader to [3]. If in system (2.1) we
neglect population dynamics (d = 0), assume constant force of infection (βI(t) ≡ h
for all t ≥ 0), and set the boosting rate ν = 1, then we obtain the system of equations
proposed by Aron [2].

The dynamics of the immune population (R = 1− S − I) is given by

R′(t) = −dR(t) + γI(t)− I(t− τ) (γ + νβR(t− τ)) e−dτ−νβ
∫ 0

−τ
I(t+u) du

.

Since it does not affect the solutions of (2.1), it can be omitted.

3. Global existence and uniqueness of solutions to system (2.1). Let us
first introduce some notations from functional differential equations. Let f : Ω →
[0, 1]2, Ω ⊂ C = C([−τ, 0], [0, 1]2) ⊂ X = C([−τ, 0],R2). For all t ≥ 0, the segment
xt ∈ C of a function x(·) is defined by xt(θ) := x(t + θ), θ ∈ [−τ, 0]. The Banach
space X is provided with the norm ‖ · ‖C defined by

‖φ‖C = sup {|φ(u)| = |φ1(u)|+ |φ2(u)|, u ∈ [−τ, 0]} .

Then the system (2.1) can be written in the form

(3.1) x′(t) = f(xt),

with f given by
(3.2)
f1(φ) = d(1− φ1(0))− βφ1(0)φ2(0)

+ φ2(−τ) (γ + νβ (1− φ2(−τ)− φ1(−τ)))× exp
(
−dτ − νβ

∫ 0

−τ
φ2(u) du

)
,

f2(φ) = βφ1(0)φ2(0)− (γ + d)φ2(0),

where (φ1, φ2) = φ ∈ Ω. Observe that for biological reasons we are interested only in
non-negative solutions, hence elements of Ω are non-negative valued functions.

Theorem 3.1. There exists a unique solution to the system (2.1), or equivalently,
to equation (3.1) with right-hand side f : Ω = C → [0, 1]2, defined by (3.2). Moreover,
for this dynamical system the set Ω̃ ⊂ Ω defined by

Ω̃ =
{
φ ∈ Ω such that

1− φ1(0)− φ2(0) ≥
∫ 0

−τ
(γ + νβ(1− φ1(u)− φ2(u)))φ2(u)e−

∫ 0

u
(d+νβφ2(z)) dz

du

}
is positively invariant.



908 BARBAROSSA, POLNER, AND RÖST

Proof.
(i) Existence/uniqueness. For this result it is sufficient to show that f in (3.2) is

Lipschitz continuous in every compact subset K of Ω [13, Chapter 2]. That
is, there exists a constant L > 0 such that, for any φ, ψ in K ⊂ Ω, we have

(3.3) ‖f(φ)− f(ψ)‖ ≤ L‖φ− ψ‖C .

First observe that, by definition, ‖φ‖C ≤ 1 for any φ in K ⊂ Ω. We define
the auxiliary map g : Ω→ R by

g(φ) = exp
(
−νβ

∫ 0

−τ
φ2(u) du

)
.

Hence, for any φ, ψ ∈ Ω, it follows that |g(φ)| ≤ 1 and |g(ψ) − g(ψ)| ≤
νβτ‖φ− ψ‖C .
Further, observe that for any φ, ψ ∈ Ω we have the estimate

|φ2(−τ)g(φ)− ψ2(−τ)g(ψ)|
≤ |φ2(−τ)g(φ)− φ2(−τ)g(ψ)|+ |φ2(−τ)g(ψ)− ψ2(−τ)g(ψ)|
≤ ‖φ‖C |g(φ)− g(ψ)|+ |φ2(−τ)− ψ2(−τ)| |g(ψ)|
≤ (1 + νβτ)‖φ− ψ‖C .

Then for φ, ψ ∈ K ⊂ Ω we have

‖f(φ)− f(ψ)‖ = |f1(φ)− f1(ψ)|+ |f2(φ)− f2(ψ)|

≤ d|φ1(0)− ψ1(0)|+ (d+ γ)|φ2(0)− ψ2(0)|
+ 2β|φ1(0)φ2(0)− ψ1(0)ψ2(0)|
+ (γ + νβ)e−dτ |φ2(−τ)g(φ)− ψ2(−τ)g(ψ)|

+ νβe−dτ |φ2(−τ)φ1(−τ)g(φ)− ψ2(−τ)ψ1(−τ)g(ψ)|

+ νβe−dτ |φ2(−τ)2g(φ)− ψ2(−τ)2g(ψ)|

≤ d‖φ− ψ‖C + γ|φ2(0)− ψ2(0)|
+ 2β [|ψ1(0)||ψ2(0)− φ2(0)|+ |ψ1(0)− φ1(0)||φ2(0)|]
+ (γ + νβ)e−dτ (νβτ + 1)‖φ− ψ‖C

+ νβe−dτ [|φ2(−τ)||φ1(−τ)| |g(φ)− g(ψ)|
+ |φ2(−τ)| |g(ψ)| |φ1(−τ)− ψ1(−τ)|
+ |ψ1(−τ)| |g(ψ)| |φ2(−τ)− ψ2(−τ)|]

+ νβe−dτ [|φ2(−τ)||φ2(−τ)| |g(φ)− g(ψ)|
+ 2|φ2(−τ)| |g(ψ)| |φ2(−τ)− ψ2(−τ)|].

Hence, the estimate in (3.3) holds with

L ≥ d+ γ + 2β + e−dτ (νβ + (3νβ + γ)(νβτ + 1)) .

(ii) Invariance of Ω̃. It is convenient to go back to the explicit formulation of
model (2.1). Observe first that the equation for I is an ODE, hence given
I(0) ≥ 0 solutions stay non-negative for all t ≥ 0. Define the auxiliary
function
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A(t) = 1− S(t)− I(t)−
∫ t

t−τ
(γ + νβ(1− S(u)− I(u)))I(u)e−

∫ t
u

(d+νβI(z)) dz
du.

We remark that for a given solution of system (2.1), A(t) ≥ 0 is equivalent to xt ∈ Ω̃,
where xt is the solution of equation (3.1).

Differentiation with respect to t yields

A′(t) = −S′(t)− I ′(t)− (γ + νβ(1− S(t)− I(t)))I(t)

+
(
γ + νβ

(
1− S(t− τ)− I(t− τ)

))
I(t− τ)e−

∫ t
t−τ

(d+νβI(z)) dz

−
∫ t

t−τ
(γ + νβ(1− S(u)− I(u)))I(u)e−

∫ t
u

(d+νβI(z)) dz
du︸ ︷︷ ︸

=1−S−I−A

(d+ νβI(t))

= −S′(t)− I ′(t)− γI(t)− νβ(1− S(t)− I(t))I(t)

+ (γ + νβ(1− S(t− τ)− I(t− τ))I(t− τ)e−
∫ t
t−τ

(d+νβI(z)) dz

+ d(1− S(t)− I(t)) + νβI(t)(1− S(t)− I(t))−A(t) (d+ νβI(t)) .

Now use (2.1) and observe that all terms on the right-hand side of the last equation
cancel out except for the last one, yielding

A′(t) = −(d+ νβI(t))A(t).

Hence for A(0) ≥ 0, A(t) is non-negative. This shows that, for given initial data in
Ω̃, the solution satisfies S(t) + I(t) ≤ 1 for all t ≥ 0.

Finally, assume S
(
t̄
)

= 0 for some t̄ > 0 and S(t) > 0 for t < t̄, as well as I(t) ≥ 0
for t ≤ t̄. Then Ṡ

(
t̄
)
> 0, as

Ṡ
(
t̄
)

=d+ I
(
t̄−τ

) (
γ+νβ

(
1−S

(
t̄−τ

)
−I
(
t̄−τ

)))
exp

(
−dτ−νβ

∫ 0

−τ
I
(
t̄+u

)
du

)
︸ ︷︷ ︸

≥0

,

and the solution S(t) remains non-negative. In particular, given non-negative initial
data we have that S(t) + I(t) ≥ 0 for all t ≥ 0. This completes the proof.

4. Equilibria and persistence. In this section we determine equilibria of the
system (2.1) and study their dynamical properties.

Setting the right-hand side of the second equation in (2.1) equal to zero, we see
that equilibria satisfy either I∗ = 0 or S∗ = 1/R0, where

(4.1) R0 = β

d+ γ

is the basic reproduction number of system (2.1). Its value indicates the average
number of secondary infections generated in a fully susceptible population by one
infected host over the course of his infection. The basic reproduction number is
a reference parameter in mathematical epidemiology used to understand if, and in
which proportion, the disease will spread among the population.

Theorem 4.1. If R0 ≤ 1 there is only one equilibrium, the disease-free equilib-
rium (herein DFE) (S∗, I∗) = (1, 0), which is globally asymptotically stable in Ω̃.
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Proof.
(i) Equilibria. Notice that the I equation can be written as

I ′ = (d+ γ)I(t)(R0S(t)− 1).

Since S(t) ≤ 1, for an equilibrium we either have I = 0 or R0 = 1 and S = 1.
Both possibilities retain the DFE.

(ii) Convergence. Clearly I(t) is decreasing and bounded from below by zero thus
converges. Assuming limt→∞ I(t) = q > 0, it follows that there is a tq such
that for t > tq we have I(t) > q/2 . Consequently S(t) < 1 − q/2 < 1 for
t > tq. But then for t > tq,

I(t)′ < (d+ γ)I(t)(−q/2),

which implies limt→∞ I(t) = 0. Let

η(t) : = I(t− τ) (γ + νβ (1− S(t− τ)− I(t− τ)))

exp
(
−dτ − νβ

∫ 0

−τ
I(t+ u) du

)
.

Then we may write

S′(t) = d(1− S(t))− βI(t)S(t) + η(t),

where limt→∞ I(t) = 0 and limt→∞ η(t) = 0, from which we can easily deduce
limt→∞ S(t) = 1.

(iii) Stability. For any ε > 0, let us choose δ := max{ε, βεd }. We claim that if
the initial condition is in the ε-neighborhood of the DFE, then the solution
stays in the δ-neighborhood of the DFE. Let (φ, ψ) ∈ Ω̃ be initial conditions
such that φ(s) > 1 − ε and ψ(s) < ε. Then I(t) < ε for all t > 0 since
I(t) is decreasing, and the inequality S′(t) > d(1 − S(t)) − βε holds for
t ≥ 0. Consider the comparison equation y(t)′ = d(1 − y(t)) − βε with
y(0) = S(0) > 1 − ε. Since y(t) converges to 1 − βε

d monotonically and
S(t) ≥ y(t), we either have S(t) > 1− ε (if S(0) < 1− βε

d ) or S(t) ≥ 1− βε
d (if

S(0) ≥ 1− βε
d ) for all t ≥ 0, and the solution remains in the δ-neighborhood

of the DFE.

Proposition 4.2. For R0 > 1 there is a unique endemic equilibrium (S∗, I∗) =
(1/R0, I

∗), with I∗ > 0.
Proof. Assume R0 > 1. Endemic equilibria are given by positive intersection

points, x = I∗, of the line y1(x) and the curve y2(x), where

y1(x) = (γ + d)x− d
(

1− 1
R0

)
,(4.2)

y2(x) = αx (ρ− κx) e−ηx, 0 ≤ x ≤ ρ/κ,(4.3)

with the coefficients defined as

κ := νβ > 0,

ρ := γ + κ

(
1− 1
R0

)
> 0, as R0 > 1,

α := e−dτ > 0,
η := κτ > 0.
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As γ, d > 0 and R0 > 1, the line y1(x) has a negative y-intercept, (0,−d(1 − 1
R0

))
and a positive x-intercept, (x∗, 0), where x∗ := d

d+γ (1− 1
R0

) < ρ/κ = νβ
γ + (1− 1

R0
).

It is obvious that y2(x) ≥ 0 for all x ∈ [0, ρ/κ], and y2(0) = 0 = y2(ρ/κ). The first
derivative of (4.3) is given by

y′2(x) = α
(
ηκx2 − x(2κ+ ηρ) + ρ

)
e−ηx.

It follows that y′2(x) = 0 for

x1,2 = ηρ+ 2κ±
√
η2ρ2 + 4κ2

2ηκ .

Observe that

x2 = ηρ+ 2κ+
√
η2ρ2 + 4κ2

2ηκ >
ηρ+ 2κ+

√
(ηρ− 2κ)2

2ηκ = ρ

κ
,

hence we have only one extremal point in the definition interval [0, ρ/κ]. The extremal
point (x1, y(x1)) is a local maximum as y2(0) = 0, y′2(0) > 0 and lim y2(x) = 0 for
x→ ρ/κ.

To guarantee the existence of a unique intersection point between the line y1 and
the curve y2, we determine the inflection points. We compute the second derivative

y′′2 (x) = α
(
−η2κx2 + x(4ηκ+ η2ρ)− 2(ρη + κ)

)
e−ηx.

The inflection points of y2(x) are

xa,b = ηρ+ 4κ±
√
η2ρ2 + 8κ2

2ηκ .

Observe that
(ηρ− 2κ)2 ≤ η2ρ2 + 8κ2 ≤ (ηρ+ 4κ)2.

Hence we have

xa = ηρ+ 4κ−
√
η2ρ2 + 8κ2

2ηκ >
ηρ+ 4κ−

√
(ηρ+ 4κ)2

2ηκ = 0,

whereas xb ≥ xa and

xb = ηρ+ 4κ+
√
η2ρ2 + 8κ2

2ηκ ≥
ηρ+ 4κ+

√
(ηρ− 2κ)2

2ηκ ≥ ρ

κ
+ 1
η
>
ρ

κ
.

Hence the point xb /∈ [0, ρ/κ], and the function y2(x) has at most one inflection point
in the interval [0, ρ/κ]. It follows that the curve y2(x) intesects the line y1(x) only once
in the interval [x∗, ρ/κ] and the intersection point corresponds to the I component of
endemic equilibrium, I∗ > 0.
Next we prove the persistence of the disease for R0 > 1. Consider the semiflow Φ on
Ω̃, defined by the unique global solutions. Let us define the persistence function

ρ : Ω̃→ R+, ρ(φ) = φ2(0).
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Let

Ω̃+ := {φ ∈ Ω̃| ρ(φ) > 0},
Ω̃0 := {φ ∈ Ω̃| ρ(φ) = 0} = Ω̃ \ Ω̃+,

where Ω̃0 is called the extinction space corresponding to ρ, because Ω̃0 is the collection
of states where the disease is not present.

Proposition 4.3. The sets Ω̃0 and Ω̃+ are forward invariant under the semi-
flow Φ.

Proof. From (2.1) we have I(t) = I(t0)e
∫ t
t0

(βS(u)−γ−d)du for any t ≥ t0, hence
I(t0) = 0 implies I(t) = 0 and I(t0) > 0 implies I(t) > 0 for all t ≥ t0.

We now introduce some terminology of persistence theory from [16, Chapters 3.1
and 8.3].

Definition 4.4. Let X be a nonempty set and ρ : X → R+.
1. A semiflow Φ : R+ ×X → X is called uniformly weakly ρ-persistent if there

exists some ε > 0 such that

lim sup
t→∞

ρ(Φ(t, x)) > ε ∀x ∈ X, ρ(x) > 0.

2. A semiflow Φ is called uniformly (strongly) ρ-persistent if there exists some
ε > 0 such that

lim inf
t→∞

ρ(Φ(t, x)) > ε ∀x ∈ X, ρ(x) > 0.

3. A set M ⊂ X is called weakly ρ-repelling if there is no x ∈ X such that
ρ(x) > 0 and Φ(t, x)→M as t→∞.

For a function f : R+ → R, we use the notation

f∞ = lim sup
t→∞

f(t) and f∞ = lim inf
t→∞

f(t).

Theorem 4.5. If R0 > 1, then the semiflow Φ is uniformly ρ-persistent, i.e.,
there is a δ > 0 such that for any solution lim inft→∞ I(t) ≥ δ.

Proof. We shall apply Theorem 4.5 and Theorem 8.17 in [16]. First we show that
the disease-free equilibrium (1, 0) is weakly ρ-repelling. Suppose that there exists
ψ0 ∈ Ω̃ such that ρ(ψ0) > 0 with

(4.4) lim
t→∞

Φ(t, ψ0) = (1, 0).

For such a solution, I(0) > 0 and limt→∞ I(t) = 0. Then for any ε > 0 there is a
T > 0 such that I(t) < ε/β for all t > T . Then, for t > T , we have the relation

S′(t) ≥ d(1− S(t))− ε,

hence S∞ ≥ 1− ε/d. This holds for any ε > 0, so for sufficiently large t, S(t)R0 > 1
holds, and from (2.1) we have

I ′(t) = I(t)(d+ γ)(R0S(t)− 1) > 0,
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that contradicts I(t) → 0. Thus, there is no ψ0 ∈ Ω̃ such that ρ(ψ0) > 0 and (4.4)
holds and (1, 0) is weakly ρ-repelling. By Proposition 4.3, together with the fact that
whenever I(t) ≡ 0, S′(t) = d(1 − S(t)) so S(t) → 1, and thus ∪φ∈Ω̃0

ω(φ) = {(1, 0)},
one can see that Φ is uniformly weakly ρ-persistent using Theorem 8.17 in [16]. Since
Φ has a compact global attractor on Ω̃, we can apply Theorem 4.5 in [16] to conclude
that Φ is uniformly ρ-persistent.

5. The case τ = 0. Assume that there is no disease-induced immunity; that
is, hosts become susceptible immediately after recovery. Setting τ = 0 in (2.1) and
omitting the time argument, we obtain

(5.1)
S′ = d(1− S)− βIS + I (γ + νβ (1− S − I)) ,

I ′ = βIS − (γ + d)I.

Observe that if ν = 0, this is a standard SIS model [6].

Proposition 5.1. The set

D =
{

(S, I) ∈ R2, S ≥ 0, I ≥ 0, S + I ≤ 1
}

is positively invariant for the system (5.1).
Proof. Assume S

(
t̄
)

= 0, and 0 ≤ I(t̄) ≤ 1 for some t̄ > 0. Then

S′
(
t̄
)

= d+ I
(
t̄
) (
γ + νβ

(
1− I

(
t̄
)))
≥ 0,

hence the S component remains non-negative. Similarly, if I
(
t̄
)

= 0 for some t̄ > 0,
then I ′

(
t̄
)

= 0. Now consider the sum S + I,

0 ≤ S + I ≤ 1 ⇒ (S + I)′ = (1− (S + I))(d+ νβI) ≥ 0.

If (S + I)
(
t̄
)

= 1, then (S + I)′
(
t̄
)

= 0. Hence, any solution starting in D remains in
this set.

Observe that the limit case, system (5.1), has the same basic reproduction number
in (4.1) as the system with delay (2.1).

Proposition 5.2. If R0 ≤ 1, the disease-free equilibrium is the only equilib-
rium of (5.1) and it is globally asymptotically stable. If R0 > 1, there is a unique
endemic equilibrium which is globally asymptotically stable in D \ D0, where D0 ={

(S, 0) ∈ R2, 1 ≥ S ≥ 0
}

. In this case the DFE is unstable, but attracts solutions in
the invariant disease-free subspace D0.

Proof.
(i) Existence/uniqueness of equilibria. It is trivial to observe that the system

(5.1) has a unique DFE, namely, (S∗, I∗) = (1, 0). Consider endemic equi-
libria (S∗, I∗), with I∗ > 0. From the second equation in (5.1), we see that
S∗ = 1/R0 > 0, as R0 > 0 and I∗ solves the quadratic equation

(5.2) νβ(I∗)2 − I∗
(
νβ

(
1− 1
R0

)
− d
)

+ d

(
1
R0
− 1
)

= 0.

The proof of uniqueness of the endemic equilibrium is given by the following
observation. For R0 > 1, the graph of (5.2) is a parabola opening upwards
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with negative y-intercept. Hence there is a unique strictly positive zero I∗ of
(5.2). For R0 < 1, this parabola has a positive y-intercept and its vertex is
on the negative half-plane, hence (5.2) has no positive zeroes. For R0 = 1,
the only biologically relevant solution is I∗ = 0. Observe that

(S + I)′ = (d+ νβI) (1− (S + I)) ⇒ (S + I)′ = 0⇔ S∗ + I∗ = 1.

In particular, for R0 > 1 we have the relation I∗ = 1− 1/R0 > 0.
(ii) Linearized stability. The Jacobian matrix of the ODE system (5.1) is

(5.3) J(S, I) =
(
−d− βI(1 + ν) γ − βS + νβ(1− S − 2I)

βI βS − γ − d

)
.

Evaluation of (5.3) at the DFE yields an upper-triangular matrix with eigen-
values λ1 = −d < 0 and λ2 = β(1 − 1/R0). Hence, if R0 < 1 the DFE is
locally asymptotically stable, whereas if R0 > 1 the DFE is unstable. For
R0 > 1 we evaluate the Jacobian matrix (5.3) at the endemic equilibrium

JE = J(1/R0, I
∗) =

(
−d− βI∗(1 + ν) −d− νβI∗

βI∗ 0

)
,

with I∗ = 1−1/R0. We see that Tr(JE) = −d−βI∗(1+ν) < 0, and det(JE) =
βI∗ (d+ νβI∗) > 0, hence the endemic equilibrium is locally asymptotically
stable.

(iii) Global stability. If R0 ≤ 1, the global stability of the DFE can be proved
exactly the same way as we proved it for the more general case in Theorem 4.1.
Similarly, forR0 > 1, the same argument as in Theorem 4.5 shows that for any
solution with I(t) > 0, we have lim inft→∞ I(t) > 0. To avoid repetition, here
we only prove the global stability of the endemic equilibrium when R0 > 1
and τ = 0. We can apply the negative criterion of Bendixson and Dulac [12]
and exclude the existence of periodic orbits. From Proposition 5.1, it is clear
that D0 and D \D0 are both invariant, and in D0 solutions tend to the DFE.
In D \ D0, dividing the system (5.1) by I, we obtain

1
I
S′ = d

I
(1− S)− βS + (γ + νβ (1− S − I)) =: f(S, I),

1
I
I ′ = βS − (γ + d) =: g(S, I).

Then we compute the divergence of f and g:

div(f, g) = ∂f

∂S
+ ∂g

∂I
= −d

I
− β − νβ < 0 for all (S, I) ∈ D \ D0.

The divergence remains negative for all (S, I) ∈ D\D0, hence we can exclude
existence of periodic orbits in D \ D0. Using this result together with the
theorem of Poincaré and Bendixson, we have that all trajectories of the two-
dimensional ODE system (5.1) in D \ D0 converge to an equilibrium. Since
lim inft→∞ I(t) > 0, it has to be the stable endemic equilibrium.

6. Stability. In this section we consider linearized stability properties of the
system (2.1), considering first stability switches with respect to τ and then with
respect to more parameters.
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6.1. Associated linear system. We linearize the system (2.1) about an equi-
librium point (S∗, I∗), with I∗ ≥ 0, and introduce the variables x(t) and y(t) such
that S(t) = S∗ + x(t), I(t) = I∗ + y(t). The conditions at equilibrium are given by

0 = d(1− S∗)− βI∗S∗ + I∗ (γ + νβ (1− S∗ − I∗)) e−τ(d+νβI∗),(6.1)

0 = βI∗S∗ − (γ + d)I∗.(6.2)

Using the condition (6.2), we linearize the equation for I in (2.1) and obtain

ẏ(t) = βI∗x(t) + (βS∗ − γ − d)y(t).

Linearization of the S equation is less trivial. First we consider the exponential term

exp
(
−dτ − νβ

∫ t

t−τ
I(u) du

)
= e−τ(d+νβI∗)

(
1− νβ

∫ t

t−τ
y(u) du

)
.

Some computations and the condition at equilibrium (6.1) yield

ẋ(t) = −βS∗y(t)− (d+ βI∗)x(t)
− νβI∗e−τ(d+νβI∗)x(t− τ)
+
(
γ + νβ(1− S∗ − 2I∗)

)
e−τ(d+νβI∗)y(t− τ)

− νβI∗
(
γ + νβ(1− S∗ − I∗)

)
e−τ(d+νβI∗)

∫ t

t−τ
y(u) du.

Now we use the ansatz x(t) = x0e
λt and y(t) = y0e

λt, with (x0, y0) 6= (0, 0),

x0λe
λt = −βS∗y0e

λt − (d+ βI∗)x0e
λt

− νβI∗e−τ(d+νβI∗)x0e
λte−λτ

+ y0e
λte−λτ

(
γ + νβ(1− S∗ − 2I∗)

)
e−τ(d+νβI∗)(6.3)

− I∗
(
γ + νβ(1− S∗ − I∗)

)
e−τ(d+νβI∗)

(
νβ

∫ τ

0
y0e

λueλte−λτ du

)
,

y0λe
λt = βI∗x0e

λt + (βS∗ − γ − d)y0e
λt.(6.4)

The next statement will play an important role in our stability analysis.
Lemma 6.1. λ = 0 is not a root of (6.3)–(6.4).
Proof. Consider first the DFE, (S∗, I∗) = (1, 0), and set λ = 0 into (6.3)–(6.4).

Then the system reduces to

0 = −βy0 − dx0 + y0γe
−τd,

0 = (β − γ − d)y0.

The last equation implies y0 = 0, as in general β 6= γ + d. It follows that also x0 = 0.
But this contradicts the existence of a nontrivial solution of the linear system.

Next we consider the endemic equilibrium (S∗, I∗), where S∗ = 1/R0 = (γ+d)/β
and I∗ > 0, and set λ = 0 into (6.4). We obtain

0 = βI∗x0 ⇒ x0 = 0.
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Substitute x0 = 0 in (6.3) and find

0 = y0

(
−γ − d+

(
(γ + νβ(1− 1/R0 − I∗)) (1− νβτI∗)− νβI∗

)
e−τ(d+νβI∗)

)
.

This can be written as

(6.5) 0 = −y0e
−τ(d+νβI∗)F (τ),

with F : R→ R defined by

F (τ) = (γ + d)eτ(d+νβI∗) + (γ + νβ(1− 1/R0 − I∗)) (νβτI∗ − 1) + νβI∗.

This function satisfies
F (0) = d+ νβI∗ > 0,

and
∂F

∂τ
= (γ + d)(d+ νβI∗)eτ(d+νβI∗) + νβI∗ (γ + νβ(1− 1/R0 − I∗)) > 0, ∀τ ≥ 0.

Hence F is a strictly increasing function of τ. Therefore, F (τ) > 0 for all τ ≥ 0, which
implies that (6.5) holds only when y0 = 0, which is a contradiction to the existence
of nontrivial solutions of the linear system.

Observe that

(6.6)
∫ τ

0
eλu du =

[
eλu

λ

]u=τ

u=0
= eλτ − 1

λ
, for λ 6= 0.

Substitute this expression into (6.3)–(6.4), and divide both equations by eλt. This
yields

(6.7)

x0λ = −βS∗y0 − (d+ βI∗)x0

− νβI∗e−τ(d+νβI∗)x0e
−λτ

+ y0e
−λτ(γ + νβ(1− S∗ − 2I∗)

)
e−τ(d+νβI∗)

− I∗
(
γ + νβ(1− S∗ − I∗)

)
e−τ(d+νβI∗)νβy0

1− e−λτ

λ
,

respectively,

(6.8) y0λ = βI∗x0 + (βS∗ − γ − d)y0.

Multiply equation (6.7) by λ 6= 0 and obtain

(6.9)

x0λ
2 = −λ (βS∗y0 + (d+ βI∗)x0)
− λe−λτνβI∗e−τ(d+νβI∗)x0

+ y0λe
−λτ(γ + νβ(1− S∗ − 2I∗)

)
e−τ(d+νβI∗)

− I∗
(
γ + νβ(1− S∗ − I∗)

)
e−τ(d+νβI∗)νβy0

(
1− e−λτ

)
.

From equation (6.8) we have that

(6.10) x0

y0
= λ+ d+ γ − βS∗

βI∗
= λ

βI∗
+ d+ γ − βS∗

βI∗
,



STABILITY SWITCHES IN AN SIRS MODEL WITH DELAYS 917

where λ 6= 0 is the solution of the characteristic equation determined by (6.9). Divide
by y0 and multiply by βI∗ equation (6.9), and substitute the expression (6.10). In
this way we obtain

(6.11)

λ2 (λ− βS∗ + d+ γ) = −λβ2I∗S∗ − λ(d+ βI∗)(λ+ d+ γ − βS∗)
− λe−λτνβI∗e−τ(d+νβI∗)(λ+ d+ γ − βS∗)
+ λe−λτβI∗

(
γ + νβ(1− S∗ − 2I∗)

)
e−τ(d+νβI∗)

− ν(βI∗)2(γ + νβ(1− S∗ − I∗)
)
e−τ(d+νβI∗)

+ e−λτν(βI∗)2(γ + νβ(1− S∗ − I∗)
)
e−τ(d+νβI∗).

This is the characteristic equation we get from linearization about a generic stationary
point (S∗, I∗). There is no need to discuss further the DFE, as we already know it
is globally asymptotically stable (Theorem 4.1). Therefore we shall consider only the
endemic equilibrium.

6.2. Stability switches with respect to τ . The characteristic equation and
its roots are functions of the delay τ . The stability of an equilibrium solution (in the
following, the endemic equilibrium) may change as the length of the delay changes
[9, 13].

The characteristic equation about the endemic equilibrium is

(6.12)
λ3 = −λβ(γ + d)I∗ − λ2(d+ βI∗)− λ2e−λτνµ(ν)

+ λe−λτµ(ν)
(
σ(ν)− νβI∗

)
− νβI∗σ(ν)µ(ν) + e−λτνβI∗σ(ν)µ(ν),

with

(6.13)
µ(ν) = βI∗e−τ(d+νβI∗),

σ(ν) = γ + νβ(1− 1/R0 − I∗).

The next proposition shows that characteristic roots (as continuous functions of τ)
are bounded on the right half-plane. Hence, Rouché’s theorem [10] implies that roots
λ(τ) cannot suddenly appear or disappear, nor they can change multiplicity at a finite
point in the complex plane.

Proposition 6.2 (Bounded characteristic roots). If <(λ) > 0, then

|λ| ≤ max
{

1, (â+ b̂+ ĉ)
}
,

where â = d+ β(ν + 1), b̂ = β(γ + β(2ν + 1)), and ĉ = 2νβ2(γ + νβ).
Proof. Assume <(λ) > 0. If |λ| > 1, from (6.12) we have the estimate (recall that

I∗ ≤ 1)

|λ|3 ≤ |λ|β2 + λ2(d+ β(ν + 1)) + |λ|β(γ + 2νβ) + 2νβ2(γ + νβ)
≤ λ2[d+ β(ν + 1) + β(β + (1 + 2νβ)(γ + 2νβ))

]
.

Hence it either holds that |λ| ≤ 1, or |λ| > 1 is not larger than the term in the square
brackets.

In general, when dealing with equations with one (constant) delay, one is inter-
ested in studying stability switches when τ increases, and looks for the first value τ0
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at which the characteristic equation has a pair of pure imaginary conjugate roots. In
our case, the characteristic equation about the endemic equilibrium, (1/R0, I

∗), can
be written in the form

W (λ) ≡ P (λ) +Q(λ)e−λτ = 0,

where

P (λ) = λ3 + λ2(d+ βI∗) + λβ(γ + d)I∗ + νβI∗µ(ν)σ(ν),

Q(λ) =
(
λ2ν − λ

(
σ(ν)− νβI∗

)
− νβI∗σ(ν)

)
µ(ν),

and µ(ν), σ(ν) as in (6.13). Consider purely imaginary roots, λ = iω, with ω > 0.
Separate real and imaginary part ofW (iω), square both terms, and add them together.
The result is a quadratic equation,

ξ2 + a2ξ + a1 = 0, ξ = ω2,

where

a2 =
(
d2 + β2(I∗)2 − 2βγI∗ − ν2µ2(ν)

)
,

a1 = (βI∗(γ + d))2 − 2νβI∗(d+ βI∗)µ(ν)σ(ν)
− (σ(ν)− νβI∗)2µ2(ν)− 2ν2µ2(ν)βI∗σ(ν).

This equation can have zero, one, or two solutions ξ, corresponding to zero, two, or
four roots ω = ±

√
ξ of W (iω). In order to analytically determine stability switches,

one usually studies the sign of d(<(λ))/dτ at purely imaginary roots λ = iω, or
equivalently the sign of <(d(λ/dτ)−1). In our case, however, due to the complicated
expression (6.12) in which several coefficients, such as I∗, µ(ν), or σ(ν), depend on
the delay, it is not really possible to study d(<(λ))/dτ in the general case.

6.3. Stability with respect to two parameters. In order to compute regions
of stability in a parameter plane, say (ν, τ), the classical technique is to separate real
and imaginary parts of the characteristic equation, substituting λ = x+ iy in (6.11),
and then obtain an explicit expression for ν and τ as a function of the imaginary part
y. In this way, it is usually possible to have the parametric formulation of curves on
which a pair of roots is exactly on the imaginary axis.

In the case of equation (6.12), with R0 > 1, the characteristic equation at the
endemic equilibrium, several coefficients depend on the I∗ coordinate of the endemic
equilibrium, which in turn depends on all model parameters, including ν and τ . There-
fore it is not possible to solve explicitly for ν or τ (or any other parameter). Neverthe-
less, thanks to the results in the previous sections, we know the stability properties
along the ν and τ axes. On the one side, if τ = 0 (and R0 > 1) the endemic equilib-
rium is globally asymptotically stable for all ν ≥ 0. On the other side, if ν = 0 we
know from [17] that a number of stability switches occur in τ , and there is a value
τ0 > 0 at which the first Hopf bifurcation occurs, so that the endemic equilibrium is
locally asymptotically stable for τ ∈ [0, τ0). We perform a few numerical test with
TRACE-DDE [7] to determine the stability of the endemic equilibrium with respect
to two parameters.

In the following we consider parameter values which are plausible for pertussis
disease. Pertussis is a highly transmittable disease (R0 = 15) with about 21 days
infectious period (γ = 17) [11]. Unless otherwise mentioned, we assume turnover an
average lifetime of 50 years (d = 0.02).
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(a) (b)

Fig. 1. Stability of the endemic equilibrium in a two-parameter plane. Green region indicates
stability, red one instability. (a) Parameter plane (ν, τ) in the pertussis parameter setting (R0 = 15,
γ = 17) with population turnover d = 0.02 (50 years average lifetime). (b) Parameter plane (ν,R0)
for τ = 15, γ = 17, and d = 0.02.

Figure 1(a) shows the stability of the endemic equilibrium in the parameter plane
(ν, τ). Notice that the coordinates of the endemic equilibrium change in dependence
on the parameters, hence they have to be computed for each parameter pair (ν, τ). In
the above section we have assumed ν ∈ [0, 1]; here for the sake of numerical interest
we investigate the stability chart for ν ≥ 0. The stable region (green) is the one in
which all the characteristic roots have real part smaller than zero. The unstable region
(red) indicates parameter combinations for which at least one characteristic root has
positive real part. On the curves which separates stable and unstable regions, one or
more roots are crossing the imaginary axis. We see that increasing ν has a stabilizing
effect on the endemic equilibrium.
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Fig. 2. Pertussis parameter setting (R0 = 15, γ = 17). Effects of the mortality rate on the
parameter plane (ν, τ). (a) d = 0.013 corresponding to 75 years, (b) d = 0.02 corresponding to 50
years, (c) d = 0.05 corresponding to 20 years, (d) d = 0.2 corresponding to 5 years average lifetime.
Green region indicates stability, red one instability.

Fig. 3. Stability switches in dependence on τ . The blue curve shows the infective population
I(t), the red dotted line indicates the endemic equilibrium I∗. Parameter values correspond to
Figure 2(d) (R0 = 15, γ = 17, d = 0.2) and the delay varies: (a) τ = 0.01, (b) τ = 0.7, (c) τ = 0.8,
(d) τ = 1, (e) τ = 1.4.

In Figure 2 we study effects of the mortality rate on the left lower part of the
(ν, τ) plane. We see that increasing the mortality stabilizes the endemic equilibrium
in the sense that the unstable region becomes smaller. This matches previous results
on an ODE model with waning immunity and boosting by Dafilis et al. [8].

We focus on the y-axis of Figure 2(d), fix one value of d, and visualize stability
switches as τ increases. Let R0 = 15, γ = 17, d = 0.2, and τ grow from 0.01 to
1.4. Plotting the solution I(t) over time and comparing this curve to the endemic
equilibrium I∗, we see four stability switches (Figure 3), as expected.

Figure 1(b) shows the stability of the endemic equilibrium in the parameter plane
(ν,R0), for ν ∈ [0, 6] and R0 ∈ [1.05, 10]. We observe that for ν close to 4.5 there are
four stability switches in R0; that is, the endemic equilibrium is locally asymptotically
stable for values of R0 close to 1, then it becomes unstable, then stable, then unstable,
and finally again stable. Studying the characteristic roots related to these switches, we
find that when the endemic equilibrium loses stability it is due to a Hopf bifurcation
(Figure 4).
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Fig. 4. Spectrum of the endemic equilibrium when ν = 4.8, d = 0.02, τ = 15, γ = 17, and R0
varies. For R0 = 1.01, R0 = 3.2, and R0 = 6 there is no characteristic root on the right half-plane,
whereas for R0 = 1.5 and R0 = 4 a pair of characteristic roots has crossed the imaginary axis.

We conclude with a short remark on the disease-free equilibrium. The character-
istic equation at the DFE is

λ2 (λ− β + d+ γ) = −λd(λ+ d+ γ − β).

As λ = 0 is not a root (Lemma 6.1), we divide by λ left and right, obtaining

λ2 + λβ (d+ 1/R0 − 1) + dβ(1/R0 − 1) = 0.

Hence the stability of the DFE does not depend on ν, nor on τ , but only on R0. From
Theorem 4.1 we know that the trivial equilibrium is globally asymptotically stable for
R0 ≤ 1.

7. Discussion. Several models for waning immunity in the form of DDE systems
with constant or distributed delay have been proposed in the past few years [4, 5, 14,
17, 19]. None of such models, however, includes immune system boosting.

In this work we have introduced the model (2.1) for waning and boosting immu-
nity, written as a system of two differential equations with constant and distributed
delay. The delay τ represents the duration of immunity after natural infection. One
limitation of the proposed model is the assumption that the infectious period is con-
stant. In the future it might be interesting to extend the system, including a further
distributed delay for variable recovery.

For the system (2.1) we have proved global existence and uniqueness of solutions
on Ω ⊂ C([−τ, 0], [0, 1]2). As it often happens in applications of delay differential
equations, the solutions of our system can become negative. Non-negative solutions
can be obtained by restricting the choice of possible initial data to an appropriate set
Ω̃ ⊂ Ω in (3.1) (cf. Theorem 3.1).

One mathematical highlight of the paper is the characteristic equation (6.11) or,
better, the way to obtain it. To get to equation (6.11) we had to take care in linearizing
the exponential term in (2.1) and then excluding the potential characteristic root
λ = 0. A similar technique was recently used in [15].

Classical analysis of epidemiological models includes the determination of the ba-
sic reproduction number R0, a parameter which indicates if and how strongly the
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disease spreads among the population. For system (2.1) R0 is given by the rela-
tion (4.1). We proved that if R0 is larger than 1, the system has one unique endemic
equilibrium and the disease persists in the population; if R0 ≤ 1 then the only biolog-
ically relevant equilibrium is the DFE and it is globally asymptotically stable. In the
limit case τ = 0 we get an SIS system with no immunity. The ODE system (5.1) has
the same reproduction number as (2.1). Also in this case the value of R0 determines
global stability of the disease-free equilibrium (whenR0 ≤ 1) or of the unique endemic
equilibrium (when R0 > 1).

We have investigated stability switches of the endemic equilibrium with respect
to τ > 0, but we have seen that in general it is not possible to study the sign of the
characteristic roots with respect to the delay. On the other hand we see in Figure 1(a)
and Figure 3 that, increasing τ , the endemic equilibrium first loses and then regains
stability. Our conjecture is that when the delay is large the system (2.1) approximates
a classical ODE SIR model: immune hosts are protected for a very long time, wiping
out the effect of immune system boosting.

For biological motivation it might make sense to consider the boosting force ν ∈
[0, 1]. Observe that if ν is very large (ν → ∞), the exponential term in the first
equation (2.1) tends to zero and the dynamics approximates the one of an SIR system
without delay. Indeed, numerical simulations in Figure 1(a) show that increasing ν has
a stabilizing effect on the endemic equilibrium. But ν is not the only parameter which
affects the stability region of the nontrivial steady state. Studying the parameter
plane (ν, τ), we have found that increasing the mortality rate d stabilizes the endemic
equilibrium, in accordance with results in [8]. For large values of the mortality rate
(Figure 2(d)), the unstable Hopf bifurcation regions in the (ν, τ) plane are (red) spots
well separated from each other. Decreasing d, each of these spots get larger and
different unstable regions might overlap, generating a unique large unstable region
with few curves along which a double Hopf bifurcation occurs (Figures 2(a–c)). Due to
the complicated form of the characteristic equation, including an implicitly determined
endemic equilibrium, it was not possible to determine the explicit expression of the
Hopf bifurcation curves in the parameter plane (ν, τ) nor in other parameter planes.

In the last part of this paper, we constructed a (ν,R0) stability chart for the
nontrivial steady state. Increasing R0, the endemic equilibrium can experience sev-
eral stability switchings crossing two distinct regions of instability separated by Hopf
bifurcations. We believe this is a novel bifurcation diagram in the epidemic context,
which leads the path for further numerical investigations and for careful mathematical
analysis.
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