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Abstract. In this paper, we study the global stability of a multistrain SIS

model with superinfection. We present an iterative procedure to calculate a

sequence of reproduction numbers, and we prove that it completely determines
the global dynamics of the system. We show that for any number of strains

with different infectivities, the stable coexistence of any subset of the strains
is possible, and we completely characterize all scenarios. As an example, we

apply our method to a three-strain model.

1. Introduction. Many pathogenic microorganisms have several different genetic
variants or subtypes which are called strains. Different strains competing for the
same host may differ in their key epidemiological parameters, such as infectivity,
length of infectious period or virulence. General multistrain models are typically
difficult to analyse because of the large state space (see Kryazhimskiy et al. [8]),
sometimes even showing chaotic dynamics, as in Bianco et al. [1]. Bichara et al. [2]
considered multi-strain SIS and SIR models without superinfection and proved that
under generic conditions a competitive exclusion principle holds. Martcheva [9]
showed that in a periodic environment, the principle of competitive exclusion does
not necessarily hold. In reality, a stronger strain might superinfect an individual
already infected by another strain. As a consequence, different virus strains with
different virulence may coexist even in a constant environment, as it has been il-
lustrated by Nowak [10], who considered a basic model to provide an analytical
understanding of the complexities introduced by superinfection.
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In the present paper, we consider a multistrain SIS model with superinfection
with n infectious strains and show that it is possible to obtain a stable coexistence
of any subgroup of the n strains. We establish an iterative method for calculating a
sequence of reproduction numbers which determine what strains are present in the
globally asymptotically stable coexistence equilibrium.

The structure of the paper is the following: in Section 2, we introduce a multi-
strain SIS model with superinfection. We present the iterative method which can
be used to determine which equilibrium of the system will be the stable coexistence
steady state, and we prove that it is globally asymptotically stable. In the last
section, we apply the method described in Section 2 in the case of three strains.
For this case, we give a complete description of the global stability properties of the
system depending on the different reproduction numbers.

2. Main result. We consider a heterogeneous virus population with different in-
fectivities. We will assume that superinfection is possible, i.e. more infective strains
outcompete the less infective ones in an infected individual. We assume that an
infected individual is always infected by only one virus strain, i.e. after superinfec-
tion, the more infective strain completely takes over the host from the less infective
one. Let n denote the number of strains with different infectivity. The population
is divided into n + 1 compartments depending on the presence of any of the virus
strains: the susceptible class is denoted by S(t) and we have n infected compart-
ments T1, . . . , Tn, where a larger index corresponds to a compartment of individuals
infected by a strain with larger infectivity. Let B denote birth rate and b death rate.
Let βjk denote the transmission rate by which the k-th strain infects those who are
infected by the j-th strain. We refer to the transmission rates from susceptibles to
strain k by βkk. The notation θk stands for recovery rate among those infected by
the k-th strain. We allow the most infective strain to be lethal with disease-induced
mortality rate dn. Using these notations, we obtain the following model:

dS(t)

dt
= B − bS(t)− S(t)

n∑
k=1

βkkTk(t) +

n∑
k=1

θkTk(t),

dTk(t)

dt
= S(t)βkkTk(t) + Tk(t)

n∑
j=1

(1− δkj)βkjTj(t)

− (b+ θk + δkndn)Tk(t), k = 1, 2, . . . , n,

(1)

with initial condition

S (0) = φ0, Tk (0) = φk, k = 1, 2, . . . , n,

(φ0, φ1, φ2, . . . , φn) ∈ Γ,
(2)

where δkj denotes the Kronecker delta such that δkj = 1 if k = j and δkj = 0
otherwise, and Γ = [0,∞)n+1. We assume that the conditions

βkj = βkk, 1 ≤ j ≤ k,
βjk = −βkj = −βjj , k + 1 ≤ j ≤ n, (3)

hold for the infection rates for k = 1, 2, . . . , n, i.e. we assume that the k-th strain
infects those who are infected by a milder strain (including the non-infected) with
the same rate.

Note that for n = 2, (1) is equivalent to the model by Dénes and Röst [4–6]
describing the spread of ectoparasites and ectoparasite-borne diseases. In [4, 5], a
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model with no disease-induced mortality is studied (this corresponds to dn = 0 in
the present model), while [6] studies the impact of excess mortality (dn > 0).

Before we present the procedure for the global stability analysis of the system
(1), we note that for a given n, it is enough to consider solutions started with initial
values φ1, . . . , φn > 0, as any boundary subspace of Γ (i.e. a subspace where one or
more infected compartments are equal to 0) is invariant, so if any m of the initial
values φ1, . . . , φn is equal to 0, we can reduce (1) to an (n + 1 − m)-dimensional
system of the same structure. This also means that in the case of n strains, solutions
started from the boundary of Γ can be studied in an analogous way as solutions
started from the interior, but in smaller dimension. This observation is formalized
in the following proposition.

Proposition 1. Let us consider the system (1) with n different strains, and let
m < n. On any m+ 1-dimensional boundary subspace of Γ (i.e. when n−m strains
are not present), (1) can be reduced to an (m + 1)-dimensional system with the
same structure. The corresponding boundary subspace is invariant for the reduced
equation.

Now we can start the description of the procedure for the global stability anal-
ysis of (1); from now on we only consider solutions started with initial values
φ1, . . . , φn > 0. Let us introduce the new variable

Nn(t) = S(t) +

n∑
j=1

Tj(t) (4)

representing the total population. By (3), βkj = −βjk for k 6= j, and hence,
n∑
k=1

Tk(t)

n∑
j=1

(1− δkj)βkjTj(t) = 0

holds. By (1), we have

dNn(t)

dt
= B − bNn(t)− dnTn(t), (5)

and (1) can be rewritten as follows:

dS(t)

dt
= B − bS(t)− S(t)

n∑
k=1

βkkTk(t) +

n∑
k=1

θkTk(t),

dTk(t)

dt
= S(t)βkkTk(t) + Tk(t)

n∑
j=1

(1− δkj)βkjTj(t)

− (b+ θk)Tk(t), k = 1, 2, . . . , n− 1,

(6)

and

dTn(t)

dt
=

(
Nn(t)−

n∑
j=1

Tj(t)

)
βnnTn(t) + Tn(t)

n∑
j=1

(1− δnj)βnjTj(t)

− (b+ θn + dn)Tn(t)

= Tn(t)

(
βnnNn(t)−

n∑
j=1

{βnn − (1− δnj)βnj}Tj(t)− (b+ θn + dn)

)
,

dNn(t)

dt
= B − bNn(t)− dnTn(t).

(7)



424 ATTILA DÉNES, YOSHIAKI MUROYA AND GERGELY RÖST

Then, by (3), introducing the new variable

Un(t) = B/b−Nn(t), t ≥ 0,

(7) is equivalent to the following system:

dTn(t)

dt
= βnnTn(t)

(
B

b
− b+ θn + dn

βnn
− Tn(t)− Un(t)

)
,

dUn(t)

dt
= dnTn(t)− b Un(t).

(8)

Let us define R(n)
0 as

R(n)
0 :=

Bβnn
b(b+ dn + θn)

.

Since B/b is the number of susceptibles at the disease free equilibrium of system
(1), this formula can be interpreted as the basic reproduction number of the n-th
strain.

The system (8) can be decoupled as a 2-dimensional Lotka–Volterra system with
feedback controls (see, for example, Faria and Muroya [7]) and is independent from
the system (6). We note that one can show global stability for (8) by applying
the general result of Faria and Muroya [7, Theorem 3.8] for Lotka–Volterra systems
with feedback controls. However, the application of that technique to our system
(8) requires the condition dn < b. Here, without the condition dn < b, we give a
proof of the global stability of (8). First, we show a simple theorem on the global
dynamics of (8) to be applied later in determining the global dynamics of the full
system.

Theorem 2.1. Let us consider system (8) on R0
+ × R. For R(n)

0 ≤ 1, the system
has only the trivial equilibrium (0, 0), which is globally asymptotically stable. For

R(n)
0 > 1, system (8) has two equilibria: the trivial equilibrium (0, 0) and the globally

asymptotically stable positive equilibrium

(T ∗n , U
∗
n) =

(
Bβnn − (b+ dn + θn)b

βnn(b+ dn)
,
dn{Bβnn − (b+ dn + θn)b}

bβnn(b+ dn)

)
,

which only exists if R(n)
0 > 1.

Proof. Obviously, if we start a solution with Tn(0) = 0 then Un(t) → 0 as t → ∞,
so all such solutions tend to the trivial equilibrium.

We show that for R(n)
0 > 1, the limit set of all other solutions is the positive

equilibrium. Let us suppose this is not true, i.e. there is a solution started from
positive initial value in T which tends to the trivial equilibrium. If this holds, then
for any ε > 0, there is a T > 0 such that Tn(t) < ε and |Un(t)| < ε holds for all
t > T . Then for the derivative T ′n(t), we can give the estimation

T ′n(t) = βnnTn(t)

(
B

b
− b+ θn + dn

βnn
− Tn(t)− Un(t)

)
> βnnTn(t)

(
B

b
− b+ θn + dn

βnn
− 2ε

)
,

which is positive for ε small enough as B
b >

b+θn+dn
βnn

follows from R(n)
0 > 1. This

contradicts our assumption, thus for R(n)
0 > 1, the limit of any solution started
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from positive initial values is the positive equilibrium. Let us note that all solutions
are bounded. We apply the Dulac function D(Tn, Un) = 1/Tn to obtain

∂

∂Tn

[
D(Tn, Un)

{
βnnTn

(
B

b
− b+ θn + dn

βnn
− Tn − Un

)}]
+

∂

∂Un
{D(Tn, Un) (dnTn − b Un)}

= −βnn −
b

Tn
,

which is negative for Tn > 0. Hence, we obtain from the above and the Poincaré–

Bendixson theorem that for R(n)
0 ≤ 1, the trivial equilibrium (0, 0) is globally

attractive and for R(n)
0 > 1, there exists a unique positive equilibrium of (8) which

is globally attractive on { (Tn, Un) ∈ R+ × R }. Stability follows from the fact that
Dulac’s criterion excludes homoclinic orbits too (cf. [3]).

To determine the global dynamics of (1), which is equivalent to the global dy-
namics of (6) and (8), first we substitute the equilibria calculated in Theorem 2.1
into the full model to obtain the following reduced system of (6):

dS(t)

dt
= B(1) − b(1)S(t)− S(t)

n−1∑
k=1

βkkTk(t) +

n−1∑
k=1

θkTk(t),

dTk(t)

dt
= S(t)βkkTk(t) + Tk(t)

n−1∑
j=1

(1− δkj)βkjTj(t)

−
(
b(1) + θk

)
Tk(t), k = 1, 2, . . . , n− 2,

(9)

and

dTn−1(t)

dt
=

(
Nn−1(t)−

n−1∑
j=1

Tj(t)

)
βn−1,n−1Tn−1(t)

+ Tn−1(t)

n−1∑
j=1

(1− δn−1,j)βn−1,jTj(t)− (b(1) + θn−1)Tn−1(t)

= Tn−1(t)

(
βn−1,n−1Nn−1(t)

−
n−1∑
j=1

{βn−1,n−1 − (1− δn−1,j)βn−1,j}Tj(t)

− (b(1) + θn−1)

)
,

dNn−1(t)

dt
= B(1) − b(1)Nn−1(t),

(10)

where Nn−1 is defined similarly as Nn(t) in (4), as the sum of the susceptible
compartment and the first n− 1 (already modified) infected compartments:

Nn−1(t) = S(t) +

n−1∑
k=1

Tk(t)
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and the new coefficients are defined as

B(1) := B + θnT
∗
n , b(1) := b+ βnnT

∗
n ,

if R(n)
0 > 1 and

B(1) := B, b(1) := b,

if R(n)
0 ≤ 1. We define the next reproduction number as

R(n−1)
0 :=

B(1)βn−1,n−1

b(1)(b(1) + θn−1)
.

It is easy to see that the two systems (9) and (10) we obtained are of similar
structure as (6) and (7), but with dimension n − 1, the positivity of the new pa-
rameters follows from the conditions (3). This means that by repeating the above
steps we can further reduce the dimension by substituting the values of the glob-
ally asymptotically equilibrium of the decoupled system (10) into the remaining
equations.

In general, after performing the above steps l times, we arrive at the system

dS(t)

dt
= B(l) − b(l)S(t)− S(t)

n−l∑
k=1

βkkTk(t) +

n−l∑
k=1

θkTk(t),

dTk(t)

dt
= S(t)βkkTk(t) + Tk(t)

n−l∑
j=1

(1− δkj)βkjTj(t)

−
(
b(l) + θk

)
Tk(t), k = 1, 2, . . . , n− l − 1,

(11)

and

dTn−l(t)

dt
= S(t)βn−l,n−lTn−l(t) + Tn−l(t)

n−l∑
j=1

(1− δn−l,j)βn−l,jTj(t)

−
(
b(l) + θn−l

)
Tn−l(t),

dNn−l(t)

dt
= B(l) − b(l)Nn−l(t),

(12)

where

Nn−l(t) = S(t) +

n−l∑
k=1

Tk(t),

B(0) = B, b(0) = b and inductively for l = 1, 2, . . . , n− 1, we define

R(n−l)
0 :=

B(l)βn−l,n−l
b(l)(b(l) + θn−l)

and

B(l) := B(l−1) + θn−l+1T
∗
n−l+1, b(l) := b(l−1) + βn−l+1,n−l+1T

∗
n−l+1,

if R(n−l)
0 > 1 and

B(l) := B(l−1), b(l) := b(l−1),

if R(n−l)
0 ≤ 1.
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Now we introduce Un−l(t) = B(l)/b(l) −Nn−l(t), to rewrite the equation (12) as

dTn−l(t)

dt
= βn−l,n−lTn−l(t)

(
B(l)

b(l)
− b(l) + θn−l

βn−l,n−l
− Tn−l(t)− Un−l(t)

)
,

dUn−l(t)

dt
= − b(l) Un−l(t).

(13)

Again, (13) might be decoupled from the other equations (11). For R(n−l)
0 ≤ 1,

system (13) has only the trivial equilibrium (0, 0). But for R(n−l)
0 > 1, system (13)

has two equilibria: the trivial equilibrium (0, 0) and the non-trivial equilibrium

(T ∗n−l, U
∗
n−l) =

(
B(l)βn−l,n−l − (b(l) + θn−l)b

(l)

βn−l,n−lb(l)
, 0

)
,

which only exists if

R(n−l)
0 > 1.

Then, from (11), we obtain the systems

dS(t)

dt
= B(l+1) − b(l+1)S(t)− S(t)

n−l−1∑
k=1

βkkTk(t) +

n−l−1∑
k=1

θkTk(t),

dTk(t)

dt
= S(t)βkkTk(t) + Tk(t)

n−l−1∑
j=1

(1− δkj)βkjTj(t)

−
(
b(l+1) + θk

)
Tk(t), k = 1, 2, . . . , n− l − 2,

and
dTn−l−1(t)

dt
= S(t)βn−l−1,n−l−1Tn−l−1(t)

+ Tn−l−1(t)

n−l−1∑
j=1

(1− δn−l−1,j)βn−l−1,jTj(t)

−
(
b(l+1) + θn−l−1

)
Tn−l−1(t),

dNn−l−1(t)

dt
= B(l+1) − b(l+1)Nn−l−1(t),

where

Nn−l−1(t) = S(t) +

n−l−1∑
k=1

Tk(t),

B(0) = B, b(0) = b and inductively for l = 1, 2, . . . , n− 1, we define

R(n−l−1)
0 :=

B(l+1)βn−l−1,n−l−1

b(l+1)(b(l+1) + θn−l−1)

and

B(l+1) := B(l) + θn−lT
∗
n−l, b(l+1) := b(l) + βn−l,n−lT

∗
n−l,

if R(n−l−1)
0 > 1 and

B(l+1) := B(l), b(l+1) := b(l),
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if R(n−l−1)
0 ≤ 1, which, again, are systems with the same structure. In the end, we

arrive at the two-dimensional system

dS(t)

dt
= B(n−1) − b(n−1)S(t)− β11S(t)T1(t) + θ1T1(t),

dT1(t)

dt
= β11S(t)T1(t)− (b(n−1) + θ1)T1(t),

which has the two equilibria(
B(n−1)

b(n−1)
, 0

)
and

(
b(n−1) + θ1

β11
,
B(n−1)

b(n−1)
− b(n−1) + θ1

β11

)
,

with the latter one only existing if

R(n)
0 :=

B(n−1)β11

b(n−1)(b(n−1) + θ1)
> 1.

The dynamics of this system can be determined in a similar way as in the case
of (8), and we obtain that the first equilibrium is globally asymptotically stable if

R(n)
0 ≤ 1 and the second one is globally asymptotically stable if R(n)

0 > 1.
Thus, by the above discussion, we can reach a conclusion by induction to the

global dynamics of the model (1) and we claim the following.

Theorem 2.2. The multistrain SIS model (1) has a globally asymptotically stable
equilibrium on the region Γ0, where Γ0 is the interior of Γ. The global dynamics

is completely determined by the threshold parameters
(
R

(1)
0 , R

(2)
0 , . . . , R

(n)
0

)
which

can be obtained iteratively and determine which one of the equilibria is globally
asymptotically stable.

Proof. The procedure described above can be used to prove the theorem. To show
that at each step, after obtaining the globally asymptotically stable equilibrium of
the two-dimensional system (13) we can really substitute the coordinates of this
equilibrium into the remaining equations, we use the theory of asymptotically au-
tonomous systems [11, Theorem 1.2]. According to this theorem, if e is a locally
asymptotically stable equilibrium of the system

ẏ = g(y) (14)

which is the limit equation of the asymptotically autonomous equation

ẋ = f(t, x), (15)

and ω is the ω-limit set of a forward bounded solution x of (15), then, if ω contains
a point y0 such that the solution of (14) through (0, y0) converges to e for t→∞,
then ω = {e}, i.e. x(t)→ e for t→∞.

Let us suppose that at the end of the procedure, we obtain the equilibrium
E = (S̄, T̄1, . . . , T̄n) where T̄i = 0 or T̄i = T ∗i depending on the reproduction
numbers and let Ek = (S̄, T̄1, . . . , T̄k) the equilibrium of the (k + 1)-dimensional
system obtained during the procedure, consisting of the first k + 1 coordinates of
E. Let B(M) denote the basin of attraction of a point M . Let us define the
domains Γk0 as Γk0 := { (S, T1, . . . , Tk, ) : S, T1, . . . , Tk > 0 } for k = 1, . . . , n − 1
and Γn0 := Γ0. By induction, we will show that Γ0 ⊂ B(E). Let us suppose that
for a given k, Γk0 ⊂ B(Ek) holds and Ek is stable. We will show that from this

also Γk+1
0 ⊂ B(Ek+1) follows. We know from the procedure that on Γk+1

0 , for all
solutions of the (k + 2)-dimensional system, the coordinate Tk+1(t) tends to T̄k+1.
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Thus, for the limit set ω(x) of any x ∈ Γk+1
0 for the (k+ 2)-dimensional system, we

have ω(x) ⊂ Γk0 × {T̄k+1}. Since Ek was supposed to be stable, according to [11,
Theorem 1.2], from this it follows that x ∈ B(Ek+1), and, as x was chosen arbitrarily,

Γk+1
0 ⊂ B(Ek+1). Thus, we have shown global attractivity of the equilibrium.

To prove global asymptotic stability, and in order to be able to proceed with
the induction using [11, Theorem 1.2], we still need to show that Ek+1 is a sta-
ble equilibrium of the (k + 1)-dimensional reduced system in each step. Let us
suppose that this does not hold, i.e. Ek+1 is unstable for some k ≤ n. This
means that there exists an ε > 0 such that there exists a sequence {xm} → Ek+1,
|xm − Ek+1| < 1/m such that the orbits started from the points of the sequence
leave B(Ek+1, ε) := {x ∈ Γ : |x − Ek+1| ≤ ε }. Let us denote by xεm the first exit
point from B(Ek+1, ε) of the solution started from xm, reached at time τm. There
is a convergent subsequence of the sequence xεm (still denoted by xεm) which tends
to a point denoted by x∗ε ∈ S(Ek+1, ε) := {x ∈ Γ : |x− Ek+1| = ε }. We will show
that the α-limit set α(x∗ε) is the singleton {Ek+1 }. For this end, let us consider
the set S(Ek+1,

ε
2 ). Clearly, all solutions started from the points xm (we drop the

first elements of the sequence, if necessary) will leave the set B(Ek+1,
ε
2 ). Let us

denote the last exit point of each trajectory from this set before time τm, respec-
tively, by xε/2

m . Also this sequence has a convergent subsequence (still denoted the
same way), let us denote its limit by x∗ε/2. We will show that the trajectory started
from this point will leave B(Ek+1, ε). If this is not the case, let us denote by d > 0
the distance of this trajectory from S(Ek+1, ε). As Ek+1 is globally attractive, this
trajectory will eventually enter S(Ek+1,

ε
4 ) at some time T > 0. For continuity

reasons, there exists N ∈ N such that if m > N then |x∗ε/2t−xε/2
m t| < max{d2 ,

ε
8} for

0 < t < T . This means that for m large enough, the trajectory started from xε/2
m

will enter again S(Ek+1,
ε
2 ) before exiting S(Ek+1, ε). This contradicts the choice

of xε/2
m as the last exit points from S(Ek+1,

ε
2 ). Again, continuity arguments show

that the intersection point of the trajectory started from x∗ε/2 and S(Ek+1, ε) is x∗ε.
Proceeding like this (taking neighbourhoods of radius ε/4, ε/8 etc.) we can show
that the backward trajectory of x∗ε will enter any small neighbourhood of Ek+1 as
t → −∞. From the above, it is also clear that Ek+1 is the only α-limit point of
this trajectory. Because of the global attractivity of Ek+1, the ω-limit set of the
trajectory is also {Ek+1 }, thus the orbit is homoclinic.

As the equilibrium of the two-dimensional system (13) for n − l = k + 1 is

globally asymptotically stable, for any ε̂ > 0, there exists an N̂ ∈ N such that
if m > N̂ , then the Tk+1 coordinate of the solution started from xm is closer to
T̄k+1 than ε̂. Thus, the “limit trajectory” obtained above will entirely lie in the
hyperplane Tk+1 = T̄k+1. This means that we have found a homoclinic orbit in
this hyperplane. However, on this hyperplane, our current (k + 2)-dimensional
system coincides with the (k + 1)-dimensional system, for which global asymptotic
stability of the equilibrium follows from the induction assumption. This excludes
the presence of a homoclinic orbit and from this contradiction we obtain the global
asymptotic stability of the equilibrium of the (k + 2)-dimensional system.

Trivially, for k = 1, the assertion holds, so repeating the inductive step leads to
Γ0 ∈ B(E).

Example 2.1. As an example, let us assume that after performing the proce-
dure described above, we obtain a sequence of reproduction numbers for which the

relations R
(1)
0 ≤ 1, R

(2)
0 > 1, R

(3)
0 ≤ 1, . . . , R

(n)
0 > 1 hold. This means that an
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equilibrium of the form (S∗, 0, T ∗2 , 0, . . . , T
∗
n) is globally asymptotically stable on Γ0.

Following the above procedure we can obtain the equilibria which attract solutions
started from Γ \ Γ0 in each different case.

3. Application to three strains. To make the process for determining the global
stability properties of the system (6) described in the previous section better visible
and understandable, we consider the case n = 3. For an even simpler case we refer
the reader to [6] which corresponds to the case n = 2.

Let us now turn to the case of three strains. To make our notations easier to
follow and unambiguous, for the reproduction numbers and equilibria we will use
the signs ‘+’ and ‘−’ in the upper indices, where adding a ‘+’ sign denotes that the
last reproduction number determined during the procedure was greater than 1 and
adding a ‘−’ sign means that the last reproduction number was less than or equal
to 1. Also, to simplify the notations, we will use simple indices for the infection
rates.

In the case of three strains, our system takes the form

dS(t)

dt
= B − bS(t)− S(t)

3∑
k=1

βkTk(t) +

3∑
k=1

θkTk(t),

dT1(t)

dt
= β1S(t)T1(t)− β2T1(t)T2(t)− β3T1(t)T3(t)− (b+ θ1)T1(t),

dT2(t)

dt
= β2S(t)T2(t) + β2T1(t)T2(t)− β3T2(t)T3(t)− (b+ θ2)T2(t),

dT3(t)

dt
= β3S(t)T3(t) + β3T1(t)T3(t) + β3T2(t)T3(t)− (b+ d3 + θ3)T3(t).

(16)

Following the steps in the previous section, by introducing the notation Nk(t) =

S(t) +
∑3
j=1 Tj(t), k = 1, 2, 3, and further, the notation Un(t) = B/b −Nn(t), we

may transcribe the above equation into the form

dT1(t)

dt
= β1S(t)T1(t)− β2T1(t)T2(t)− β3T1(t)T3(t)− (b+ θ1)T1(t),

dT2(t)

dt
= β2S(t)T2(t) + β2T1(t)T2(t)− β3T2(t)T3(t)− (b+ θ2)T2(t),

dT3(t)

dt
= β3

(
B

b
− U3(t)

)
T3(t)− (b+ d3 + θ3)T3(t),

dU3(t)

dt
= d3T3(t)− b U3(t).

The last two equations can be decoupled from the others and we obtain the two-
dimensional system

dT3(t)

dt
= β3

(
B

b
− U3(t)

)
T3(t)− (b+ d3 + θ3)T3(t),

dU3(t)

dt
= d3T3(t)− b U3(t),

which has two equilibria: the trivial equilibrium (0, 0) and the positive equilibrium

(T ∗3 , U
∗
3 ) =

(
Bβ3 − (b+ d3 + θ3)b

β3(b+ d3)
,
d3(Bβ3 − (b+ d3 + θ3)b)

bβ3(b+ d3)

)
,
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which only exists if

R0 :=
Bβ3

b(b+ d3 + θ3)
> 1.

We know from the previous section that (0, 0) is a globally asymptotically stable
equilibrium of (3) if R0 ≤ 1 and the positive equilibrium is globally asymptotically
stable if R0 > 1. Following the steps described in the previous section, we can
reduce the system in both cases to 3 dimensions.

We start with the case R0 ≤ 1. In this case, we obtain the three-dimensional
system

dT1(t)

dt
= β1S(t)T1(t)− β2T1(t)T2(t)− (b+ θ1)T1(t),

dT2(t)

dt
= β2S(t)T2(t) + β2T1(t)T2(t)− (b+ θ2)T2(t),

dU2(t)

dt
= − b U2(t),

i.e. the last two equations have the form

dT2(t)

dt
= β2

B

b
T2(t)− β2U2(t)T2(t)− β2(T2(t))2 − (b+ θ2)T2(t),

dU2(t)

dt
= − b U2(t).

This two-dimensional system has the two equilibria (0, 0) and

(T−2 , 0) =

(
B

b
− b+ θ2

β2
, 0

)
.

The second equilibrium only exists if

R−0 :=
Bβ2

b(b+ θ2)
> 1,

and (0, 0) is globally asymptotically stable if R−0 ≤ 1, while (T−2 , 0) is globally
asymptotically stable if R−0 > 1.

Let us again proceed with the first case: ifR−0 ≤ 1 we obtain the two-dimensional
system

dT1(t)

dt
= β1

B

b
T1(t)− β1U(t)T1(t)− β1(T1(t))2 − (b+ θ1)T1(t),

dU1(t)

dt
= − b U1(t),

which again has two equilibria: (0, 0) and

(T−−1 , 0) =

(
B

b
− b+ θ1

β1
, 0

)
.

The second equilibrium only exists if

R−−0 :=
Bβ1

b(b+ θ1)
> 1,

and the trivial equilibrium is globally asymptotically stable if R−−0 ≤ 1, while
(T−−1 , 0) is globally asymptotically stable if R−−0 > 1.
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If R−0 > 1, then the equilibrium (T−2 , 0) is globally asymptotically stable. Thus,
we obtain the system

dT1(t)

dt
= β1

B−+

b−+
T1(t)− β1U1(t)T1(t)− β1(T1(t))2 − (b−+ + θ1)T1(t),

dU1(t)

dt
= − b−+U1(t),

where B−+ := B + θ2T
−
2 and b−+ := b+ β2T

−
2 . This system has the two equilibria

(0, 0) and

(T−+
1 , 0) :=

(
B−+

b−+
− b−+ + θ1

β1
, 0

)
.

The latter equilibrium only exists if

R−+
0 :=

B−+β1

b−+(b−+ + θ1)
> 1.

If R−+
0 ≤ 1, then (0, 0) is globally asymptotically stable, while if R−+

0 > 1, then
(T−+

1 , 0) is globally asymptotically stable.
Now we turn to the case R0 > 1. In this case, all solutions tend to the positive

equilibrium (T ∗3 , U
∗
3 ). By substituting these values into the rest of the equations,

introducing the notations B+ := B + θ3T
∗
3 and b+ := b + β3T

∗
3 , we obtain the

three-dimensional system

dT1(t)

dt
= β1S(t)T1(t)− β2T1(t)T2(t)− (b+ + θ1)T1(t),

dT2(t)

dt
= β2S(t)T2(t) + β2T1(t)T2(t)− (b+ + θ2)T2(t),

dU2(t)

dt
= − b+U2(t),

(17)

and further, by decoupling the last two equations and rewriting them,

dT2(t)

dt
= β2

B+

b+
T2(t)− β2U2(t)T2(t)− β2(T2(t))2 − (b+ + θ2)T2(t),

dU2(t)

dt
= − b+ U2(t).

This two-dimensional system has two equilibria, the trivial equilibrium (0, 0) and
the positive equilibrium

(T+
2 , 0) =

(
B+

b+
− (b+ + θ2)

β2
, 0

)
,

which only exists if

R+
0 :=

B+β2

b+(b+ + θ2)
> 1.

The trivial equilibrium is globally asymptotically stable if R+
0 ≤ 1 and the equilib-

rium (T+
2 , U

+
2 ) is globally asymptotically stable if R+

0 > 1.
Let us proceed with the case R+

0 ≤ 1. In this case, (17) can be reduced to the
system

dT1(t)

dt
= β1

B+

b+
T1(t)− β1U(t)T1(t)− β1(T1(t))2 − (b+ + θ1)T1(t),

dU1(t)

dt
= − b+U1(t).
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This system has the two equilibria (0, 0) and

(T+−
1 , 0) =

(
B+

b+
− b+ + θ1

β1

)
,

with the second equilibrium only existing if

R+−
0 :=

B+β1

b+(b+ + θ1)
> 1.

The equilibrium (0, 0) is globally asymptotically stable if R+−
0 ≤ 1, and the positive

equilibrium is globally asymptotically stable for R+−
0 > 1.

In the case R+
0 > 1, we can reduce the system to

dT1(t)

dt
= β1

B++

b++
T1(t)− β1T1(t)U1(t)− β1(T1(t))2 − (b++ + θ1)T1(t)T1(t),

dU1(t)

dt
= − b++U1(t),

where B++ := B+ + θ2T
+
2 and b++ := b+ + β2T

+
2 . Again, this system has two

equilibria, (0, 0) and

(T++
1 , U++

1 ) =

(
B++

b++
− (b++ + θ1)

β1
, 0

)
,

with the latter one only existing if

R++
0 :=

B++β1

b++(b++ + θ1)
> 1.

If R++
0 ≤ 1, then (0, 0) is globally asymptotically stable, while if R++

0 > 1, then
(T++

1 , U++
1 ) is globally asymptotically stable.

Based on the above calculations and Theorem 2.2, we can formulate the following
theorem on the global dynamics of the three-strain model (16). Similarly to the
general case, we use the notation

Γ0 = { (S, T1, T2, T3) : S > 0, T1 > 0, T2 > 0, T3 > 0 }.

Theorem 3.1. The following statements hold for the stability of the equilibria
of (16).

(i) If R0 ≤ 1, R−0 ≤ 1 and R−−0 ≤ 1, then the equilibrium
(
B
b , 0, 0, 0

)
is globally

asymptotically stable on Γ0.
(ii) If R0 ≤ 1, R−0 ≤ 1 and R−−0 > 1, then the equilibrium

(
B
b − T

−−
1 , T−−1 , 0, 0

)
is globally asymptotically stable on Γ0.

(iii) If R0 ≤ 1, R−0 > 1 and R−+
0 ≤ 1, then the equilibrium

(
B−+

b−+ − T−2 , 0, T
−
2 , 0

)
is globally asymptotically stable on Γ0.

(iv) If R0 ≤ 1, R−0 > 1 and R−+
0 > 1, then the equilibrium

(
B−+

b−+ − T−+
1 −

T−2 , T
−+
1 , T−2 , 0

)
is globally asymptotically stable on Γ0.

(v) If R0 > 1, R+
0 ≤ 1 and R+−

0 ≤ 1, then
(
B+

b+ − T
∗
3 , 0, 0, T

∗
3

)
is globally asymp-

totically stable on Γ0.

(vi) If R0 > 1, R+
0 ≤ 1 and R+−

0 > 1, then the equilibrium
(
B+

b+ − T+−
1 −

T ∗3 , T
+−
1 , 0, T ∗3

)
is globally asymptotically stable on Γ0.

(vii) If R0 > 1, R+
0 > 1 and R++

0 ≤ 1 then the equilibrium
(
B++

b++ − T+
2 −

T ∗3 , 0, T
+
2 , T

∗
3

)
is globally asymptotically stable on Γ0.



434 ATTILA DÉNES, YOSHIAKI MUROYA AND GERGELY RÖST

(viii) If R0 > 1, R+
0 > 1 and R++

0 > 1, then the equilibrium
(
B++

b++ −U++
1 −T++

1 −
T+

2 − T ∗3 , T
++
1 , T+

2 , T
∗
3

)
is globally asymptotically stable on Γ0.

Theorem 3.1 gives a complete description for solutions started from Γ0. For
solutions started with initial values 0 for any of the infected compartments, we can
refer to Proposition 1. However, as an example, we show the case T2(t) ≡ 0.

In this case, the system (16) takes the form

dS(t)

dt
= B − bS(t)− β1S(t)T1(t)− β3S(t)T3(t) + θ1T1(t) + θ3T3(t),

dT1(t)

dt
= β1S(t)T1(t)− β3T1(t)T3(t)− (b+ θ1)T1(t),

dT3(t)

dt
= β3S(t)T3(t) + β3T1(t)T3(t)− (b+ d3 + θ3)T3(t).

(18)

This system is also of the form (1), for n = 2. For a complete description of the
global dynamics of this system, we refer the reader to [6].

4. Discussion. We established an SIS model for a disease with multiple strains
where a more infective strain can superinfect an individual infected by another
strain. We developed a method to determine the global stability properties of the
system. The main idea is that after some transformation of the model, two equations
are decoupled from the others and the global stability of this two-dimensional sys-
tem is completely described using the Dulac–Bendixson criterion and the Poincaré–
Bendixson theorem. The dimension of our system can consequently be decreased
by 1 substituting the values of the limit points of the two-dimensional system into
the remaining equations, applying the theory of asymptotically autonomous differ-
ential equations. At each step, we derive a reproduction number that selects from
the two possible equilibria of the two-dimensional system the globally asymptoti-
cally stable one. At the end of this procedure, we find the globally asymptotically
stable equilibrium of the full system, where some of the strains coexist, depending
on the sequence of the reproduction numbers.

We note that in the present paper only the most infective strain could be lethal.
Without this assumption, in the presence of multiple lethal strains, the transforma-
tions (6)–(7) cannot be performed, so our procedure cannot be applied. Therefore,
it remains an open question to investigate a similar model where all virus strains
may be lethal. We conjecture that a similar global asymptotic stability result holds
in that more general setting, too.
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