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a b s t r a c t

Identifying the steady states of a population is a key issue in theoretical ecology, that includes the
study of spatially heterogeneous populations. There are several examples of real ecosystems in patchy
environments where the habitats are heterogeneous in their local density dependence. We investigate
a multi-patch model of a single species with spatial dispersal, where the growth of the local population
is logistic in some localities (negative density dependence) while other patches exhibit a strong Allee
effect (positive density dependence). When the local dynamics is logistic in each patch and the habitats
are interconnected by dispersal then the total population has only the extinction steady state and a
componentwise positive equilibrium, corresponding to persistence in each patch. We show that animal
populations in patchy environments can have a large number of steady states if local density dependence
varies over the locations. It is demonstrated that, depending on the network topology of migration routes
between the patches, the interaction of spatial dispersal and local density dependence can create a variety
of coexisting stable positive equilibria. We give a detailed description of the multiple ways dispersal can
rescue local populations from extinction.

© 2016 Elsevier Inc. All rights reserved.
Population dynamics studies the changes over time in the size
(density) of a group of individuals who share the same habitat.
Since there are so many interactions between individuals and the
environment, describing how populations grow or shrink is often a
complex task. Mathematical growthmodels are frequently used to
better understand these dynamics in real populations. In simplest
terms, the change in the size of the population can be expressed
by the difference of births and deaths. If environmental conditions
are favourable (that is, food, space, etc. are abundant), then the
population is able to grow. Growth is said to be exponential
when the growth rate is proportional to the total population size.
However, when resources are limited, an intraspecific competition
of the individuals can occur which results in a slowdown of the
exponential growth as competition for the resources increases.

Abbreviations: EAD, extinct in the absence of spatial dispersal; OAD, occupied in
the absence of spatial dispersal.
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Eventually, population growth decreases nearly to zero as the
population reaches the carrying capacity of the environment. This
way, the growth of the population is described by an S-shaped
curve, known as the logistic curve.

Numerous examples illustrate that in real ecosystems the
growth of populations can exhibit another type of dynamics, the
Allee effect, which is very different from that of exponential and
logistic growth. Animal populations are often subject to the Allee
effect, that is, they are better able to grow at higher densities. The
concept was first described by Warder Clyde Allee, who studied
the growth of goldfish. While classical population dynamics
modelling approaches – including the concepts of exponential
and logistic growth – assume negative density dependence of
per capita growth rate, Allee’s experiments showed that goldfish
were better able to survive on higher densities. It has been
observed that certain aquatic species can affect the chemistry of
the water by releasing protective chemicals that could enhance
their survival. In a tank, goldfish better manage to render the
water closer to their optimal chemical requirements when there
are several of them (Allee and Bowen, 1932). Based on his
experiments and observations, Allee arrived to the conclusion that
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the evolution of social structures is not only driven by competition
(which classically implies negative density dependence), but that
cooperation is another fundamental principle in animal species
(Allee, 1931). The individuals of many species cooperate in various
ways: they join forces to hunt or to escape predators, they forage
together, they use cooperative strategies to survive unfavourable
conditions, or they seek partners for reproduction.

The phenomenon of the Allee effect, often referred to as
positive density dependence in population growth, has been
studied comprehensively in the literature. Both in the direction of
theoretical works with mathematical models and empirical works
with the unveiling of Allee dynamics in natural populations, a large
number of studies have been published (Dennis, 1989; Courchamp
et al., 1999; Berec et al., 2007; Stephens and Sutherland, 1999).
We also refer to the excellent book of Courchamp et al. (2008)
which details the history and recent developments of the topic, and
also provides a thorough overview of the relevant literature. We
distinguish two types of Allee effect: the strong and the weak Allee
effects. The strong Allee effect includes a population threshold that
is often referred to as the Allee threshold: the population goes
extinct when rare (per capita growth rate is negative), and it is able
to grow at densities higher than the threshold (Dennis, 1989; Lewis
and Kareiva, 1993; Odum and Barrett, 2004). In case when a weak
Allee effect occurs in the population, the per capita population
growth rate is lower (however, still positive) at low densities than
at higher densities.

An Allee effect can arise from a large variety of different
ecological mechanisms. There are several types of reproductive
Allee effects, as fertilization efficiency in sessile organisms, mate
finding in mobile organisms or cooperative breeding. Examples
also include mechanisms related to survival, like environmental
conditioning and predation. Comprehensive description of the
various mechanisms with appropriate ecological examples can
be found in Berec et al. (2007), Stephens and Sutherland (1999),
Courchamp et al. (2008). Predation can generate a strong Allee
effect in prey. An example for this mechanism is the case of the
island fox (prey) and the golden eagle (predator) on the California
Channel Islands (Angulo et al., 2007). Foxes are consumedby eagles
as secondary prey, since feral pigs are the main prey for eagles.
If pigs are not present on an island, then eagles will not sustain
a permanent population on that habitat, as the fox population
by itself cannot provide enough prey. If, on the other hand,
there are sufficient pigs around to maintain the eagle population
then the eagles establish residence on the island. This way, eagle
population dynamics do not depend on fox density, and unlike
in the classical predator–prey models, eagles can deplete the fox
population without negative feedback on the predator population.
If the eagle kill rate follows a Holling type II functional response
then this phenomenon reveals an Allee effect in the fox population,
since the lower the fox density, the higher the individual risk of
eagle predation (Angulo et al., 2007). Clutton-Brock et al. (1999)
also compared survival between prey populations living in sites
where predators are abundant and sites where predators have
been reduced or removed as a result of human interference. They
find that suricates in Kalahari Gemsbok Park – an area of high
predator density –were subject to a strong Allee effectwhilst those
living in the neighbouring ranchland where predator density is
relatively low, could survive even in small groups.

If the mechanism that triggers the Allee effect depends on
ecological circumstances (e.g., presence of particular predators),
then the Allee effect may be present in some areas or time periods,
and absent in others. Sinclair et al. (1998) investigates the impact of
reintroducing endangered predators on the prey. Since predation
causes an Allee effect in the prey population which is not the
primary food supply for the predator, it might be necessary to
apply predator control to allow the escape of the prey population.
In Australia, several indigenous mammals – the black-footed rock
wallaby and the quokka for instance – have been reduced to a
fraction of their former range, so for their conservation some
sensitive prey species are now confined to outer islands where
exotic predators (feral cats and red foxes) are absent. Sometimes
different habitats support different colony sizes, and it depends
on their density whether the population is subject to an Allee
effect or grows logistically. Pollock apply two types of strategies
for protection from predators. Fish who live in structured habitats
(such as algal beds) disperse to reduce detection by predators, so
predation triggers a negative density dependence in fish. On the
other hand, in open intertidal habitats the fish shoal, which means
that their risk-dilution effect is positively density dependent
(Stephens and Sutherland, 1999).

The term ‘‘metapopulation’’ was introduced in the works of
Levins (1969, 1970), referring to a collection of local populations
that are connected by migration (Levins, 1970). The metapopula-
tion concept, though it has undergone some paradigm shift, has
been firmly established in population ecology and conservation bi-
ology since the work of Hanksi and Gilpin (1991), and the topic is
also receiving increasing attention in mathematical modelling of
ecological processes. The classical metapopulation theory (Levins,
1969) rests on the assumptions that dynamics of local populations
occur on a fast time scale in comparison with metapopulation dy-
namics. Thisway, the classicalmetapopulation theory is concerned
with the number of local populations but changes in their sizes is
ignored. The dynamic theory of island biogeography (Macarthur
and Wilson, 1963, 1967), models the changes in the size of local
population in the discrete habitat fragments (patches). In a math-
ematical model that rests on the island theory approach the dy-
namic variable is the number of individuals on a particular patch,
while in the classical approach the dynamic variable is the num-
ber of habitat fragments occupied by the species. Hanski (2001) ex-
plains how the two metapopulation approaches can be integrated
by providing a theoretical framework that explicitly unites the two
theories.

In this paper we focus on the approach where the size of
local populations is modelled. Most literature with this approach
assume negatively density-dependent (typically, logistic) growth
in the local populations (Levins, 1969, 1970; Levin, 1974; Holt,
1985; Hastings, 1993; Doebeli, 1995; Allen et al., 1993; Ruxton,
1993, 1994; Poethke and Hovestadt, 2002; Yakubu and Castillo-
Chavez, 2002). Besides, spatial theory for the case when the
local dynamics is governed by the Allee effect is also relatively
well developed (Dennis, 1989; Courchamp et al., 2008; Lewis
and Kareiva, 1993; Amarasekare, 1998; Gyllenberg et al., 1999;
Keitt et al., 2001; Boukal and Berec, 2002; Kang and Lanchier,
2011). However, an interesting question – that has not been
studied yet – is how dispersal and spatial heterogeneity influence
metapopulation dynamics when the nature of local density-
dependence is negative in some patches but positive in others.
Throughout the above discussion we provided examples for real
animal metapopulations where in some habitats local populations
grow logistically while different locations exhibit an Allee effect.
Such difference in the local dynamics can arise when some
ecological circumstances (e.g., presence of particular predators)
vary over the localities.

We consider an animal population distributed over several
discrete geographical patches that are interconnected by dispersal.
If a local population is subject to a strong Allee effect then typically
it has three steady states: the extinction (zero) equilibrium
attracts every solution started below a positive equilibrium (Allee
threshold, unstable), and all solutions converge to the population
carrying capacity (another positive, stable equilibrium) if the initial
population size is larger than the Allee threshold. On the other
hand, in a local population that follows logistic growth there exist
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only two steady states: the extinction equilibrium is unstable,
while the positive steady state – representing population carrying
capacity – is globally stable. Studying the dynamics of animal
populationwhere density dependence varies over spatial locations
has not received much attention despite the numerous examples
in real ecosystems (Stephens and Sutherland, 1999; Angulo et al.,
2007; Clutton-Brock et al., 1999; Sinclair et al., 1998). Here we
show that if some of the patches are subject to a strong Allee
effect then many steady states exist. Our accurate mathematical
description characterizes the structure and the stability of the
equilibria in terms of local density dependence and the migration
routes between the patches. Due to the coexistence of many
positive stable steady states, making predictions for the future
behaviour of such systems can be rather challenging.

1. Mathematical model

We consider r patches, and denote the population of patch
i at time t by Ni(t) for i = 1, . . . , r and t ≥ 0. Population
growth at patch i is modelled by the term Ni · gi(Ni) in an ordinary
differential equation. This formulation immediately implies that
each patch has an extinction state.We assume that gi is r −1 times
continuously differentiable for each i ∈ {1, . . . , r}, and consider
two different scenarios for population growth in the patches. We
assume that for s patches (0 ≤ s ≤ r) the population is subject
to a strong Allee effect, while the population growth is given by
the logistic function for the remaining r − s patches. To model this,
we assume that ga (a ≤ s) has two zeros: one gives the unstable
Allee thresholdAa (sometimes also called the extinction threshold),
and another corresponds to the stable carrying capacity K a; andwe
assume that gb (s + 1 ≤ b ≤ r) has only one zero, representing
the stable carrying capacity K b of the patch. This is formulated
mathematically as

d(Na · ga(Na))

dNa
= ga(Na) + Na

dga(Na)

dNa
<0 if Na = 0,
>0 if Na = Aa,

<0 if Na = K a,

for a ≤ s,

d(Nb · gb(Nb))

dNb
= gb(Nb) + Nb

dgb(Nb)

dNb
>0 if Nb = 0,
<0 if Nb = K b,

for s + 1 ≤ b ≤ r,

(1)

where 0 < Aa < K a for a ≤ s. Furthermore, we assume that
ga(0) < 0 when a ≤ s and gb(0) > 0 when s + 1 ≤ b ≤ r , that
is, the extinction steady state of a patch is asymptotically stable if
a strong Allee effect can occur in the population, and unstable for a
patch with logistic population growth. Logistic population growth
is typically modelled with gb(Nb) = rb(K b − Nb), and numerous
examples for themathematical formulations of the Allee effect can
be found in the literature that satisfy our general assumptions on
ga, e.g. ga(Na) = ra(K a −Na)(Na −Aa) (Dennis, 1989; Amarasekare,
1998; Asmussen, 1979;Gruntfest et al., 1997;Hopf andHopf, 1985;
Levin and Segel, 1985).

Spatial dispersal between the patches is represented by lin-
ear terms in the system for the metapopulation dynamics. We let
α · c jiNi for the migration term from patch i to patch j, where the
non-negative constant c ji (i, j ∈ {1, . . . , r}, i ≠ j) represents con-
nectivity potential, and α ≥ 0 is the general dispersal parameter,
which will serve as a perturbation parameter as well. The follow-
ing differential equation system (Mα) describes population growth
over time in r locations:

d
dt

Ni = Ni · gi(Ni) −

r
j=1
j≠i

α · c jiNi

+

r
j=1
j≠i

α · c ijNj, i = 1, . . . , r. (Mα)

Standard results from the theory of differential equations (De Vries
et al., 2006) guarantee that the system is well-posed. We denote
our model by (M0) in the special case when there is no spatial dis-
persal between the patches, that is, α = 0 and the habitats are
isolated.

2. Extinction equilibrium and steady states where all local
populations are abundant

Equilibria of the model (Mα) arise as solutions of the steady
state system

Ni · gi(Ni) −

r
j=1
j≠i

α · c jiNi +

r
j=1
j≠i

α · c ijNj = 0, i = 1, . . . , r. (2)

One immediately derives the following result, that holds for any α
and c ij (i, j ∈ {1, . . . , r}, i ≠ j).

Theorem 2.1. The system (Mα) has a steady state that corresponds
to extinction in all habitats.

In the special case when there is no spatial dispersal between
the patches (that is, α = 0) the steady state system (2) reads

Ni · gi(Ni) = 0, i = 1, . . . , r,

where we see that the equations decouple, and solving the
system requires solving r scalar equations which are pairwise
independent. There are s patches that exhibit a strong Allee effect
and each has 3 equilibria, moreover all r patches with logistic
growth have 2 steady states; therefore, there are 3s

·2r−s equilibria
in the system (M0) of isolated populations. For a steady state N

0
=

(N
0
1, . . . ,N

0
r ) of (M0) it holds that N

0
a ∈ {0, Aa, K a} for a ≤ s and

N
0
b ∈ {0, K b} for s + 1 ≤ b ≤ r .
Whereas finding the solutions is fairly trivial in the case

of isolated patches, solving the steady state system (2) can
be very difficult and sometimes impossible when dispersal is
incorporated. However, by knowing the roots of (2) without
dispersal, the implicit function theorem (see Krantz and Parks,
2012 for reference) enables us to retrieve some information on the
steady states for small values of dispersal. To this end, we rewrite
the system (Mα) in the compact form

d
dt

X = T (α, X) (3)

with X = (N1, . . . ,Nr)
T

∈ Rr and T = (T1, . . . , Tr)
T :R × Rr

→

Rr , where Ti is defined as the right hand side of the ith equation of
the system (Mα), i ∈ {1, . . . , r}. Note that (3) is equivalent to (M0)
in the special case when α = 0.

The steady state system (2) can be formulated as T (α, X) = 0.
When the patches are isolated then this equation reads T (0, X) =

0, and we have a perfect understanding of the roots. To apply
the implicit function theorem, we note that T is an r − 1 times
continuously differentiable function on R × Rr , and the matrix

∂T
∂X


(0,N

0
) is invertible for any equilibrium N

0
of the system

(M0). Indeed,


∂T
∂X


(0,N

0
) is a diagonal matrix with diagonal
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elements d
dNi

(Nigi(Ni))|Ni=N0
i
, i = 1, . . . , r , that are nonzero. The

implicit function theorem then says:
Consider an equilibrium N

0
of the model (M0). There exists a

positive constant αE , an open set UE containing N
0
, and a unique

r − 1 times continuously differentiable function N = (N1, . . . ,N r)
T :

[0, αE) → UE such that N(0) = N
0
and T (α,N(α)) = 0 for

α ∈ [0, αE).
We arrive at the following result.

Theorem 2.2. Consider an equilibriumN
0
of the disconnected system

(M0). If α is sufficiently small then there is a fixed point N(α)

of (Mα), and this fixed point is close to N
0
. In particular, if N

0
is

a componentwise positive equilibrium of (M0) and α is sufficiently
small then the system (Mα) has a componentwise positive steady state
N(α), which is close to N

0
.

Wemake an important remark on the stability of steady states,
that is proved in the Appendix.

Remark 2.3. For small values of dispersal local stability of a steady
state N(α) of the system (Mα) is the same as that of the associated
equilibrium N

0
of the system (M0) of isolated local populations.

An equilibrium of (M0) is stable if all local populations are at
stable steady states in the corresponding local dynamics, and the
equilibrium is unstable otherwise.

The extinction steady state is stable if all patches exhibit a
strong Allee effect, and unstable if there is at least one patch with
logistic growth. The system (M0) has exactly 2s componentwise
positive equilibria when there are s patches with Allee dynamics.
Therefore, it is guaranteed that there exist at least 2s positive
equilibria in the model (Mα) (though, only one of these equilibria
is stable, see the proof of Remark 2.3 in the Appendix). In the
following sections we investigate how dispersal is able to create
some additional positive equilibria (many of which are stable).

3. Mixed steady states with extinct, rescued or abundant local
populations

Other than the extinction steady state and componentwise
positive equilibria, the system (M0) also has equilibria with mixed
zero and positive components. In fact, in (M0) there are 3s

· 2r−s
−

1 − 2s such boundary equilibria (which is the total number minus
the zero equilibrium minus the ones with all components being
positive), that correspond to situations when in the absence of
spatial dispersal, some local populations are at positive states
while other patches are at zero state. Now we consider such a
steady state N

0
of the system (M0) of isolated local populations.

A boundary equilibrium of (M0) might disappear when spatial
dispersal between the patches is introduced: mathematically
speaking, for some α > 0 the unique continuous function N(α)

associatedwithN
0
mayhave negative components. In otherwords,

the boundary equilibrium moves out from the non-negative cone
and hence it does not give a biologically meaningful steady state.
On the other hand,N(α) ≥ 0means that the boundary equilibrium
N

0
of (M0) is preserved for small values of dispersal.
In what follows we describe a mathematical procedure to

decide whether a fixed point N(α) associated to a boundary
equilibrium of (M0), gives a biologically meaningful steady state in
the system (Mα). Applying the procedure to each of the 3s

· 2r−s
−

1 − 2s boundary equilibria of (M0), will allow us to give a lower
estimate on the number of steady states in (Mα) (equilibria other
than those associated to boundary equilibria of (M0),may also arise
with dispersal). We introduce some notation for convenience.
Definition 3.1. Consider a boundary equilibrium N
0
of the system

(M0).

• If a patch i is extinct in N
0
(that is, N

0
i = 0), then we say that

patch i is EAD (Extinct in the Absence of spatial Dispersal) inN
0
.

• If a patch j is occupied in N
0
(that is, N

0
j > 0), then we say that

patch j is OAD (Occupied in the Absence of spatial Dispersal)
in N

0
.

We note that only those components of N(α) can be negative
that correspond to EAD patches, that is, that are zero in N

0
. We

give a remark to characterize whether a boundary equilibrium
remains biologicallymeaningful when dispersal with small rates is
introduced into the system. This result follows from Theorem 2.2.

Remark 3.2. Consider a boundary equilibrium N
0
of the system

(M0).

• If dN i
dα (0) > 0 holds for every EAD patch i thenN(α) is positive if

α is small, that is, for small α the function N(α) gives a positive
steady state in the system (Mα).

• If there is an EAD patch k such that dNk
dα (0) < 0 then Nk(α)

is negative for any small α, which means that the function
N(α) does not give a biologically meaningful steady state in the
system (Mα).

To derive dN i
dα (0) we differentiate the steady state equation

Ti(α, X) = 0, and then evaluate at α = 0. Since

d
dα


gi(N i(α))N i(α) −

r
j=1
j≠i

αc jiN i(α) +

r
j=1
j≠i

αc ijN j(α)



=
d
dα

gi(N i(α)) · N i(α) + gi(N i(α))
dN i

dα
(α) −

r
j=1
j≠i

c jiN i(α)

−

r
j=1
j≠i

αc ji
dN i

dα
(α) +

r
j=1
j≠i

c ijN j(α) +

r
j=1
j≠i

αc ij
dN j

dα
(α) = 0

holds whenever i is an EAD patch, at α = 0 we obtain

gi(0)
dN i

dα
(0) +

r
j=1
j≠i

c ijN
0
j = 0,

where we used that N j(0) = N
0
j for j = 1, . . . , r , and N

0
i = 0. It

holds that gi(0) ≠ 0, so we derive the following equation for the
derivative, when i is an EAD patch:

dN i

dα
(0) = −

r
j=1
j≠i

c ijN
0
j

gi(0)
. (4)

Assume for now that individuals can move directly from any
patch to any other habitat, that is, c ij > 0 for all i, j ∈ {1, . . . , r}.
This means that the migration network is fully connected, i.e., it
forms a complete graph. Since N

0
is a boundary equilibrium, it

has some positive components, which implies that
r

j=1
j≠i

c ijN
0
j

is positive. Thus, the sign of the derivative in (4) is opposite of
that of gi(0). We recall that gi(0) < 0 when the population of
patch i is subject to a strong Allee effect, and gi(0) > 0 for a
patch with logistic population growth. Thus, we conclude that the
derivative dN i

dα (0) is positive if a strong Allee effect can occur in
patch i, while it is negative if the population growth is given by
the logistic function. Summarizing, we state this result in the form
of a theorem. We give Fig. 1 for an illustration of these findings.
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Fig. 1. Structure of steady states in the model (Mα) for two patches, when
individuals canmove from patch 1 to 2, and from patch 2 to 1 (that is, themigration
network forms a complete graph). In Figure (a) both patches are subject to a strong
Allee effect, (b) patch 1 is subject to a strong Allee effect and growth is logistic in
patch 2, (c) growth is logistic in patch 1 and patch 2 is subject to a strong Allee effect,
(d) growth is logistic in both patches. Red dots indicate equilibria that exist for all
movement rates. Steady states which exist only when the patches are disconnected
(α = 0) are indicated with green dots. We illustrate by changing the colour from
green through blue and violet to red, how these equilibria wander in the positive
cone as dispersal parameter increases from 0 to 1. For these simulations, we use
ga(Na) = ra(K a − Na)(Na − Aa) for Allee patches and gb(Nb) = rb(K b − Nb) for
patches with logistic growth, r1 = 1, r2 = 1.3, c12 = 1, c21 = 1, K 1 = 1, K 2 =

1, A1 = 0.3, A2 = 0.3. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Theorem 3.3. Consider a boundary equilibrium N
0
of the system

(M0) for isolated local populations, and assume that individuals can
move freely between the patches. If all the EAD habitats (that is, extinct
in N

0
) are subject to a strong Allee effect, then for small α the associ-

ated fixed point N(α) of the system (Mα) gives a positive equilibrium.
Otherwise, N(α) has some negative components for any small α, and
thus it does not give a biologically meaningful equilibrium.

Spatial dispersal of populations is influenced by numerous
environmental factors, as distance between habitats, fitness of
individuals, or human interference that limit accessibility of
certain geographic areas. One can think of various reasonswhy two
habitats are not connected, or are connected by a one-way route
only. In our mathematical model, such a scenario is implemented
by setting one ormore connectivity potential parameters to zero. If
c ij = 0 holds, then no individual migrates from patch j to i directly
(however, this does not necessarilymean that i is unreachable from
j as there may exist an indirect way via other locations). When
investigating whether a fixed point N(α) associated to a boundary
equilibriumN

0
of (M0) gives a biologicallymeaningful steady state

in the system (Mα)with spatial dispersal, we look at the derivative
of the function at all patches that are extinct without dispersal (see
Remark 3.2). By Eq. (4), such derivatives are non-zero as long as the
sum in the numerator of (4) is non-zero, that is,

dN i

dα
(0) ≠ 0 ⇐⇒

r
j=1
j≠i

c ijN
0
j ≠ 0.

We remind that, speaking of a boundary equilibrium with mixed
positive and zero components, there always exists a j such that
N
0
j is positive. Thus, if c ij > 0 for all j (migration to i is possible

from any other patch directly), or N
0
j > 0 and c ij > 0 hold at

the same time, then the derivative of N i is non-zero, and one can
easily decide whether N i(α) is positive or negative for small α. On
the other hand, it is also possible that c ij = 0 whenever N

0
j > 0,

meaning that there is no direct way to i from patches that are at
positive steady state (occupied) in the absence of dispersal. In such
case, Eq. (4) is not sufficient to decidewhether the fixed pointN(α)

associated to the boundary equilibrium N
0
, gives a biologically

meaningful steady state in the system (Mα), since the derivative
of N i is zero.

To overcome this difficulty, one has to look at higher order
derivatives and the entire network of connections between
patches, instead of just looking at locations that directly connect
to EAD patches. We give Theorem 3.4 to show that our earlier
result in Theorem 3.3 for the special case of a fully connected
migrationnetwork canbe extended to generalmigrationnetworks.
Theorem 3.4 is applicable to an arbitrary connection network
between the patches, hence the proof is muchmore technical than
the one for the fully connected migration network in Theorem 3.3.
For this reason, we refer the interested reader to the Appendix
for the proof, nevertheless present Fig. 2 for the illustration of the
result.

Theorem 3.4. Consider a boundary equilibrium N
0
of the system

(M0) for isolated local populations. If there is an EAD patch (that
is, extinct in N

0
) with logistic growth, that is reachable (maybe via

other patches) from an OAD patch (that is, occupied in N
0
), then for

any small α the associated fixed point N(α) of the system (Mα) does
not give a biologically meaningful equilibrium since N(α) has
some negative components. Otherwise, N(α) gives a non-negative
equilibrium in the system (Mα).

See Fig. 2 for the equilibria in the model (Mα) in the case
when two patches are considered, but patch 1 is not reachable
from patch 2. A migration network of five patches is presented
in Fig. 3. If local populations are isolated then the system has
32

· 23
= 72 equilibria, 4 of those are stable and the other 68

are unstable. Following the method described in Theorems 2.1, 2.2
and 3.4, one can derive that there are 72 fixed points in the system
with small migration values, each associated to an equilibrium of
isolated local populations; however, 59 of these fixed points do
not give biologically meaningful equilibria, and the system of five
patches has 4 stable and 9 unstable steady states for small values
of dispersal. In the caption of Fig. 3we show through two examples
how to apply the procedure described in Theorem 3.4.

Summarizing, our method exactly determines in a straightfor-
ward way whether a boundary steady state of the isolated pop-
ulations moves out from or moves into the positive cone, when
dispersal is introduced. Equilibria moving outwards are ceased to
exist as biologically feasible steady states, while equilibria moving
inwards persist. The procedure also tells which of those equilibria
are stable, and it works for any number of patches and any migra-
tion network.

4. Discussion

We illustrated that populations in a patchy environment can
have a large number of steady states if a strong Allee effect can
occur in some of the habitats. We gave a general mathematical
model for the dynamics of a single species when individuals
migrate between r patches that can exhibit two types of local
density dependence. Logistic growth and a strong Allee effect are
typical examples for negative and positive density dependence,
respectively; however, due to the general formulation of the local
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Fig. 2. Structure of steady states in the model (Mα) for two patches, when
individuals can move from patch 1 to 2, but they cannot from patch 2 to 1. In
Figure (a) both patches are subject to a strong Allee effect, (b) patch 1 is subject
to a strong Allee effect and growth is logistic in patch 2, (c) growth is logistic in
patch 1 and patch 2 is subject to a strong Allee effect, (d) growth is logistic in both
patches. Red dots indicate equilibria that exist for all movement rates. Steady states
which exist only when the patches are disconnected (α = 0) are indicated with
green dots.We illustrate by changing the colour from green through blue and violet
to red, how these equilibria wander in the positive cone as dispersal parameter
increases from 0 to 1. For these simulations, we use ga(Na) = ra(K a −Na)(Na − Aa)

for Allee patches and gb(Nb) = rb(K b − Nb) for patches with logistic growth,
r1 = 1, r2 = 1.3, c12 = 0, c21 = 1, K 1 = 1, K 2 = 1, A1 = 0.3, A2 = 0.3. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 3. Migration network of five patches, where patches 1 and 2 exhibit a strong
Allee effect, and patches 3, 4, and 5 follow logistic growth. The migration pathways
are indicated by arrows. In the absence of dispersal, such network of patches has
4 stable and 68 unstable steady states, but only 4 stable and 9 unstable equilibria
are biologically meaningful when migration is introduced. Figure (a): Consider the
equilibrium N

0
= (K1, 0, K3, 0, K5) of the system of isolated local populations.

Then, the associated fixed point N(α) of the system with dispersal will NOT be
a biologically meaningful equilibrium: patch 4 is with logistic growth, extinct in
the absence of dispersal, and reachable (though, not directly) from patch 1, that
is at positive steady state without dispersal. Figure (b): On the other hand, for the
equilibriumN

0
= (0, 0, 0, K4, K5) of isolated local populations, the associated fixed

pointN(α) gives a biologicallymeaningful steady state in the systemwith dispersal:
considering the three patches that follow logistic growth, patches 4 and 5 are at
positive states without dispersal, and though patch 3 is extinct when the locations
are isolated, it is not reachable from another patch that is at positive state.

growth functionNi ·gi(Ni), ourmodel is applicable to a broad range
of scenarios for local growth.

After understanding the dynamics of local populations, it is
easy to describe all the steady states and their stability when the
locations are isolated. If s patches exhibit a strong Allee effect
(having 3 equilibria each) and r − s patches follow logistic growth
(having 2 equilibria each), then the systemof disconnected patches
has a total number of 3s

· 2r−s equilibria, because from each
patchwe can choose one possibility independently. An equilibrium
is stable if each component is stable in the corresponding local
dynamics, and the equilibrium is unstable otherwise. Thus, there
are 2s stable steady states in the combined population of isolated
local populations. On the other hand, finding the steady states in
the system with dispersal is difficult. In this paper, we provided a
procedure that describes the structure and stability of the steady
states for small values of migration between the patches. If the
migration network is fully connected, thenwe found that there are
3r steady states if all patches exhibit a strong Allee effect (s = r),
and there exist 3s

+ 1 equilibria if there is at least one habitat
where growth is logistic (s < r). Thus, there exists a large number
of steady states and this number grows exponentially in the
number of locations. But more importantly, the same statement
holds for the number of stable equilibria: for fully connected
locations there exist 2s (s ≤ r) stable steady states when dispersal
rates are low. Calculating these numbers for a general migration
network (that is, when some patches do not directly connect) is
more challenging, and requires the application of the procedure
described in Theorems 2.1, 2.2 and 3.4. These results rest on the
idea of finding steady states in the system for low dispersal rates
by using our knowledge on the steady states of the systemwithout
dispersal. More precisely, the procedure identifies equilibria of the
systemwith dispersal that are close to an equilibriumof the system
of isolated locations.

When dispersal between the locations is weak, our results
hold true for a broad range of parametrization on the local
growth. However, such general formulation of the model makes
it impossible to extend the steady state analysis to cases when
migration rates are higher; depending on the particular form of
the local nonlinear growth functions Ni · gi(Ni), a rich variety
of dynamics can occur in the model. We illustrated for some
specific functional forms in Figs. 1 and 2 how the structure
of equilibria changes when dispersal rates vary more widely.
We can numerically observe that by increasing the dispersal
rate, equilibria collide and disappear in various bifurcations, and
generally the situation simplifies when migration is larger. One
possible intuitive interpretation is that large dispersal weakens
the effect of heterogeneity. The exact behaviour depends on the
particular nonlinearities that describe the population growth.

Amarasekare (1998) studied the interaction between local
dynamics and dispersal on population persistence in a two-patch
model. She found that two local populations that grow logistically
are unlikely to go extinct even when rare. Our results for multiple
patches with logistic growth agree with those in Amarasekare
(1998).We showed that the only stable equilibrium is the onewith
all local populations at their carrying capacities, whereas all other
steady states (if any) are unstable, implying that rare populations
are likely to increase.Whenpatches are isolated and all followAllee
dynamics, then the population goes extinctwhen rare because rare
local populations go to their stable extinction states. Amarasekare
(1998) showed that dispersal leads to a qualitative change in the
two-patch system, that is, a patch below the Allee threshold is
rescued from extinction by immigrants from another patch that
is above the Allee threshold. Our findings for multiple patches
are in accordance with this result, in fact, we can say much
more. If all local populations exhibit a strong Allee effect then
we showed that there are numerous equilibria including a large
number of stable steady states. In particular, if a patch is at the
extinction steady state in the isolated system, then immigration
from another patch that is at positive state, pushes the extinction
state to some positive value, thereby the extinct patch becomes
occupied. More importantly, the extinction state of a patch with
Allee growth is stable in the local dynamics, which means that
weak dispersal creates stable positive equilibria that do not exist
without dispersal, and this way local populations will not go
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extinct even if near the extinction state. Our results generalize
those byAmarasekare sincewe consider animal populationswhere
growth can vary over the locations.

Regardless of the way local populations grow, the total
population of isolated localities has a single componentwise
positive stable equilibrium, that corresponds to the patch-wise
carrying capacities. In this paper, we showed that a large number
of alternate positive stable steady states can exist if some of the
patches exhibit a strong Allee effect. From the dynamical systems
perspective, such rich structure of stable steady states goes hand
in hand with complicated behaviour of the model, that makes
predicting the population dynamics particularly difficult.
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Appendix

The Appendix is organized as follows. Firstly, Remark 2.3 will
be proved. Then, we present several definitions, lemmas, and
theorems for the proof of Theorem 3.4.

Remark 2.3 cares for the local stability of equilibria of the
system (Mα). To this end, we investigate the eigenvalues of the
Jacobian of the system (2) evaluated at the equilibria. If all eigen-
values of the Jacobian have negative real parts then the equilib-
rium is locally asymptotically stable whereas it is unstable if there
is an eigenvalue with positive real part. If local populations are
isolated (that is, α = 0) then the equations of (2) decouple, and
the Jacobian is a diagonal matrix with diagonal elements d

dNi
(Ni ·

gi(Ni)), i = 1, . . . , r . Thus, eigenvalues arise as the elements in the
diagonal, and the stability of an equilibrium N

0
of the system (M0)

for isolated local populations is determined by the sign of d
dNi

(Ni ·

gi(Ni))|Ni=N0
i
, i = 1, . . . , r . In particular, N

0
is locally asymptoti-

cally stable if d
dNi

(Ni · gi(Ni))|Ni=N0
i

< 0 holds for i = 1, . . . , r ,

and unstable if there is a j such that d
dNj

(Nj · gj(Nj))|Nj=N0
j

> 0. In

(1) and the discussion afterwards we described the steady states
of local populations as well as the stability of these steady states.
Note that in the local dynamics, a negative derivative corresponds
to stability whereas a positive derivative means instability.

In particular, the extinction equilibrium of the system (Mα) is
stable if all patches exhibit a strong Allee effect (s = r), and unsta-
ble otherwise. An equilibrium N

0
where all patches are occupied,

is stable if all local populations are at the carrying capacities (that
is, N

0
a = K

0
a and N

0
b = K

0
b for all a ≤ s and b ≥ s+ 1), and unstable

otherwise (that is, if there is an a such that N
0
a = A

0
a). An equilib-

rium N
0
with some local populations at the extinction state and

others abundant, is stable if all patches with logistic growth are at
their carrying capacities and patches that are subject to a strong
Allee effect, are either extinct or at their carrying capacities (that
is, N

0
a = 0 or N

0
a = K

0
a for all a ≤ s, and N

0
b = K

0
b for all b ≥ s + 1).

We showed that the steady state system (2) can be obtained in
the compact form T (α, X) = 0, where α is the general dispersal
parameter and α = 0 means isolated local populations. The
Jacobian dT

dX
(α, X) is continuous in α and so is the function N(α),

representing an equilibrium of the system (Mα) on the interval
[0, αE) for small αE . We remind that the system (2) is equivalent to
the system (M0) when α = 0, so by continuity of eigenvalues with
respect to parameters, we arrive to the statement of Remark 2.3.

For the proof of Theorem 3.4, we make the following
preparation.

Lemma A.1. For any positive integer n such that n ≤ r − 1, it holds
that

dnN i

dαn
(0) = −

n
r

j=1
j≠i

c ij dn−1N j
dαn−1 (0)

gi(0)

whenever patch i (i ∈ {1, . . . , r}) is EAD in the boundary equilibrium
N

0
, and dlN i

dαl (0) = 0 for every l < n.

Proof. Indeed, we obtain the nth derivative of the steady state
equation Ti(α, X) = 0 as

dn

dαn


gi(N i(α))N i(α) −

r
j=1
j≠i

αc jiN i(α) +

r
j=1
j≠i

αc ijN j(α)



=

n
l=0

n
l

 dn−l

dαn−l
gi(N i(α)) ·

dlN i

dαl
(α)

−

n
l=0

n
l

 r
j=1
j≠i

dn−l(αc ji)
dαn−l

·
dlN i

dαl
(α)

+

n
l=0

n
l

 r
j=1
j≠i

dn−l(αc ij)
dαn−l

·
dlN j

dαl
(α) = 0. (5)

Here we used the assumption that gi is r − 1 times continuously
differentiable. Clearly dn−l(αcij)

dαn−l = 0 whenever n− l ≥ 2, moreover
d(αcij)
dα = c ij, so if dlN i

dαl (0) = 0 holds for all l < n then (5) at α = 0
reads

gi(N i(0))
dnN i

dαn
(0) + n

r
j=1
j≠i

c ij
dn−1N j

dαn−1
(0) = 0. (6)

It holds by assumption that N i(0) = 0, which completes the
proof. �

Definition A.2. Consider a patch i that is EAD in the boundary
equilibrium N

0
. We define Di as the least nonnegative integer such

that in the migration network, there is a path that starts with an
OADpatch j, endswith patch i, and containsDi patches in-between.
If there is no such path then let Di = r − 1.

Definition A.3. We characterize connectivity between patches.

• We say that there is a direct connection from patch j to patch i if
c ij > 0. We note that if i is an EAD patch with direct connection
from an OAD patch j then Di = 0.

• We say that patch i is reachable from patch j if there is a path
from j to i. We also note that if i is an EAD patch and there exists
a path to i from an OAD patch then Di ≤ r − 2 holds.

Lemma A.4. If i is an EAD patch in N
0
, then it holds that dlN i

dαl (0) = 0
whenever l ≤ Di.
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Proof. Indeed, the inequality Di0 ≥ 0 is satisfied for every patch i0
with N i0 = 0. The case when Di0 = 0 is trivial, so we consider a
patch i1 for which Di1 ≥ 1, and from Lemma A.1 we derive

dN i1

dα
(0) = −

r
j=1
j≠i1

c i1,jN j(0)

gi(0)
.

For every j such that c i1,j ≠ 0, it follows from Di1 ≠ 0 that N j(0) =

0, thus the right hand side is zero. We obtain that
dN i1
dα (0) = 0.

Next, consider a patch i2 where N i2 = 0 and Di2 ≥ 2. We have
dN i2
dα (0) = 0 since Di2 ≥ 2 ≥ 1, so Lemma A.1 yields the equation

d2N i2

dα2
(0) = −

2
r

j=1
j≠i2

c i2,j dN j
dα (0)

gi(0)
.

We note that each patch j for which c i2,j ≠ 0 is EAD since Di2 ≥ 1.

Thus, for Dj it follows that Dj ≥ 1, henceforth dN j
dα (0) = 0 holds by

induction, and the right hand side of the last equation is zero. We

conclude that
d2N i2
dα2 (0) = 0 holds for all patches where Di2 ≥ 2.

The continuation of this procedure yields that
dlN il
dαl (0) = 0 for

any patch il where Dil ≥ l holds. This proves the lemma. �

Theorem A.5. Assume that in the boundary equilibrium N
0
, there is

a patch i that is EAD and growth is logistic, furthermore i is reachable
from an OAD patch. Then there is an α∗ > 0 such that N

i
(α) < 0 for

α ∈ (0, α∗), which implies that N(α) has a negative component and
it does not give a biologically meaningful equilibrium in (Mα).

Proof. The proof is by contradiction. Assume that N
0
is such that

there are patches i0 and i+ such that N i0 = 0,N i+ > 0, in i0
the population growth is logistic, i0 is reachable from i+, and there
exists an α∗∗ > 0 such that N(α) ≥ 0 on [0, α∗∗

]. If patches i0 and
i+ – as described above – exist then there is a minimal distance
between such patches, i.e., there exists a least nonnegative integer
L ≤ r −2 such that there is a path from an OAD patch via L patches
to a patch which is EAD in N0 and with logistic growth. We denote
by i this patch in the shortest path, and let i∗L+1 be the OAD patch.

In the case when L = 0, Lemma A.1 immediately yields
contradiction. Indeed, as c i,i

∗
L+1 > 0,N i∗L+1

> 0, and gi(0) > 0
(the population growth is logistic in i), the equation

dN i

dα
(0) = −

r
j=1
j≠i

c ijN j(0)

gi(0)

yields dN i
dα (0) < 0. Next, we assume that L ≥ 1. We label the

patches in the minimal-length path by i, i∗1, . . . , i
∗

L , i
∗

L+1. We note

that N
0
i = N

0
i∗1

= · · · ,N
0
i∗L

= 0,N
0
i∗L+1

> 0, moreover by the
minimality of L the patches i∗1, . . . , i

∗

L cannot follow logistic growth.
Instead, there is a strongAllee effect in patch i∗j for j = 1, . . . , L, and
hence gi∗j (0) < 0 holds.

By Lemma A.1, N i∗L

0
= 0 yields

dN i∗L

dα
(0) = −

r
j=1
j≠i∗L

c i
∗
L ,jN j(0)

gi∗L (0)
.

The equation has a positive right hand side since N
0
i∗L+1

=

N i∗L+1
(0) > 0 and gi∗L (0) < 0, which implies that

dN i∗L
dα (0) > 0.

A similar equation

dN i∗L−1

dα
(0) = −

r
j=1

j≠i∗L−1

c i
∗
L−1,jN j(0)

gi∗L−1
(0)

follows from N
0
i∗L−1

= 0 and Lemma A.1. We note that Di∗L−1
= 1,

hence N j(0) = 0 holds for every j such that c i
∗
L−1,j ≠ 0. The zero

numerator yields
dN i∗L−1

dα (0) = 0, so we can apply Lemma A.1 to
derive

d2N i∗L−1

dα2
(0) = −

2
r

j=1
j≠i∗L−1

c i
∗
L−1,j dN j

dα (0)

gi∗L−1
(0)

.

If there is a j such that c i
∗
L−1,j ≠ 0 and dN j

dα (0) < 0, then N j(α) is
negative for smallα and henceN(α) is not in the nonnegative cone,
which violates our assumption that N(α) ≥ 0 for α sufficiently
small. Thus, each such derivative is necessarily nonnegative,

moreover we have showed that
dN i∗L
dα (0) > 0 is satisfied, which

makes the numerator positive. This implies
d2N i∗L−1

d2α
(0) > 0 since

gi∗L−1
(0) < 0.

Next, we consider patch i∗L−2, where Di∗L−2
= 2. For any patch

j for which c i
∗
L−2,j ≠ 0, it holds that Dj ≥ 1, thus N j(0) = 0

and dN j
dα (0) = 0 hold by Lemma A.4. Thus, the right hand side of

equation

dN i∗L−2

dα
(0) = −

r
j=1

j≠i∗L−2

c i
∗
L−2,jN j(0)

gi∗L−2
(0)

is zero, so it follows that
dN i∗L−2

dα (0) = 0, and thus Lemma A.1 yields

d2N i∗L−2

dα2
(0) = −

2
r

j=1
j≠i∗L−2

c i
∗
L−2,j dN j

dα (0)

gi∗L−2
(0)

.

We obtain again that
d2N i∗L−2

dα2 (0) = 0 since all derivatives in the

right hand side are zero. Finally, by Lemma A.1 we derive

d3N i∗L−2

dα3
(0) = −

3
r

j=1
j≠i∗L−2

c i
∗
L−2,j d2N j

dα2 (0)

gi∗L−2
(0)

.

If there is a j such that c i
∗
L−2,j ≠ 0 and d2N j

dα2 (0) is negative then so

is N(α) for small α since dN j
dα (0) = 0 and N j(0) = 0, which is a

contradiction. Otherwise, the right hand side of the last equation is

positive (it holds that c i
∗
L−2,i

∗
L−1 ≠ 0 and

d2N i∗L−1
dα2 (0) > 0), thus the

positivity of
d3N i∗L−2

dα3 (0) follows from gi∗L−2
(0) < 0.
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Following these arguments, one can prove that
dm+1N i∗L−m

dαm+1 (0) >
0 for m = 0, 1, . . . , L − 1 (we remark that for m = L − 1 this

reads
dLN i∗1
dαL (0) > 0), and that for any fixed m and k ≤ m, it holds

that
dkN i∗L−m

dαk (0) = 0. We note that Di = L, which also means by

Lemma A.4 that dmN i
dαm (0) = 0 for m ≤ Di = L. Henceforth, we can

apply Lemma A.1 and derive

dL+1N i

dαL+1
(0) = −

L
r

j=1
j≠i

c i,j dLN j
dαL (0)

gi(0)
.

Di = L implies Dj ≥ L − 1 for any j for which c i,j ≠ 0, hence
dmN j
dαm (0) = 0 is satisfied for m = 0, 1, . . . , L − 1. The assumption

that N(α) ≥ 0 for small α yields that dLN j
dαL (0) < 0 is impossible;

this, together with
dLN i∗1
dαL (0) > 0 and c i,i

∗
1 > 0, implies the positiv-

ity of the numerator. As gi(0) > 0 holds, it follows that dL+1N i
dαL+1 (0)

is negative, but we showed that dmN i
dαm (0) = 0 when 0 ≤ m ≤ L, so

it follows that N i(α) < 0 for small α, a contradiction. The proof is
complete. �

Theorem A.6. Assume that in the boundary equilibrium N
0
, there is

a strong Allee effect in every EAD patch j where Dj < r − 1. Then
for an EAD patch i that is subject to a strong Allee effect, it holds that
dDi+1N i
dαDi+1 (0) > 0 if Di < r − 1, and N(α) = 0 if Di = r − 1.

Proof. If i is at the extinction steady state for α = 0, and the
patch is not reachable from any patch j with N j > 0 (that is, Di =

r − 1), then no individuals migrate into i when spatial dispersal is
incorporated, and hence we have N i(α) = 0 for any α > 0. In the
case when Di < r − 1, the proof is by induction. If Di0 = 0 for
a patch i0 that is subject to a strong Allee effect (gi0(0) < 0) and

N
0
i0 = 0, then there is a j such that c i0,j ≠ 0 and N

0
j > 0, so

dN i0

dα
(0) = −

r
j=1
j≠i1

c i0,jN j(0)

gi0(0)

yields
dN i0
dα (0) > 0.

Whenever Di1 = 1 is satisfied in a patch i1 where N
0
i1 = 0 and

subject to a strong Allee effect, Lemma A.4 implies
dN i1
dα (0) = 0, so

by Lemma A.1 we derive

d2N i1

dα2
(0) = −

2
r

j=1
j≠i1

c i1,j dN j
dα (0)

gi1(0)
.

For every j with c i1,j ≠ 0 and 1 ≤ Dj ≤ r − 1, Lemma A.4

gives dN j
dα (0) = 0. If there is a j such that Dj = 0, j is EAD and

c i1,j ≠ 0, then there necessarily is a strong Allee effect in j, so
dN j
dα (0) > 0 holds by induction. Nevertheless, the positivity of the
right hand side of the last equation is guaranteed becausewe know
from Di1 = 1 that there must exist a j where Dj = 0 and c i1,j ≠ 0,

hence the inequality
d2N i1
dα2 (0) > 0 follows.

We assume that the statement of the theoremholds for any EAD
patch i that is subject to a strong Allee effect and Di ≤ L, 0 < L <
r−2.We consider an EAD patch iL+1 whereDiL+1 = L+1 and there
is to a strong Allee effect, and obtain the equation

dL+2N iL+1

dαL+2
(0) = −

(L + 1)
r

j=1
j≠iL+1

c iL+1,j dL+1N j
dαL+1 (0)

giL+1(0)

by Lemmas A.1 and A.4. DiL+1 = L + 1 makes Dj ≥ L for each j

where c iL+1,j ≠ 0, and from Lemma A.4 we have dL+1N j
dαL+1 (0) = 0 for

each j where c iL+1,j ≠ 0 and Dj ≥ L + 1. The case when Dj = L is
only possible if j is EAD and subject to a strong Allee effect, and for

each such j the inequality dL+1N j
dαL+1 (0) > 0 holds by induction. There

exists a j such that c iL+1,j > 0 and Dj = L, hence the right hand side

of the last equation is positive. We derive that
dL+2N iL+1

dαL+2 (0) > 0,
which completes the proof. �

Theorem A.5 ensures that for a boundary equilibrium N(0) =

N
0
of (M0), the point N(α) will not be a biologically meaningful

fixed point of the system (Mα) if there is a EAD patch i in N
0

where population growth is logistic and i is reachable from an
OAD patch. On the other hand, a boundary equilibrium N(0) =

N
0
of (M0) will persist for small values of spatial dispersal if in

all EAD patches of N
0
that are reachable from an OAD patch, a

strong Allee effect can occur. More precisely, in Theorem A.6 we
show that N i has a positive derivative whenever patch i is EAD,
subject to a strong Allee effect, and reachable from an OAD patch j.
Then, by Lemma A.4, the statement yields that N i(α) is positive for
small α. EAD patches that are unreachable from OAD patches will
not become occupied with the introduction of spatial dispersal.
This last remark, together with Theorems A.5 and A.6, proves
Theorem 3.4.
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