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Intra-specific competition in insect and amphibian species is often experienced in completely

different ways in their distinct life stages. Competition among larvae is important because

it can impact on adult traits that affect disease transmission, yet mathematical models often

ignore larval competition. We present two models of larval competition in the form of delay

differential equations for the adult population derived from age-structured models that include

larval competition. We present a simple prototype equation that models larval competition in

a simplistic way. Recognising that individual larvae experience competition from other larvae

at various stages of development, we then derive a more complex equation containing an

integral with a kernel that quantifies the competitive effect of larvae of age ā on larvae of age

a. In some parameter regimes, this model and the famous spruce budworm model have similar

dynamics, with the possibility of multiple co-existing equilibria. Results on boundedness and

persistence are also proved.
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1 Introduction

Mathematical models of populations often divide the population into immature and

mature individuals. In insect and amphibian species, immature individuals are those

passing through larval and other pre-adult life stages and, if maturation is triggered by

age, can be defined as those of age less than some fixed threshold age τ, the age at which

sexual activity begins. Mature individuals are those of age exceeding τ. With a denoting

age and a variable u(t, a) defined as the age density of the species at time t, it is common

practice to start with a McKendrick–von Foerster equation. In the case of a single species,

and in the absence of larval competition, a simple reasonable starting point is

(
∂

∂t
+

∂

∂a

)
u(t, a) =

{
−μl u(t, a), 0 < a < τ,

−μm u(t, a), a > τ,
(1.1)



132 R. Liu et al.

subject to the boundary condition u(t, 0) = b(A(t)), where A(t) =
∫ ∞
τ

u(t, a) da is the total

number of sexually mature adults and the function b(·) is the egg-laying rate. In (1.1), μl
and μm are the per-capita death rates for immature (larval) and mature individuals (the

subscripts l and m meaning larval and mature, respectively). Model (1.1) is a particular

case of the model we present in Section 2.1, and one can reformulate it as the following

delay differential equation for A(t):

dA(t)

dt
= e−μlτb(A(t − τ)) − μmA(t), (1.2)

which is equation (2.8) of this paper, in the case kl = 0. A significant problem with this

approach is that it presumes that competitive effects occur only among the adults. In

fact the competition effect is modelled solely by the choice of b(·). This function might

level off or even decrease at large densities due to competition among the adults for

space or resources, and in this way we reason that their egg-laying rate is affected by

this competition. Competition enters model (1.2) in no other way. Model (1.2) assumes

that there is no competition among immature individuals – they simply experience a

density-independent per-capita death rate μl throughout their development.

In this paper, we are interested in larval competition and how it might affect adult

population dynamics. The modelling of competition among larvae raises interesting issues,

some of which were considered in a series of papers from the early 1980s by Gurney, Nisbet

and their co-workers. The idea that maturation would be triggered by age, with individuals

maturing on reaching a fixed threshold age τ, as in (1.2), is only one possibility. Nisbet

and Gurney [11] remark that if maturation were actually triggered by size or weight, then

the immediate effect of larval competition is to slow down the growth of larvae, with the

possible consequence of delaying maturation and reducing egg to adult survival. The time

required to reach maturity would then become dependent on larval density and become

a function of time t. Such scenarios often give rise to threshold type delay equations

(Gurney and Nisbet [6]). Moeller et al. [9] discuss the mechanisms by which maturation is

triggered in Drosophila, and they seem to include a series of assessments by the endocrine

system to ensure that enough growth has been completed to produce an adult of the

correct size. In these circumstances, maturation time again becomes a function of time t.

Even if maturation were triggered by age, slower growth would likely imply smaller size

on maturation, possibly lowering fecundity in adults (especially if adults do not feed),

and increasing risks of mortality in pupation. Nisbet and Gurney [10] model competition

among larvae for food by coupling their equations for the numbers of larvae and adults

to another differential equation describing food dynamics. The idea of cohort competition

(competition only among individuals of the same age or size) is raised in Gurney et al. [7].

In the present paper, larvae compete with larvae and adults with adults but individual

larvae do not necessarily compete only with others at the same stage of development.

In this paper, we retain the idea that maturation is triggered by age and occurs at a fixed

age τ. This simplification allows us to deal to some extent with the significant mathematical

complications resulting from the possibility that a larva may face competition not only

from other larvae of its own age but potentially from all larvae (though not from adults).

In fact, we aim for a model that is general enough to allow for a wide range of possibilities

including the two particular cases of equal competition from all larvae, and competitive
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pressure only from older larvae in the form of intimidatory tactics or cannibalism, which

is common in amphibians in early life stages (see, for example, Crump [2], Rosen [13]

and Wells [16]), and can be complicated by various factors (for example, cannibalistic

tadpoles may try to avoid eating kin (Pfennig [12])). Our modelling assumptions should

be realistic for some insect and amphibian species that undergo metamorphosis, especially

if larvae and adults have a different diet and are adapted to different environments. In

amphibians, larvae often live in an aquatic environment and the adults in a terrestrial

one, as is usually the case for the urodeles, a carnivorous order that includes salamanders

(Wells [16]). On the other hand, in beetles of the genus helichus the larvae are terrestrial

and the adults are aquatic, living mostly in running water (Clifford [1]). Some beetles are

aquatic as both larvae and adults, for example the elmidae (riffle beetles). The modelling

in this paper may not be so realistic for such species due to an increased likelihood of

competition between larvae and adults.

In Section 2.1, we briefly present a simple way to model intra-specific competition

among the larvae of a species, by simply introducing an additional, quadratic, death term

so that (2.3) becomes the starting point. This leads to a delay equation, equation (2.8),

that is a little more complicated than (1.2) but still belongs to the same (well studied)

class of equations. Equation (2.8) has similarities to the well-known Nicholson’s blowflies

equation [5], but with a more complicated maturation rate incorporating a parameter kl
that quantifies immature competition. A problem with this approach is that it assumes in-

dividual larvae only compete with others at their own stage of development. Nevertheless,

we propose (2.8) as a simple prototype model for larval competition that could perhaps be

suitable as a starting point for modelling populations that experience immature life stage

competition. Model (2.8) incorporates competition among adults, via the birth function

b(·). Thus, both immature and mature competition are catered for in (2.8), in simple but

completely different ways. Solutions of the prototype model (2.8) are bounded for any

birth function.

The heart of this paper is the model we derive in Section 2.2. Here, we aim to recognise

that in reality a larva does not compete only with other larvae at its own stage of

development. It is more realistic to assume that an individual larva competes with all

other larvae, since they all compete for space and resources. Sometimes this competitive

pressure might come equally from all larvae irrespective of age, while in other situations

it might be age-specific. For example, individuals might be subject to competition only

from older larvae who seek preferential access to food, as is often the case with tadpoles.

We aim for a model formulation that is sufficiently general to cover these possibilities,

with (2.9) as the starting point and (2.19) as one version of the model it leads to, in the

case when the larval competition effect is not too strong. This model is again a delay

equation for the total number of adults A(t), but it no longer belongs to the same class

as (1.2).

It seems to be common practice to assume that the egg-laying rate b(·) should level off or

even drop at high densities, due to intra-specific competition among adults, and therefore

to treat b(·) as bounded. We feel that in some situations intra-specific competition might

be experienced mainly at the larval stage, with adults able to avoid it by simply invading

new territory, especially in the case of an invasive species. We therefore question the

validity of the common assumption that b(·) should be bounded, and we have aimed
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for an understanding of the properties of model (2.19) even for unbounded choices for

b(·) including consideration of the case when b(·) is linear (the model (2.19) itself is still

non-linear). A central result of this paper is that, if competition among adults is important

and modelled through an appropriate (non-linear and non-monotone) b(·), then the model

may have multiple positive equilibria and have similar properties to the famous spruce

budworm model, including the possibility of co-existing refuge and outbreak equilibria.

Numerical simulations confirm the predictions.

2 Model derivation

2.1 A simple prototype model

Gourley and Liu [3] recently derived a scalar delay differential equation for the total

number A(t) of adult individuals in a population the immature members of which

experience intra-specific competition. They derived a general equation corresponding to

the use of a general function to describe the larval competition. In the particular case

when the competition is modelled by a quadratic term, their equation is equation (2.8)

below, and for convenience we present here a self-contained derivation of that equation.

Immature individuals are defined as individuals of age less than some threshold age τ,

while adults are individuals of age exceeding τ. Letting u(t, a) be the density of individuals

at time t of age a, using a standard age-structured modelling approach, we may write

∂u(t, a)

∂t
+

∂u(t, a)

∂a
= −μlu(t, a) − kl(u(t, a))

2, 0 < a < τ (2.3)

as a model for the evolution of the larval population, where we include the usual linear

death term μlu(t, a) plus an additional quadratic term with coefficient kl which models the

effect of intra-specific competition among larvae for space or resources, and the subscript

l stands for larvae. The adult insects are assumed to be governed by

∂u(t, a)

∂t
+

∂u(t, a)

∂a
= −μmu(t, a), a > τ (2.4)

where μm is the per-capita death rate for mature (adult) insects. Now, u(t, 0) is the birth

rate (egg-laying rate) and if we assume that this is some function b(·) of the total number

of adults A(t), then we may write

u(t, 0) = b(A(t)), where A(t) =

∫ ∞

τ

u(t, a) da. (2.5)

Differentiating the expression for A(t) in (2.5) and using (2.4) and assuming that

lima→∞ u(t, a) = 0, we obtain

dA(t)

dt
= u(t, τ) − μmA(t). (2.6)

Next, we calculate u(t, τ) in terms of u(t − τ, 0), and hence in terms of A(t − τ), by

integrating (2.3) along characteristics. This is most easily achieved by introducing the
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function uξ(a) = u(a + ξ, a). Using (2.3),

duξ(a)

da
=

[
∂u(t, a)

∂t
+

∂u(t, a)

∂a

]
t=a+ξ

=
[
−μlu(t, a) − kl(u(t, a))

2
]
t=a+ξ

so that

duξ(a)

da
= −μlu

ξ(a) − kl(u
ξ(a))2.

Therefore

uξ(a) =
μlu

ξ(0)e−μla

μl + kluξ(0)(1 − e−μla)
(2.7)

and, since uξ(0) = u(ξ, 0) = b(A(ξ)),

u(a + ξ, a) =
μlb(A(ξ))e−μla

μl + klb(A(ξ))(1 − e−μla)
.

Choosing a = τ and ξ = t − τ gives an expression for u(t, τ), and when this is inserted

into (2.6), we obtain a delay differential equation for the variable A(t):

dA(t)

dt
=

μle
−μlτb(A(t − τ))

μl + kl(1 − e−μlτ)b(A(t − τ))
− μmA(t). (2.8)

Equation (2.8) is suggested in Gourley and Liu [3] as a prototype model for a single

population the larval members of which experience intra-specific competition as modelled

by a quadratic death term. It could be considered as an alternative to the logistic equation,

or equation (1.2), as a simple model for limited population growth in situations where

immature (e.g. larval) individuals experience competition. Competition among adults is

described solely by the egg-laying rate b(·), which could be any function. If in fact there is

little competition between adults then one could choose b(·) as linear. These points could

be important, for example, in modelling invasive populations. The larvae of such species

may have no or limited ability to move and therefore compete for space or resources.

But the adults can move to find new territory and, in the case of an invasive species,

adults may experience little or no competition and effectively unlimited space and food

resources.

Equation (2.8) belongs to the class of well-studied population models of the form

A′(t) = F(A(t − τ)) − μmA(t) that include the Nicholson’s blowflies equation and the

Mackey–Glass equation; see for example Kuang [8] or Smith [15]. It generates a monotone

dynamical system if b(·) is monotone increasing. Periodic solutions will exist in some

situations. It was shown in [3] that the solution A(t) of (2.8) is bounded for any egg-

laying rate b(·).

2.2 Age-dependent larval competition

A difficulty with equation (2.3) is the assumption that a larva at a particular stage in its

development only competes with other larvae of its own age. In practice, an individual

larva is likely to also compete with larvae of other ages, quite possibly with other larvae

at all stages of development since they all compete for space and resources. In some
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situations, a larva may only experience competition from older larvae since the latter may

cannibalise or exhibit intimidatory tactics towards younger larvae to obtain preferential

access to food (Crump [2], Rosen [13], Wells [16]). These issues can be accommodated by

using, rather than (2.3), the following equation as a starting point:

∂u(t, a)

∂t
+

∂u(t, a)

∂a
= −μlu(t, a) − ε u(t, a)

∫ τ

0

p(a, ā)u(t, ā) dā, 0 < a < τ (2.9)

in which the variables have the same meaning as in Section 2.1. The parameter ε measures

the intensity of the competition among the larvae. If a larva experiences the same

competition pressure from all other larvae, irrespective of age, then we could take p(a, ā)

to be constant. Or, we could choose p(a, ā) such that p(a, ā) = 0 when ā < a, implying

that an individual only experiences competition from older individuals. In the case when

p(a, ā) = δ(a− ā), where δ(·) is the Dirac delta function, and ε = kl , equation (2.9) reduces

to (2.3).

In the case when ε is small, it is possible to derive a delay differential equation

comparable to (2.8) for the total number of adults A(t). Concerning those adults, we still

assume (2.4) and (2.5), and therefore (2.6) still holds. It is necessary to calculate u(t, τ),

and to do so we now need to use (2.9). We proceed on the assumption that ε is small and

use perturbation theory. There are two reasonable ways to do so, and the first is to seek

a solution of (2.9) of the form

u(t, a) = u0(t, a) + ε u1(t, a) + O(ε2) (2.10)

with the birth rate u(t, 0) given by u(t, 0) = b(A(t)) so that

u0(t, 0) = b(A(t)), un(t, 0) = 0, n = 1, 2, . . . . (2.11)

Substituting into (2.9) and comparing coefficients of ε0 gives

∂u0(t, a)

∂t
+

∂u0(t, a)

∂a
= −μlu0(t, a), 0 < a < τ; u0(t, 0) = b(A(t)) (2.12)

and for t > a the solution of this is

u0(t, a) = b(A(t − a))e−μla. (2.13)

Comparing coefficients of ε, and using (2.13) gives

∂u1(t, a)

∂t
+

∂u1(t, a)

∂a
= −μlu1(t, a)

−b(A(t − a))e−μla

∫ τ

0

p(a, ā)b(A(t − ā))e−μl ā dā. (2.14)

This is easily converted into an ordinary differential equation for the function u
ξ
1(a) =

u1(a + ξ, a), and when it is solved using the condition u
ξ
1(0) = u1(ξ, 0) = 0, we obtain

u1(a + ξ, a) = −e−μla

∫ a

0

b(A(ξ))

∫ τ

0

p(s, ā)b(A(s + ξ − ā))e−μl ā dā ds.
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Setting ξ = t − a,

u1(t, a) = −e−μla

∫ a

0

b(A(t − a))

∫ τ

0

p(s, ā)b(A(s + t − a − ā))e−μl ā dā ds. (2.15)

We calculate u(t, τ) from (2.10), (2.13) and (2.15), and insert the result into (2.6) to obtain

the following delay differential equation for the number of adults A(t):

dA(t)

dt
= −μmA(t)

+ b(A(t − τ))e−μlτ

[
1 − ε

∫ τ

0

∫ τ

0

p(s, ā)b(A(s + t − τ − ā))e−μl ā dā ds

]
. (2.16)

The second perturbation approach to solving (2.9) is to attempt a solution of the form

u(t, a) = u0(t, a) exp
(
−ε u1(t, a) + O(ε2)

)
. (2.17)

With this ansatz, u0 again satisfies (2.12) and is given by (2.13). However, this time the

powers of ε yield that u1 satisfies

∂u1(t, a)

∂t
+

∂u1(t, a)

∂a
=

∫ τ

0

p(a, ā)b(A(t − ā))e−μl ā dā (2.18)

subject to u1(t, 0) = 0. Again with the aid of the function u
ξ
1(a) = u1(a + ξ, a), we solve

this for u1(t, a), and find that

u1(t, τ) =

∫ τ

0

∫ τ

0

p(s, ā)b(A(s + t − τ − ā))e−μl ā dā ds.

Then, u(t, τ) = u0(t, τ) exp(−ε u1(t, τ)) and, from (2.6), the outcome of this perturbation

approach is that A(t) satisfies

dA(t)

dt
= −μmA(t)

+ b(A(t − τ))e−μlτ exp

(
−ε

∫ τ

0

∫ τ

0

p(s, ā)b(A(s + t − τ − ā))e−μl ā dā ds

)
. (2.19)

Equations (2.16) and (2.19) provide two alternative models for the adult population A(t)

where the larvae experience competition as described by (2.9) for small ε. Equation (2.19)

is arguably better because it is in a form that guarantees that the solution A(t) will

remain positive for all time (Smith [14], page 81). If in (2.19) the exponential containing

the double integral in its argument is expanded for small ε, (2.19) reduces to (2.16). If

p(a, ā) = δ(a − ā) and ε = kl is small, (2.16) becomes

dA(t)

dt
= −μmA(t) + b(A(t − τ))e−μlτ

(
1 − kl

μl
(1 − e−μlτ)b(A(t − τ))

)

which coincides with the equation obtained by expanding the right-hand side of (2.8) for

small kl .
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We focus mainly on (2.19), but some comments may be made that apply to both (2.16)

and (2.19). These equations retain the function p(a, ā) in (2.9) in its full generality. The

delay in the right-hand side of either differential equation involves values of A(·) extending

back to time t− 2τ, but no further back. This can be understood as follows. In the double

integral, the dummy variable s is the age of an individual at a particular stage in

its development, and ā is the age of another individual that was exerting competition

pressure on the individual at that stage. Both ages have to be summed over, hence the

double integral. If the individual experiencing competition matures at time t, then it was

born at time t−τ and was of age s at time s+ t−τ. At that instant, some of the competing

individuals were of age ā, those individuals were born at time s+ t − τ − ā, the birth rate

at that time was b(A(s + t − τ − ā)) and they survived to age ā. If one ignores the fact

that those individuals themselves experienced competition during their development, then

the probability of surviving to age ā is exp(−μlā) and the term b(A(s + t − τ − ā))e−μl ā

in the integrand is the rate at which the competing individuals pass through age ā. The

latter expression also equals u0(s + t − τ, ā) which is the solution of the unperturbed

problem with ε = 0. These remarks help us to understand how the perturbation solution

procedure works both mathematically and ecologically. It recognises that a maturing

larva experiences competition from all other larvae including older larvae but it fails,

at the order to which we have carried out the computations, to recognise that those

older competing larvae also experienced competition in their own development. In theory,

carrying out the perturbation procedure to higher orders could correct for this, but the

calculations rapidly become intractable.

For the rest of this paper, we focus on (2.19) as it has a positivity preserving property

under minimal assumptions. Although ε was treated as a small parameter for purposes of

the model derivation, we will henceforth assume that equation (2.19) remains reasonable

as a model for the adult population even in the presence of stronger larval competition.

Thus, in the subsequent analysis, ε is just an arbitrary positive number.

3 Model analysis

In this section, we study the properties of model (2.19), beginning with the positivity

and boundedness of its solutions and later proceeding to a study of the equilibria and

their stability. If b(·) is locally Lipschitz then local existence of a solution follows from

standard results for delay equations since it is straightforward to show that the non-linear

functional H(φ) defined in (3.34) is also locally Lipschitz.

3.1 Positivity and boundedness

In the literature, it is common for the birth function b(·) to be taken as bounded, and the

justification is usually that intra-specific competition among adults limits egg production

at high densities. However, as the emphasis of this paper is on competitive effects at the

immature (larval) life stages, we have formulated a boundedness result (Proposition 3.3)

that does not require the birth function b(·) to be bounded. Proposition 3.3 admits

unbounded birth functions that satisfy (3.23). We feel this could be particularly important

in modelling insects that readily disperse, and invasive insects in particular. Insect larvae
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are sometimes confined to small habitats (aquatic, in the case of mosquitoes) in which

they may experience strong intra-specific competition from other larvae, but the adults of

insect species are in general more mobile and this raises the possibility that they might

avoid competition for space or resources simply by moving into previously uninhabited

territory. Therefore, we have aimed for results that do not require strong restrictions on

the birth function b(·).

Proposition 3.1 Suppose the birth function b(·) is non-negative, continuous and locally

Lipschitz, and suppose that A(s) = A0(s) � 0 for s ∈ [−2τ, 0], where A0(s) is a prescribed

continuous initial function. Then, the solution A(t) of (2.19), for as long as it exists, satisfies

A(t) � 0.

We omit the proof as it is a standard application of Theorem 5.2.1 on page 81 of

Smith [14].

Lemma 3.2 Suppose that b(·) is non-negative and continuous, and that there exists A0 > 0

such that

e−μlτb(A) < μmA for all A > A0. (3.20)

Define the increasing upper hull b̄ of b as

b̄(A) = sup
a∈[0,A]

b(a)

and define

Ă =
e−μlτb̄(A0)

μm
. (3.21)

Then, b̄ is monotone increasing and continuous and b(A) � b̄(A) for all A � 0. Moreover,

Ă � A0 and

e−μlτb̄(A) < μmA for all A > Ă. (3.22)

Finally, if b(·) is monotone increasing on [0, A0] then these results hold with Ă replaced

by A0.

We omit the proof since a very similar result, with proof, appears in Gourley et al. [4].

Our main boundedness result is the following.

Proposition 3.3 Suppose the birth function b(·) is non-negative, continuous and locally

Lipschitz, and suppose there exists A0 > 0 such that

e−μlτb(A) < μmA for all A > A0. (3.23)

Then, if the initial data {A0(θ), θ ∈ [−2τ, 0]} is continuous and non-negative, the solution

A(t) of (2.19) remains bounded for all t � 0, more precisely

A(t) � max

{
Ă, max

θ∈[−2τ,0]
A0(θ)

}
(3.24)
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and

lim sup
t→∞

A(t) � Ă, (3.25)

where Ă is defined in (3.21).

Moreover, if b(A) is increasing for 0 � A � A0 then these results hold with Ă = A0.

Proof Let σ ∈ (0,∞] be such that the solution A(t) of (2.19) exists for t ∈ [−2τ, σ), with

A(t) differentiable on (0, σ). For t ∈ (0, σ),

dA(t)

dt
� b(A(t − τ))e−μlτ − μmA(t)

by (2.19). Now, let r ∈ (0, σ). Since A(t) is continuous it is bounded on [−2τ, r] and therefore

it assumes its maximum on that interval at some value t∗ ∈ [−2τ, r]. If t∗ ∈ [−2τ, 0] then

A(t) � maxθ∈[−2τ,0] A0(θ). Suppose that t∗ ∈ (0, r]. Then, A′(t∗) � 0 and A(t∗) � A(t∗ − τ).

Suppose, for contradiction, that A(t∗) > Ă. Then, using the definition and properties of b̄

in Lemma 3.2,

0 � A′(t∗) � b(A(t∗ − τ))e−μlτ − μmA(t∗)

� b̄(A(t∗ − τ))e−μlτ − μmA(t∗)

� b̄(A(t∗))e−μlτ − μmA(t∗)

< 0,

since A(t∗) > Ă and therefore (3.22) applies. This contradiction shows that A(t∗) � Ă

and so (3.24) follows for t ∈ [−2τ, r], and therefore also for t ∈ [−2τ, σ) since r ∈ (0, σ)

was arbitrary. Inequality (3.24) constitutes an apriori bound for A(t), from which we may

conclude that in fact σ = ∞.

By the fluctuation method (Thieme [17]), there exists a sequence tj → ∞ such that

A(tj) → A∞ = lim supt→∞ A(t) and A′(tj) → 0 as j → ∞. But

A′(tj) � b(A(tj − τ))e−μlτ − μmA(tj)

� b̄(A(tj − τ))e−μlτ − μmA(tj).

Let δ > 0 be arbitrary. Then, for j sufficiently large, A(tj − τ) � A∞ + δ and

A′(tj) � b̄(A∞ + δ)e−μlτ − μmA(tj),

since b̄ is increasing. Letting j → ∞, and then δ → 0, we find that

b̄(A∞)e−μlτ � μmA
∞

and it follows from Lemma 3.2 that A∞ � Ă, so that (3.25) holds. �

3.2 Equilibria

In this section, we study the equilibria of model (2.19) and their stability, always assuming

that b is differentiable and that b(0) = 0 so that zero is an equilibrium. The analysis
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is tractable up to a point but is numerically assisted. It turns out that for some birth

functions, and some parameter domains, the model may have multiple positive equilibria

while in other situations it may have only one positive equilibrium, or none. These

different outcomes show a strong dependence on the choice of birth function b(·) and on

parameters such as ε that measure the strength of larval competition. The possibilities are

reminiscent of those associated with the much simpler spruce budworm model, which is

often written down in non-dimensional form as

du

dt
= ru

(
1 − u

q

)
− u2

1 + u2
(3.26)

in which the last term is a simple representation of predation by birds on a spruce

budworm population u(t) which otherwise grows logistically. In (3.26), suppose that q is

given a sufficiently large fixed value and that r is viewed as a bifurcation parameter which

is slowly increased from a very small value. Then, in addition to the zero equilibrium,

(3.26) has one small (refuge) equilibrium if r is very small, three co-existing equilibria

if r is intermediate and one large (outbreak) equilibrium if r is sufficiently large. The

quadratic behaviour of the predation term for small u models the tendency of the birds

to look elsewhere for food if there are very few budworm, since they are too hard to

find. This allows the budworm to survive in low numbers at a stable equilibrium called a

refuge equilibrium. For some values of r and q, stable refuge and outbreak equilibria may

co-exist with an unstable equilibrium of intermediate size. In this situation, slowly raising

or lowering a parameter and then restoring it to its original value can have the effect of

permanently switching the population from the refuge to the outbreak equilibrium or vice

versa, because of the tendency of the population not to leave a stable equilibrium.

It appears that our more complex model (2.19) can have similar properties to the spruce

budworm model although this does depend on how the birth function b(·) is chosen. As

explained earlier, to first order the larval competition effect is taken care of solely through

the exponential term with the double integral in its argument, and ε can be considered as

a measure of the strength of this competition.

The linear stability of the zero solution of (2.19) does not depend on ε. Even if larval

competition as measured by ε is strong, the competitive effect weakens if the population

gets low and extinction is only the outcome if the population would be doomed to

extinction in the absence of competition. We therefore focus on the situation when the

zero equilibrium is unstable. The condition for this emerges as a particular case of the

linearised analysis for a general equilibrium and is

e−μlτb′(0) > μm (3.27)

which, of course, requires b′(0) > 0. Any non-zero equilibrium A∗
ε of (2.19) must satisfy

f(A∗
ε) := b(A∗

ε)e
−μlτ exp

(
−ε b(A∗

ε)

∫ τ

0

∫ τ

0

p(s, ā)e−μl ādā ds

)
= μmA

∗
ε. (3.28)

Even in the case of a linear b(A), the left-hand side of (3.28) is non-monotone as a

function of A∗
ε although for a linear choice, the left-hand side behaves qualitatively like

A∗
ε exp(−A∗

ε) and so at most one positive equilibrium can exist. However, if b(A) is itself
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non-monotone, for example if b(A) has the form of the well-known Nicholson’s blowflies

birthrate [5], then the left-hand side of (3.28) is highly non-monotone as a function of A∗
ε .

It is in this kind of situation that there is the possibility of multiple positive equilibria for

some parameter ranges, including the possibility of refuge and outbreak equilibria with

the characteristics as summarised above for the spruce budworm model. Figures 1–3 show

plots of the left- and right-hand sides of (3.28) in the case when b(A) = rA exp(−A/K)

revealing, in Figure 2, the possibility of multiple positive equilibria for a window of values

of ε.

Assume (3.27) holds and that b(·) is such that, when ε = 0, (2.19) has a unique positive

stable equilibrium A∗
0 (conditions sufficient for this are embodied within the hypotheses

of Theorem 3.4). As ε is increased from 0, A∗
0 perturbs to a new equilibrium A∗

ε of (2.19)

which is just below A∗
0, at least for small ε, as shown in Figure 1. Increasing ε further

may cause new equilibria to appear, as shown in Figure 2, but for now we assume ε

is small enough such that there is just one positive equilibrium A∗
ε . We show that A∗

ε is

linearly stable for sufficiently small ε. Setting A(t) = A∗
ε + Ā(t), substituting into (2.19) and

linearising, we find that Ā(t) satisfies

Ā′(t) = −μmĀ(t) + e−μlτ exp

(
−ε b(A∗

ε)

∫ τ

0

∫ τ

0

p(s, ā)e−μl ādā ds

)

× b′(A∗
ε)

(
Ā(t − τ) − ε b(A∗

ε)

∫ τ

0

∫ τ

0

p(s, ā)e−μl āĀ(s + t − τ − ā) dā ds

)
(3.29)

and solutions of the form Ā(t) = exp(λt) exist whenever λ satisfies the characteristic

equation

λ + μm = e−μlτ exp

(
−ε b(A∗

ε)

∫ τ

0

∫ τ

0

p(s, ā)e−μl ādā ds

)

× b′(A∗
ε)

(
e−λτ − ε b(A∗

ε)

∫ τ

0

∫ τ

0

p(s, ā)e−μl āeλ(s−τ−ā) dā ds

)
=: F(λ;A∗

ε). (3.30)

This characteristic equation is not easy to analyse. Only at the zero equilibrium of (2.19),

for which the characteristic equation is (3.30) with A∗
ε replaced by zero, is there an

assurance that we can restrict attention to its real roots; this is because b(0) = 0 and

b′(0) > 0 so that, in the case of the zero equilibrium, the only surviving delay term in

the linearised equation (3.29) has a positive coefficient which allows the application of

Theorem 5.5.1 in Smith [14]. At a positive equilibrium A∗
ε , the presence of the other delay

term in (3.29), the term involving the double integral, makes those results inapplicable

since the two delay terms have opposite sign. However, analytic progress is possible if ε

is small. In Theorem 3.4, the hypotheses up to and including (3.31) imply the stability of

the equilibrium A∗
0 as a solution of the unperturbed problem (equation (2.19) with ε = 0)

– this follows from known results (Kuang [8]). Addition of the smallness hypothesis

on ε guarantees that the perturbed equilibrium A∗
ε remains linearly stable as a solution

of (2.19).

Theorem 3.4 Suppose that b(·) is differentiable, that b(0) = 0 and that (3.27) holds. Sup-

pose also that there exists A∗
0 > 0 such that e−μlτb(A) > μmA when 0 < A < A∗

0 and
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Figure 1. Simulation of (2.19) when b(A) = rA exp(−A/K), r = 2, K = 1000, μm = 1/100,

μL = 1/15, τ = 15, ε = 0.00005 and p(s, ā) ≡ p0 = 0.305. In this case, (2.19) has just one positive

(outbreak) equilibrium. In panel (a), plots of the left- and right-hand sides of (3.28) against A∗
ε reveal

this equilibrium as the value of A at which the dotted line intersects the solid curve. The dashed

curve is the left-hand side of (3.28) when ε = 0. Evolution of A(t) to the outbreak equilibrium

is shown in panel (b). (a) The large outbreak equilibrium. (b) Evolution of A(t) to the outbreak

equilibrium.
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Figure 2. Simulation of (2.19) using parameter values and b(A) from Figure 1, but with ε increased

to ε = 0.0001. Model (2.19) now has three positive equilibria and, in panel (a), plots of the left- and

right-hand sides of (3.28) against A∗
ε reveal these three equilibria as the values of A at which the

dotted line intersects the solid curve. The dashed curve is the left-hand side of (3.28) when ε = 0,

in which case there is just one positive equilibrium. The evolution shown in panel (b) suggests that

the smallest (refuge) and largest (outbreak) equilibria are both stable. (a) Multiple equilibria. (b)

Evolution of A(t) for various initial values.
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Figure 3. Simulation of (2.19) using parameter values and b(A) from Figure 1, except that ε has

been increased to ε = 0.0002 thereby increasing larval competition further. The effect of this increase

is that model (2.19) now has just one small positive (refuge) equilibrium which is shown in panel (a)

as the value of A at which the dotted line intersects the solid curve. The dashed curve shows the

situation when ε = 0. Panel (b) shows the evolution of A(t) to the refuge equilibrium. (a) The small

refuge equilibrium. (b) Evolution of A(t) to the refuge equilibrium.
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e−μlτb(A) < μmA when A > A∗
0, and suppose that

0 < e−μlτb′(A∗
0) < μm. (3.31)

Then, for sufficiently small ε, (2.19) has a unique positive equilibrium A∗
ε that is linearly

asymptotically stable.

Proof Existence and uniqueness of the positive equilibrium A∗
ε for sufficiently small ε has

already been discussed. The equilibrium A∗
ε has to satisfy f(A∗

ε) = μmA
∗
ε with f defined

in (3.28). Note that f(0) = 0 and f′(0) > μm, by (3.27). A graph of the left- and right-hand

sides of (3.28) plotted against A∗
ε makes it clear that the unique (for small ε) positive root

A∗
ε of (3.28) must satisfy f′(A∗

ε) < μm, and the latter can be rewritten as

μm > e−μlτ exp

(
−ε b(A∗

ε)

∫ τ

0

∫ τ

0

p(s, ā)e−μl ādā ds

)

× b′(A∗
ε)

(
1 − ε b(A∗

ε)

∫ τ

0

∫ τ

0

p(s, ā)e−μl ā dā ds

)
= F(0;A∗

ε) (3.32)

with F defined in (3.30). In general, f′(A∗
ε) could be of either sign (it is negative in the

situation illustrated in Figure 1). However, we assume here that b′(A∗
0) > 0 and so, by

continuity, b′(A∗
ε) > 0 and F(0;A∗

ε) > 0 if ε is sufficiently small.

To show that A∗
ε is linearly stable, we start by showing that the real roots of (3.30)

are negative when ε is sufficiently small, and then we show that any complex roots have

negative real parts. Let δ > 0 be sufficiently small that F(0;A∗
ε)+δ < μm, which is possible

by (3.32). For λ � 0,

F(λ;A∗
ε) − F(0;A∗

ε)

= b′(A∗
ε)e

−μlτ exp

(
−ε b(A∗

ε)

∫ τ

0

∫ τ

0

p(s, ā)e−μl ādā ds

)

×
(
e−λτ − ε b(A∗

ε)

∫ τ

0

∫ τ

0

p(s, ā)e−μl āeλ(s−τ−ā) dā ds

−1 + ε b(A∗
ε)

∫ τ

0

∫ τ

0

p(s, ā)e−μl ā dā ds

)

� b′(A∗
ε)e

−μlτ exp

(
−ε b(A∗

ε)

∫ τ

0

∫ τ

0

p(s, ā)e−μl ādā ds

)

×ε b(A∗
ε)

(
−

∫ τ

0

∫ τ

0

p(s, ā)e−μl āeλ(s−τ−ā) dā ds +

∫ τ

0

∫ τ

0

p(s, ā)e−μl ā dā ds

)

� b′(A∗
ε)e

−μlτ exp

(
−ε b(A∗

ε)

∫ τ

0

∫ τ

0

p(s, ā)e−μl ādā ds

)

×ε b(A∗
ε)

∫ τ

0

∫ τ

0

p(s, ā)e−μl ā dā ds

< δ

for ε sufficiently small (note that A∗
ε remains bounded as a function of ε). Therefore, if ε
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is sufficiently small then

F(λ;A∗
ε) < F(0;A∗

ε) + δ < μm � λ + μm,

for all λ � 0, and it follows that (3.30) has no real positive roots λ.

As previously mentioned the two delay terms in (3.29) have opposite sign and there

are no general results that would assure us that the dominant root of the characteristic

equation (3.30) is real. However, we know that all real roots of (3.30) are negative, and

this fact helps us to show that the real parts of any complex roots must also be negative.

To see this, let λ∗(ε) < 0 be the dominant real root (i.e. the real root closest to 0) for a

particular ε. We claim that, for sufficiently small ε, any complex roots of (3.30) must have

negative real parts. Suppose this is false. Then, there exists a sequence εj → 0, j ∈ �, of

values of ε such that for each j the dominant complex roots (the complex conjugate pair

of roots that have greatest real part) λ = xj ± iyj of (3.30) have non-negative real part

xj � 0. Setting λ = xj ± iyj in (3.30) with ε = εj , taking the real part and using that

Re
[
e(xj±iyj )(s−τ−ā)

]
� −exj (s−τ−ā)

gives

xj + μm � e−μlτ exp

(
−εjb(A

∗
εj
)

∫ τ

0

∫ τ

0

p(s, ā)e−μl ādā ds

)

×b′(A∗
εj
)

(
e−xjτ + εj b(A

∗
εj
)

∫ τ

0

∫ τ

0

p(s, ā)e−μl āexj (s−τ−ā) dā ds

)
. (3.33)

Subtracting (3.30), with ε = εj and λ = λ∗(εj), from (3.33) gives

−λ∗(εj) � xj − λ∗(εj) � b′(A∗
εj
)e−μlτ exp

(
−εjb(A

∗
εj
)

∫ τ

0

∫ τ

0

p(s, ā)e−μl ādā ds

)

×
(
e−xjτ − e−λ∗(εj )τ + εjb(A

∗
εj
)

∫ τ

0

∫ τ

0

p(s, ā)e−μl ā
[
exj (s−τ−ā) + eλ

∗(εj )(s−τ−ā)
]
dā ds

)
.

Now, consider what happens if we let j → ∞. Then, εj → 0, λ∗(εj) → λ∗(0) < 0 and

A∗
εj

→ A∗
0. We do not know so much about xj , but the double integral in the second line

is bounded in j because xj(s − τ − ā) � 0 and λ∗(εj) approaches λ∗(0). Therefore, we may

take the limit as j → ∞ and conclude that

−λ∗(0) � b′(A∗
0)e

−μlτ

(
lim inf
j→∞

e−xjτ − e−λ∗(0)τ

)
.

Since λ∗(0) < 0 it follows that

lim inf
j→∞

e−xjτ > e−λ∗(0)τ

and therefore, since the above inequality is strict, we have, for j sufficiently large, xj <

λ∗(0) < 0 which contradicts xj � 0.
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In summary, we have shown that all roots of (3.30) have negative real parts for

sufficiently small ε. Hence, A∗
ε is linearly stable for such ε. �

3.3 Persistence

Next, we show that if zero is an unstable equilibrium of (2.19), then the population

strongly uniformly persists. Denote by C, the Banach space of continuous real-valued

functions on [−2τ, 0], equipped with the usual supremum norm || · ||. Let C+ be the subset

of C containing all positive functions. To denote a particular solution with initial function

φ ∈ C+, we use the notation Aφ(t). Recall that if A(0) > 0 then the solution A(t) > 0 for

all t � 0. The segment of a solution is denoted by At = A
φ
t ∈ C and defined by the relation

At(s) = A(t + s) for s ∈ [−2τ, 0]. For any φ ∈ C+, we define mφ := lim inf t→∞ Aφ(t). We

introduce the notation

H(φ) := exp

(
−ε

∫ τ

0

∫ τ

0

p(s, ā)b(φ(s − τ − ā))e−μl ā dā ds

)
(3.34)

for any φ ∈ C . Then, (2.19) can be written as

A′(t) = −μmA(t) + b(A(t − τ))e−μlτH(At).

Theorem 3.5 Suppose that b is continuously differentiable, b(0) = 0, b(A) > 0 for A > 0,

(3.20) holds and

e−μlτb′(0) > μm. (3.35)

Then, there exists δ > 0 such that

lim inf
t→∞

A(t) � δ (3.36)

for any solution of (2.19) satisfying A(θ) � 0 for θ ∈ [−2τ, 0) and A(0) > 0.

Proof Choose a positive q < 1 such that q5e−μlτb′(0) > μm holds, which is possible

by (3.35). We shall take advantage of the variation of constants formula

A(ω) = e−μm(ω−θ)

(
A(θ) +

∫ ω

θ

eμm(s−θ)b(A(s − τ))e−μlτH(As) ds

)
, (3.37)

which holds for all ω � θ. Assume for contradiction that the statement of the theorem is

false. Then, there exists a sequence φn ∈ C+ such that limn→∞ mφn = 0. There is a sequence

Tn such that Tn → ∞ as n → ∞ and Aφn (t) ∈ [qmφn , Ă/q], for all t � Tn − 2τ. Also, we

can find tn > Tn + n such that Aφn(tn) < mφn/q. For the particular case A = Aφn , ω = tn
and θ = Tn, the variation of constants formula gives

Aφn(tn) = e−μm(tn−Tn)

(
Aφn(Tn) +

∫ tn

Tn

eμm(s−Tn)b(Aφn(s − τ))e−μlτH(Aφn
s ) ds

)
,
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and, by the integral mean value theorem, there exists σn ∈ [Tn, tn] such that

Aφn(tn) = e−μm(tn−Tn)

[
Aφn(Tn) + b(Aφn(σn − τ))e−μlτH(Aφn

σn
)e−μmTn

∫ tn

Tn

eμms ds

]

so that

Aφn (tn) = e−μm(tn−Tn)Aφn(Tn) + b(Aφn(σn − τ))e−μlτH(Aφn
σn

)
1 − e−μm(tn−Tn)

μm
. (3.38)

Now, Aφn(tn) < mφn/q → 0, e−μm(tn−Tn)Aφn(Tn) < e−μmnĂ/q → 0 and 1−e−μm (tn−Tn)

μm
→ μ−1

m > 0

as n → ∞. Therefore, b(Aφn(σn − τ))e−μlτH(Aφn
σn

) → 0 must hold as well, as n → ∞. Let

K := max{b(A) : A ∈ [0, Ă/q]}, then H(Aφn
σn

) � e−εKP > 0, where P =
∫ τ

0

∫ τ

0
p(s, ā) dā ds.

Hence, b(Aφn(σn − τ)) → 0 as n → ∞. Given that 0 is the only zero of b(A) on [0, Ă/q],

this implies Aφn(σn − τ) → 0 as n → ∞.

Next, we claim that Aφn(σn − τ) → 0 implies H(Aφn
σn

) → 1 as n → ∞. Since H(φ) defined

by (3.34) is continuous in φ and H(0) = 1, it is sufficient to show that ||Aφn
σn

|| → 0 as

n → ∞. From the inequality A′(t) � −μmA(t), we find that

Aφn(w) � eμmτAφn(σn − τ) for w ∈ [σn − 2τ, σn − τ]. (3.39)

For the other part of the domain of Aφn
σn

, if w ∈ [σn − τ, σn] we use the variation of

constants formula

Aφn(w) = e−μm(w−σn+τ)

(
Aφn(σn − τ) +

∫ w

σn−τ

eμm(s−σn+τ)b(Aφn (s − τ))e−μlτH(Aφn
s ) ds

)
. (3.40)

Let Δ := max{b′(A) : A ∈ [0, Ă/q]}. Then, b(A) � ΔA on [0, Ă/q] and hence, using (3.39),

(3.40) and H(·) � 1,

Aφn(w) � Aφn(σn − τ) +

∫ w

σn−τ

eμmτΔAφn(s − τ) ds � (1 + τΔe2μmτ)Aφn(σn − τ). (3.41)

Thus, ||Aφn
σn

|| � (1 + τΔe2μmτ)Aφn(σn − τ) and so H(Aφn
σn

) → 1 as n → ∞.

There exists ξ > 0 such that, on the interval (0, ξ], b(A) > qb′(0)A holds. There is an

n0 such that Aφn (σn − τ) < ξ for all n > n0. For sufficiently large n, we have the following

estimates:

1 − e−μm(tn−Tn)

μm
>

q

μm
,

b(Aφn(σn − τ)) > qb′(0)Aφn(σn − τ) > qb′(0)qmφn ,

H(Aφn
σn

) > q.

Therefore, from the variation of constants formula and (3.38), we obtain

mφn/q > Aφn(tn) � qmφnqb′(0)e−μlτq
q

μm
.
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Dividing by mφn and rearranging,

μm � q5b′(0)e−μlτ,

which is a contradiction. Thus, we can conclude the uniform persistence. �

Remark The hypotheses on the initial data in Theorem 3.5 can be relaxed to include any

initial function that is non-negative and not identically zero on [−2τ, 0]. Such hypotheses

imply that A(t) becomes strictly positive at some future time, and remains so thereafter.

The arguments in the above proof then apply after a translate in time.

4 Numerical simulations

We present the results of some simulations of (2.19) and (2.8), and a numerical study of

the equation that determines the equilibria of (2.19), equation (3.28). Figures 1–3 show

the results for a case when the competition function p(s, ā) in (2.19) is a constant and the

birth function b(A) = rA exp(−A/K), the Nicholson’s blowflies birthrate [5]. As explained

in the paragraph after (3.28), this choice makes the left-hand side of (3.28) highly non-

monotone and brings about the possibility of (2.19) having multiple equilibria, though

this only happens for intermediate values of the parameter ε that measures the strength

of the larval competition. If ε = 0, (2.19) has at most one positive equilibrium, which

in Figures 1–3 appears as the horizontal coordinate of the intersection of the dashed

curve with the dotted line as explained in the captions. Even when ε = 0, for some other

parameter combinations (results not shown), (2.19) has no positive equilibrium at all, the

outcome being extinction. With the parameter values given in the caption to Figure 1, if ε

is increased from zero the initial effect is that the single large equilibrium of (2.19), called

the outbreak equilibrium, begins to decrease. If ε is further increased then at some point

the resulting distortion of the graph of the left-hand side of (3.28) is such as to bring

about two further equilibria, the smaller of which is known as the refuge equilibrium.

Equation (2.19) then has three positive equilibria and simulations suggest that the outbreak

and refuge equilibria are both stable for the parameter combinations under consideration

while the equilibrium of intermediate size is unstable. If ε is further increased, which

implies a strengthening of the larval competition, then the two larger equilibria disappear

leaving only the small refuge equilibrium which appears to be stable on the basis of the

simulations and the analysis presented in Section 3.2. Thus, if the population is subject to

intense competitive pressure (as measured by ε) at the immature life stage, then it may

survive at low numbers by exploiting the fact that the competitive pressure drops with

density. Recall that the linear stability of the zero equilibrium of (2.19) does not depend

on ε. We have taken parameter values which make it unstable (see inequality (3.27)).

In this situation, increasing ε further will not make the refuge equilibrium disappear,

though it will get smaller. So the species can always survive at low numbers. However,

for some other parameter combinations, model (2.19) has only the zero equilibrium and

the competitive effect simply aids the population toward extinction.
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Figure 4. Simulation of (2.19) when ε = 0.00005, p(s, ā) is given by (4.42), and other parameters

and the birth function are the same as in Figure 1. In this case, (2.19) has just one positive (outbreak)

equilibrium. In panel (a), plots of the left- and right-hand sides of (3.28) against A∗
ε reveal this

equilibrium as the value of A at which the dotted line intersects the solid curve. The dashed curve

is the left-hand side of (3.28) when ε = 0. Evolution of A(t) to the outbreak equilibrium is shown

in panel (b). (a) The large outbreak equilibrium. (b) Evolution of A(t) to the outbreak equilibrium.
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Figure 5. Comparison of solutions of (2.19) (solid curves) and (2.8) (dashed curves) for various

initial data. Parameter values for panel (a): b(A) = rA exp(−A/K), r = 2, K = 1000, μm = 1/100,

μL = 1/15, τ = 15, ε = 0.0001, kl = 0.0001 and p(s, ā) ≡ p0 = 1/τ = 1/15. For these values, (2.19)

has just one positive equilibrium. Parameter values for panel (b): as for panel (a) except that

kl = 0.00094 and p(s, ā) ≡ p0 = 0.305, giving rise to a situation in which (2.19) has both an outbreak

and a refuge equilibrium. (a) Solutions of (2.19) (solid) and (2.8) (dashed). (b) Solutions of (2.19)

(solid) and (2.8) (dashed).
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We also explored a case when the competition function p(s, ā) in (2.19) is non-constant,

namely

p(s, ā) =

{
0, ā < s,

0.305, ā � s.
(4.42)

With this choice, a larva experiences competition only from older larvae. Expression (4.42)

is therefore relevant to species in which there is cannibalism of larvae, or intimidatory

tactics by older larvae toward younger ones. The choice of the value 0.305 for ā � s is to

facilitate comparison with the case in Figures 1–3, in which p(s, ā) ≡ 0.305.

Various simulations suggest that the solutions of (2.19) exhibit similar dynamics in

the two cases of a constant p(s, ā) (see Figures 1–3), and the particular non-constant

case (4.42), with similar properties to the famous spruce budworm model in both cases.

In fact, we may summarise our findings with the statement that, when p(s, ā) is given

by (4.42), the solution set of (2.19) has the same properties as for a constant p(s, ā), if the

value of ε is adjusted appropriately. Figures 1 and 4 actually use the same (very small) ε

value, and Figure 4 indicates the existence of a single outbreak equilibrium which is larger

than the corresponding one in Figure 1, with a hint in Figure 4 that the convergence to

equilibrium has become oscillatory. For the case (4.42), we generated other simulation

results so similar to those for constant p(s, ā) shown in Figures 1–3 that we have omitted

the graphs for economy. For example, if p(s, ā) is changed from a constant value 0.305

to expression (4.42), the scenario of multiple co-existing equilibria shown in Figure 2 can

be recreated almost unchanged by simply increasing ε from 0.0001 to 0.000235. We also

observed (results not shown here) that, with the change from constant to non-constant

p(s, ā), the situation shown in Figure 3 can be recreated almost unchanged with a 50%

increase in the value of ε.

The equilibria of (2.19), which are determined by (3.28), remain the same for any

combinations of p(s, ā) and ε that leave the value of

ε

∫ τ

0

∫ τ

0

p(s, ā)e−μl ādā ds (4.43)

unchanged. Our simulations suggest that, for small ε, such combinations preserve not only

the equilibria but also the stability of those equilibria and the general qualitative properties

of solutions. But certainly the effect of larval competition on the actual equilibria of (2.19)

is determined solely by the single parameter (4.43). We have spoken of ε as a parameter

measuring the intensity of larval competition, and we may consider (4.43) as a more precise

quantitative measure of that intensity. Note that, due to the exponential weighting factor

in the integrand, the parameter (4.43) gives more weighting to competitive pressure exerted

by younger larvae. In some species, it is primarily older larvae that exert competition,

in the form of intimidatory tactics. In that scenario, if per-capita larval mortality (as

measured by μl) is high then (4.43) is likely to be very small, so the overall effect of larval

competition on the population is small.

Figure 5 shows, in the case when b(A) = rA exp(−A/K), the results of simulations that

compare solutions of (2.19) with those of (2.8), the latter being the simplest model of this

paper that claims to model larval competition. Panel (a) shows a situation in which (2.19)

has just one positive equilibrium. Solutions of the two models are qualitatively very
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similar in this case. For ease of comparison, parameter values were chosen so that this

equilibrium would be the same as the positive equilibrium of (2.8). Panel (b) shows the

principal difference between the two models, namely, that for some parameter values

model (2.19) may have an additional small stable equilibrium (the refuge equilibrium)

co-existing with the large (outbreak) equilibrium. In Section 5, we discuss further the

implications of these findings.

5 Conclusion

In this paper, we have derived a very simple model, equation (2.8), for a population that

experiences intra-specific competition in the larval life stage, on the assumption that a

larva only competes with others at its own stage of development. We also derived a more

complex model, equation (2.19), that allows for the possibility of a larva competing with

larvae at other stages of development. In that way, model (2.19) addresses a deficiency

with model (2.8) but its derivation assumes that competition among larvae (as measured

by the parameter ε in (2.19)) is not too intense. Therefore, the conclusions we draw from

the analysis and simulations of this paper are only valid in this case. It is remarkable

that, even using (2.9) with its general kernel p(a, ā) as a starting point, we were still able

to derive a delay differential equation (equation (2.19)) for the total number of adults

A(t). The derivation relies on smallness of ε and uses perturbation theory. The application

of perturbation theory implies some loss of information, since one can never compute

all the terms, but here we have a clear interpretation of how the perturbation procedure

approximates the situation: it recognises that a maturing larva may experience competition

pressure from all other larvae, but it fails to recognise that the older competing larvae

experienced competition during their own development.

With the assumptions we have made in this paper, our modelling is likely to be most

appropriate for insect and amphibian species that undergo metamorphosis. We assume

that larvae compete only with larvae, and adults only with adults. This seems reasonable

for such species because the adults and larvae often live in different kinds of habitats,

have different diets and are in competition for different things. Larvae often compete

with each other primarily for food, whereas in adults the competition is mainly for

mates.

Our main finding with regard to (2.19) is that, for certain (non-monotone) birth

functions including the Nicholson’s blowflies birth function, the model exhibits properties

similar to those of the spruce budworm model. In particular, for some parameter values

two stable equilibria may co-exist including a small stable refuge equilibrium allowing the

population to survive at low numbers by exploiting the fact that competition drops off

as numbers decrease. These properties are not common in mechanistically derived scalar

equations, with or without delay, for a single species that interacts only with itself. Recall

that the spruce budworm model is actually a primitive model for a prey-predator system

(budworm subject to predation by birds) that happens to reduce to a scalar differential

equation, rather than a model specifically for a single species interacting only with itself.

Models with an Allee effect have a small positive equilibrium, but that equilibrium is

unstable in such models and is not comparable to the refuge equilibrium of (2.19) or of

the spruce budworm model.
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We also stress that model (2.19) admits unbounded (including linear) birth functions

b(·). Even if b(·) is linear, (2.19) is still a non-linear differential equation and its solutions

may still be bounded. It is common practice to assume that the birth rate function b(·)
is bounded, to ensure solutions are bounded. For model (2.19), such an assumption is

unnecessary, and we suggest that linear birth functions could in fact be quite reasonable

for some species, especially those that experience intra-specific competition mainly at the

larval stage.

We have compared solutions of (2.19) with those of the simplest model in this paper that

claims to model larval competition, equation (2.8). The main difference, as noted above, is

that (2.19) may have an additional (small) equilibrium, the refuge equilibrium. However,

the existence of the additional equilibrium depends on parameter values, and in some

situations the solutions of (2.19) are very similar to those of (2.8), even though the former

aims to address an unrealistic assumption in the derivation of the latter (the idea that a

larva only competes with others of its own age). In fact, for small ε, solutions of (2.19)

do not depend strongly on the functional form of the kernel p(s, ā). This observation is

very important because it implies that, even though there is an unrealistic assumption in

the modelling leading to (2.8), if larval competition is not too intense then (2.8) might still

be a reasonable simple approach to the modelling of larval competition in general. We

emphasise, however, that the derivation of the more complex model (2.19) relies on the

assumption that ε is small. If larval competition, as measured by ε, is very intense then

equation (2.19) will lose its validity and a different approach will be required. This will be

the subject of further research.
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