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Abstract Many observational studies suggest that seasonal migratory birds play an
important role in spreading Ixodes scapularis, a vector of Lyme disease, along their
migratory flyways, and they are believed to be responsible for geographic range expan-
sion of I. scapularis in Canada. However, the interplay between the dynamics of I.
scapularis on land and migratory birds in the air is not well understood. In this study,
we develop a periodic delay meta-population model which takes into consideration
the local landscape for tick reproduction within patches and the times needed for
ticks to be transported by birds between patches. Assuming that the tick population is
endemic in the source region, we find that bird migration may boost an already estab-
lished tick population at the subsequent region and thus increase the risk to humans,
or bird migration may help ticks to establish in a region where the local landscape is
not appropriate for ticks to survive in the absence of bird migration, imposing risks
to public health. This theoretical study reveals that bird migration plays an important
role in the geographic range expansion of I. scapularis, and therefore our findings may
suggest some strategies for Lyme disease prevention and control.
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1 Introduction

Lyme disease is one of the most rapidly emerging tick-borne infectious zoonoses in
temperate regions with the highest incidence occurring in Central-Eastern European
countries, as well as in Northeastern and North-Central USA. Since 2003, more than
20,000 cases have been recorded annually in USA alone (Centers for Disease Control
and Prevention 2014). In Canada, the number of cases is still very limited, but the
absolute numbers of both the recognized Lyme-endemic regions and tick-established
locations are increasing (Ogden et al. 2008, 2009). This is due to the sustained north-
ward range expansion of the primary vector for theLyme-pathogen—Ixodes scapularis
(I. scapularis), which is common in east of the RockyMountains in Canada (Anderson
1988; Ogden et al. 2008, 2009).

Habitat suitability, host abundance, climate change and tick dispersal are recognized
asmajor factors in boosting the geographic range expansion of I. scapularis to the north
(Ogden et al. 2008, 2009). Climate warming is believed to be a pivotal determinant
due to the physiological/behavioral features of the I. scapularis life cycle (Ogden et al.
2006, 2008, 2014; Wu et al. 2013). Both the interstadial development (preoviposition
period, preeclosion period, larva-to-nymph and nymph-to-adult) and questing activity
(necessary for ticks to get the blood meal for developing to the next stage) are deeply
influenced by the surrounding environment, especially temperature (Ogden et al. 2004,
2005). There have been some theoretical and empirical studies on the impact of climate
change on the potential range expansion of the Lyme-vector (Brinkerhoff et al. 2011;
Hasle et al. 2011; Madhav et al. 2004; Morshed et al. 2005; Ogden et al. 2006, 2014;
Wu and Wu 2012). Moreover, it seems that the local terrestrial hosts of the vector
are less likely to contribute to the long-distance range expansion due to their limited
capacity of mobility and the short feeding periods. Some evidence seems to suggest
that the migratory birds are, at least partially if not fully, responsible for the spread
of Lyme-pathogen and Lyme-vector range expansion, due to their capacity for long-
distance movement (Hasle et al. 2011; Morshed et al. 2005; Ogden et al. 2008; Rand
et al. 1998).

In general, ground-feeding birds such as song sparrows and American robins are
common hosts for hematophagous organisms (Comstedt et al. 2006). At least 71 bird
species in North America are parasitized by immature (larval and nymphal) Lyme-
vector, and 14% of the studied birds were infested by at least one larva or nymph
(Brinkerhoff et al. 2011). It is estimated that around 50–175 millions of immature I.
scapularis are dispersing through or across Canada transported by migratory birds
during their spring migration (Ogden et al. 2008). The seasonal migrations of these
ground-feeding birds are known to be synchronized with the seeking periods of imma-
ture I. scapularis (Bird Life international 2013). Moreover, it is observed that the most
established I. scapularis populations in Canada are not geographically continuously
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distributed, but are actually isolated from each other and are mainly adjacent to the US
border, mostly located along the shores of the Great Lakes in Ontario, Lake of Woods
in Manitoba, and the coast of Nova Scotia (Ogden et al. 2008). However, the interplay
between I. scapularis on land and the migratory birds in the air is not well under-
stood yet. Better understanding of the mechanisms and processes of range expansion
of I. scapularis transported by migratory birds is thus of both theoretical and practi-
cal significance for designing public health policies on surveillance, prevention and
control.

In this study, we develop a mathematical model, which is a patch-based periodic
system of delay differential equations with multiple delays accounting for the times
needed for larvae or nymphs to be transported by migratory birds between consecutive
locations during spring migration. By analyzing this model, we examine the effects
of the heterogeneous environment and the migration ability of birds to connect source
regions with subsequent regions (stopovers) for different life stages of ticks with
various patterns of seasonal abundance. The model is mathematically tractable by the
theory of periodic delay differential equations and monotone dynamical systems.

The rest of the paper is organized as follows. In the next section, we present the
multi-patch model in a general setting of N > 1 patches. Section 3 concerns with
the fundamental properties of our model such as boundedness and nonnegativity of
solutions. In Sect. 4, the basic reproduction ratio of the tick population at the source
region is identified and shown to be a threshold parameter with respect to the local
population dynamics. Then the tick population dynamics is analyzed in the subsequent
locations. In Sect. 5, we perform numerical simulations to investigate the ability of
bird migration on increasing the risk of Lyme disease to humans for two successive
patches. The paper ends with a brief discussion of our findings and their implications.

2 General Meta-population Model in N Patches

Migratory birds can have complicated flyways; however, the transportation of ticks
carried by birds can be considered on a unidirectional route. This is because the seeking
period of immature I. scapularis overlaps with the bird spring migration season when
birds fly from south to north, while they are inactive in late fall when birds migrate
from north to south. In particular, Brinkerhoff et al. (2011) reported that the most
likely time to encounter larval I. scapularis is between late May and early July when
bird species migrate from south to north. Thus, we only model the spatial dispersal of
I. scapularis population transported by migratory birds during spring migration from
south to north, in one direction. To capture the heterogeneity of the landscape along
such a migration route, we consider some consecutive locations which are stopovers
for the birds. We construct a deterministic meta-population model over N patches, as
the birds pass along their migration routes.Within a single patch, it is a system of delay
differential equations consisting of 14 equations, with seasonally varying parameters
representing the local environment. Each equation corresponds to the tick population
at a specific stage of development of the tick’s life cycle.

Ixodes scapularis has three main stages after the egg stage, and these are larva,
nymph and adult, and it has a relatively long life span of around 2years. Each stage
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further breaks down to three states: questing, feeding and engorged. In order to com-
plete their life cycle, ticks in each stage have to manage to attach to a host and get
the necessary blood meal. Since I. scapularis is a three-host generalist tick, based
on the same consideration as in Wu et al. (2013), we assume that both rodents and
migratory birds serve as the hosts for immature ticks, while the adult ticks feed only
on deer (mainly white-tailed deer). For simplicity, we assume that the populations of
the rodents and deer in patch i (i = 1, . . . , N ) remain constants, denoted by Ri and
Di , respectively. Let Bi (t) be the population of birds in patch i at time t , which varies
periodically with a 1year period.

Following the framework of Wu et al. (2013), we divide the vector life cycle into
14 states as follows: egg-laying females (ELAF), eggs (E), hardening larvae (HL),
questing larvae (QL), feeding larvae on rodents (FLr), feeding larvae on birds (FLb),
engorged larvae (EL), questing nymphs (QN), feeding nymphs on rodents (FNr),
feeding nymphs on birds (FNb), engorged nymphs (EN), questing adults (QA), feeding
adult females on deer (FAF) and engorged adult females (EAF) (see Fig. 1; Table
1). The equations for the rate of change of tick population in each state reflect that
they may migrate either into or out of the patch, produce offspring, develop to next
state or die. In terms of the above stages and states, we need fourteen variables to
denote the respective subpopulations, and these variables are listed and explained in
Table 1.

Fig. 1 Flowchart of I. scapularis tick population at patch i (1 ≤ i ≤ N ) with dispersion from (to) patch
i−1 (patch i+1) transported by springmigratory birds.We assume that there is no tick immigration at patch
1 and no tick emigration at patch N due to spring bird migration, which means that m0,1 = mN ,N+1 = 0
in the system
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Table 1 Definition and description of each variable in the model (1) at patch i

Variable Description of each variable Notation

xi,1(t) Number of egg-laying females at time t ELAF

xi,2(t) Number of eggs at time t E

xi,3(t) Number of hardening larvae at time t HL

xi,4(t) Number of questing larvae at time t QL

xi,5r (t) Number of feeding larvae on rodents at time t FLr

xi,5b(t) Number of feeding larvae on birds at time t FLb

xi,6(t) Number of engorged larvae at time t EL

xi,7(t) Number of questing nymphs at time t QN

xi,8r (t) Number of feeding nymphs on rodents at time t FNr

xi,8b(t) Number of feeding nymphs on birds at time t FNb

xi,9(t) Number of engorged nymphs at time t EN

xi,10(t) Number of questing adults at time t QA

xi,11(t) Number of feeding adult females at time t FAF

xi,12(t) Number of engorged adult females at time t EAF

Then, the population dynamics of the ticks at patch i is governed by

x ′
i,1(t) = di,12(t)xi,12(t) − μi,1(t)xi,1(t),

x ′
i,2(t) = p(t) f (xi,11(t))xi,1(t) − di,2(t)xi,2(t) − μi,2(t)xi,2(t),

x ′
i,3(t) = di,2(t)xi,2(t) − di,3(t)xi,3(t) − μi,3(t)xi,3(t),

x ′
i,4(t) = di,3(t)xi,3(t) − di,4r (t, Ri )xi,4(t) − di,4b(t, Bi (t))xi,4(t) − μi,4(t)xi,4(t),

x ′
i,5r (t) = di,4r (t, Ri )xi,4(t) − di,5r (t)xi,5r (t) − μi,5r (t, xi,5r (t))xi,5r (t),

x ′
i,5b(t) = di,4b(t, Bi (t))xi,4(t) + αl

i−1,i (t)mi−1,i (t − τi−1)xi−1,5b(t − τi−1)

− mi,i+1(t)xi,5b(t) − di,5b(t)xi,5b(t) − μi,5b(t, xi,5b(t))xi,5b(t),

x ′
i,6(t) = di,5r (t)xi,5r (t) + di,5b(t)xi,5b(t) − di,6(t)xi,6(t) − μi,6(t)xi,6(t),

x ′
i,7(t) = di,6(t)xi,6(t) − di,7r (t, Ri )xi,7(t) − di,7b(t, Bi (t))xi,7(t) − μi,7(t)xi,7(t),

x ′
i,8r (t) = di,7r (t, Ri )xi,7(t) − di,8r (t)xi,8r (t) − μi,8r (t, xi,8r (t))xi,8r (t),

x ′
i,8b(t) = di,7b(t, Bi (t))xi,7(t) + αn

i−1,i (t)mi−1,i (t − τi−1)xi−1,8b(t − τi−1)

− mi,i+1(t)xi,8b(t) − di,8b(t)xi,8b(t) − μi,8b(t, xi,8b(t))xi,8b(t),

x ′
i,9(t) = di,8r (t)xi,8r (t) + di,8b(t)xi,8b(t) − di,9(t)xi,9(t) − μi,9(t)xi,9(t),

x ′
i,10(t) = di,9(t)xi,9(t) − di,10(t, Di )xi,10(t) − μi,10(t)xi,10(t),

x ′
i,11(t) = δdi,10(t, Di )xi,10(t) − di,11(t)xi,11(t) − μi,11(t, xi,11(t))xi,11(t),

x ′
i,12(t) = di,11(t)xi,11(t) − di,12(t)xi,12(t) − μi,12(t)xi,12(t), (1)
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where

αl
i−1,i (t) = exp

(
−
∫ t

t−τi−1

(μl
i−1,i (η) + μb

i−1,i (η) + dli−1,i (η)) dη

)
,

αn
i−1,i (t) = exp

(
−
∫ t

t−τi−1

(μn
i−1,i (η) + μb

i−1,i (η) + dni−1,i (η)) dη

)
,

represent the survival probabilities of feeding larvae and nymphs being attached to
birds flying from patch i − 1 toward patch i , from time t − τi−1 to time t , respec-
tively. The terms αl

i−1,i (t)mi−1,i (t − τi−1)xi−1,5b(t − τi−1) and αn
i−1,i (t)mi−1,i (t −

τi−1)xi−1,8b(t − τi−1) account for the influxes of feeding larvae and nymphs at time
t entering patch i after being transported by the birds from previous patch i − 1. We
assume that ticks are capable of being developed during flight; however, once ticks are
full engorged, they fall off and disappear from our system (Ogden et al. 2008). For the
reader’s convenience, the biological interpretation of all parameters is given in Table
2 and Table 3, and the detailed derivation of the model (1) is presented in “Appendix
1.” Given their biological meanings, we assume in the rest of the paper that f (·) is a
decreasing function, while μi,5r (t, ·), μi,5b(t, ·), μi,8r (t, ·), μi,8b(t, ·) and μi,11(t, ·)
are continuous and increasing functions with respect to their respective state variables.

It is natural to assume that all parameters are nonnegative and periodic with period
ω = 365 days, and some of them can possibly be positive only in some subinterval
within a period, due to seasonal on-and-off effects. In the rest of the paper, we analyze
the model represented by system (1).

3 Nonnegativity and Boundedness of Solutions

We start by addressing the nonnegativity and boundedness of the solutions under
suitable initial conditions. For simplicity of notations, we introduce the follow-
ing three sets: A = {1, . . . , N }, B = {2, 3, 5r, 5b, 6, 8r, 8b, 9, 10, 11, 12} and
C = {1, 2, 3, 4, 5r, 5b, 6, 7, 8r, 8b, 9, 10, 11, 12}
Proposition 3.1 Assuming Lipschitz continuity of each nonlinear term, for any given
set of nonnegative initial functions for the fourteen variables, the system (1) has a
unique solution which exists globally and is nonnegative and bounded for all t ≥ 0.

Proof The existence and uniqueness of a solution followdirectly from the fundamental
theory of delay differential equations (see, e.g., Hale and Verduyn Lunel 1993). The
nonnegativity of each xi, j (t) for i ∈ A and j ∈ C follows immediately from Theorem
5.2.1 on page 81 of Smith (1995). It remains to prove the boundedness which will also
imply that the existence of the solution is global.

Firstly, at a stage j that is neither feeding larvae nor feeding nymphs (i.e., j ∈
C \ {5r, 5b, 8r, 8b}), the total number of ticks across all patches at this stage at time t
is given by

Vj (t) =
N∑
i=1

xi, j (t), j ∈ C \ {5r, 5b, 8r, 8b}. (2)
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Table 2 Definition and description of model parameters relevant to development and migration of the
Lyme-ticks (the unit of each rate is per day)

Model parameter Description of each parameter (value, reference)

di,2(t) Development rate from eggs to hardening larvae (estimate, Wu
et al. 2013)

di,3(t) Development rate from hardening larvae to questing (1/21, Ogden
et al. 2005)

di,4r (t, Ri ) Host attaching rate for questing larvae to rodents (estimate, Wu
et al. 2013)

di,4b(t, Bi (t)) Host attaching rate for questing larvae to birds (estimate, Wu et al.
2013)

di,5r (t) Development rate for feeding larvae on rodents (1/3, Ogden et al.
2005)

di,5b(t) Development rate for feeding larvae on birds (1/3, Ogden et al.
2005)

di,6(t) Development rate for engorged larvae (estimate, Wu et al. 2013)

di,7r (t, Ri ) Host attaching rate for questing nymphs on rodents (estimate, Wu
et al. 2013)

di,7b(t, Bi (t)) Host attaching rate for questing nymphs on birds (estimate, Wu
et al. 2013)

di,8r (t) Development rate for feeding nymphs on rodents (1/5, Ogden et al.
2005)

di,8b(t) Development rate for feeding nymphs on birds (1/5, Ogden et al.
2005)

di,9(t) Development rate for engorged nymphs (estimate, Wu et al. 2013)

di,10(t, Di ) Host attaching rate for questing adults (estimate, Wu et al. 2013)

di,11(t) Development rate for feeding adult females (1/10, Ogden et al.
2005)

di,12(t) Development rate for engorged females (estimate, Wu et al. 2013)

Ri Number of rodents (200, Ogden et al. 2005)

Di Number of deer (20, Ogden et al. 2005)

Bi (t) Number of birds at patch i at time t (varied)

dli−1,i (t) Development rate of larvae on birds in the flight from patch i − 1 to
i (1/3, Ogden et al. 2005)

dni−1,i (t) Development rate of nymphs on birds in the flight from patch i − 1
to i (1/5, Ogden et al. 2005)

τi−1 Flight time of birds from patch i − 1 to patch i

mi−1,i (t) Migration rate of birds at time t from patch i − 1 to patch i

μb
i−1,i (t) Mortality of birds in flight from patch i − 1 to i

μl
i−1,i (t) Mortality of feeding larvae on birds in the flight from patch i − 1 to

patch i

μn
i−1,i (t) Mortality of feeding nymphs on birds in the flight from patch i − 1

to patch i
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Table 3 Definition and description of parameters relevant to birth and death of the Lyme-ticks (the unit of
each rate is per day)

Model parameter Description of each model parameter (value, reference)

p(t) Number of eggs produced by egg-laying adult females (3000,
Ogden et al. 2005)

f (xi,11(t)) Fecundity reduction factor (1 − [0.01 + 0.04 ln(1.01 + xi,11(t)
Di

)
]
,

Ogden et al. 2005)

δ Sex ratio of I. scapularis (0.5, Ogden et al. 2005)

μi,1(t) Mortality rate of egg-laying adult females (1, Wu et al. 2013)

μi,2(t) Mortality rate of eggs (0.002, Ogden et al. 2005)

μi,3(t) Mortality rate of hardening larvae (0.006, Ogden et al. 2005)

μi,4(t) Mortality rate of questing larvae (0.006, Ogden et al. 2005)

μi,6(t) Mortality rate of engorged larvae (0.006, Ogden et al. 2005)

μi,7(t) Mortality rate of questing nymphs (0.006, Ogden et al. 2005)

μi,9(t) Mortality rate of engorged nymphs (0.002, Ogden et al. 2005)

μi,10(t) Mortality rate of questing adults (0.006, Ogden et al. 2005)

μi,12(t) Mortality rate of engorged adult females (0.0001, Ogden et al.
2005)

μi,5r (t, xi,5r (t)) Mortality rate of feeding larvae on rodents

(0.65 + 0.049 ln
1.01+xi,5r

Ri
, Ogden et al. 2005)

μi,5b(t, xi,5b(t)) Mortality rate of feeding larvae on birds

(0.65 + 0.049 ln
1.01+xi,5b

Bi (t)
, Ogden et al. 2005)

μi,8r (t, xi,8r (t)) Mortality rate of feeding nymphs on rodents

(0.55 + 0.049 ln
1.01+xi,8r

Ri
, Ogden et al. 2005)

μi,8b(t, xi,8b(t)) Mortality rate of feeding nymphs on birds

(0.55 + 0.049 ln
1.01+xi,8b

Bi (t)
, Ogden et al. 2005)

μi,11(t, xi,11(t)) Mortality rate of feeding adults on deer

(0.5 + 0.049 ln
1.01+xi,11(t)

Di
, Ogden et al. 2005)

Tracking the total numbers of ticks at the feeding larvae and feeding nymphs states
are more complicated due to transportation between patches by birds. We only present
the details for the feeding nymphs, and the tracking of population of feeding larvae
can be similarly obtained.

Following the “Appendix 1,” we let ρi,i+1(t, a, y) be the density (w.r.t. feeding age
a) of feeding nymphs on birds flying from patch i to patch i + 1 that is at a location
with distance y from patch i at time t , y ∈ [0, li,i+1] where li,i+1 is the distance from
patch i to patch i + 1. Then the total number of feeding nymphs on birds at time t at
location y between patch i and patch i + 1 is given by

Wi,i+1(t, y) :=
∫ ∞

0
ρi,i+1(t, a, y) da.
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It follows from Eq. (25) in “Appendix 1” that

∂Wi,i+1(t, y)

∂t
= −vi,i+1

∂Wi,i+1(t, y)

∂y
− μb

i,i+1(t)Wi,i+1(t, y)

− μn
i,i+1(t)Wi,i+1(t, y) − dni,i+1(t)Wi,i+1(t, y).

(3)

Here, we have used the biologically meaningful facts that ρi,i+1(t, 0, y) =
ρi,i+1(t,∞, y) = 0. Then the total number of feeding nymphs feeding on birds at
time t , on both ground (patches) and flight (flying birds) is given by

xtot,8b(t) =
N∑
i=1

xi,8b(t) +
N−1∑
i=1

∫ li,i+1

0
Wi,i+1(t, y) dy. (4)

For the sake of simplicity, h j and h j are defined by

h j = max
i∈A

{
max
t∈[0,ω] hi, j (t)

}
, h j = min

i∈A

{
min

t∈[0,ω] hi, j (t)
}

(5)

for a periodic function hi, j (t) of period ω. Straightforward calculation of (4) leads to

x ′
tot,8b(t) =

N∑
i=1

di,7b(t, Bi (t))xi,7(t) −
N∑
i=1

di,8b(t)xi,8b(t)

−
N∑
i=1

μi,8b(t, xi,8b(t))xi,8b(t)

−
N−1∑
i=1

(
μb
i,i+1(t) + μn

i,i+1(t) + dni,i+1(t)
) ∫ li,i+1

0
Wi,i+1(t, y) dy

≤ d7b

N∑
i=1

xi,7(t) − d8b

N∑
i=1

xi,8b(t) − μ
8b

N∑
i=1

xi,8b(t)

−μ̂

N−1∑
i=1

∫ li,i+1

0
Wi,i+1(t, y) dy

≤ d7bV7(t) − μxtot,8b(t), (6)

where

μ
8b

= min
i∈A

{
min

t∈[0,ω] μi,8b(t, 0)

}
, μ = min{d8b + μ

8b
, μ̂},

μ̂ = min
i∈{1,...,N−1}

{
min

t∈[0,ω](μ
b
i,i+1(t) + μn

i,i+1(t) + dni,i+1(t))

}
.
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Therefore, the total number of feeding nymphs (on birds or rodents, on ground or in
flight), denoted by V8(t) = xtot,8b(t) +∑N

i=1 xi,8r (t), satisfies

V ′
8(t) = x ′

tot,8b(t) +
N∑
i=1

x ′
i,8r (t) = x ′

tot,8b(t)

+
N∑
i=1

[
di,7r (t, Ri )xi,7(t) − di,8r (t)xi,8r (t) − μi,8r (t, xi,8r (t))xi,8r (t)

]

≤ (d7r + d7b)V7(t) − (d8r + μ
8r

)

N∑
i=1

xi,8r (t) − μxtot,8b(t)

≤ (d7r + d7b)V7(t) − μ8V8(t), (7)

where μ
8r

= mini∈A
{
mint∈[0,ω] μi,8r (t, 0)

}
and μ8 = min{d8r + μ

8r
, μ}.

Similarly, there exists a positive number μ5 such that the total number of feeding
larvae, denoted by V5(t), satisfies

V ′
5(t) ≤ (d4r + d4b)V4(t) − μ5V5(t). (8)

Next we consider the change rate of the total number of feeding adult females in
all patches, denoted by V11. Denoting

	11 = min
i∈A

{
min

t∈[0,ω]
∂μi,11(t, 0)

∂xi,11

}
,

we have the following estimate

V ′
11(t) =

N∑
i=1

x ′
i,11(t)

=
N∑
i=1

[
δdi,10(t, Di )xi,10(t) − di,11(t)xi,11(t) − μi,11(t, xi,11(t))xi,11(t)

]

≤ δd10V10(t) − d11V11(t) −
N∑
i=1

μi,11(t, xi,11(t))xi,11(t)

≤ δd10V10(t) − d11V11(t) −
N∑
i=1

∂μi,11(t, 0)

∂xi,11
x2i,11(t)

≤ δd10V10(t) − d11V11(t) − 	11

N∑
i=1

x2i,11(t)

≤ δd10V10(t) − d11V11(t) − 	11

N

(
N∑
i=1

xi,11(t)

)2
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= δd10V10(t) − d11V11(t) − 	11

N
V 2
11(t) (9)

by the property of μi,11(t, xi,11(t)) and the Cauchy–Schwarz inequality.
By similar argument, we can also establish the estimates for the total numbers of

ticks in other remaining stages:

V ′
1(t) ≤ d12V12(t) − μ

1
V1(t),

V ′
2(t) ≤ p f (0)V1(t) − (d2 + μ

2
)V2(t), (10)

V ′
i (t) ≤ di−1Vi−1(t) − (di + μ

i
)Vi (t), i = 3, 4, 6, 7, 9, 10, 12.

Note that the constant coefficients are obtained in the way (5) and all these constants
are assumed to be positive throughout the paper.

Using the estimates (7–10), we can define a comparison system y′ = f (y) for
(1) from the above, where f : R12+ → R

12 is given by the right-hand sides of (7–
10). Then it is easily seen that f is cooperative on R

12+ ; Df (y) = (
∂ fi/∂y j

)
1≤i, j≤12

is irreducible for any y ∈ R
12+ ; f (0) = 0 and fi (y) ≥ 0 for all y ∈ R

12+ with
yi = 0, i = 1, 2, . . . , n. Furthermore, since all components of f are linear except that
f11(y) = δd10y10 − d11y11 − 	11

N y211, f is strictly sublinear, i.e., for any α ∈ (0, 1)
and y ∈ int R12+ , f (αy) > α f (y). These properties mean that conditions (1–3) in
Zhao and Jing (1996, Corollary 3.2) hold. Define

T ∗ =
(

p f (0)

d2 + μ
2

)(
d2

d3 + μ
3

)(
d3

d4 + μ
4

)(
d4r + d4b

μ5

)(
d5

d6 + μ6

)

(
d6

d7 + μ
7

)(
d7r + d7b

μ8

)

(
d8

d9 + μ
9

)(
d9

d10 + μ
10

)(
δd10
d11

)(
d11

d12 + μ
12

)(
d12
μ
1

)
.

One can check that T ∗ > 1 if and only if the spectral bound of the linearization of
f at y = 0 is positive (i.e., s(Df (0)) > 0). Then, by Corollary 3.2 of Zhao and Jing
(1996), we have the following: (a) if T ∗ ≤ 1, then y = 0 is a globally asymptotically
stable equilibrium for the comparison system with respect to R

12+ ; (b) if T ∗ > 1,
then either (i) all solutions of the comparison system starting from y ∈ R

12+ \ {0}
are unbounded, or (ii) the comparison system admits a positive equilibrium which is
globally asymptotically stable with respect toR12+ \{0}. Notice that if T ∗ > 1, one can
directly solve f (y) = 0 to find a positive equilibrium with all components expressed
by the positive root of 0 = (T ∗−1)y11− 	11

d11N
y211, excluding (i) in case (b). Therefore,

only cases (a) or (b) (ii) are possible, implying the boundedness of all solutions of
the comparison system. By a comparison argument and the nonnegativity of solutions
established above, we then conclude that every solution of (1) with nonnegative initial
data is bounded for all t ∈ [0,∞). 	
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4 Dynamics of the Model System

It is easy to see that the system (1) has a tick-free (trivial) equilibrium. We notice that
the tick dynamics in patch 1 is independent of the succeeding patches i = 2, . . . , N ,
and generally, the tick dynamics on a patch j, j ∈ {2, 3, . . . , N }, is independent from
the succeeding patches k, k ∈ { j + 1, . . . , N }, but depends on that in the preceding
patch j−1. Therefore, the complex system (1) over N patches is actually decoupled in
a unidirectional sense. This simplifies the analysis of the model, allowing patch-wise
analysis in a successive manner, as is done in the following subsections.

4.1 Dynamics in Patch 1

The system of tick population in source region (patch 1) is obtained by taking i = 1 in
(1) and deleting the two delayed terms in the equations for x ′

1,5b(t) and x
′
1,8b(t). Denote

this system by (P1), and let x1(t) = (x1,1(t), . . . , x1,12(t))T ∈ R
14 be the vector of

all tick states in patch 1. The system (P1) obviously has a tick-free equilibrium (TFE),
that is, the trivial equilibrium of (P1). The linearization of (P1) at this equilibrium can
be written in the matrix form

dx1
dt

= (F(t) − V (t))x1(t), (11)

where F(t) = (Fi j (t))14×14 is the so-called production matrix given by

Fi j (t) =
{
p(t) f (0), i = 1, j = 2
0, otherwise,

(12)

and V (t) = (Vi j (t))14×14 is the so-called progression matrixwith the diagonal entries
being

μ1,1(t); d1,2(t) + μ1,2(t); d1,3(t) + μ1,3(t); d1,4r (t, R1)

+ d1,4b(t, B1(t)) + μ1,4(t);
d1,5r (t) + μ1,5r (t, 0);m1,2(t) + d1,5b(t) + μ1,5b(t, 0); d1,6(t) + μ1,6(t);
d1,7r (t, R1) + d1,7b(t, B1(t)) + μ1,7(t); d1,8r (t) + μ1,8r (t, 0);
m1,2(t) + d1,8b(t) + μ1,8b(t, 0);
d1,9(t) + μ1,9(t); d1,10(t, D1) + μ1,10(t); d1,11(t)
+μ1,11(t, 0); d1,12(t) + μ1,12(t),

(13)

respectively, and the elements located on the first lower diagonal line being

0;−d1,2(t);−d1,3(t);−d1,4r (t, R1); 0;−d1,5b(t);−d1,6(t);
−d1,7r (t, Ri ); 0;−d1,8b(t);

−d1,9(t);−δd1,10(t, D1);−d1,11(t).
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Other nonzero elements of V (t) are

Vi j (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−d1,12(t), i = 1, j = 12,
−d1,4b(t, B1(t)), i = 6, j = 4,
−d1,5r (t), i = 7, j = 5,
−d1,7b(t, B1(t)), i = 10, j = 8,
−d1,8r (t), i = 11, j = 9,

and all the reminding elements are zeros in V (t).
Following the approach developed inBacaër andGuernaoui (2006),Wang andZhao

(2008), we can identify the basic reproduction ratio of the tick population in patch 1.
Let Cω denote the Banach space of continuous periodic function from [0, ω] to R

14

equipped with the supremum norm. Define the evolution operator Y (t, s) (t ≥ s) for
the linear periodic system y′ = −V (t)y, that is, Y (t, s) satisfies

d

dt
Y (t, s) = −V (t)Y (t, s) t ≥ s, Y (s, s) = I,

where I is the 14× 14 identity matrix. Then, for a given initial tick population distri-
bution φ, F(s)φ(s) is the rate at which new ticks were produced by the initial ticks
at time s, and Y (t, s)F(s)φ(s) is the distribution of those ticks who were newly pro-
duced at time s and still alive at time t . So the distribution of cumulative ticks at time
t produced by all those initial ticks from the initial distribution φ(s) is given by

ψ(t) =
∫ t

−∞
Y (t, s)F(s)φ(s) ds =

∫ ∞

0
Y (t, t − a)F(t − a)φ(t − a) da.

This naturally defines the linear operator L : Cω → Cω by

(Lφ)(t) =
∫ ∞

0
Y (t, t − a)F(t − a)φ(t − a) da, ∀t ∈ R, φ(t) ∈ Cω.

which can be identified as the next-generation operator. The basic reproduction ratio
of the tick population in patch 1 is thus defined asR10 = ρ(L), the spectral radius of
L. In terms of R10, we have the following results for (P1).

Theorem 4.1 If the basic reproductive ratioR10 < 1, then the TFE of (P1) is globally
asymptotically stable; if R10 > 1, then the TFE is unstable.

Proof By Wang and Zhao (2008, Theorem 2.2), the TFE is locally asymptotically
stable if R10 < 1, and unstable if R10 > 1. So, we only need to show that when
R10 < 1, the TFE is globally attractive.

Denote by �F−V (t) the map of the linear ω-periodic system (11) and by
ρ(�F−V (ω)) the spectral radius of monodromymatrix�F−V (ω). SinceR10 < 1, we
have ρ(�F−V (ω)) < 1 (Wang and Zhao 2008, Theorem 2.2). By Lemma 6.1 in the
“Appendix 2,” �F−V (t) is strongly positive for t ≥ 12ω. It then follows from Zhang
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and Zhao (2008, Lemma 2.1) that there exists a positive 12ω-periodic function h(t)
such that

e
1

12ω t ln(ρ(�F−V (12ω)))h(t) = e
1

12ω t ln(ρ(�F−V (ω)))12h(t) = e
1
ω
t ln(ρ(�F−V (ω)))h(t)

is a solution of (11). Since ρ(�F−V (ω)) < 1, e
1
ω
t ln(ρ(�F−V (ω)))h(t) → 0 as t → ∞.

Now, for any nonnegative initial value x01 , there is a sufficiently large positive constant
M such that x01 ≤ Mh(0). Note that due to the monotone properties of the func-
tions f (·), μi,5r (t, ·), μi,5b(t, ·), μi,8r (t, ·), μi,8b(t, ·) and μi,11(t, ·), we can easily
see that (P1) is actually controlled from above by the cooperative linear system (11).

By the comparison principle, we then have 0 ≤ x1(t, x01 ) ≤ Me
1
ω
t ln(ρ(�F−V (ω)))h(t).

Therefore, we obtain x1(t, x01 ) → 0 as t → ∞, proving the global attractivity of the
TFE for (P1) and thereby completing the proof of the theorem. 	


The next theorem shows that the ticks will be established in the sense of uniform
persistence, provided that R10 > 1.

Theorem 4.2 If the basic reproduction ratioR10 > 1, then there exists an ε > 0 such
that every solution x1(t, x01 ) of (P1) with initial value x

0
1 ∈ R

14+ \ {0} satisfies

lim inf
t→∞ x1, j (t, x

0
1 ) > ε, for j ∈ C,

implying that the tick population establishes in patch 1; moreover, (P1) admits a
positive periodic solution.

Proof Proposition 3.1 implies that system (P1) is point dissipative. Let �(t) be the
solution map to system (P1), that is,

�(t)(x01 ) = x1(t, x
0
1 ), ∀x01 ∈ R

14+ ,

where x1(t, x01 ) is the unique solution of (P1)with x1(0, x
0
1 ) = x01 . Let P : R14+ → R

14+
be the Poincaré map to system (P1), that is,

P(x01 ) = �(ω)(x01 ), ∀x01 ∈ R
14+ .

Define Y = R
14+ , Y0 = I ntR14+ = {x1 ∈ R

14+ : x1, j > 0, j ∈ C}. Then ∂Y0
:=Y \ Y0={x1 ∈ R

14+ : � j∈Cx1, j = 0}. We first prove that P is uniformly persistent
with respect to (Y0, ∂Y0). By the form of (P1), it is easy to see that both Y and Y0 are
positively invariant. Clearly, ∂Y0 is relatively closed in Y .

Set M∂ = {x1 ∈ R
14+ : Pm(x1) ∈ ∂Y0,∀m > 0}, and then it is

easy to see that M∂ = {0}. Since R10 > 1, it then follows from Wang
and Zhao (2008, Theorem 2.2) that ρ(�F−V (ω)) > 1. By the continuity of
f (·), μ1,5r (t, ·), μ1,5b(t, ·), μ1,8r (t, ·), μ1,8b(t, ·) and μ1,11(t, ·), we know that for
sufficiently small δ > 0, we also have ρ(�Fδ−Vδ (ω)) > 1, where Fδ is the matrix
resulted from replacing f (0) by f (δ) in F and Vδ is the matrix obtained by replac-
ing μ1,5r (t, 0), μ1,5b(t, 0), μ1,8r (t, 0), μ1,8b(t, 0) and μ1,11(t, 0), respectively, by
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μ1,5r (t, δ), μ1,5b(t, δ), μ1,8r (t, δ), μ1,8b(t, δ) and μ1,11(t, δ) in V . For such a δ > 0,
by the continuity of solutions with respect to the initial values, there is an η > 0 such
that ||x1(t, x01 )|| = ||x1(t, x01 ) − 0|| = ||x1(t, x01 ) − x1(t, 0)|| < δ for t ∈ [0, ω],
provided that ||x01 || < η.

Claim lim supn→∞ ‖Pn(x01 )‖ ≥ η for all x01 ∈ Y0.
Suppose, for the sake of contradiction, that lim supn→∞ ‖Pnx01‖ < η for some

x01 ∈ Y0. Without loss of generality, we can assume ‖Pnx01‖ < η for all n ≥ 0. It then
follows that

||x1(t, Pnx01 )|| < δ for all n ≥ 0, t ∈ [0, ω]

Now, for any t > 0, it can be written as t = mω + t ′ where m ≥ 0 is an integer and
t ′ ∈ [0, ω], and therefore, we indeed have

||x1(t, x01 )|| = ||x1(t ′, Pmx01 )|| < δ, t ′ ∈ [0, ω]. (14)

By the estimate (14) and the monotone properties of f (·), μ1,5r (t, ·), μ1,5b
(t, ·), μ1,8r (t, ·), μ1,8b(t, ·) and μ1,11(t, ·), we observe that the linear system

dx1
dt

= (Fδ(t) − Vδ(t))x1(t), (15)

is a comparison system for (1) from below which is cooperative. By Zhang and Zhao
(2008, Lemma 2.1), there exists a positive, ω-periodic function g(t) ∈ R

14+ such that
eνt g(t) is a solution of (15), where ν = 1

ω
ln(ρ(�Fδ−Vδ (ω))) > 0. Choose σ > 0

sufficiently small such that x01 ≥ σg(0). Then, by the comparison principle, we have

x1(t, x
0
1 ) ≥ σeνt g(t) for t ≥ 0

which contradicts (14) since ν > 0. The contradiction proves the claim.
Note that every orbit in M∂ approaches {0}, implying that {0} is acyclic in M∂ . It

then follows from Zhao (2003, Theorem 3.1.1) that the solutions of system (P1) are
actually uniformly persistent with respect to (Y0, ∂Y0), that is, there exists an ε > 0
such that any solution x1(t, x01 ) of system (P1) with initial value x01 ∈ R

14+ with x01 
= 0
satisfies

lim inf
t→∞ x1, j (t, x

0
1 ) > ε, for all j ∈ C.

Furthermore, Zhao (2003, Theorem 1.3.6) implies that the Poincaré map P has a fixed
point x∗

1 ∈ Y0, implying that x1(t, x∗
1 ), the solution through x∗

1 , is a positive periodic
solution. 	


We note that in the absence of bird migration, the system (Pi) at patch i is nothing
but an ordinary differential equation system with periodic coefficients. Such a system
consists of 12 equations presenting the tick reproduction cycle in the local environ-
ment, and the associated basic reproduction ratio and the threshold dynamics are also
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determined by the same statement as mentioned above. In what follows, we denote
byRloc

i0 the basic reproduction ratio of the tick population in patch i in the absence of
bird migration, that is, when the patches are disconnected.

4.2 Tick Dynamics at Patch 2 (P2)

4.2.1 The Case of R10 < 1

WhenR10 < 1, every solution of system (P1) approaches the trivial equilibrium, and
the ticks will go to extinction in patch 1. This indicates that the local habitat and host
abundance do not favor the survival of I. scapularis in patch 1. As a result, seasonal
bird migration in spring cannot offer a sustainable source of ticks for the succeeding
patch. Indeed, the limiting system for the tick population in patch 2 is nothing but (1)
with i = 2 and with the two delayed terms removed. In other words, the tick dynamics
in patch 2 only depends on the local reproduction, development and death, as well as
emigration to patch 3 by migratory birds. This system, denoting it by (P2), is exactly
the same as (P1) except for the subindex which is 2 rather than 1 now. Therefore, we
can define the basic reproduction ratio for patch 2 in exactly the same way as for patch
1, denoting it byR20. Then the same conclusions for patch 1 also hold for patch 2, in
terms of R20 now, as stated in the next theorem.

Theorem 4.3 Assume that R10 < 1. Then,

(i) if R20 < 1, then the trivial solution of system (P2) is globally asymptotically
stable, and thus, the ticks will ultimately die out in both patches 1 and 2.

(2) IfR20 > 1, then there exists at least one positive periodic solution for (P2); more
specifically, tick population persists in patch 2 due to local suitability for tick
establishment, while tick population cannot establish at patch 1.

4.2.2 The Case of R10 > 1

In this case, (P1) has a positive periodic solution x∗
1 (t) by Theorem 4.2. Substituting

x∗
1,5b(t) and x∗

1,8b(t) into (1) with i = 2 for the two delayed terms x1,5b(t − τ1) and
x1,8b(t − τ1) results in the following new periodic system for the tick population in
patch 2:

x ′
2,1(t) = d2,12(t)x2,12(t) − μ2,1(t)x2,1(t),

x ′
2,2(t) = p(t) f (x2,11(t))x2,1(t) − d2,2(t)x2,2(t) − μ2,2(t)x2,2(t),

x ′
2,3(t) = d2,2(t)x2,2(t) − d2,3(t)x2,3(t) − μ2,3(t)x2,3(t),

x ′
2,4(t) = d2,3(t)x2,3(t) − d2,4r (t, R2)x2,4(t)

−d2,4b(t, B2(t))x2,4(t) − μ2,4(t)x2,4(t),

x ′
2,5r (t) = d2,4r (t, R2)x2,4(t) − d2,5r (t)x2,5r (t) − μ2,5r (t, x2,5r (t))x2,5r (t),

x ′
2,5b(t) = d2,4b(t, B2(t))x2,4(t) + αl

1,2(t)m1,2(t − τ1)x∗
1,5b(t − τ1)

−m2,3(t)x2,5b(t) − d2,5b(t)x2,5b(t) − μ2,5b(t, x2,5b(t))x2,5b(t),
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x ′
2,6(t) = d2,5r (t)x2,5r (t) + d2,5b(t)x2,5b(t) − d2,6(t)x2,6(t) − μ2,6(t)x2,6(t),

x ′
2,7(t) = d2,6(t)x2,6(t) − d2,7r (t, R2)x2,7(t)

−d2,7b(t, B2(t))x2,7(t) − μ2,7(t)x2,7(t),

x ′
2,8r (t) = d2,7r (t, R2)x2,7(t) − d2,8r (t)x2,8r (t) − μ2,8r (t, x2,8r (t))x2,8r (t),

x ′
2,8b(t) = d2,7b(t, B2(t))x2,7(t) + αn

1,2(t)m1,2(t − τ1)x∗
1,8b(t − τ1)

−m2,3(t)x2,8b(t) − d2,8b(t)x2,8b(t) − μ2,8b(t, x2,8b(t))x2,8b(t),

x ′
2,9(t) = d2,8r (t)x2,8r (t) + d2,8b(t)x2,8b(t) − d2,9(t)x2,9(t) − μ2,9(t)x2,9(t),

x ′
2,10(t) = d2,9(t)x2,9(t) − d2,10(t, D2)x2,10(t) − μ2,10(t)x2,10(t),

x ′
2,11(t) = δd2,10(t, D2)x2,10(t) − d2,11(t)x2,11(t) − μ2,11(t, x2,11(t))x2,11(t),

x ′
2,12(t) = d2,11(t)x2,11(t) − d2,12(t)x2,12(t) − μ2,12(t)x2,12(t). (16)

System (16) is controlled from below by (P2) described in Sect. 4.2.1, that is,
the system obtained by dropping the two delayed terms in (16). By the results in
Sect. 4.1 for patch 1 (need to replace subindex 1 by 2), this system (P2) has the basic
reproduction ratio R20, and if R20 > 1, then (P2) is uniformly persistent, and by the
comparison principle, so is (16) and as a consequence, (16) also has positive periodic
solution (Zhao 2003, Theorem 1.3.6)

It is interesting to ask what happens if R20 < 1. In this subsection, we show that
even if R20 < 1, due to the contribution from patch 1, the tick population can also
remain persistent in the sense that the system (16) also admits a positive periodic
solution.

Theorem 4.4 Assume that R10 > 1. Then system (16) is uniformly persistent and
admits a positive periodic solution, regardless of whetherR20 > 1 or R20 < 1.

Proof Let μ0
2, j

= mint∈[0,ω] μ2, j (t, 0) for j = 5r, 5b, 8r, 8b and D11 =
mint∈[0,ω] ∂μ2,11(t,0)

∂x2,11
. Since f (·) is a decreasing function and all density-dependent

death rates are increasing functions with respect to their state variables, the system
(16) is controlled from above by the following autonomous and cooperative system:

u′
2,1(t) = d̄2,12u2,12(t) − μ

2,1
u2,1(t),

u′
2,2(t) = p̄ f (0)u2,1(t) − μ

2,2
u2,2(t),

u′
2,3(t) = d̄2,2u2,2(t) − μ

2,3
u2,3(t),

u′
2,4(t) = d̄2,3u2,3(t) − μ

2,4
u2,4(t),

u′
2,5r (t) = d̄2,4r u2,4(t) − μ0

2,5r
u2,5r (t),

u′
2,5b(t) = d̄2,4bu2,4(t) + ᾱl

1,2m̄1,2 x̄∗
1,5b − μ0

2,5b
u2,5b(t),

u′
2,6(t) = d̄2,5[u2,5r (t) + u2,5b(t)] − μ

2,6
u2,6(t), (17)

u′
2,7(t) = d̄2,6u2,6(t) − μ

2,7
u2,7(t),
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u′
2,8r (t) = d̄2,7r u2,7(t) − μ0

2,8r
u2,8r (t),

u′
2,8b(t) = d̄2,7bu2,7(t) + ᾱn

1,2m̄1,2 x̄∗
1,8b − μ0

2,8b
u2,8b(t),

u′
2,9(t) = d̄2,8[u2,8r (t) + u2,8b(t)] − μ

2,9
u2,9(t),

u′
2,10(t) = d̄2,9u2,9(t) − μ

2,10
u2,10(t),

u′
2,11(t) = δd̄2,10u2,10(t) − D11u22,11(t) ,

u′
2,12(t) = d̄2,11u2,11(t) − μ

2,12
u2,12(t).

By setting the terms on the right sides of system (17) to zeros, we are led to a quadratic
function

a1u
2
2,11 − a2u2,11 − a3 = 0, (18)

where a1, a2 and a3 are some positive constants. Equation (18) admits a unique positive
root

u∗
2,11 =

a2 +
√
a22 + 4a1a3

2a1
> 0,

implying that the system (17) has a unique positive equilibrium, denoting by u∗
2 ∈ R

14+
with u∗

2 � 0. Since system (17) is strongly monotone, by a similar argument as that
in the proof as Heffernan et al. (2014, Lemma 3.1), we conclude that the positive
equilibrium u∗

2 is globally attractive in R14+ .
By the comparison principle, we then have lim supt→∞ x2,11(t, x02 ) ≤ u∗

2,11. Thus,
for every ε > 0, there exists some sufficiently large t1 > 0 such that

x2,11(t, x
0
2 ) ≤ u∗

2,11 + ε for all t ≥ t1. (19)

From the second equation in (16) and inequality (19), we then have

x ′
2,2(t) = p(t) f (x2,11(t, x

0
2 ))x2,1(t) − d2,2(t)x2,2(t) − μ2,2(t)x2,2(t)

≥ p(t) f (u∗
2,11 + ε)x2,1(t) − d2,2(t)x2,2(t) − μ2,2(t)x2,2(t), t ≥ t1.

Therefore, replacing f (x2,11(t)) by f (u∗
2,11 + ε) in (16) results in a new system,

denoted by (MS), which controls (16) from below. By arguments similar to that in
the proof of Lemma (6.1) in “Appendix 2,” it is easy to see that system (MS) is even-
tually strongly monotone (e.g., strongly monotone for t ≥ 12ω). By using the same
arguments as in that of (Heffernan et al. 2014, Theorem 3.2), that is, by showing that
[0, ku∗

2] is positively invariant for the system (MS) when k is large and by constructing
two positive sequences and applying the squeeze principle, we conclude that system
(MS) admits a positive ω-periodic solution x̂∗

2 (t) � 0 which is globally attractive.
Let ε = min{inf x̂∗

2, j (t), j ∈ C}. Then by the comparison principle, every positive
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solution x2(t) of system (16) satisfies

lim inf
t→∞ x2, j (t) ≥ ε, j ∈ C. (20)

That is, (16) is uniformly persistent, and by Zhao (2003, Theorem 1.3.6), (16) admits
a positive periodic solution. The proof of Theorem 4.4 is completed. 	


Continuing the same process to all other patches, we summarize our conclusions
over N patches as below.

Step 1 Calculate R10. If R10 > 1, each patch allows to have a positive solution
and tick population is endemic at each patch due to the transportation of the
migratory birds; if R10 < 1, trivial solution is globally asymptotically stable
and tick population is free at patch 1.

Step 2 Calculate Rk0 for k = 2, . . . , i + 1 until R(i+1)0 > 1 for some i , and then
tick population is free at patches k = 1, . . . , i , which will be persistent in
the remaining patches starting from patch i + 1, admitting a positive periodic
solution in each of the patches i + 1, · · · , N .

We note that the first endemic patch of tick population becomes a source to spread the
tick population to all succeeding patches via bird migration. Similar phenomenon but
not for a periodic systemwas found in amulti-patch epidemicmodel due to population
transportation in Nakata and Röst (2015).

5 Numerical Simulations

In this section, we carry out some numerical simulations to demonstrate the effects
of bird migration on tick populations. For simplicity, we consider the source region
(patch 1) and the subsequent stopover (patch 2) during spring migration to examine
how the tick population is affected by bird migration from the source region. To this
end, we first need to estimate the populations of the migration birds at the two patches
and denote by B1(t) and B2(t), respectively.

To the best of our knowledge, the immigration of migratory birds into the source
region (patch 1) is fairly more complicated than simply migrating back southward,
since they undergo not only a couple of stopovers during fall migration, but also winter
feeding (Bourouiba et al. 2010). These factors lead to considerable variation in the
number of birds arriving (indirectly) at patch 1 from patch N . Note that patch N is
assumed to be the one in which birds start fall migration. Meanwhile, the distribution
of winter feeding of these Lyme-tick carrying birds (e.g., American robins) is very
wide; moreover, landscapes and food resources at wintering sites also change the
bird migration routes (Bird Life international 2013; Robin Migration Study 2015).
Consequently, the influx of birds at patch 1 is not merely determined by the number
of migratory birds at patch N . For simplicity or numeric simulations, we assume
that the influx of birds at patch 1 is given by a constant recruitment rate r0 during
the spring migration window [tstart, tend] ⊂ [0, 365], while they die at a rate μb

1 and
depart from patch 1 at a migration rate m1,2(t). In patch 2, birds arrive at a rate
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e−μb
1,2τ1m1,2(t − τ1)B1(t − τ1) after flying time τ1 from patch 1, die at a death rate μb

2
during their stay in patch 2 and will leave patch 2 at a migration rate m2,3(t), where
m2,3(t) is the migration rate of birds from patch 2 to the following patch 3. Therefore,
the populations of birds in the first two patches can be calculated from the following
equations

{
B ′
1(t) = r(t) − (m1,2(t) + μb

1)B1(t)

B ′
2(t) = e−μb

1,2τ1m1,2(t − τ1)B1(t − τ1) − (m2,3(t) + μb
2)B2(t)

(21)

where

r(t) =
{
r0, t ∈ [tstart, tend],
0, otherwise,

and

m1,2(t) =
{
m12, t ∈ [tstart, tend],
0, otherwise,

m2,3(t) =
{
m23, t ∈ [tstart + τ1, tend + τ1],
0, otherwise.

Following Bourouiba et al. (2010), we assume that during the migration window,
99.99% of the birds that arrive at a patch will have departed the patch at the end of
the season, meaning that only 0.01% remains in the patch at the end of the season.
For patch 1, this translates to

e−(m12+μb
1)(tend−tstart) = 0.01% = 10−4,

i.e., m12 = 4 ln 10/(tend − tstart) − μb
1. Similarly, m23 = 4 ln 10/(tend − tstart) − μb

2.
Adopting the spring migration time window [tstart, tend]=[March 1, June 30] (see

Ogden et al. 2008), and the parameter values as r0 = 300/day and τ1 = 2 days,
μb
1 = μb

2 = 0.03/day, μb
1,2 = 0.0014/day, and accordingly m12 = 0.0741/day and

m23 = 0.0741/day. With the above, the number of bird population at patches 1 and 2
can be solved based on (21) to display the seasonal populations of the migratory birds
which will be used in the following simulations.

5.1 The Dependence of R10 on Some Migratory Parameters

As in most models, the basic reproduction ratio in each patch in our model cannot be
obtained explicitly. However, with the above preparation, we can use the dichotomy
method developed in Bacaër (2007), Wang and Zhao (2008) to numerically compute
these ratios. The main idea is that after writing the linearization of the periodic model
system at the tick-extinction equilibrium in the form dX/dt = (F(t)/R−V (t))X (t),
the value of R that allows this linear system to have the dominant Floquet multiplier
equal to 1 gives the basic reproduction ratio.

We start with patch 1 and use parameters in Tables 2 and 3 for the constant para-
meters, and in the mean time, we adopt the periodic coefficients in Wu et al. (2013)
with the mean monthly temperatures in the order from January to December being
[−7.70; −7.39; −2.64; 4.21; 10.18; 15.20; 18.60; 18.39; 14.39; 8.37; 2.60; −3.72].
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Fig. 2 Dependence of the basic reproduction ratios R10 and Rloc
10 on a the bird recruitment r0 with

tstart = 60 and tend = 181, and b on the migration ending time tend with r0 = 30 and tstart = 60

Then, implementing the algorithm based on the aforementioned dichotomy method,
we obtain the numeric plots of R10 and Rloc

10 with respect to r0 and the tend, respec-
tively, as shown in Fig. 2. From Fig. 2a, it is interesting to note that there is a critical
value for r0, below which R10 < Rloc

10 , and above which R10 > Rloc
10 . Figure 2b

reveals a similar phenomenon with respect to the ending time tend. Note that although
R10 is increasing in both r0 and tend, R10 is concave down in r0 but concave up in
tend, meaning thatR10 is more sensitive to smaller r0 and larger tend than to larger r0
and smaller tend; in both cases,R10 can achieve a value larger than 1 for large r0 and
tend, although Rloc

10 = 0.7931 < 1.

5.2 Subpopulations of Ticks in Patch 2

For patch 2,we can do the same thing forR20 andRloc
20 and obtain similar observations.

Wewill not pursue along this line here; instead, wewill explore the impact ofmigration
birds on the subpopulations of ticks in patch 2 in the case of R10 > 1. In what
follows, we still use the same bird populations B1(t) and B2(t) as described above
and keep the same values of constant parameters as in Tables 2 and 3. Then taking
r0 = 300/day, tstart = 60 and tend = 181 and using the mean monthly temperatures
from January to December [−4.05; −3.02; 1.67; 7.69; 13.99; 19.46; 22.12; 21.46;
17.67; 11.26; 5.28; −0.89] to estimate those periodic coefficients, we numerically
obtain R10 = 8.5422 and simulate the subpopulations in patch 1 as plotted in Fig. 3.
In the rest of these subsections, these tick subpopulations in patch 1 in a 1-year period
will be used to numerically calculate the basic reproduction ratio R20 and Rloc

20 and
find the tick subpopulations in patch 2.

For patch 2, we first use the mean monthly temperatures from January to December
[−9.75; −8.23; −2.08; 6.03; 13.30; 18.35; 20.79; 19.64; 14.98; 8.25; 2.06; −5.66] to
estimate the associated periodic coefficients, by which we numerically obtainRloc

20 =
1.8338 by the aforementioned numeric method. This implies that in the absence of
migratory birds, tick populations can persist. Now, using the tick subpopulations in
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Fig. 3 Subpopulations at a rich source region (patch 1) with R10 = 8.5422 as described in the text

patch 1 in a 1-year period as shown in Fig. 3, we obtain the numeric simulations of the
subpopulations in patch 2 for some selected stages, as illustrated in Fig. 4. In this figure,
the solid curves measured by the vertical axes on the left present the subpopulations
of ticks in the absence of bird migration, while the dash curves measured by the
vertical axes on the right account for the subpopulations of the ticks in the presence
of migratory birds which are much higher than the solid curves. This clearly shows
the positive effect of migration birds on the tick populations in patch 2.

Again for patch 2, if we choose the mean monthly temperatures from January to
December as [−13.42; −11.41; −5.07; 3.21; 10.82; 15.98; 18.39; 17.20; 12.29; 5.59;
−1.07; −9.34], we accordingly obtain Rloc

20 = 0.5683 < 1, meaning that patch 2 is a
poor environment for the ticks: In the absence of the migration of birds, the ticks will
go to extinction in this patch. Now, using the tick subpopulations in patch 1 in a 1-year
period as shown in Fig. 3, we can numerically solve the model for the subpopulations
in patch 2, as illustrated in Fig. 5, which shows that the tick subpopulations form a
self-reproduction cycle from the scratch with the help of bird migration. This indicates
that migratory birds are capable of helping the ticks to establish in a poor region where
the environment is not good enough to support the establishment of the tick population.

6 Conclusion and Discussion

In this study, we have developed a general framework which integrates the local
landscape for the ticks and the distribution of the ticks through the migratory birds
during spring. The model turns out to be a patch-based periodic system of delay
differential equations with multiple delays. The delays account for the flying times
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Fig. 4 Subpopulations of selected tick stages in patch 2 with/without the help of migratory birds when this
patch is a “good” one for the ticks: Rloc

20 = 1.8338 > 1

Fig. 5 Subpopulations of selected tick stages in patch 2 with/without the help of migratory birds when this
patch is a “poor” one for the ticks: Rloc

20 = 0.5683 < 1

of birds from preceding patches to succeeding patches on the migratory route, and
the periodic coefficients are chosen to reflect the local suitability depending on local
climate (e.g., temperature) changes. Since the ticks are barely active in the late fallwhen
the birds start migrating back, the long-distance dispersal of the ticks is unidirectional
from south to north, and accordingly, the full system (1) is indeed decoupled into
subsystems, in each of which the tick population dynamics depends on the information
of the current and preceding patch rather than the succeeding patch. This allows us
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to investigate the tick dynamics in all patches in a successive way, starting from the
southern most patch (patch 1). Taking advantage of this and with the help of the
developed theory for the monotone dynamical systems in a periodic setting, we are
able to derive the basic reproduction ratio for each patch to characterize the long-term
behavior of the tick population (Smith 1995; Wang and Zhao 2008; Zhao 2003) in
the patch. Not surprisingly, the dynamics of the tick population in a patch affects that
in all succeeding patches due to the migratory birds. What is significant is that this
work provides a framework for quantitatively exploring such an impact, particularly
for numerical explorations.

We have found thatmigratory birds during springmigration play a crucial role in the
range expansionof I. scapularisby spreading the ticks to a longdistance.Themigratory
birds have the potential to transport Lyme-ticks to more northerly regions, provided
that the resource region is sufficiently rich in ticks (i.e., R10 > 1). However, the risk
of Lyme disease to public health in the northern regions (patch 2 in our simulations) is
heavily dependent on the local environment in the sense that (1) if the tick population
is already endemic in a patch, the risk has been observed to be increased (Fig. 4); (2)
if a region is a “poor one” in the sense that the ticks cannot be established locally,
then the tick population could be present by the aid of migratory birds, thus bringing
the risk to the region (Fig. 5). The study in Heffernan et al. (2014) only considered
a one-patch model, rather than multiple patches as in our current study, and directly
assumed that some ticks are carried by migratory birds into the patch. In contrast to
Heffernan et al. (2014), here we have derived in detail a multi-patch model in terms of
the specific life cycle of the Lyme-tick population, the heterogeneous landscape and
the spring bird migration; thus, the corresponding model is more realistic, the system
is much larger, and the mathematical analysis of the model system is much more
challenging. Despite this, we are able to examine the establishment of tick population
in a way of multiple successive patches. Importantly, we have found that the spring
birdmigration not only can have a positive effect on the establishment of the Lyme-tick
population as observed in Heffernan et al. (2014), but can also have a negative impact,
depending on its level. This is demonstrated in Fig. 2, where a smaller influx of birds
or shorter migration window could lead to a value ofR10 lower thanRloc

0 , while larger
influx rate results in a value of R10 larger than Rloc

0 . The negative effect seems to be
counterintuitive; however, this can be explained by noticing that i) the numeric result
in Fig. 2 is obtained with the out-flux of birds fixed, and ii) ticks are carried in and out
by birds, and as such, insufficient influx will not benefit the patch. Obviously, such
phenomenon cannot be revealed by the model in Heffernan et al. (2014). We believe
that our findings in terms of patch-based models can offer public health policy makers
some insights on the prevention and control of Lyme disease transmission.

Although this study is limited to the case of unidirectional migration route, based
on some reasonable hypothesis, our model can be extended for the entire migration
chain of migratory birds including spring migration, summer breeding, fall migration
and winter feeding, provided that we assume that birds at patch N all go back to patch
1 (except for deaths during migration) by replacing αl

0,1(t)m0,1(t − τ0)x0,5b(t − τ0)

and αn
0,1(t)m0,1(t − τ0)x0,8b(t − τ0) with αl

N ,1(t)mN ,1(t − τN )xN ,5b(t − τN ) and
αn
N ,1(t)mN ,1(t − τN )xN ,8b(t − τN ), and mN ,N+1(t) with mN ,1(t). In a future work,
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as real bird migration data become available, utilizing the corresponding model of
the full bird migration, we would like to estimate the real range expansion of the tick
population in Canada, which remains a big challenge.
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Appendix 1: Derivation of Model (1)

In themodel (1), the key terms are those accounting for the influxes of feeding ticks (lar-
vae and nymphs) between patches, because the other terms are almost self-explanatory
and easy to understand. These terms are results of bird migration and thus need to be
carefully derived by the tracking the bird migration and feeding age of ticks on flying
birds. We illustrate the procedure by considering the feeding nymphs; the influx of
feeding larvae can be obtained in a similar way.

The change rates of feeding nymphs infesting on birds in a particular patch consist
of five components: development from local patch coming from the questing stage,
immigration from the previous patch carried by migratory birds, emigration out of the
patch to the next by the aid of migratory birds, development into the next stage and
mortality. In order to formulate the equation of feeding nymphs on birds, we let Bi (t)
be the population of migratory birds at time t in patch i and mi,i+1(t) be migration
rate of birds leaving patch i and flying to patch i +1. Let ui (t, a) be density of feeding
nymphs infesting on birds at time t with feeding age a in patch i . By the meaning of
ui (t, a), it is obvious that at a given time t within patch i , the total number of feeding
nymphs on birds is given by

xi,8b(t) =
∫ ∞

0
ui (t, a) da. (22)

For 0 ≤ a < τi−1, there is no feeding nymphs entering patch i from the previous
patch due to the time delay in flight. Following the first principle governing the growth
of a population with age structure, the density ui (t, a) (i ∈ A) satisfies

⎧⎨
⎩
(

∂
∂t + ∂

∂a

)
ui (t, a) = −di,8b(t)ui (t, a)

−mi,i+1(t)ui (t, a) − μi,8b(t, xi,8b(t))ui (t, a),

ui (t, 0) = di,7b(t, Bi (t))xi,7(t).
(23)

For τi−1 ≤ a < ∞, migratory birds are capable of dispersing I. scapularis into patch
i from the previous patch i − 1. Then ui (t, a) at the given time t in patch i (i ∈ A)
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satisfies

(
∂

∂t
+ ∂

∂a

)
ui (t, a)

= −di,8b(t)ui (t, a) − mi,i+1(t)ui (t, a) − μi,8b(t, xi,8b(t))ui (t, a)

+[influx of feeding nymphs at time t with age a]. (24)

We need to derive the influx term on the right side in (24). The idea is to use the
method of the characteristics, just as in Gourley et al. (2010). Let li−1,i be the distance
along the flyway from patch i−1 to patch i and vi−1,i be the average flying velocity of
the birds flying frompatch i−1 to patch i . Then the time for a I. scapularis to be carried
from patch i − 1 to patch i is τi−1 = li−1,i/vi−1,i . Denote by μl

i−1,i (t), μ
n
i−1,i (t) and

μb
i−1,i (t) the mortalities of per capita feeding larvae, feeding nymphs and migratory

birds, respectively, and let dli−1,i (t) and d
n
i−1,i (t) be the respective development rates

of feeding larvae and feeding nymphs on birds.
Now, let

ρi−1,i (t, a, y)

= density of feeding nymphs on birds in the air along the route from patch i − 1

to patch i at time t with feeding age a at location y ∈ (0, li−1,i ).

Then ρi−1,i (t, a, y) satisfies the reaction-advection equation

⎧⎪⎨
⎪⎩
(

∂
∂t + ∂

∂a

)
ρi−1,i (t, a, y) = −vi−1,i

∂ρi−1,i (t,a,y)
∂y − μb

i−1,i (t)ρi−1,i (t, a, y)
−μn

i−1,i (t)ρi−1,i (t, a, y) − dni−1,i (t)ρi−1,i (t, a, y),
vi−1,iρi−1,i (t, a, 0) = mi−1,i (t)ui−1(t, a).

(25)
with mi−1,i (t)ui−1(t, a) being the flux of feeding nymphs leaving patch i − 1 at
time t . Then, the flux of feeding nymphs arriving at patch i at time t with age a is
vi−1,iρi−1,i (t, a, li−1,i ), which needs to be determined. For simplicity of notations,
we denote γ n

i−1,i (t) := μb
i−1,i (t)+μn

i−1,i (t)+dni−1,i (t) (i = 2, . . . , N ), which exactly
indicates the removal rate of feeding nymphs in the air along the route from patch i−1
and patch i . Since time and age advance at the same rate, we let

S(t, y, r) = ρi−1,i (t, t + r, y) (26)

for any given real number r . By differentiating S(t, y, r) with respect to time t , we
obtain

∂S

∂t
(t, y, r) =

[
∂ρi−1,i

∂t
(t, a, y) + ∂ρi−1,i

∂a
(t, a, y)

]
a=t+r

= −vi−1,i
∂ρi−1,i

∂y
(t, t + r, y) − γ n

i−1,i (t)ρi−1,i (t, t + r, y).

123



164 X. Wu et al.

So that
∂S

∂t
(t, y, r) = −vi−1,i

∂S

∂y
(t, y, r) − γ n

i−1,i (t)S(t, y, r).

Denote Sξ (y, r) = S(ξ + y
vi−1,i

, y, r). Then Sξ (y, r) satisfies the following equation

dSξ (y, r)

dy
=
(

∂S

∂t

∂t

∂y
+ ∂S

∂y

) ∣∣∣∣t=ξ+ y
vi−1,i

= 1

vi−1,i

(
∂S

∂t
+ vi−1,i

∂S

∂y

) ∣∣∣∣t=ξ+ y
vi−1,i

= − 1

vi−1,i
γ n
i−1,i

(
ξ + y

vi−1,i

)
Sξ (y, r). (27)

The above Eq. (27) is a linear first-order ordinary differential equation. Integrating
equation (27) with respect to the variable y from 0 to li−1,i yields

Sξ (li−1,i , r) = Sξ (0, r)exp

( −1

vi−1,i

∫ li−1,i

0
γ n
i−1,i (t) dy

)
.

Setting ξ = t − li−1,i
vi−1,i

and letting η = ξ + y
vi−1,i

along with the fact τi−1 = li−1,i
vi−1,i

, we
obtain

S(t, li−1,i , r) = S(t − τi−1, 0, r)exp

(
− 1

vi−1,i

∫ li−1,i

0
γ n
i−1,i

(
ξ + y

vi−1,i

)
dy

)

= S(t − τi−1, 0, r)exp

(
− 1

vi−1,i

∫ li−1,i

0
γ n
i−1,i

(
t + y − yi

vi−1,i

)
dy

)

= S(t − τi−1, 0, r)exp

(
−
∫ t

t−τi−1

γ n
i−1,i (η) dη

)

:= S(t − τi−1, 0, r)α
n
i−1,i (t),

where

αn
i−1,i (t) := exp

(
−
∫ t

t−τi−1

(μn
i−1,i (η) + μb

i−1,i (η) + dni−1,i (η)) dη

)
(28)

which accounts for the probability that a feeding nymph can survive the flight from
patch i − 1 to patch i . Thus,

ρi−1,i (t, a, yi ) = ρi−1,i (t − τi−1, a − τi−1, yi−1)α
n
i−1,i (t). (29)

Then, the flux of feeding nymphs at time t with age a entering patch i is given by

vi−1,iρi−1,i (t, a, yi ) = vi−1,iρi−1,i (t − τi−1, a − τi−1, yi−1)α
n
i−1,i (t)

= [outward flux in patch i − 1 at time t − τi−1 of age a − τi−1] × αn
i−1,i (t)

= αn
i−1,i (t)mi−1,i (t − τi−1)ui−1(t − τi−1, a − τi−1).
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Summarizing the above, ui (t, a) satisfies

(
∂

∂t
+ ∂

∂a

)
ui (t, a)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−di,8b(t)ui (t, a) − mi,i+1(t)ui (t, a)

−μi,8b(t, xi,8b(t))ui (t, a), 0 ≤ a < τi−1

αn
i−1,i (t)mi−1,i (t − τi−1)ui−1(t − τi−1, a − τi−1)

−di,8b(t)ui (t, a)

−mi,i+1(t)ui (t, a) − μi,8b(t, xi,8b(t))ui (t, a),

τi−1 ≤ a < ∞,

(30)

with αn
i−1,i (t) given by (28).

Taking derivative in Eq. (22) and making use of (30) yield

x ′
i,8b(t) =

∫ τi−1

0

∂

∂t
ui (t, a) da +

∫ ∞

τi−1

∂

∂t
ui (t, a) da

=
∫ τi−1

0

(
∂

∂t
+ ∂

∂a

)
ui (t, a) da + ui (t, 0) − ui (t, τi−1)

+
∫ ∞

τi−1

(
∂

∂t
+ ∂

∂a

)
ui (t, a) da + ui (t, τi−1) − ui (t,∞) (31)

= ui (t, 0) + αn
i−1,i (t)mi−1,i (t − τi−1)xi−1,8b(t − τi−1)

− di,8b(t)xi,8b(t) − mi,i+1(t)xi,8b(t) − μi,8b(t, xi,8b(t))xi,8b(t)

= di,7b(t, Bi (t))xi,7(t)︸ ︷︷ ︸
attachment from local patch

+αn
i−1,i (t)mi−1,i (t − τi−1)xi−1,8b(t − τi−1)︸ ︷︷ ︸

immigration from previous patch

− di,8b(t)xi,8b(t)︸ ︷︷ ︸
development to the next

− mi,i+1(t)xi,8b(t)︸ ︷︷ ︸
emigration out of the patch

−μi,8b(t, xi,8b(t))xi,8b(t)︸ ︷︷ ︸
density-dependent death

,

(32)

where we have made the biologically realistic assumption ui (t,∞) = 0.
In a similar way, we obtain the dynamics of feeding larvae on birds at patch i as

below

x ′
i,5b(t) = di,4b(t, Bi (t))xi,4(t)︸ ︷︷ ︸

attachment from local patch

+αl
i−1,i (t)mi−1,i (t − τi−1)xi−1,5b(t − τi−1)︸ ︷︷ ︸

immigration from previous patch

− di,5b(t)xi,5b(t)︸ ︷︷ ︸
development to the next

− mi,i+1(t)xi,5b(t)︸ ︷︷ ︸
emigration out of the patch

−μi,5b(t, xi,5b(t))xi,5b(t)︸ ︷︷ ︸
density-dependent death

,

(33)

123



166 X. Wu et al.

where

αl
i−1,i (t) = exp

(
−
∫ t

t−τi−1

(
μb
i−1,i (η) + μl

i−1,i (η) + dli−1,i (η) dη
))

:= exp

(
−
∫ t

t−τi−1

γ l
i−1,i (η) dη

)
. (34)

Therefore, for t > max{τ1, τ2, . . . , τN−1}, we have derived the closed system (1)
for tick dynamics over N patches with migration birds. For t ∈ [0, τi−1], the dynamics
of I. scapularis tick population is governed by an ODE system obtained by simply
deleting the two delayed terms in (1). Since we are concerned with the long-term
dynamics of ticks, we only need to analyze the model system (1), as is done in the
main text.

Appendix 2: Proof of Lemma 6.1

Let A(t) = F(t) − V (t). It is obvious that all off-diagonal entries are nonnegative
and hence the linear system (11) is cooperative. But it may not be irreducible since
some parameters may vanish in some nonempty subinterval due to seasonal activities
of ticks and birds. This means that the semiflow �A(t) generated by system (11) may
not be strongly monotone for all t > 0. However, next lemma shows that �A(t) is
eventually strongly monotone.

Lemma 6.1 The solution semiflow X (t) = �A(t) of (11) is nonnegative for all t ≥ 0
and is positive for t ≥ 12ω.

Proof Since (11) is a cooperative system, Corollary B.2 on page 262 of Smith and
Waltman (1995) implies that X (t) = [xi, j (t)]14×14 ≥ 0 for all t ≥ 0.

Note that X (t) is the fundamental matrix solution of (11) satisfying

{
X ′(t) = A(t)X (t) = (ai, j (t))14×14X (t)
X (0) = I (the identity matrix)

(35)

Since all off-diagonal entries of A(t) are nonnegative, a comparison theorem implies
that once an entry of X (t) becomes strictly positive at some time, it will remain strictly
positive after that time. Next, we show that each component of X (t) will actually be
turned on at some t ≥ 0. We start by considering x21. According to the first equation
of (35), we have

x ′
2,1(t) =

14∑
k=1

a2,k(t)xk,1(t) = p(t) f (0)x1,1(t) − μ2,1(t)x2,1(t) (36)

and x1,1(0) = 1 > 0. Since x2,1(0) = 0 and x ′
2,1(0) = p(t) f (0)x1,1(0) =

p(t) f (0) > 0, we know that there is a t∗ ∈ [0, ω] such that x1,1(t) = 1 > 0 for
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t ∈ (0, t∗], and by the above argument, we conclude that x1,1(t) = 1 > 0 for all
t ≥ t∗, particularly for t ≥ w. Next, we look at x3,1(t) which satisfies

x ′
3,1(t) =

14∑
k=1

a3,k(t)xk,1(t) = d1,2(t)x2,1(t) − (d1,3(t) + μ1,3(t))x3,1(t). (37)

By the positivity of x2,1(t) for t ≥ w and using the constant-variation formula, we
know that x3,1(t) becomes positive at some time for [ω, 2ω] and hence x2,1(t) is
strictly positive for t ≥ 2ω. Going over the rest of the components in a similar way,
we can conclude that xi, j > 0 for t ≥ kω where kω is the number in the (i, j) position
of the following matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 11ω 10ω 9ω 8ω 8ω 7ω 6ω 5ω 5ω 4ω 3ω 2ω ω

ω 0 11ω 10ω 9ω 9ω 8ω 7ω 6ω 6ω 5ω 4ω 3ω 2ω
2ω ω 0 11ω 10ω 10ω 9ω 8ω 7ω 7ω 6ω 5ω 4ω 3ω
3ω 2ω ω 0 11ω 11ω 10ω 9ω 8ω 8ω 7ω 6ω 5ω 4ω
4ω 3ω 2ω ω 0 12ω 11ω 10ω 9ω 9ω 8ω 7ω 6ω 5ω
4ω 3ω 2ω ω 12ω 0 11ω 10ω 9ω 9ω 8ω 7ω 6ω 5ω
5ω 4ω 3ω 2ω ω ω 0 11ω 10ω 10ω 9ω 8ω 7ω 6ω
6ω 5ω 4ω 3ω 2ω 2ω ω 0 11ω 11ω 10ω 9ω 8ω 7ω
7ω 6ω 5ω 4ω 3ω 3ω 2ω ω 0 12ω 11ω 10ω 9ω 8ω
7ω 6ω 5ω 4ω 3ω 3ω 2ω ω 12ω 0 11ω 10ω 9ω 8ω
8ω 7ω 6ω 5ω 4ω 4ω 3ω 2ω 1ω 1ω 0 11ω 10ω 9ω
9ω 8ω 7ω 6ω 5ω 5ω 4ω 3ω 2ω 2ω ω 0 11ω 10ω
10ω 9ω 8ω 7ω 6ω 6ω 5ω 4ω 3ω 3ω 2ω ω 0 11ω
11ω 10ω 9ω 8ω 7ω 7ω 6ω 5ω 4ω 4ω 3ω 2ω ω 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The proof is completed. 	
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