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Rich Bifurcation Structure in a Two-Patch Vaccination Model∗

Diána H. Knipl†, Pawe�l Pilarczyk‡, and Gergely Röst§

Abstract. We show that incorporating spatial dispersal of individuals into a simple vaccination epidemic model
may give rise to a model that exhibits rich dynamical behavior. Using an SIVS (susceptible–
infected–vaccinated–susceptible) model as a basis, we describe the spread of an infectious disease in
a population split into two regions. In each subpopulation, both forward and backward bifurcations
can occur. This implies that for disconnected regions the two-patch system may admit several steady
states. We consider traveling between the regions and investigate the impact of spatial dispersal of
individuals on the model dynamics. We establish conditions for the existence of multiple nontrivial
steady states in the system, and we study the structure of the equilibria. The mathematical analysis
reveals an unusually rich dynamical behavior, not normally found in the simple epidemic models. In
addition to the disease-free equilibrium, eight endemic equilibria emerge from backward transcritical
and saddle-node bifurcation points, forming an interesting bifurcation diagram. Stability of steady
states, their bifurcations, and the global dynamics are investigated with analytical tools, numerical
simulations, and rigorous set-oriented numerical computations.
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1. Introduction. The basic reproduction number R is a central quantity in epidemiology,
as it determines the average number of secondary infections caused by a typical infected
individual introduced into a wholly susceptible population. In disease transmission models,
the reproduction number serves as a threshold for the stability of the disease-free equilibrium
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RICH BIFURCATIONS IN A TWO-PATCH MODEL 981

(DFE). The usual situation is that for R < 1 the stable DFE is the only equilibrium, but
it loses its stability as R increases through 1, where a stable positive equilibrium emerges.
Such a transition of stability between the DFE and the endemic equilibrium is called forward
bifurcation. However, it is possible to have a very different situation at R = 1. In case the
model undergoes a backward bifurcation at R = 1, there is an interval for R to the left of 1
where multiple positive equilibria (typically one unstable and one stable) coexist with the DFE.
The direction of bifurcation is of particular interest from the perspective of controlling the
epidemic. If the system exhibits a forward bifurcation at R = 1, then for disease eradication
it is always sufficient to decrease R to 1. On the other hand, in case of backward bifurcation,
the presence of a stable endemic equilibrium for R < 1 makes it necessary to bring the
reproduction number well below 1 to successfully eliminate the infection.

Backward bifurcation has been observed in several studies which consider epidemic models
for multiple groups with asymmetry between groups and multiple interaction mechanisms
(see [12, 15, 16] and [14] for an overview). Some simple disease transmission models with
vaccination of susceptible individuals are discussed by Kribs-Zaleta and Velasco-Hernández
[19, 20] and by Brauer [4, 5]. A basic model can be described by the following system of
ordinary differential equations:

(1.1)

S′(t) = Λ(N(t))− β(N(t))S(t)I(t) − (μ+ φ)S(t) + γI(t) + θV (t),

I ′(t) = β(N(t))S(t)I(t) + σβ(N(t))V (t)I(t) − (μ+ γ)I(t),

V ′(t) = φS(t)− σβ(N(t))V (t)I(t) − (μ+ θ)V (t),

where S(t), I(t), V (t), and N(t) denote the number of susceptible, infected, or vaccinated
individuals and the total population size, respectively, at time t. It is assumed that all
individuals are born susceptible, which is represented by the birth term Λ, that is a function
of the total population. The parameter μ is the natural death rate in each class. Disease
transmission is modeled by the term β(N)SI, where the transmission rate β is a function of
the total population, and the parameters φ and γ stand for the vaccination rate of susceptible
individuals and the recovery rate of infected individuals, respectively. It is assumed that
vaccination loses effect at rate θ, and 0 ≤ σ ≤ 1 is introduced to model the phenomenon
that vaccination may reduce but not completely eliminate susceptibility to infection. With
certain conditions on the birth function Λ, the system (1.1) can be reduced to two equations
by means of the theory of asymptotically autonomous systems (see [23, 36, 37]). For this
two-dimensional system, a complete qualitative analysis was carried out in [4], including a
condition for the existence of backward bifurcation.

In this paper, we consider a two-patch vaccination model in order to investigate the impact
of individuals’ mobility on the disease dynamics. Our model generalizes the above presented
epidemic model (1.1), as we study the spread of the disease when the population is distributed
over two geographically discrete locations, which are connected by instantaneous travel. The
aim of this work is to describe steady states, their stability, and their bifurcations in the two-
patch model and to reveal how individuals’ mobility influences the dynamical behavior. Our
results demonstrate that incorporating spatial dispersal of individuals into simple vaccination
models can result in rich dynamics; in particular, we show that the stable DFE might coexist
with three stable and five unstable nontrivial steady states in the model. By exploring theD
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982 DIÁNA H. KNIPL, PAWE�L PILARCZYK, AND GERGELY RÖST

bifurcation structure with analytic and numerical methods, we identify two distinct bifurcation
routes from nine to three equilibria.

In disease transmission models, investigating the long time behavior of solutions provides
key knowledge for determining final epidemic outcome and identifying adequate intervention
measures. However, describing the local and global stability of equilibria, their attracting
regions, and bifurcations is rather complex when the corresponding system is highly nonlinear
and there are a large number of steady states. A rich bifurcation structure implies that the
disease dynamics is sensitive to the model parameters and initial conditions. It also allows a
variety of different final epidemic outcomes, which makes disease control and mitigation plan-
ning rather challenging. Our findings about the coexistence of multiple stable steady states,
having very different levels of infection in the patches, resemble the observed phenomenon of
the high variability of hepatitis-B prevalence in different cities, which has been attributed to
strongly nonlinear disease dynamics [24].

In addition to the “classical” analysis of equilibria, we conduct a series of set-oriented
computations for qualitative analysis of the dynamics using combinatorial and topological
methods, as introduced in [1]. Roughly speaking, these computations are carried out for
prescribed ranges of parameters and allow us to classify the global dynamics encountered
within a given bounded region of the phase space by means of enclosing all the chain recurrent
dynamics in isolating neighborhoods and providing information about which connecting orbits
between them are possible. The Conley index is used to provide additional information about
the recurrent sets found. In this method, all the computations are carried out using interval
arithmetic (see [26] for a comprehensive introduction), and the results are mathematically
rigorous. This is different than in approximate numerical simulations, which are typically
much cheaper but may not provide mathematically reliable results. Since our method is based
upon using interval arithmetic and outer approximations, the results are valid for entire ranges
of parameters; in particular, proof of continuation of isolating neighborhoods is obtained for
the ranges of parameters for which the dynamics has been classified as equivalent. Moreover,
this method detects not only attractors, but also unstable invariant sets, usually difficult to
find using classical numerical methods. Another advantage of this method is that it provides
an automatic proof of the fact that outside of the constructed isolating neighborhoods there
is no other recurrent dynamics. In particular, this method provides the certainty that no
bounded trajectories in the given phase space have been missed, that there are no periodic
solutions except those bounded in the regions found explicitly, and that there are no other
fixed points and no other kinds of chain recurrent sets.

The paper is organized as follows. In section 2, we introduce a general disease transmis-
sion model with vaccination for epidemic spread in two regions. We discuss a restriction of
the model to symmetric regions in section 3, and we investigate the equilibria of the model
with analytic methods. In section 4, we undertake numerical simulations to illustrate the rich
bifurcation structure that is encountered in the system. Finally, in section 5 we describe rigor-
ous set-oriented numerical computations conducted for the symmetric model at the parameter
ranges for which we found the bifurcations.
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RICH BIFURCATIONS IN A TWO-PATCH MODEL 983

2. The general two-patch model. A general disease transmission model with vaccination
for epidemic spread in two regions can be described by the system

(2.1)

S′
1(t) = Λ1 − β1(N1(t))S1(t)I1(t)− (μ1 + φ1)S1(t) + γ1I1(t) + θ1V1(t)

− αS
1S1(t) + αS

2 S2(t),

I ′1(t) = β1(N1(t))S1(t)I1(t) + σ1β1(N1(t))V1(t)I1(t)− (μ1 + γ1)I1(t)

− αI
1I1(t) + αI

2I2(t),

V ′
1(t) = φ1S1(t)− σ1β1(N1(t))V1(t)I1(t)− (μ1 + θ1)V1(t)

− αV
1 V1(t) + αV

2 V2(t),

S′
2(t) = Λ2 − β2(N2(t))S2(t)I2(t)− (μ2 + φ2)S2(t) + γ2I2(t) + θ2V2(t)

− αS
2S2(t) + αS

1 S1(t),

I ′2(t) = β2(N2(t))S2(t)I2(t) + σ2β2(N2(t))V2(t)I2(t)− (μ2 + γ2)I2(t)

− αI
2I2(t) + αI

1I1(t),

V ′
2(t) = φ2S2(t)− σ2β2(N2(t))V2(t)I2(t)− (μ2 + θ2)V2(t)

− αV
2 V2(t) + αV

1 V1(t).

We denote the compartments of susceptible, infected, and vaccinated individuals in region
j (j ∈ {1, 2}) by Sj, Ij, and Vj, respectively, and the total population Nj in region j is
obtained as Nj(t) = Sj(t) + Ij(t) + Vj(t). The description of the model parameters has been
given in section 1. The subscripts 1 and 2 indicate that the two regions may have different
characteristics. We assume that susceptible, infected, and vaccinated individuals in region j
travel with rates αS

j , α
I
j , and αV

j from region j to region k, where j, k ∈ {1, 2} and j �= k. We
obtain some simple results for the system (2.1). The proof of the first proposition is trivial
and thus omitted.

Proposition 2.1. Nonnegative initial data give rise to nonnegative solutions in system (2.1).
Proposition 2.2. In system (2.1) there exists a unique DFE when the disease is not present

in the populations.
Proof. In the disease-free subspace, system (2.1) reduces to

(2.2)

S′
1(t) = Λ1 − (μ1 + φ1)S1(t) + θ1V1(t)− αS

1S1(t) + αS
2S2(t),

V ′
1(t) = φ1S1(t)− (μ1 + θ1)V1(t)− αV

1 V1(t) + αV
2 V2(t),

S′
2(t) = Λ2 − (μ2 + φ2)S2(t) + θ2V2(t)− αS

2S2(t) + αS
1S1(t),

V ′
2(t) = φ2S2(t)− (μ2 + θ2)V2(t)− αV

2 V2(t) + αV
1 V1(t).

We derive the unique positive equilibrium of this system as⎛
⎜⎜⎝
S̄1

V̄1

S̄2

V̄2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
μ1 + φ1 + αS

1 −θ1 −αS
2 0

−φ1 μ1 + θ1 + αV
1 0 −αV

2

−αS
1 0 μ2 + φ2 + αS

2 −θ2
0 −αV

1 −φ2 μ2 + θ2 + αV
2

⎞
⎟⎟⎠

−1 ⎛
⎜⎜⎝
Λ1

0
Λ2

0

⎞
⎟⎟⎠ .
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It is straightforward that (S̄1, 0, V̄1, S̄2, 0, V̄2) is a DFE of system (2.1). Uniqueness follows
from the uniqueness of (S̄1, V̄1, S̄2, V̄2) in (2.2).

Proposition 2.3. Assume that αS
1 = αI

1 = αV
1 and αS

2 = αI
2 = αV

2 . Then the total population
sizes converge to an equilibrium.

Proof. For the total populations in regions 1 and 2, we derive the following differential
equation system:

(2.3)
N ′

1(t) = Λ1 − (μ1 + α1)N1(t) + α2N2(t),

N ′
2(t) = Λ2 − (μ2 + α2)N2(t) + α1N1(t),

where α1 and α2 denote the mobility rates of the populations in region 1 and 2, respectively.
One can find that the positive equilibrium (K1,K2) for the populations is given by(

K1

K2

)
=

(
μ1 + α1 −α2

−α1 μ2 + α2

)−1(
Λ1

Λ2

)
.

Set M1(t) := N1(t)−K1, M2(t) := N2(t)−K2. Then we obtain the linear system

M ′
1(t) = −(μ1 + α1)M1(t) + α2M2(t),

M ′
2(t) = −(μ2 + α2)M2(t) + α1M1(t).

Since α1 and α2 are nonnegative and μ1, μ2 > 0, the zero solution of the last system is asymp-
totically stable. This implies the asymptotic stability of the positive equilibrium (K1,K2).

In what follows, we assume that all disease classes within a patch have the same mobility
rate, denoted by α1 and α2 in regions 1 and 2, respectively. Then, using the fact that
S1(t) = N1(t)−I1(t)−V1(t) and S2(t) = N2(t)−I2(t)−V2(t), we rewrite (2.1)2, (2.1)3, (2.1)5,
and (2.1)6 in terms of Nj(t), Ij(t), and Vj(t) (j ∈ {1, 2}). This four-dimensional system can be
considered as a system of nonautonomous differential equations with nonautonomous terms
N1(t) and N2(t), which are governed by system (2.3). Then, by Proposition 2.3, we deduce
that system (2.1) is asymptotically autonomous with the limiting system

(2.4)

I ′1(t) = β1(K1)(K1 − I1(t)− (1− σ1)V1(t))I1(t)− (μ1 + γ1)I1(t)

− α1I1(t) + α2I2(t),

V ′
1(t) = φ1(K1 − I1(t))− σ1β1(K1)V1(t)I1(t)− (μ1 + θ1 + φ1)V1(t)

− α1V1(t) + α2V2(t),

I ′2(t) = β2(K2)(K2 − I2(t)− (1− σ2)V2(t))I2(t)− (μ2 + γ2)I2(t)

− α2I2(t) + α1I1(t),

V ′
2(t) = φ2(K2 − I2(t))− σ2β2(K2)V2(t)I2(t)− (μ2 + θ2 + φ2)V2(t)

− α2V2(t) + α1V1(t).

As the transmission rates β1(K1) and β2(K2) are constants in the system (2.4), going forward
we simply write β1 and β2. In what follows, we focus on the mathematical analysis of the
system (2.4) in the feasible phase space (i.e., in the set of biologically relevant states)

(2.5) X = {(I1, V1, I2, V2) ∈ R
4
+ | I1 + V1 ≤ K1, I2 + V2 ≤ K2}.D

ow
nl

oa
de

d 
09

/0
2/

15
 to

 9
1.

83
.1

41
.4

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RICH BIFURCATIONS IN A TWO-PATCH MODEL 985

As the positive equilibrium (K1,K2) is globally attracting for the populations in the two
regions, we can assume that the two populations have attained their steady states and thus
are both constant.

The DFE of the system (2.4) can be obtained as (0, V̄1, 0, V̄2), where

(
V̄1

V̄2

)
=

(
μ1 + θ1 + φ1 + α1 −α2

−α1 μ2 + θ2 + φ2 + α2

)−1(
φ1K1

φ2K2

)
.

The concept of the next generation matrix (NGM) of an epidemic model was introduced
by Diekmann, Heesterbeek, and Metz [10] (elaborated in [9, Chapter 5]) as a matrix whose
elements give the number of newly infected individuals in specific categories. To obtain this
matrix, we consider the equations of the system that describe the production of new infections
and changes in state among infected individuals. In the initial stage of an epidemic, we can
assume that system (2.4) is near the DFE (0, V̄1, 0, V̄2) and approximate the equations of
classes I1, I2 with the linear system

(2.6)
y′1(t) = (β1(K1 − (1− σ1)V̄1)− (μ1 + γ1 + α1))y1(t) + α2y2(t),

y′2(t) = (β2(K2 − (1− σ2)V̄2)− (μ2 + γ2 + α2))y2(t) + α1y1(t),

where y1, y2 : R � R. By defining matrices F ,V ∈ R
2×2 as

F =

(
β1(K1 − (1− σ1)V̄1) 0

0 β2(K2 − (1− σ2)V̄2)

)
,

V =

(
μ1 + γ1 + α1 −α2

−α1 μ2 + γ2 + α2

)
,

we obtain the compact form of system (2.6) as

(2.7) y′(t) = (F − V)y(t).

The matrix F can be referred to as the transmission matrix, describing the production of new
infections, and −V is the transition matrix, describing changes in state (see [9, 38] for some
details). Clearly, F is a positive matrix—that is, all of its entries are nonnegative—and it is
easy to check that −V is positive-off-diagonal—that is, all entries are nonnegative, possibly
except for those at the diagonal. For a square matrix M , we define the spectral bound s(M)
and the spectral radius ρ(M) by s(M) := sup{Re(λ) : λ ∈ σ(M)}, ρ(M) := sup{|λ| : λ ∈
σ(M)}, where σ(M) denotes the set of eigenvalues of M . One can show that s(−V) < 0,
which is equivalent to the statement that V is invertible and V−1 is a positive matrix (for the
proof of the equivalence, see, e.g., [9, Lemma 6.12]).

Following the definition of the NGM from [10], FV−1 ∈ R
2×2 gives the NGM of the system

(2.7) as follows:

NGM =

⎛
⎝ β1(K1−(1−σ1)V̄1)(μ2+γ2+α2)

(μ1+γ1+α1)(μ2+γ2+α2)−α1α2

α2β1(K1−(1−σ1)V̄1)
(μ1+γ1+α1)(μ2+γ2+α2)−α1α2

α1β2(K2−(1−σ2)V̄2)
(μ1+γ1+α1)(μ2+γ2+α2)−α1α2

β2(K2−(1−σ2)V̄2)(μ1+γ1+α1)
(μ1+γ1+α1)(μ2+γ2+α2)−α1α2

⎞
⎠ .
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The basic reproduction number is defined as the dominant eigenvalue of the NGM (whose
existence is guaranteed by the Frobenius–Perron theorem). For our model, we denote this
number by R0, and we obtain R0 = ρ(FV−1). We state the following proposition to show
that R0 serves as a threshold quantity for the stability of the zero solution of the system (2.7).

Proposition 2.4. The zero solution of y′(t) = (F−V)y(t) is asymptotically stable if R0 < 1,
and unstable if R0 > 1.

Proof. We have seen that F is a positive matrix and −V is a positive-off-diagonal matrix
with s(−V) < 0. The stability of the zero steady state of y′(t) = (F −V)y(t) is determined by
the sign of s(F − V), which coincides with the sign of ρ(FV−1) − 1 (see [11, Theorem A.1]).
The equality R0 = ρ(FV−1) completes the proof.

The statement of Proposition 2.4 extends to the nonlinear system (2.4) by the principle
of linearized stability.

Theorem 2.5. The DFE of system (2.4) is asymptotically stable if R0 < 1, and unstable if
R0 > 1.

Proposition 2.6. If β1 = 0 and β2 = 0, then there exists only one steady state, the DFE,
which is globally asymptotically stable.

Proof. If the transmission rates vanish in both regions, then system (2.4) reduces to the
linear system

(2.8)

I ′1(t) = −(μ1 + γ1)I1(t)− α1I1(t) + α2I2(t),

V ′
1(t) = φ1(K1 − I1(t))− (μ1 + θ1 + φ1)V1(t)− α1V1(t) + α2V2(t),

I ′2(t) = −(μ2 + γ2)I2(t)− α2I2(t) + α1I1(t),

V ′
2(t) = φ2(K2 − I2(t))− (μ2 + θ2 + φ2)V2(t)− α2V2(t) + α1V1(t),

which has only one equilibrium (0, V̄1, 0, V̄2). It is easy to see that limt→∞(I1(t) + I2(t)) = 0,
and, as solutions obviously remain nonnegative for nonnegative initial data, it follows that
limt→∞ I1(t) = 0 and limt→∞ I2(t) = 0. Let us now investigate the solutions of the system

(2.9)
W ′

1(t) = φ1K1 − (μ1 + θ1 + φ1)W1(t)− α1W1(t) + α2W2(t),

W ′
2(t) = φ2K2 − (μ2 + θ2 + φ2)W2(t)− α2W2(t) + α1W1(t).

We introduce the change of variables Z1(t) := W1(t)− V̄1 and Z2(t) := W2(t)− V̄2 to shift the
equilibrium (V̄1, V̄2) to the origin. Then the asymptotic stability of the zero solution of the
system

Z ′
1(t) = −(μ1 + θ1 + φ1 + α1)Z1(t) + α2Z2(t),

Z ′
2(t) = −(μ2 + θ2 + φ2 + α2)Z2(t) + α1Z1(t)

implies that solutions of (2.9) converge to (V̄1, V̄2). Since limt→∞ I1(t) = 0 and limt→∞ I2(t) =
0, we can consider (2.8)2 and (2.8)4 as nonautonomous equations with nonautonomous terms
I1(t) and I2(t) and conclude that (2.9) serves as the limiting system of (2.8)2 and (2.8)4.
Then, using the theory of asymptotically autonomous systems [23, 36, 37], we conclude that
limt→∞ V1(t) = V̄1 and limt→∞ V2(t) = V̄2.

We note that system (2.4) is equivalent to (2.9) in the disease-free subspace, which implies
the following result.D
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Proposition 2.7. In the disease-free subspace, there exists a unique equilibrium (V̄1, V̄2),
which is globally asymptotically stable.

3. The case of symmetric regions. In what follows we assume that the regions are
symmetric in the model parameters. This assumption enables us to focus our attention on the
impact of mobility on the dynamics. By dropping parameter indices, we obtain the system

(T)

I ′1(t) = β(K − I1(t)− (1− σ)V1(t))I1(t)− (μ + γ)I1(t)

− αI1(t) + αI2(t),

V ′
1(t) = φ(K − I1(t))− σβV1(t)I1(t)− (μ + θ + φ)V1(t)

− αV1(t) + αV2(t),

I ′2(t) = β(K − I2(t)− (1− σ)V2(t))I2(t)− (μ + γ)I2(t)

− αI2(t) + αI1(t),

V ′
2(t) = φ(K − I2(t))− σβV2(t)I2(t)− (μ + θ + φ)V2(t)

− αV2(t) + αV1(t)

for the spread of the disease in two symmetric regions. Note that if σ = 1, which means
that the vaccine is completely ineffective, then the model is equivalent to the standard SIS
(susceptible–infected–susceptible) model. The effect of spatial dispersal on the dynamics in
SIS-based models has been studied extensively in the literature (see, for instance, [3, 18, 39, 40]
and many others); hence we don’t investigate this case any further in our paper.

As in section 2, we learn that there is a unique DFE in the model (T), where the formula
for the steady state in the vaccinated classes is given by

(3.1) V̄ =
φK

μ+ θ + φ
.

It follows that the NGM takes the form

NGM =
β(K − (1− σ)V̄ )

(μ+ γ + α)2 − α2

(
μ+ γ + α α

α μ+ γ + α

)
,

and an explicit formula arises for the reproduction number, as

R0 =
βK

μ+ γ
· μ+ θ + σφ

μ+ θ + φ
.

By Theorem 2.5, R0 serves as a threshold for the stability of the DFE.
Equilibria of the model (T) are solutions of the four-dimensional system

(3.2)

0 = β(K − Î1 − (1− σ)V̂1)Î1 − (μ+ γ)Î1 − αÎ1 + αÎ2,

0 = φ(K − Î1)− σβV̂1Î1 − (μ+ θ + φ)V̂1 − αV̂1 + αV̂2,

0 = β(K − Î2 − (1− σ)V̂2)Î2 − (μ+ γ)Î2 − αÎ2 + αÎ1,

0 = φ(K − Î2)− σβV̂2Î2 − (μ+ θ + φ)V̂2 − αV̂2 + αV̂1.D
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From (3.2)1 and (3.2)3, we obtain the formulas

(3.3)

V̂1 =
K − Î1
1− σ

+
(μ+ γ + α)Î1 − αÎ2

βÎ1(σ − 1)
,

V̂2 =
K − Î2
1− σ

+
(μ+ γ + α)Î2 − αÎ1

βÎ2(σ − 1)

for V̂1 and V̂2 whenever Î1 �= 0 and Î2 �= 0, respectively. In what follows, an equilibrium
of the model (T) will be denoted by E = (Î1, V̂1, Î2, V̂2), which can also represent the DFE
(0, V̄ , 0, V̄ ).

3.1. Disconnected regions. In the special case when α = 0 and the two regions are
disconnected, we denote the model (T) by (T0). The notation E0 = ((Î1)

0, (V̂1)
0, (Î2)

0,
(V̂2)

0) will be used for a steady state of the model (T0).
In the model (T0), the first two equations of (3.2) decouple from the last two, and Î1 and

Î2 arise independently from one another as the solutions of the system

0 = β(K − Î − (1− σ)V̂ )Î − (μ+ γ)Î ,

0 = φ(K − Î)− σβV̂ Î − (μ + θ + φ)V̂ .

Investigating this system, given by (1.1), was part of the analysis of the one-patch model in
[4]. More precisely, in terms of the reproduction number R(φ) of (1.1) and the condition for
the existence of backward bifurcation

(c) σ(1− σ)(μ + γ)φ > (μ + θ + σφ)2,

full characterization was given for the solutions. We note that the one-patch model in [4]
and our model (T) have the same reproduction numbers; i.e., R(φ) = R0. Thus, here we
summarize the results of [4] in terms of R0, but first we give the following remark.

Remark 1. If σ = 0 (the vaccine provides perfect protection), then the condition (c) for
backward bifurcation cannot be satisfied. Hence, we have σ �= 0 whenever the condition (c)
holds true. For the case when the condition (c) doesn’t hold, we allow σ ≥ 0.

There is a DFE (Î , V̂ ) = (0, φK
μ+θ+φ). In an endemic equilibrium with Î > 0, the V -

component is given by the formula V̂ = β(K−Î−(μ+γ))
β(1−σ) , and Î arises as the solution of AÎ2 +

BÎ + C = 0, where

(3.4)

A = σβ,

B = (μ + θ + σφ) + σ(μ+ γ)− σβK,

C =
(μ + γ)(μ+ θ + φ)

β
− (μ+ θ + σφ)K.

We denote the solutions of the steady-state equation by

(Ĭ)1 =
−B −√B2 − 4AC

2A
, (Ĭ)2 =

−B +
√
B2 − 4AC

2A
.D
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Define the critical value 0 < Rc < 1 for the reproduction number as

Rc =
μ+ θ + σφ

μ+ θ + φ
· σ(μ+ γ) + 2

√
σ(1− σ)(μ + γ)φ− (μ+ θ + σφ)

σ(μ + γ)
.

Then the following statements hold for the steady-state equation:
(i) if R0 < Rc, then Î = 0 is the only solution;
(ii) in the interval (Rc, 1) there exist exactly three solutions 0, (Ĭ)1, and (Ĭ)2 if (c) holds,

and one solution 0 otherwise;
(iii) if R0 = Rc or R0 = 1, there exist exactly two solutions 0 and (Ĭ)2 if (c) holds, and

one solution 0 otherwise;
(iv) there exist exactly two solutions 0 and (Ĭ)2 if R0 > 1.
The steady states of the two-patch model (T0) are characterized in the next proposition.

We recall that the two regions are disconnected, and hence equilibria of each region are
attained independently of the dynamics of the other region.

Proposition 3.1. If the condition (c) is satisfied, then the model (T0) has one equilibrium
with (Î1)

0 = (Î2)
0 = 0 if R0 < Rc, nine equilibria with (Î1)

0, (Î2)
0 ∈ {0, (Ĭ)1, (Ĭ)2} if R0 ∈

(Rc, 1), and four equilibria with (Î1)
0, (Î2)

0 ∈ {0, (Ĭ)2} if either R0 = Rc or R0 ≥ 1. If
(c) does not hold, then for R0 ≤ 1 only the DFE exists, and there are four equilibria with
(Î1)

0, (Î2)
0 ∈ {0, (Ĭ)2} when R0 > 1.

The stability of these equilibria can be investigated by making use of the results for the
one-patch model. Following [4], we claim that in the one-patch model an equilibrium with
Î = 0 is stable if R0 < 1 and unstable if R0 > 1; moreover, Î = (Ĭ)1 is unstable and Î = (Ĭ)2

is stable, where they exist. It is thus clear that an equilibrium E0 = ((Î1)
0, (V̂1)

0, (Î2)
0, (V̂2)

0)
of the model (T0) is stable if and only if both ((Î1)

0, (V̂1)
0) and ((Î2)

0, (V̂2)
0) are stable in

the one-patch model. In light of these conclusions, we can also describe bifurcations of fixed
points in (T0). The results of the next propositions are also illustrated in Figure 1.

Proposition 3.2. If R0 < Rc, then only the DFE exists in the model (T0), and it is asymp-
totically stable. At R0 = Rc, four fully endemic steady states with (Î1)

0, (Î2)
0 ∈ {(Ĭ)1, (Ĭ)2}

bifurcate from a triple saddle-node bifurcation point; that is, one stable and three unsta-
ble positive equilibria arise. In addition, from two saddle-node bifurcation points there also
emerge two pairs of partially endemic steady states. If Rc < R0 < 1, then an equilib-
rium is unstable if (Î1)

0 = (Ĭ)1 or (Î2)
0 = (Ĭ)1, and asymptotically stable otherwise. As

R0 crosses 1, six nontrivial steady states disappear. Two stable equilibria (0, (Ĭ)2), ((Ĭ)2, 0)
lose their stability as each undergoes a backward transcritical bifurcation. Triple backward
transcritical bifurcation describes the situation when three unstable nontrivial equilibria bifur-
cate into the stable DFE such that the DFE becomes unstable. For R0 > 1, the equilibria
with infected components (0, 0), (0, (Ĭ)2), and ((Ĭ)2, 0) are unstable, and the equilibrium where
((Î1)

0, (Î2)
0) = ((Ĭ)2, (Ĭ)2) is asymptotically stable.

Remark 2. By excluding periodic solutions, it was shown in [4] that every solution of the
one-patch model converges to an equilibrium. In the two-patch model (T0) for disconnected
regions, the dynamics of the two regions are independent of one another; thus there are no
periodic solutions, and every solution approaches an equilibrium. Since we know the possible
equilibria and their domains of attraction if there is more than one equilibrium, it follows that
we have a complete understanding of the global behavior of the model (T0).D
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(a) Three-dimensional plot.
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(c) Bifurcation diagram.

Figure 1. Equilibria of the model (T0) for R0 ∈ (0.9, 1.02). Color changes from orange through yellow,
green, blue, and violet to red as R0 increases from Rc to 1. Steady states for R0 < Rc and for R0 > 1
are depicted with orange and red, respectively. At R0 = Rc, two large orange dots denote the saddle-node
bifurcation points along the I1 and I2 axes, and the third orange dot indicates the triple saddle-node bifurcation
point (one stable and three unstable branches) in the diagonal. At R0 = 1, the system undergoes a triple
backward transcritical bifurcation of the DFE (three unstable steady states bifurcate into a stable equilibrium),
and two backward transcritical bifurcations of stable boundary equilibria (large red dots). Parameters were set
as K = 100, μ = 0.1, γ = 12, θ = 0.5, σ = 0.2, φ = 16. This makes Rc ≈ 0.9224, and the condition (c) for
multiple nontrivial equilibria is also satisfied.

3.2. Connected regions. We return to the model (T) and assume that α is positive; i.e.,
the regions are connected by transportation. The existence of a unique DFE has been proved,
so now we focus on finding endemic equilibria E = (Î1, V̂1, Î2, V̂2) with Î1 > 0 and Î2 > 0.
Note that there is no partially endemic equilibrium; i.e., Îj > 0, Îk = 0 (j, k ∈ {1, 2}, j �= k)
is not possible since Î1 = 0 implies Î2 = 0 and vice versa. By substituting V̂1 and V̂2 (derivedD
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in (3.3)) into (3.2)2 and (3.2)4, it follows from straightforward calculations that

(3.5)

0 =
1

βÎ1Î2(σ − 1)

(
α2(Î21 − Î22 ) + α(Î1 − Î2)Î2(μ + φ+ βÎ1(1 + σ) + θ)

+ Î1Î2β(AÎ
2
1 +BÎ1 + C)

)
,

0 =
1

βÎ1Î2(σ − 1)

(
α2(Î22 − Î21 ) + α(Î2 − Î1)Î1(μ + φ+ βÎ2(1 + σ) + θ)

+ Î1Î2β(AÎ
2
2 +BÎ2 + C)

)
,

where A, B, and C were defined in (3.4). Similar to the case of disconnected regions, here we
again characterize the number of endemic equilibria in terms of R0 and the condition (c). We
note that the coefficient C can be expressed by the relation βC = (1− R0)(μ+ γ)(μ+ θ+ φ)
and remark that (c) is equivalent to the condition that B < 0 holds when β is set to satisfy
C = 0. First, we focus our attention on the case when (c) does not hold.

Proposition 3.3. Assume that the condition (c) does not hold. Then there exist no endemic
equilibria in the model (T) if R0 ≤ 1, and there is a unique endemic equilibrium if R0 > 1.

For the endemic equilibrium, Î1 = Î2 =
−B+

√
B2−4AC
2A .

Proof. We note that A is positive. If R0 ≤ 1, or equivalently C ≥ 0, then B ≥ 0 also
holds, since σ(1− σ)(μ+ γ)φ ≤ (μ+ θ + σφ)2 implies B ≥ 0 at R0 = 1 and B increases as β
decreases. Defining

f(x) = Ax2 +Bx+ C,

it is thus easy to see that f(x) > 0 whenever x > 0 and R0 ≤ 1.
We show by the method of contradiction that no endemic equilibria exist if R0 ≤ 1. Let

us assume that Î1 = Î2 holds for a positive solution of the system (3.5). Then this system
reduces to two equations as f(Î1) = 0 and f(Î2) = 0, which means that f has at least one
zero on (0,∞), a contradiction. On the other hand, if Î1 �= Î2 in the endemic equilibrium,
then we can assume without loss of generality that Î1 > Î2 holds. From (3.5)1, the relation
f(Î1) < 0 follows, but this is again impossible since f(x) > 0 holds if x is positive.

We claim that no positive equilibrium with Î1 �= Î2 exists if R0 > 1. Indeed, if Î1 > Î2 > 0,
then to satisfy (3.5) the inequalities f(Î1) < 0 and f(Î2) > 0 should hold. Because A is positive
and C is negative, the equation f(x) = 0 has a single zero on (0,∞), and thus there is no
Î1 and Î2 such that Î1 > Î2 > 0, f(Î1) < 0, and f(Î2) > 0 are satisfied. If we look for
endemic equilibria where Î1 = Î2, then from (3.5) and the uniqueness of the positive solution

of f(x) = 0 we get that the formula −B+
√
B2−4AC
2A gives Î1 and Î2 in the unique positive

equilibrium.
Notation 1. We remark that by (3.3) it follows that V̂1 = V̂2 holds whenever Î1 = Î2; i.e.,

an equilibrium with Î1 = Î2 is a “symmetric equilibrium.” On the other hand, we can refer to
an equilibrium with Î1 �= Î2 as a “nonsymmetric equilibrium.”

Before proceeding with the stability analysis, we investigate the impact of condition (c)
on the bifurcation structure. The following lemma is given for later use.

Lemma 3.4. Assume that condition (c) holds and that coefficients A, B, and C are given
as in (3.4). Then,

f(x) = Ax2 +Bx+ C = 0D
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has one positive solution if R0 ≥ 1, two distinct positive solutions if R0 ∈ (Rc, 1), one
positive solution if R0 = Rc, and no positive solutions if R0 < Rc.

Proof. We recall that the relation βC = (1− R0)(μ + γ)(μ+ θ + φ) holds. The equation
f(x) = 0 has exactly one positive solution if R0 > 1, as A > 0 and C < 0 imply the existence
of two nonzero roots of opposite sign. Condition (c) yields B < 0 when β is set to satisfy
C = 0. At R0 = 1, we have C = 0 and thus B < 0, so x = −B/A is the only positive solution.
We also get B2 − 4AC = B2 > 0 at R0 = 1; hence due to the continuous dependence of B
and R0 on β, there must be an interval to the left of R0 = 1 where B < 0, C > 0, and
B2−4AC > 0 hold, and hence there exist two positive roots. This interval is given as (Rc, 1),
since at R0 = Rc we have B2 − 4AC = 0, B < 0, and C > 0, so the equation f(x) = 0 has a
single positive solution x = −B/2A with double multiplicity. It is easy to see that B2− 4AC
decreases as we further decrease β, which implies that no real roots exist for R0 < Rc.

Proposition 3.5. Assume that condition (c) holds. If either R0 = Rc or R0 ≥ 1, then there
is a unique endemic equilibrium (Î1, V̂1, Î2, V̂2) in the model (T), for which Î1 = Î2 = (Ĭ)2.
There are no endemic equilibria for R0 < Rc.

Proof. First, we show that if R0 is outside of the interval (Rc, 1), then there exist no
equilibria such that Î1 �= Î2. We consider steady-state solutions where Î1 > Î2 > 0; the case
when Î2 > Î1 > 0 can be treated similarly. We derive from (3.5) that f(Î1) < 0 and f(Î2) > 0
should hold for the equilibrium. The previous lemma implies that f(x) = 0 has at most one
positive solution if R0 ≤ Rc or R0 ≥ 1. It thus follows that the inequalities f(Î1) < 0 and
f(Î2) > 0 can never be satisfied if Î1 > Î2 > 0.

Next, we look for symmetric endemic equilibria (Î , V̂ , Î , V̂ ) in the cases when R0 ≤ Rc

and R0 ≥ 1. If Î1 = Î2 = Î , then the system (3.5) reduces to the single equation

f(Î) = AÎ2 +BÎ + C = 0.

The statement of the proposition immediately follows from Lemma 3.4. We remark that the

positive root, whenever it is unique, is given as Î = −B+
√
B2−4AC
2A = (Ĭ)2.

We learned from Propositions 3.3 and 3.5 that the existence of nonsymmetric equilibria
is possible only if condition (c) is satisfied and R0 ∈ (Rc, 1). In what follows, we investigate
steady states in this region of the parameter space. The next result concerns symmetric
endemic equilibria in the case when (c) holds and Rc < R0 < 1.

Proposition 3.6. Assume that condition (c) holds. If Rc < R0 < 1, then the model (T) has
exactly two positive symmetric equilibria. For these equilibria, Î1 = Î2 and Î1, Î2 ∈ {(Ĭ)1, (Ĭ)2}.

Proof. For symmetric equilibria, the system (3.5) again reduces to f(Î) = 0. Conditions
(c) and R0 ∈ (Rc, 1) are equivalent to A > 0, B < 0, C > 0, and B2− 4AC > 0. We refer to
Lemma 3.4 to know that the equation AÎ2 + BÎ + C = 0 has two positive distinct solutions
(Ĭ)1 and (Ĭ)2.

Next, we summarize our results about symmetric endemic equilibria, and we characterize
their (local) stability.

Proposition 3.7. In the model (T), the symmetric equilibrium where Î = (Ĭ)2 is locally
asymptotically stable where it exists: on R0 ∈ (1,∞), and also on R0 ∈ (Rc, 1] when (c)
holds. The symmetric equilibrium where Î = (Ĭ)1 is unstable where it exists: on R0 ∈ (Rc, 1)
when (c) holds.D
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Proof. The matrix of the linearization of (T) at a symmetric equilibrium (Î , V̂ , Î, V̂ ) reads⎛
⎜⎜⎜⎝

−βÎ − α −(1− σ)βÎ α 0

−(φ+ σβV̂ ) −(μ+ θ + φ+ σβÎ)− α 0 α

α 0 −βÎ − α −(1− σ)βÎ

0 α −(φ+ σβV̂ ) −(μ+ θ + φ+ σβÎ)− α

⎞
⎟⎟⎟⎠ ,

where we used the identity β(K − Î − (1 − σ)V̂ ) = μ + γ from (3.2). With the notation
P = −βÎ, Q = −(1− σ)βÎ , R = −(φ+ σβV̂ ), and S = −(μ+ θ + φ+ σβÎ), we arrive at the
characteristic equation

(P − α− λ)2(S − α− λ)2 − 2((P − α− λ)QR(S − α− λ))

+Q2R2 − ((P − α− λ)2 − 2QR− (S − α− λ)2)α2 + α4 = 0.

The characteristic equation factors as

(QR− (P − α− λ)(S − α− λ)− α2 − α(P + S − 2α− 2λ))

· (QR− (P − α− λ)(S − α− λ)− α2 + α(P + S − 2α− 2λ)) = 0,

so we see that the characteristic roots arise as the solution of one of the following quadratic
equations:

(3.6)
λ2 − (P + S)λ+ PS −QR = 0,

λ2 − (P + S − 4α)λ + PS −QR+ 4α2 − 2α(P + S) = 0.

Solutions of (3.6) depend on Î and V̂ ; however, by (3.3) the latter can be calculated using
the former, so the roots of (3.6)1 are obtained as

λ1(Î) =
P + S +

√
(P + S)2 − 4(PS −QR)

2
,

λ2(Î) =
P + S −√

(P + S)2 − 4(PS −QR)

2
,

and the roots of (3.6)2 arise as

λ3(Î) =
P + S − 4α+

√
(P + S)2 − 4(PS −QR)

2
,

λ4(Î) =
P + S − 4α−√

(P + S)2 − 4(PS −QR)

2
.

Using β(K − Î − (1− σ)V̂ ) = μ+ γ, we derive

PS −QR = βÎ(2σβÎ + (μ + θ + σφ) + σ(μ+ γ)− σβK) = βÎ(2AÎ +B),

and it is easy to check that 2A(Ĭ)2 +B > 0 and 2A(Ĭ)1 +B < 0 hold. As P + S < 0 for both
(Ĭ)1 and (Ĭ)2, and moreover PS −QR is positive for (Ĭ)2 and negative for (Ĭ)1, we concludeD
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that Re(λ1((Ĭ)
1)) > 0 and Re(λ1((Ĭ)

2)) < 0. It follows immediately that the equilibrium
(Î , V̂ , Î, V̂ ) with Î = (Ĭ)1 is unstable where it exists. On the other hand, α > 0 implies that
Re(λ3) < Re(λ1) and Re(λ4) < Re(λ2) hold, so by Re(λ2) < Re(λ1) we learn that the real
part of λ1 dominates the real part of the other three roots. It follows that the symmetric
equilibrium with Î = (Ĭ)2 is locally asymptotically stable where it exists.

Remark 3. The existence and stability of symmetric equilibria is independent of the
mobility parameter α.

We note that Proposition 3.7 completes our understanding of the bifurcation behavior
of the model (T) in case condition (c) does not hold. The following corollary is given to
summarize the findings of Propositions 3.3 and 3.7.

Corollary 3.8. Assume that condition (c) does not hold. Then the system (T) undergoes a
forward transcritical bifurcation at R0 = 1; i.e., the DFE loses its stability as R0 crosses 1
from the left to the right, and the single positive steady state emerging at R0 = 1 is asymp-
totically stable.

We recall that the conditions (c) and R0 ∈ (Rc, 1) are necessary for the existence of
nonsymmetric endemic steady states. The next result characterizes these equilibria.

Proposition 3.9. Assume that condition (c) holds. If Rc < R0 < 1, then there exist zero,
two, four, or six nonsymmetric endemic equilibria (i.e., Î1 �= Î2) in the model (T). For such
equilibria, (Î1, Î2) ∈ ((Ĭ)1, (Ĭ)2) × (0, (Ĭ)1) if Î1 > Î2, and (Î1, Î2) ∈ (0, (Ĭ)1) × ((Ĭ)1, (Ĭ)2) if
Î1 < Î2.

Proof. Earlier in this section, the following system was derived for endemic equilibria:

(3.5)

0 =
1

βÎ1Î2(σ − 1)

(
α2(Î21 − Î22 ) + α(Î1 − Î2)Î2(μ + φ+ βÎ1(1 + σ) + θ)

+ Î1Î2β(AÎ
2
1 +BÎ1 + C)

)
,

0 =
1

βÎ1Î2(σ − 1)

(
α2(Î22 − Î21 ) + α(Î2 − Î1)Î1(μ + φ+ βÎ2(1 + σ) + θ)

+ Î1Î2β(AÎ
2
2 +BÎ2 + C)

)
,

where
A = σβ,

B = (μ + θ + σφ) + σ(μ+ γ)− σβK,

C =
(μ + γ)(μ+ θ + φ)

β
− (μ+ θ + σφ)K.

From (3.5)1 +(3.5)2 and (3.5)1− (3.5)2, and using the fact that Î1, Î2 �= 0 and Î1 �= Î2, we
obtain

0 = −α(μ+ φ+ θ)(Î1 − Î2)
2 + Î1Î2β(A(Î

2
1 + Î22 ) +B(Î1 + Î2) + 2C),

0 = 2α2(Î1 + Î2) + α(Î1Î2β(1 + σ) + (Î1 + Î2)(μ+ φ+ θ)) + Î1Î2β(A(Î1 + Î2) +B),

which we reformulate as

(3.7)
0 = −α(μ + φ+ θ)(x2 − 4y) + yβ(A(x2 − 2y) +Bx+ 2C),

0 = 2α2x+ α(yβ(1 + σ) + x(μ+ φ+ θ)) + yβ(Ax+B),D
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where we let x = Î1 + Î2 and y = Î1Î2.
Let us assume that Î1 > Î2 at the equilibrium. Then it follows from (3.5)1 that AÎ

2
1+BÎ1+

C < 0, which implies (Ĭ)1 < Î1 < (Ĭ)2. Similarly, using (3.5)2, we derive AÎ22 + BÎ2 + C > 0,
so either Î2 < (Ĭ)1 or Î2 > (Ĭ)2 holds. On the other hand, it follows from (3.7)2 and α > 0,

x, y > 0 that x = Î1 + Î2 < −B
A should be satisfied, which makes Î2 > (Ĭ)2 impossible. We

conclude that if Î1 > Î2, then (Î1, Î2) ∈ ((Ĭ)1, (Ĭ)2)× (0, (Ĭ)1), and similar arguments lead to
the result that (Î1, Î2) ∈ (0, (Ĭ)1)× ((Ĭ)1, (Ĭ)2) for Î2 > Î1.

We eliminate y using (3.7)2 and substitute into (3.7)1 to give an equation of x of fourth
order. As (x, y) = (0, 0) is a solution of (3.7), there are at most three solutions which satisfy
x, y > 0. This implies that for Î1 �= Î2 the system (3.5) can have zero, two, four, or six
solutions, because any a, b > 0 which satisfy a + b = x, ab = y, may serve as (a, b) = (Î1, Î2)
and (b, a) = (Î1, Î2).

Unfortunately, due to the complicated coefficients of the fourth order equation, we are
unable to determine the exact number of nonsymmetric equilibria. In the next result, a
region in the parameter space will be described where six nonsymmetric steady states exist.
Furthermore, we illustrate with examples in section 4 that each of the other scenarios can also
be realized.

We revisit the results of Propositions 3.1 and 3.2 for the steady states of the model in
the case of disconnected regions. If α = 0, condition (c) holds, and R0 is in the interval
(Rc, 1), then the system has nine equilibria: three of them are symmetric for the two regions
and are given as Î1 = Î2 = 0, Î1 = Î2 = (Ĭ)1, Î1 = Î2 = (Ĭ)2, while Î1 �= Î2 holds for the
remaining six steady states. Now we prove that the model (T) for connected regions has a
similar structure of steady states if conditions (c) and R0 ∈ (Rc, 1) are satisfied and α is close
to 0. More precisely, in addition to the three symmetric equilibria which exist for any value
of α (see Proposition 3.6), the system also possesses six nonsymmetric equilibria if mobility
is incorporated with sufficiently small volumes into the model.

Proposition 3.10. Assume that condition (c) holds. If Rc < R0 < 1, then there is an α∗

such that the model (T) has six nonsymmetric equilibria for any α ∈ [0, α∗).
Proof. We let F = (FI1 , FV1 , FI2 , FV2)

T , F (Î1, V̂1, Î2, V̂2, α) : R
5

� R
4, and define FI1 ,

FV1 , FI2 , and FV2 as the right-hand sides of the first, second, third, and fourth equations,
respectively, of (3.2). Then the system (3.2) can be reformulated as

(3.8)

0 = FI1(Î1, V̂1, Î2, V̂2, α),

0 = FV1(Î1, V̂1, Î2, V̂2, α),

0 = FI2(Î1, V̂1, Î2, V̂2, α),

0 = FV2(Î1, V̂1, Î2, V̂2, α).

For α = 0, we denote the solutions of (3.8) by E0 = ((Î1)
0, (V̂1)

0, (Î2)
0, (V̂2)

0). As it was
derived in Proposition 3.1, there are nine such solutions and (Î1)

0, (Î2)
0 ∈ {0, (Ĭ)1, (Ĭ)2}.D
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Using (3.2), we obtain

∂FI1

∂Î1
= β(K − Î1 − (1− σ)V̂1)− βÎ1 − (μ+ γ + α),

∂FI1

∂V̂1

= −β(1− σ)Î1,
∂FI1

∂Î2
= α,

∂FI1

∂V̂2

= 0,

∂FV1

∂Î1
= −φ− σβV̂1,

∂FV1

∂V̂1

= −σβÎ1 − (μ + θ + φ+ α),
∂FV1

∂Î2
= 0,

∂FV1

∂V̂2

= α,

and similar identities hold for the partial derivatives of FI2 and FV2 . Then the Jacobian
∂F

∂(Î1,V̂1,Î2,V̂2)T
, evaluated at α = 0 and (Î1, V̂1, Î2, V̂2) = ((Î1)

0, (V̂1)
0, (Î2)

0, (V̂2)
0), has the form

( A1,1 O
O A2,2

)
,

where O denotes the 2× 2 matrix with zeros and

A1,1 =

(
β(K − 2(Î1)

0 − (1− σ)(V̂1)
0)− (μ+ γ) −β(1− σ)(Î1)

0

−φ− σβ(V̂1)
0 −σβ(Î1)0 − (μ+ θ + φ)

)
,

A2,2 =

(
β(K − 2(Î2)

0 − (1− σ)(V̂2)
0)− (μ+ γ) −β(1− σ)(Î2)

0

−φ− σβ(V̂2)
0 −σβ(Î2)0 − (μ+ θ + φ)

)
.

If (Îj)
0 = 0 for any j ∈ {1, 2}, then we obtain

det(Aj,j) = −(β(K − (1− σ)(V̂1)
0)− (μ+ γ))(μ + θ + φ)

= (μ+ θ + φ)(μ + γ)(1− R0),

since (Îj)
0 = 0 implies (V̂j)

0 = V̄ . On the other hand, we know that β(K − (Îj)
0 − (1 −

σ)(V̂j)
0)− (μ + γ) = 0 if (Îj)

0 �= 0; hence in this case we get

det(Aj,j) = β(Îj)
0(σβ(Îj)

0 + (μ+ θ + φ))− (φ+ σβ(V̂j)
0)β(1 − σ)(Îj)

0

= β(Îj)
0(2A(Îj)

0 +B).

It is clear that (μ+θ+φ)(μ+γ)(1− R0) �= 0 for R0 ∈ (Rc, 1), and (Îj)
0 ∈ {(Ĭ)1, (Ĭ)2} yields

β(Îj)
0(2A(Îj)

0 +B) �= 0.
It follows that the Jacobian of the system (3.8) evaluated at α = 0, (Î1, V̂1, Î2, V̂2) = E0, is

nonsingular. Then, by means of the implicit function theorem, there is an interval [0, α∗), an
open set U ∈ R

4, and a unique continuously differentiable function g = (gI1 , gV1 , gI2 , gV2) :
[0, α∗) � U such that g(0) = E0 and F (g(α), α) = 0 for α ∈ [0, α∗). This means that g(α) is
an equilibrium of the model (T) for connected regions.D
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We conclude that if α is close to 0, then system (3.2) has nine solutions, and each of
them is obtained by a unique function of α on an interval [0, α∗). This also means that if
the mobility parameter is sufficiently small, then for any equilibrium E0 of the disconnected
system there exists an equilibrium in the model (T) for connected regions (a solution of the
system (3.2)), which is close to E0. It remains to show that g(α) ≥ 0 holds on [0, α∗); that is,
the equilibrium of (T) takes nonnegative values and, thus, is biologically meaningful.

Steady states for the vaccinated classes arise by one of the formulas (3.1) and (3.3); thus
it is clear that gI1 , gI2 ≥ 0 yields g ≥ 0. We know from Proposition 3.1 that (T) has a
DFE for any positive α; thus by the uniqueness of g, we obtain gI1(α) = gI2(α) = 0 for
α ∈ [0, α∗) if ((Î1)

0, (Î2)
0) = (0, 0). Any equilibrium E0 = ((Î1)

0, (V̂1)
0, (Î2)

0, (V̂2)
0) with

(Î1)
0, (Î2)

0 ∈ {(Ĭ)1, (Ĭ)2} is a positive equilibrium; hence α∗ can be chosen such that g(α) > 0
holds for α < α∗. Next, we consider an equilibrium E0 where (Î1)

0 = 0 and (Î2)
0 > 0, and

we remark that the case when (Î2)
0 = 0, (Î1)

0 > 0 can be treated similarly. We claim that
dgI1
dα (0) > 0 holds. Indeed, using (3.2)1 and the definition of F , we obtain

d

dα
FI1(g(α), α) = 0,

β

(
K − dgI1

dα
(α) − (1− σ)

dgV1

dα
(α)

)
gI1(α) + β

(
K − gI1(α)− (1− σ)gV1(α)

)
· dgI1

dα
(α) − (μ + γ + α)

dgI1
dα

(α)− gI1(α) + α
dgI2
dα

(α) + gI2(α) = 0,

which we reformulate and evaluate at α = 0 to get

β(K − (1− σ)gV1(0) − (μ + γ)) · dgI1
dα

(0) = −gI2(0),

where we used the fact that (Î1)
0 = gI1(0) = 0. We note that gV1(0) = V̄ , and gI2(0) =

(Î2)
0 > 0 holds by assumption. Hence we derive

dgI1
dα

(0) =
−(Î2)0

β(K − (1− σ)V̄1 − (μ+ γ))
,

dgI1
dα

(0) =
(Î2)

0

(μ + γ)(1− R0)
,

which is positive if and only if R0 < 1. By
dgI1
dα (0) > 0 we know that gI1 is positive for

small α. From (Î2)
0 > 0 it follows that gI2(α) > 0 holds if α is sufficiently close to 0; thus we

conclude that α∗ can be defined such that g(α) is positive for all α ∈ [0, α∗).
Summarizing, for α sufficiently small, the model (T) has nine steady states. It was shown

in Propositions 2.2 and 3.6 that the DFE and two positive symmetric equilibria exist in the
model, independent of the value of α. The remaining six steady states are thus nonsymmetric
equilibria. The proof is thus complete.

We conclude that introducing traveling with small volumes does not change the stability
of equilibria.D
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Proposition 3.11. In Proposition 3.10, α∗ can be defined such that the equilibrium g(α) is
locally asymptotically stable (unstable) for α ∈ (0, α∗) whenever g(0) = E0 is locally asymp-
totically stable (unstable).

Proof. The stability of equilibria of the model for disconnected regions has been discussed
in Proposition 3.2. If (Î1)

0, (Î2)
0 ∈ {0, (Ĭ)2}, then the steady state E0 = ((Î1)

0, (V̂1)
0, (Î2)

0, (V̂2)
0)

is locally asymptotically stable, while any equilibrium with the component (Ĭ)1 is unstable.
If E0 is an asymptotically stable equilibrium, then all eigenvalues of ∂F

∂(Î1,V̂1,Î2,V̂2)T
(E0, 0) have

negative real part. Thus, if α is sufficiently small, then it follows by continuity of eigenvalues
with respect to parameters that ∂F

∂(Î1,V̂1,Î2,V̂2)T
(g(α), α) has only eigenvalues with negative real

part.
We claim that for an unstable equilibrium E0 the Jacobian has an eigenvalue with positive

real part. If so, then this property is preserved for g(α) as well if α is close to 0. Indeed,
if (Îj)

0 = (Ĭ)1 for any j ∈ {1, 2}, then detAj,j = β(Ĭ)1(2A(Ĭ)1 + B) is negative, and by
β(K − (Îj)

0 − (1− σ)(V̂j)
0)− (μ + γ) = 0, the first element of the first row in Aj,j simplifies

to −β(Ĭ)1, which implies that the matrix has negative trace. It follows immediately that Aj,j

has a positive real eigenvalue.
Proposition 3.12. Nonsymmetric equilibria of the model (T) (if they exist) get arbitrarily

close to ((Ĭ)1, (Ĭ)1) as α→∞.
Proof. We show that for every ε > 0 there exists an αε such that |Î1 − Î2| < ε whenever

α > αε.
Let us assume that there is an ε > 0 such that for any large α there exists a steady state

with |Î1 − Î2| ≥ ε. Without loss of generality, we may suppose that Î1 > Î2. By Proposition
3.9, we know that Î1 > (Ĭ)1 and Î2 > 0. Then, from (3.5)1 we derive

(Î1 − Î2)(α
2(Î1 + Î2) + αÎ2(μ + φ+ βÎ1(1 + σ) + θ)) = −Î1Î2β(AÎ21 +BÎ1 + C),

ε · α2(Î1 + Î2) ≤ −Î1Î2β(AÎ21 +BÎ1 + C).

The left-hand side of the last inequality is positive and unbounded, and it follows from the
positivity of A that the right-hand side is bounded from above. We get by contradiction that
for large α the components for the infected classes of a nonsymmetric equilibrium are arbi-
trarily close to each other. We also know that (Î1, Î2) ∈

(
((Ĭ)1, (Ĭ)2)× (0, (Ĭ)1)

)∪ ((0, (Ĭ)1)×
((Ĭ)1, (Ĭ)2)

)
(see Proposition 3.9), which yields the statement.

We observe that the existence and stability of symmetric equilibria was fully characterized
in this section. It was also noted in Remark 3 that these fixed points are independent of α.
However, our results on nonsymmetric steady states are only partial; as a matter of fact, we
are going to show that these equilibria are sensitive to α and other model parameters in the
sense that various interesting bifurcations can occur in the model. We conclude this section
with a summary of our findings in the case when (c) holds.

Corollary 3.13. Assume that condition (c) holds. Then system (T) exhibits a saddle-
node bifurcation at R0 = Rc, where two symmetric equilibria emerge. Depending on the
value of α and other model parameters, there can exist six nonsymmetric steady states on
the interval R0 ∈ (Rc, 1). In such a case, the stable DFE coexists with three stable and
five unstable nontrivial equilibria. There are no nonsymmetric steady states for R0 ≥ 1.
The system undergoes a backward transcritical bifurcation at R0 = 1, where the unstableD
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symmetric equilibrium bifurcates into the DFE, and DFE loses its stability. The symmetric
endemic steady state which is stable on R0 ∈ (Rc, 1) exists for R0 ≥ 1 and is stable.

4. Numerical simulations for the model (T). We conducted numerical simulations in
order to illustrate the rich bifurcation behavior in the model (T). In section 3, the dynamics
was fully described in the case when condition (c) for multiple positive equilibria does not hold.
Moreover, we characterized steady states and their stability when (c) is satisfied and either
R0 < Rc or R0 > 1. Under the condition (c), there are two symmetric positive equilibria in
addition to the DFE in the interval (Rc, 1), and they coexist with six nonsymmetric steady
states if the travel rate between the regions is sufficiently small. However, as will be illustrated
in this section, nonsymmetric equilibria are sensitive to α; i.e., they disappear for larger travel
volumes.

For all simulations in this section, we fix model parameters as K = 100, μ = 0.1, γ = 12,
θ = 0.5, σ = 0.2, φ = 16. It is easy to check that Rc ≈ 0.9224 and that condition (c) is
satisfied. For four different values of R0 in the interval (Rc, 1), we illustrate in Figure 2
how the positive steady states are destroyed by the increase in the travel rate between the
regions. With all the other parameters fixed, we let α increase from 0 through small volumes
to larger rates, and we depict the equilibria with colors changing from green (α = 0) through
blue and violet to red (α = 1). Varying α has no effect on the steady states in the diagonal
(see also Proposition 3.6). On the other hand, nonsymmetric fixed points exist only for small
travel volumes. More precisely, there are six such equilibria for α = 0 (see Proposition 3.1
for disconnected regions), which continue to exist for small volumes of travel, and they move
along some curves as a function of the travel rate.

Figure 2 demonstrates that, for larger values of α, nonsymmetric equilibria vanish in two
saddle-node bifurcation points and a pitchfork-like bifurcation point of the unstable positive
symmetric equilibrium. It is interesting to note the differences in the bifurcation diagrams at
different values of R0. In case of Figures 2(a) and (b) when R0 is only slightly greater than
Rc, two fully endemic equilibria move towards the diagonal, and two other pairs of steady
states—those which are partially endemic for α = 0—collide in saddle-node bifurcations. This
behavior is different from that experienced for larger values of R0, depicted in Figures 2(c) and
(d). In these diagrams, the fully endemic fixed points undergo saddle-node bifurcations, and
there are two partially endemic equilibria of the disconnected system, which continue to exist
with traveling until they bifurcate into the unstable positive steady state at the diagonal. We
recall the result of Theorem 3.9 to remark that nonsymmetric equilibria and their bifurcations
are contained in (Î)1, (Î)2 ∈ (

(Ĭ)1, (Ĭ)2)× (0, (Ĭ)1
) ∪ (

0, (Ĭ)1)× ((Ĭ)1, (Ĭ)2
)
.

Figures 3 and 4 give some more insight into the dynamical behavior in the model. We noted
two different bifurcation structures in Figure 2. Now we pick two parameter settings which
result in different bifurcations and investigate the long-time behavior of solutions and stability
of steady states for various values of α. Dots represent equilibria, and solutions converging to
a particular steady state are depicted with the same color. It was shown in Proposition 3.11
that, for small volumes of travel, each of the nine steady states of the model (T) is close to a
steady state of disconnected regions (α = 0) and has the same stability. Figures 3(a) and 4(a)
further support this result. On the other hand, equilibria move and sometimes disappear as
α increases; hence the attractors of certain solutions change. We illustrate with Figures 3(b),D
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(a) R0 ≈ 0.9261 (β = 0.4895).
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(b) R0 ≈ 0.9299 (β = 0.4915).
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(c) R0 ≈ 0.9317 (β = 0.4925).
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(d) R0 ≈ 0.9639 (β = 0.5095).

Figure 2. Equilibria of the model (T) when Rc < R0 < 1 is satisfied and the travel rate α varies between
0 and 1. The fixed points in the diagonal exist for all travel volumes, and for α = 1 (red) there are no other
equilibria. In case when the regions are disconnected (i.e., α = 0) there also exist six nonsymmetric steady
states (green). Each such fixed point moves along a unique continuous function as α increases (color changes
from green through blue and violet to red). For larger travel volumes, nonsymmetric equilibria disappear as they
collide (saddle-node bifurcation) or bifurcate into a fixed point in the diagonal (pitchfork-like bifurcation, with
three unstable branches). Parameters were set as K = 100, μ = 0.1, γ = 12, θ = 0.5, σ = 0.2, φ = 16. This
makes Rc ≈ 0.9224, and condition (c) for multiple nontrivial equilibria is also satisfied.
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(a) α = 0.002.
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(b) α = 0.01.
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(c) α = 0.1.
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(d) α = 1.

Figure 3. Solutions of the model (T) for four values of α, when the bifurcations of equilibria are as
illustrated in Figure 2(a). Solutions converging to an equilibrium point are indicated with the same color.
There are several attractors when the travel volume is small; however, for larger values of α, all solutions seem
to converge to the stable equilibria in the diagonal. Parameters were set as K = 100, μ = 0.1, γ = 12, θ = 0.5,
σ = 0.2, φ = 16, β = 0.4895. This makes R0 ≈ 0.9261 and Rc ≈ 0.9224, and condition (c) for multiple
nontrivial equilibria is also satisfied.

(c), (d) and Figures 4(b), (c), (d) that the difference in the dynamics for R0 = 0.926068 and
R0 = 0.931744, detected in the bifurcation phenomena (Figures 2(a) and (c)), also manifests
itself in the long-time behavior of solutions.

Figure 5 shows equilibria (blue dots) of the model (T) for four different values of the travelD
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(a) α = 0.002.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

I1

I 2
(b) α = 0.01.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

I1

I 2

(c) α = 0.1.
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(d) α = 1.

Figure 4. Solutions of the model (T) for four values of α when the bifurcations of equilibria are as illustrated
in Figure 2(c). Solutions converging to an equilibrium point are indicated with the same color. There are several
attractors when the travel volume is small; however, for larger values of α, all solutions seem to converge to the
stable equilibria in the diagonal. Parameters were set as K = 100, μ = 0.1, γ = 12, θ = 0.5, σ = 0.2, φ = 16,
β = 0.4925. This makes R0 ≈ 0.9317 and Rc ≈ 0.9224, and condition (c) for multiple nontrivial equilibria is
also satisfied.

rate α. We also depict the steady states of the model (T0) for disconnected regions (green
dots). For R0 < Rc, only the DFE exists. When the regions are disconnected, two symmetric
endemic and six nonsymmetric endemic equilibria bifurcate as R0 crosses Rc, and only three
of these fixed points continue to exist when R0 exceeds 1 (see Proposition 3.2). IncorporatingD
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Figure 5. Equilibria of the model (T) in the case of isolated regions (α = 0, green) and connected regions
(α > 0, blue) as R0 varies between 0.9 and 1.03. Blue dots in the diagonal overlap green dots. There are
no endemic steady states if R0 < Rc, and for R0 > 1 only a single, symmetric positive equilibrium exists if
α > 0. The four figures illustrate that, depending on the values of α and R0, the model may have zero, two,
four, or six nonsymmetric fixed points when R0 ∈ (Rc, 1). Parameters were set as K = 100, μ = 0.1, γ = 12,
θ = 0.5, σ = 0.2, φ = 16. This makes Rc ≈ 0.9224, and condition (c) for multiple nontrivial equilibria is also
satisfied.

traveling between the regions into the model does not have any impact on symmetric equilibria;
that is, blue dots in the diagonal overlap fixed points of the disconnected system. However, the
structure of nonsymmetric steady states strongly depends on the value of the travel parameter.
For instance, incorporating traveling at a small rate (e.g., α = 1/500 in Figure 5(a)) modifies
equilibrium values only slightly in comparison to the case of disconnected regions, but for
α = 1 (Figure 5(d)) the system of connected regions has no nonsymmetric steady states. The
statement of Proposition 3.6 about the possible numbers of nonsymmetric equilibria is also
demonstrated with these plots.

For a fixed travel rate α = 0.05, we show another figure for the steady states of the
system (T). In the three- and two-dimensional plots of Figure 6, we indicate with different
colors how the structure of equilibria changes when we vary R0 in (Rc, 1). From the orange
color corresponding to R0 = Rc, the color evolves through yellow, green, blue, and violet
into red as R0 increases to 1. We learned from Proposition 3.6 that two symmetric steady
states (one unstable and one stable) are born at R0 = Rc; the large orange dot in the plots
indicates this saddle-node bifurcation point. From rigorous numerical computations (to beD
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(a) Three-dimensional plot.
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(b) Two-dimensional plot.
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(c) Bifurcation diagram.

Figure 6. Equilibria of the model (T) for α = 0.05 as R0 varies between 0.9 and 1.02. Color changes from
orange through yellow, green, blue, and violet to red as R0 increases from Rc to 1. Steady states for R0 < Rc

and for R0 > 1 are depicted by orange and red, respectively. From a saddle-node bifurcation point, one stable
and one unstable symmetric positive equilibrium bifurcate at R0 = Rc (large orange dot), which coexist with the
DFE for all values of R0 ∈ (Rc, 1). As R0 exceeds Rc, two nonsymmetric unstable fixed points emerge from
the unstable symmetric equilibrium (orange); then two saddle-node bifurcations occur (yellow) to give rise to
four other nonsymmetric steady states, pairwise stable-unstable. As R0 further increases, four nonsymmetric
fixed points cease to exist as they pairwise collide in two subcritical saddle-node bifurcations (green); then finally
all nonsymmetric steady states disappear when two unstable fixed points bifurcate into the unstable symmetric
positive equilibrium (pink). At R0 = 1, the dynamics undergoes a backward transcritical bifurcation (large red
dot). Parameters were set as K = 100, μ = 0.1, γ = 12, θ = 0.5, σ = 0.2, φ = 16. This makes Rc ≈ 0.9224,
and condition (c) for multiple nontrivial equilibria is also satisfied.

discussed below) we derive that two unstable equilibria emerge from the unstable symmetric
fixed point when R0 is slightly greater than Rc (orange), and the existence of two saddle-
node bifurcation points (yellow) are also confirmed, from which four nonsymmetric steadyD
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RICH BIFURCATIONS IN A TWO-PATCH MODEL 1005

states bifurcate (pairwise unstable-stable). As R0 increases, four nonsymmetric fixed points
disappear (green, two subcritical saddle-node bifurcations); then the unstable equilibrium in
the diagonal absorbs the remaining two nonsymmetric steady states (pink, two unstable fixed
points join into the symmetric equilibrium). Again, by the results of Proposition 3.6, the
system undergoes a backward transcritical bifurcation at R0 = 1, which is indicated by a
large red dot in the figure.

In the model (T0) for disconnected regions, a triple saddle-node bifurcation occurs at
R0 = Rc (see Proposition 3.2). We conjecture that incorporating travel between the regions
results in the split-up of this bifurcation point, so that one stable and three unstable fixed
points emerge in the model (T) when R0 is close to Rc. Similarly, the system (T0) undergoes
a triple backward bifurcation of the DFE at R0 = 1, which is deformed for positive travel
rates: in the model (T) for connected regions, two unstable fixed points join into another
unstable steady state as R0 approaches 1, and then at R0 = 1 this unstable equilibrium
bifurcates into the DFE in a (simple) backward bifurcation.

5. Rigorous set-oriented numerical computations for the model (T). In order to com-
plement the analytical calculations, and to confirm selected results of the numerical simula-
tions, we conducted rigorous set-oriented numerical analysis of global dynamics encountered
in the system (T). We applied the framework that was developed in [1] (see also [6]) for
discrete-time semidynamical systems. This approach has already been applied successfully to
some other systems (see, e.g., [21, 33]) and in each case provided valuable information. Since
the computational method was introduced in [1] for continuous maps only, its extension to
ODEs was developed by means of applying this method to a time-t map of the flow. The
correctness of this approach is justified in section 5.2; the reader is referred to [13] for an
in-depth discussion of some technical aspects of the adaptation of the method to ODEs.

The core idea behind the computational method introduced in [1] is to decompose the
dynamics at each selection of parameters into a collection of isolating neighborhoods that
encompass all the chain recurrent dynamics in the phase space (e.g., fixed points or periodic
solutions) and connecting orbits between them (and also orbits that run away in forward or
backward time). The isolating neighborhoods are constructed in such a way that connecting
orbits between them define a strict partial order, like in a gradient system. This construction
is carried out for small subsets of parameters. Then adjacent subsets of parameters for which
equivalent decompositions have been found are joined together to form larger classes. As
a result, regions of parameters which yield equivalent global dynamics are identified, and
schematic description is computed for the different types of global dynamics.

We begin with a description of this method. Then we explain how this method is applied
to the system (T). Finally, we describe the results obtained and discuss how they relate to
the findings shown in the previous sections. The software used for the computations, as well
as the results, are all made publicly available at the website [32].

5.1. Description of the numerical method. Let T = Z or T = R. Let ϕ : Rn × T �
(x, t) �→ ϕt(x) ∈ R

n be a dynamical system; that is, for all x, t1, t2 we have ϕ(x, 0) = x and
ϕ(ϕ(x, t1), t2) = ϕ(x, t1 + t2). If T = R, then we call ϕ a continuous-time dynamical system
(or a flow for short), and if T = Z, then we call it a discrete-time dynamical system.

A set S is called an invariant set with respect to ϕ if ϕ(S,T) = S. The invariant partD
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of a set N , denoted InvN , is the largest, in terms of inclusion, invariant set contained in N .
The set N is called an isolating neighborhood if N is compact and InvN ⊂ intN , where intN
denotes the interior of N . S is called an isolated invariant set if S = InvN for some isolating
neighborhood N .

A Morse decomposition (see [8]) of an isolated invariant set X (note that X may be the
entire phase space) with respect to ϕ is a finite collection of disjoint isolated invariant subsets
S1, . . . , Sq of X (called Morse sets) with a strict partial ordering ≺ on the index set {1, . . . , q}
such that for every x ∈ X \ (S1 ∪ · · · ∪ Sq) and for every orbit {γt}t∈T such that γ0 = x there
exist indices i ≺ j such that γt → Si as t→∞ and γt → Sj as t→ −∞.

A rectangular set is a product of compact intervals. Given a rectangular set R = [a1, a1+
δ1]× · · · × [an, an + δn] ⊂ R

n and integer numbers s1, . . . , sn > 0, we call the following set an
s1 × · · · × sn uniform rectangular grid in R:

Gs1,...,sn(R) :=

{
n∏

i=1

[
ai +

ji
si
δi, ai +

ji + 1

si
δi

]
: ji ∈ {0, . . . , si − 1}, i ∈ {1, . . . , n}

}
.

The individual boxes in the grid are indexed by the n-tuples (j1, . . . , jn).
Now consider an m-parameter family of flows on R

n:

ϕ : Rn × R
m ×R � (x, p, t) �→ ϕp

t (x) ∈ R
n.

Let B ⊂ R
n and P ⊂ R

m be rectangular sets.
Let τ > 0, and consider the m-parameter discrete-time dynamical system ϕτ obtained

by restriction of ϕ to R
n × R

m × τZ. Let d1, . . . , dn and s1, . . . , sm be positive integers.
For each parameter box p̂ ⊂ P in the s1 × · · · × sm uniform rectangular grid in P , and for
each box b in the d1 × · · · × dn uniform rectangular grid in B, we use the CAPD software
library [7] to compute a rigorous outer estimate for ϕ(b, p̂, τ). In this way, we apply the
computational method introduced in [1] to ϕτ . In particular, the family of sets N1, . . . , Nq ⊂ B
is constructed with some strict partial ordering ≺ on {1, . . . , q} such that, for each p ∈ p̂, each
set Ni, i = 1, . . . , q, is an isolating neighborhood in B, and whenever a possibility of the
existence of an orbit from Ni to Nj is detected, the relation Nj ≺ Ni is set to hold true. The
family {Si := InvNi : i = 1, . . . , q} forms a Morse decomposition of InvB with respect to
ϕp
τ with the ordering ≺, where ϕp

τ = ϕτ (·, p, ·) indicates the dynamical system ϕτ with the
parameter fixed to p. The sets Ni are constructed as unions of closed boxes with respect to
the d1×· · ·×dn uniform rectangular grid in B. The collection N1, . . . , Nq is called a numerical
Morse decomposition, and the isolating neighborhoods N1, . . . , Nq are called numerical Morse
sets. Note that if Ni touches the boundary of B for some i, then it is not known whether Ni

is an isolating neighborhood in the entire phase space X, so caution should be taken when
drawing conclusions from such a construction.

A numerical Morse decomposition can be schematically depicted as a directed graph whose
vertices correspond to the Morse sets and whose edges indicate possible connecting orbits
between them. In order to simplify such a representation, one can plot the transitive reduction
of this graph, as was done in the presentation of the results at [32].

The Conley index, introduced by Conley [8] for flows, and generalized, e.g., by Mrozek
[27] and Szymczak [35] to discrete semidynamical systems induced by continuous maps, is aD
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RICH BIFURCATIONS IN A TWO-PATCH MODEL 1007

topological invariant that provides information about isolated invariant sets. Its homological
version is algorithmically computable (to certain extent) from an isolating neighborhood and
an outer estimate of the map, like those computed by the method being described. This index
takes into account the exit set of an isolating neighborhood N , that is, the part of the forward
image of N that sticks out of N , and thus reflects the stability of what N contains.

Knowledge of the Conley index of an isolating neighborhood N allows us to draw conclu-
sions on the invariant part of N . In particular, if the index of N is nontrivial, then InvN �= ∅.
The index can also be used to prove the existence of periodic orbits or more complicated
dynamics.

For the purpose of this paper, the Conley index and the relation of the forward image
of N are used in order to classify each computed isolating neighborhood N on the basis of
stability. We say that an isolating neighborhood N is attracting if the forward image of N is
entirely contained in N . One can prove that then N contains a local attractor, which justifies
this terminology. Otherwise, if the forward image of N is not fully contained in N , we say
that N is unstable. If N has the Conley index of a hyperbolic fixed point with d-dimensional
unstable manifold, then we say that N is of the type of the corresponding point. For a typical
system, it is likely that N indeed contains an equilibrium of the expected stability, but—
since the Conley index is a purely topological tool and does not provide information about
derivatives—the dynamics in N may turn out to be much more complicated than seen from
outside (that is, from the perspective of the isolating neighborhood). If N ⊂ R

n is of the type
of a fixed point with n-dimensional unstable manifold, then we say that N is repelling.

Since detailed introduction to the Conley index is beyond the scope of this paper and
requires certain knowledge of algebraic topology, we refer the reader to [8, 27, 35] for more
details on the Conley index, and to [17, 25, 34] and references therein for discussion of some
technical aspects of the method for the computation of this index implemented in the software
used in this paper.

5.2. Justification of the method for ODEs. In order to apply the method for automatic
analysis of global dynamics to a continuous-time dynamical system (a flow) induced by an
ODE, it is natural to consider a time-τ map for some fixed τ > 0 and to conduct the compu-
tations for the discrete-time dynamical system induced by this map. The following theorem
justifies this approach, as it shows that the results obtained from the computations conducted
for the time-τ map are also valid for the flow.

Theorem 5.1. Let ϕ be a flow on R
n. Let τ > 0. Let B ⊂ R

n be an isolating neighborhood
with respect to ϕτ . Assume that N1, . . . , Nk ⊂ B are some isolating neighborhoods for ϕτ ,
with pairwise disjoint interiors. Assume that M := {Mi := InvNi | i = 1, . . . , k} is a Morse
decomposition of Inv(B,ϕτ ) with respect to ϕτ . Then N1, . . . , Nk are isolating neighborhoods
for ϕ, and M is a Morse decomposition of Inv(B,ϕ) with respect to ϕ. Moreover, if there exists
a connecting orbit in B for ϕ between some of the Morse sets, then there exists a connecting
orbit in B for ϕτ between the same Morse sets.

Note that in this theorem there is no one-to-one correspondence between objects computed
for the time-τ map and the flow; it only speaks to one direction of implication. In particular,
an isolating neighborhood for the flow need not be an isolating neighborhood for the time-
τ map. Moreover, there might exist a connecting orbit for ϕτ in B with no correspondingD
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connecting orbit for ϕ in B.
Before proving this theorem, let us recall a few relevant results.
Proposition 5.2 (see [28, Theorem 1] for an even more general version). For a flow ϕ on R

n,
the following conditions are equivalent:

(1) S is an isolated invariant set with respect to ϕ,
(2) S is an isolated invariant set with respect to ϕτ for all τ > 0,
(3) S is an isolated invariant set with respect to ϕτ for some τ > 0.
Proposition 5.3 (see [28, Corollary]). The cohomological Conley index of an isolated in-

variant set of a flow ϕ coincides with the corresponding index with respect to the discrete
dynamical system ϕτ for any τ > 0.

Proposition 5.4 (see [30, Lemma 6] or [28, proof of Theorem 1, last paragraph, p. 309]). Let
τ > 0. If N is an isolating neighborhood with respect to a time-discretization ϕτ of a flow ϕ,
then N is an isolating neighborhood with respect to the flow ϕ and Inv(N,ϕτ ) = Inv(N,ϕ).

Proof of Theorem 5.1. By Proposition 5.4, B is an isolating neighborhood for the flow
ϕ and Inv(B,ϕ) = Inv(B,ϕτ ). Also all Ni are isolating neighborhoods for the flow ϕ, and
Mi = Inv(Ni, ϕ). Either by Proposition 5.2 or by the fact that Mi = Inv(Ni, ϕ) and thus
Mi ⊂ intNi, all the Mi are isolated invariant sets with respect to the flow ϕ. Define N :=⋃k

i=1 Ni. Since Inv(B \N,ϕτ ) = ∅, it follows from Proposition 5.4 that also Inv(B \N,ϕ) = ∅.
Consider a trajectory with respect to the flow ϕ that connects Mi and Mj in B for some

i, j ∈ {1, . . . , k}. (Since B is an isolating neighborhood, this trajectory is actually contained
in intB.) Then a time-τ discretization of this trajectory is an orbit with respect to ϕτ that
connects Mi and Mj . As a consequence, all the relations induced by the flow on M must
also exist in the Morse ordering of M with respect to ϕτ . It follows that the flow-induced
relations on M can be extended to a partial order on M by transitivity. Therefore, M is a
Morse decomposition of Inv(B,ϕ) with respect to the flow ϕ.

Regarding some technicalities, we remark that by Proposition 5.3 the Conley indices with
respect to the flow ϕ can be instantly obtained from those computed when considering ϕτ .
Unfortunately, the Conley index cannot be computed in certain cases, which we discuss further
in section 5.4. Moreover, we may not know whether the chosen set B is indeed an isolating
neighborhood (and, in fact, in our computations it is not). Therefore, one can only be sure
that Ni ⊂ B is an isolating neighborhood if actually Ni ⊂ intB. In fact, this problem is one of
the reasons for why the Conley index could not be computed for the neighborhoods of some
equilibria, mainly for the origin.

Choosing an optimal value of τ > 0 is not a trivial task. In fact, in our approach, we use
a heuristic method which chooses a supposedly good τ > 0 by trial and error: τ is initially
chosen quite arbitrarily, and then is increased if possible or decreased if it yields too high
overestimates in the computation of outer enclosures of the images of grid elements by ϕτ .

5.3. Application of the method to the model (T). The input to the rigorous set-oriented
numerical method applied to the system (T) consists of the data listed below. All the real
numbers below should be understood as their double-precision binary floating-point approxi-
mations.

(I1) The four-dimensional ODE defined by (T), in which we fix the following parameters:
K := 100, μ := 0.1, γ := 12, θ := 0.5, σ := 0.2, φ := 16.D
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(I2) The ranges of the varying parameters α ∈ [0, 0.2] and β ∈ [0.48, 0.53]; that is, P :=
[0, 0.2] × [0.48, 0.53].

(I3) The phase space bounding box that contains all the asymptotic dynamics of our
interest: B := [0, 100]4. In our case, this box contains the entire feasible phase space X for
the model; see (2.5).

(I4) The resolutions in the parameter space and in the phase space. We subdivide the
parameter space P uniformly into 80× 200 boxes, and the phase space B into 29 = 512 boxes
in each direction. The resolutions were set high enough so that the nine equilibria discussed
earlier are clearly visible (see Propositions 3.6 and 3.10), and the bifurcations shown in Figure 2
can also be followed.

In addition to this initial data, there are also several technical parameters, such as a
suggestion for τ , which we do not discuss here. All of these technicalities can be easily found
in the software available at [32].

The computations can be run at a computer cluster in a convenient way, using a flexible
dynamic parallelization scheme introduced in [31], which is built into the software.

The output of the computations consists of the following information:
(O1) Classes of parameters for which the qualitative global dynamics is equivalent. These

classes are given as subsets of P , built of the boxes into which P was subdivided.
(O2) For each parameter box, selected information about the computed numerical Morse

decomposition: the number of sets, their sizes (in terms of the number of boxes), their Conley
indices (whenever it was possible to compute them), and information on the detected possible
connecting orbits.

(O3) A projection onto I1 and I2 of the phase space portrait of the sets of which the
numerical Morse decomposition is composed. (This form of output is normally optional, as
the amount of the data can be overwhelming.)

Illustration and discussion of the obtained results of the computations are gathered in the
next section.

5.4. Results of the computations and discussion. Figure 7 shows the continuation dia-
gram computed for the parameters under consideration. Each continuation class consisting of
more than one element is indicated in some solid color, with colors repeated for small classes
that are at some distance from each other. Thirteen major classes are given labels (a), (b),
. . . , (m) and are briefly discussed below. The reader is invited to explore the details at the
interactive presentation provided at the website [32].

In Figure 8, projections of the phase space portraits of the computed numerical Morse
decompositions to the coordinates I1 and I2 are shown for a sample parameter box taken
from each of the first 12 classes. In order to save space, the phase space portrait is not shown
for class (m), because it is very simple: A single isolating neighborhood of the origin was
found there, and it is an attractor.

The constructed isolating neighborhoods capture all the chain recurrent dynamics found
in B. In particular, these sets contain all the equilibria. If some equilibria are close to each
other, then they often cannot be separated at the resolution at which the computations were
carried out, and then they share a neighborhood. Moreover, if the hyperbolicity (contraction,
expansion) in the vicinity of an equilibrium is strong, then the constructed neighborhood isD
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←(a)
(b)

←(c)

(d)

(e)

(f)

(g)

(h)
(i)

(j)
(k) (l)

(m)

α

β

R0 = Rc

R0 = 1

0 0.20.1

0.48

0.49

0.50

0.51

0.52

0.53

Figure 7. Continuation diagram for the system (T) computed as described in section 5.3. Classes of
parameters for which the dynamics is equivalent are indicated in solid colors. Major continuation classes are
labeled, and the global dynamics found in each of them is discussed in the text and shown in Figures 8 and 9.

typically very small. However, if the dynamics slows down, then the constructed isolating
neighborhoods tend to be larger. Since these are outer estimates for components of chain
recurrent dynamics, there are combinatorial trajectories that traverse the entire neighborhood
(transitivity). In particular, in an actual system that is modeled, one might expect to see
trajectories that run within the entire region of an isolating neighborhood yet correspond to
the steady state. Noise and small perturbations pull these trajectories away from the steady
state, and its weak stability allows for that.

In Figure 9 we provide schematic description of global dynamics found for the cases shown
in Figure 8. In each of the directed graphs, the nodes correspond to the isolating neighbor-
hoods that encompass all the chain recurrent dynamics in B, and the paths in these graphs
indicate possible connecting orbits in the system. At each node, the consecutive number of
the corresponding isolating neighborhood is given. These neighborhoods are numbered in the
order in which they were actually computed by the software. The size of each neighborhood
in terms of the number of boxes is also provided. The homological Conley index is shownD
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(a): box (2, 159)

I1

I 2

0 50

0

50

(b): box (77, 163)

I1

I 2

0 50

0

50

(c): box (1, 143)

I1

I 2

0 50

0

50

(d): box (8, 65)

I1

I 2

0 50

0

50

(e): box (18, 72)

I1

I 2

0 50

0

50

(f): box (33, 84)

I1

I 2

0 50

0

50

(g): box (100, 65)

I1

I 2

0 50

0

50

(h): box (22, 44)

I1

I 2

0 50

0

50

(i): box (36, 49)

I1

I 2

0 50

0

50

(j): box (29, 41)

I1

I 2

0 50

0

50

(k): box (4, 33)

I1

I 2

0 50

0

50

(l): box (74, 31)

I1

I 2

0 50

0

50

Figure 8. Sample phase space portraits of numerical Morse decompositions computed for selected parameter
boxes chosen from the thirteen major continuation classes labeled in Figure 7. In class (m), which is not shown
here, a single isolating neighborhood containing the origin was constructed. Note that the size of the neighborhood
of the origin (which is an equilibrium for all the parameters) is so small in all the cases except for (a) and (b)
that it is barely visible in the pictures.
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0 :  1 3 6 9
[index not  computed]

1 :  4 2 8 2 :  4 2 8

3 :  5 2 9
H = (Z,  0,  0,  0,  0)

Map 0:
# 1  =  1 .

0 :  1 4 7 4
[index not  computed]

1 :  2 2 9
H = (Z,  0,  0,  0,  0)

Map 0:
# 1  =  1 .

0 :  1 8 6 3
[index not  computed]

1 :  36
[index not  computed]

2 :  9 1 9 3 :  9 1 9

4 :  5 2 9
H = (Z,  0,  0,  0,  0)

Map 0:
# 1  =  1 .

(a) (b) (c)

0 :  1 2 3 2
H = (0,  0,  Z,  0,  0)

Map 2:
# 1  =  1 .

1 :  9 8 7
H = (0,  Z,  0,  0,  0)

Map 1:
# 1  =  1 .

2 :  2 9 7
H = (0,  Z,  0,  0,  0)

Map 1:
# 1  =  1 .

4 :  9 8 7
H = (0,  Z,  0,  0,  0)

Map 1:
# 1  =  1 .

5 :  2 9 7
H = (0,  Z,  0,  0,  0)

Map 1:
# 1  =  1 .

3 :  3 2 4
H = (Z,  0,  0,  0,  0)

Map 0:
# 1  =  1 .

8 :  7 2 9
H = (Z,  0,  0,  0,  0)

Map 0:
# 1  =  1 .

6 :  9
H = (Z,  0,  0,  0,  0)

Map 0:
# 1  =  1 .

7 :  3 2 4
H = (Z,  0,  0,  0,  0)

Map 0:
# 1  =  1 .

0 :  1 6 3 9
H = (0,  0,  Z,  0,  0)

Map 2:
# 1  =  1 .

1 :  2 7 1
H = (0,  Z,  0,  0,  0)

Map 1:
# 1  =  1 .

2 :  2 7 1
H = (0,  Z,  0,  0,  0)

Map 1:
# 1  =  1 .

4 :  1 4 7 7

6 :  9
H = (Z,  0,  0,  0,  0)

Map 0:
# 1  =  1 .

3 :  1 4 7 7

5 :  4 8 4
H = (Z,  0,  0,  0,  0)

Map 0:
# 1  =  1 .

(d) (e)

0 :  2 0 1 5
H = (0,  0,  Z,  0,  0)

Map 2:
# 1  =  1 .

1 :  6 8 2
H = (0,  Z,  0,  0,  0)

Map 1:
# 1  =  1 .

2 :  6 8 2
H = (0,  Z,  0,  0,  0)

Map 1:
# 1  =  1 .

3 :  9
H = (Z,  0,  0,  0,  0)

Map 0:
# 1  =  1 .

4 :  4 7 7
H = (Z,  0,  0,  0,  0)

Map 0:
# 1  =  1 .

0 :  1 1 5 8 9
[index not  computed]

1 :  9
H = (Z,  0,  0,  0,  0)

Map 0:
# 1  =  1 .

2 :  7 6 5
H = (Z,  0,  0,  0,  0)

Map 0:
# 1  =  1 .

0 :  6 0 0 4
[index not  computed]

1 :  5 0 7 2
H = (0,  Z,  0,  0,  0)

Map 1:
# 1  =  1 .

3 :  5 0 7 2
H = (0,  Z,  0,  0,  0)

Map 1:
# 1  =  1 .

2 :  4 9 2 1

6 :  2 7 7 8
H = (Z,  0,  0,  0,  0)

Map 0:
# 1  =  1 .

5 :  4
H = (Z,  0,  0,  0,  0)

Map 0:
# 1  =  1 .

4 :  4 9 2 1

(f) (g) (h)

0 :  8 1 1 0
[index not  computed]

1 :  1 7 2 5 3
[index not  computed]

2 :  1 7 2 5 3
[index not  computed]

3 :  4
H = (Z,  0,  0,  0,  0)

Map 0:
# 1  =  1 .

4 :  1 9 1 6
H = (Z,  0,  0,  0,  0)

Map 0:
# 1  =  1 .

0 :  3 2 4 6 5
[index not  computed]

1 :  3 7 7 4

2 :  3 1 7 2
H = (Z,  0,  0,  0,  0)

Map 0:
# 1  =  1 .

3 :  3 7 7 4

4 :  4
H = (Z,  0,  0,  0,  0)

Map 0:
# 1  =  1 .

0 :  2 9 2 1 4
[index not  computed]

1 :  1 2 9 9 2 :  1 2 9 9

3 :  4
H = (Z,  0,  0,  0,  0)

Map 0:
# 1  =  1 .

0 :  2 3 8 9 8
[index not  computed]

1 :  4
H = (Z,  0,  0,  0,  0)

Map 0:
# 1  =  1 .

(i) (j) (k) (l)

Figure 9. Conley–Morse diagrams for the sample phase space portraits of numerical Morse decompositions
illustrated in Figure 8. The information at each vertex of each graph consists of the consecutive number of
the Morse set, its size in terms of the number of boxes, and the Conley index (none in the case of the trivial
index). The consecutive numbers of the numerical Morse sets correspond to the following colors in the phase
space portraits shown in Figure 8: black, blue, red, green, cyan, pink, violet, orange, dark green.
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whenever the software was able to compute it and the index is nontrivial. Most typical reasons
for failures include proximity of the boundary of B, and thus lack of isolation, or excessive
size of the constructed index pair (over 10,000 boxes), which would compromise the efficiency
of the computations, and thus the computation of the index was skipped in such cases. If
the index was computed, then the relative homology of the index pair is given, and the maps
at the nontrivial homology levels are indicated on homology generators in a compact way by
providing the image of each generator (represented by its consecutive number, starting with
1) as a linear combination of the generators. For example, “Map 2: #1 = 1” means that at
homology level 2, the image of homology generator 1 equals this generator (that is, the map
is the identity). No information about the index, like in the two nodes of the graph in class
(a), indicates the trivial index.

The information shown in Figure 9 complements Figure 8, and the two should be analyzed
together. The nine isolating neighborhoods found in class (d) correspond to the nine equilibria
whose existence was shown in Proposition 3.10. Indeed, the Conley indices in Figure 9(d) agree
with their types of stability: There are four attractors (numbers 3, 6, 7, and 8), four sets of
the type of a saddle critical point with one-dimensional unstable manifold, and one set of
the type of a critical point with two-dimensional unstable manifold. With the increase in
the parameter α, there are different possible scenarios of bifurcations that yield to class (g),
in which the chain recurrent dynamics is restricted to three isolating neighborhoods along
the diagonal. Traversing through classes (e) and (f) corresponds to the scenario depicted
in Figure 2(c)–(d), and traversing through classes (h) and (j) corresponds to the scenario
depicted in Figure 2(a)–(b). Note that the configuration encountered in class (i) corresponds
to an intermediate situation in between these two sequences of bifurcations.

As predicted by the theory, in class (b)—that is, for high values of β, which correspond to
high values of R0—the chain recurrent dynamics is restricted to two isolating neighborhoods
located along the diagonal: one including the DFE, whose Conley index could not be computed
due to problems with isolation (the DFE is unstable), and the other corresponding to the
endemic equilibrium, which is asymptotically stable. Similarly, in class (m)—that is, for low
values of β, which correspond to low values of R0—there is exactly one chain recurrent set in
B, which corresponds to the DFE, which is asymptotically stable in that case.

Several numerical artifacts, which are in fact features of the method that was applied, can
easily be noticed in the results of the computations. In particular, several numerical Morse
sets with trivial indices were found in classes (a), (c), (e), (h), (i), (j), (k). In all the cases,
these sets split into pairs of neighborhoods of the type of an attracting fixed point and a saddle
with one-dimensional unstable manifold. These isolating neighborhoods are thus indicators
of a slow-down in the dynamics, which is related to the bifurcations taking place for nearby
parameter values. It may also be the case that such neighborhoods in fact contain the two
equilibria, but they cannot be separated due to their proximity.

It is worth noting that while the line R0 = Rc indeed corresponds to the location at which
the Morse decompositions undergo a change that suggests the bifurcation, this is not the case
with the line R0 = 1, which is located well above the border between classes (b) and (g). The
reason for this discrepancy is that the different equilibria that participate in the bifurcation
get very close together for parameters below R0 = 1, and thus they are not separated into
distinct isolating neighborhoods at the resolution at which the computations were carried out.D
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This is a natural feature of the method applied. Indeed, this discrepancy shows that while
the bifurcation was indeed detected by this method, drawing conclusions regarding its actual
location should be done with caution.

It is interesting to see that except for the isolating neighborhoods that correspond to the
equilibria, no other chain recurrent dynamical structures have been found. This result proves
that, for the investigated ranges of parameters, the entire chain recurrent dynamics in the
system restricted to the predefined set B is limited to the neighborhoods of the equilibria. In
particular, there are no periodic solutions or other chain recurrent dynamical structures in B
outside these neighborhoods.

We would like to point out the fact that although the set-oriented computations provide
mathematically rigorous results, some caution must be exercised while interpreting them.
For example, isolated invariant sets that form the Morse decomposition are contained in
the explicitly constructed isolating neighborhoods, and the type of the set, as seen from the
outside, is indicated by the Conley index. However, as was already pointed out in section 5.1,
one must be cautious about claiming the actual stability of fixed points or existence of other
invariant sets contained therein. Secondly, the connections found between the Morse sets at
the combinatorial level (as chain of grid elements) provide an optimistic upper bound on the
existing connections. In fact, it is the lack of a specific connection that can be proved using
this method. In order to confirm the existence of a connecting orbit between two given Morse
sets, additional work is necessary. One approach is to apply the Conley index to larger sets
(e.g., two Morse sets and an outer bound for their connecting orbits) and use topological
arguments. Another approach is to use numerics more directly. For example, the rigorous
numerical procedures developed by the CAPD group [7] are very appropriate for this purpose
(see, e.g., [41, 42]). Other authors have also developed relevant methods (e.g., [29]).

An intriguing question arises as to whether these numerical computations provide com-
plete information about the dynamics. Indeed, some chain recurrent sets may not have been
separated from each other, because the resolution was too coarse to see this separation. How-
ever, the resolutions that we chose in the set of parameters and in the phase space seem to
be very fine in comparison to how these quantities can be controlled or determined for a real
system, which bears some amount of uncertainty and noise. Therefore, we speculate that any
additional details, which might possibly be revealed at finer resolutions, would in fact be of
negligible importance for the actual applications. In particular, the shift in the parameter β
in detecting the bifurcation at R0 = 1 (see Figure 7) is natural, and one may argue that the
numerical result is “more correct” than the analytic one: If different equilibria are very close
together, then from the practical point of view they should be treated as a single state of the
system. The reader is referred to [22] for a more in-depth discussion of this issue and for a
suggestion of a theory that deals with perception of dynamics at finite resolution.

6. Conclusions. In this paper, a simple vaccination model was proposed for the spread
of an infectious disease in a population of individuals who travel between two regions. We
considered the three-dimensional system (1.1) as an epidemic building block in each region,
and then we built our model by adding linear terms to the equations to reflect the inflow and
outflow of individuals due to travel.

We calculated the basic reproduction number R0 for the two-patch model, where weD
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allowed corresponding parameters in the two regions to differ. After deriving stability results
for the unique DFE in terms of R0, we moved to the case of symmetric regions, to focus our
attention on the impact of individuals’ mobility on the steady states. In the case when the
two regions are disconnected, we found out that there exist a unique componentwise positive
equilibrium and two partially endemic steady states (i.e., the disease is present in one region
and is absent in the other one) for R0 > 1. Moreover, a critical value Rc was defined such
that, under certain conditions on the model parameters, the model for disconnected regions
admits four fully endemic (componentwise positive) and four partially endemic equilibria for
Rc < R0 < 1. Stability of steady states was also described.

All partially endemic equilibria disappear when traveling between the regions is introduced
into the system. For R0 > 1, we showed that the model for connected regions admits a
single nontrivial steady state, which is stable and independent of the travel rate α. On the
other hand, the existence of multiple endemic equilibria is possible for R0 < 1; a necessary
condition of the model parameters was given such that there are nontrivial steady states
when Rc < R0 < 1. In particular, the stable DFE can coexist with three stable and five
unstable positive equilibria for some values of R0 on the interval (Rc, 1) if the condition for
multiple steady states holds true. Two positive equilibria, bifurcating from a saddle-node
bifurcation point at R0 = Rc, exist for all travel rates, while the other six endemic steady
states were proven to be sensitive to the travel volume and disappear for larger values of α.
Numerical simulations were conducted to illustrate the rich bifurcation structure in the model.
Using rigorous set-oriented computations, we were also able to compute a comprehensive
overview of global dynamics for selected ranges of parameters. The overall image of the global
dynamics agrees with the analytic results and with the numerical simulations restricted to
the equilibria, and proves that outside small neighborhoods of the equilibria no other chain
recurrent dynamics exists in the system.

We remark that in the case R0 > 1, two steady states out of the four equilibria of the
disconnected system cease to exist with the introduction of traveling between the regions.
In the system of connected regions, only one nontrivial steady state—a stable, fully endemic
equilibrium—is preserved in addition to the unstable DFE, whereas all partially endemic
equilibria disappear. This phenomenon was noted in numerous metapopulation models in the
literature (see, for instance, Arino [2] and Arino and van den Driessche [3]). Its epidemiological
implication is that the reproduction number, as a single quantity, plays the role of an epidemic
threshold in all regions, in the sense that disease eradication in a patch is impossible as long
as the infection is present in the other region and R0 > 1. However, bringing R0 below
1 might not be sufficient (although always necessary) for successful epidemic control: the
presence of stable nontrivial equilibria implies that in some cases the disease can sustain itself
even if R0 < 1. Based on rigorous computations on the global dynamics, the stable endemic
equilibrium attracts every solution if R0 > 1. Since this steady state is independent of the
travel rate, we conclude that spatial dispersal of individuals won’t decrease the epidemic size
when the reproduction number is larger than 1. On the other hand, we showed that for
Rc < R0 < 1 a large number of steady states can exist in the model, and we illustrated how
increasing travel volumes creates or destroys these equilibria. This rich structure of steady
states goes hand in hand with some complicated dynamical behavior, which makes predicting
final epidemic outcomes particularly difficult. Albeit the DFE is locally stable, its attractingD
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region is complicated to characterize. For this reason, prevention strategies should focus on
decreasing the reproduction number below Rc, which ensures disease eradication.
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