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Abstract We formulate an epidemic model for the spread of an infectious disease
along with population dispersal over an arbitrary number of distinct regions. Struc-
turing the population by the time elapsed since the start of travel, we describe the
infectious disease dynamics during transportation as well as in the regions. As a result,
we obtain a system of delay differential equations. We define the basic reproduction
number R0 as the spectral radius of a next generation matrix. For multi-regional sys-
tems with strongly connected transportation networks, we prove that if R0 ≤ 1 then
the disease will be eradicated from each region, while if R0 > 1 there is a globally
asymptotically stable equilibrium, which is endemic in every region. If the transporta-
tion network is not strongly connected, then the model analysis shows that numerous
endemic patterns can exist by admitting a globally asymptotically stable equilibrium,
which may be disease free in some regions while endemic in other regions. We provide
a procedure to detect the disease free and the endemic regions according to the network
topology and local reproduction numbers. The main ingredients of the mathemati-
cal proofs are the inductive applications of the theory of asymptotically autonomous
semiflows and cooperative dynamical systems. We visualise stability boundaries of
equilibria in a parameter plane to illustrate the influence of the transportation network
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on the disease dynamics. For a system consisting of two regions, we find that due to
spatial heterogeneity characterised by different local reproduction numbers, R0 may
depend non-monotonically on the dispersal rates, thus travel restrictions are not always
beneficial.

Keywords Epidemic models · Transportation networks · Global dynamics ·
Delay differential systems

Mathematics Subject Classification (2010) 34K05 · 92D30

1 Introduction

The increasing volume of international trade and tourism highly facilitates the rapid
spread of infectious diseases around the world. The outbreaks of severe acute respi-
ratory syndrome (SARS) in 2002–2003 and influenza A virus subtype H1N1 in 2009
highlighted the important role of human transportation on the global spread of infec-
tious diseases, see the reviews WHO (2003) for the spread of SARS, and Khan et al.
(2009) for the spread of influenza along international air traffic routes.

There are several well-known studies which constructed and analysed various
metapopulation models, based on differential equations, to describe the spatial spread
of infectious diseases in connected regions, see Arino (2009), Wang (2007), Arino and
Driessche (2003), Gao and Ruan (2012), Wang and Zhao (2004, 2005), Arino et al.
(2005, 2006, 2007), Li and Zou (2010) and references therein. In this framework, the
spatial structure is represented by a finite number of distinct patches, and the popula-
tion dynamics in the patches is coupled to the dynamics of other patches, to account
for the mobility between regions.

The network science approach, focusing on the structure of the network formed by
the connections among regions, provided further important insights to understand the
role of mobility patterns and heterogeneity in the transmission dynamics and the global
invasion of infectious diseases, see Balcan and Vespignani (2011), Colizza and Vespig-
nani (2007, 2008), Meloni et al. (2011), Poletto et al. (2012), Colizza et al. (2006).

The above mentioned works studied mostly the impact of spatial dispersal of
infected individuals from one region to another, and did not consider transportation as
a platform of disease transmission. However, contact tracing of passengers provided
evidence that during long distance travel, such as intercontinental commercial flights,
a single infected passenger may infect several other persons during the flight, see the
comprehensive summary for several infectious diseases by European Centre for Dis-
ease Prevention and Control (2009a), and references (Bell 2004; European Centre for
Disease Prevention and Control 2009b; Olsen et al. 2003).

To properly describe the number of generated infections via transportation in the
destination region, transport related infections were incorporated into the compart-
mental model approach in Cui et al. (2006), Takeuchi et al. (2007), Liu and Takeuchi
(2006), where it was illustrated that the disease can persist in regions connected by
human transportation even if the infection died out in all regions in the absence of
travel.
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These models assumed that individuals, who left a certain region, arrived immedi-
ately to their destination region. In reality, animal transportation can take rather long
time; and in the case of human travel, for rapidly progressing diseases such as SARS
and influenza, even a fraction of a day can be significant. During travel, passengers are
in a closed environment with a high-density layout of seating, exposed to low humidity
and hypobaric hypoxia (Mangili and Gendreau 2005; Silverman and Gendreau 2009).
Thus, it is more precise to consider the number of infected passengers as a dynamical
variable in an environment that is different from residential areas, and then the time
needed to complete the travel naturally becomes an important parameter of the model.
The pioneering works (Liu et al. 2008; Nakata 2011) formulated submodels for disease
transmission dynamics during travel, combining with compartmental models in the
regions, but, due to the apparent mathematical difficulties, their analysis is restricted
to only two identical regions.

In this manuscript we analyse an epidemic model that includes both infectious
disease dynamics during transportation, and an arbitrary number of heterogeneous
regions forming a transportation network. These two features together have not been
studied before. Our aim is to obtain a qualitative picture of the disease transmission
dynamics in a heterogeneous multi-regional environment characterised by respective
risk of infection in regions as well as during travel, and to understand the role of the
transportation network in the disease transmission dynamics.

The description of the structure of the transportation network is based on directed
graphs: the regions are the nodes of the graph, and nodes i and j are connected by
a directed link if there is transportation of individuals from region i to region j . We
explicitly incorporate the time needed to complete a one-way travel from one region
to another, and consider the disease dynamics along such directed links. A network is
called strongly connected, if for any ordered pair (i, j) of nodes, there is a directed path
(a sequence of directed links) from node i to node j . Otherwise, we say that the network
is not strongly connected. For example, having two sets of nodes A and B, where there
are no directed links from any node in A to any node in B, but there are directed links
for any other ordered pair of nodes, gives a connected, but not strongly connected
network.

Many transportation networks are naturally strongly connected (one can go from
any region to any other region, possibly via other regions), but there are significant bio-
logical reasons to consider not strongly connected networks as well. When an outbreak
of an infectious disease is reported, the structure of the transportation network may
change from strongly connected to not strongly connected, since individuals likely
do not travel to the endemic region, and public health authorities may advise against
travelling to high risk regions. Some transportation connections may be shut down in
order to implement a disease control policy. The simplest example is the case of two
connected regions, when the transportation becomes unidirectional. We explore this
case in details in Sect. 6. The displacement network for the transportation of livestock
is a typical example of not strongly connected networks, as animals are moved from
farms to slaughterhouses (possibly via several intermediate steps, such as assembling
centres), but there is no movement of livestock from the slaughterhouses back to the
farms. During the transportation, animals are kept in crowded cages, therefore there
is an elevated risk of disease transmission. Such livestock transportation network can
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be very complex (Bajardi et al. 2011). Migration routes in ecology typically follow
a directional trend, such as from South to North because of climate change, down-
stream in rivers, etc. In those cases the network of the habitats of the species is not
strongly connected. Human networks are usually strongly connected. The rural-to-
urban migration, however, can be seen as an example for unidirectional transporta-
tion if we neglect the short-term mobility such as tourism and business travels. The
vector of Chagas disease appeared this way in major cities in South America (Alirol
et al. 2011). The presence of tuberculosis in Canada (Zhou et al. 2008) is driven by
the constant flow of immigration from developing countries. TB is one of the dis-
eases which is transmissible during travel (European Centre for Disease Prevention
and Control 2009a). Even if the reproduction number of TB in Canada is <1, TB
can persist in Canada due to the endemicity in the regions which are the source of
immigration. Immigration from Canada to those regions is negligible, hence by ignor-
ing short-term travels, this can be viewed as an example of a not strongly connected
network.

Motivated by these examples, we perform a systematic study to analyse the global
dynamics for not strongly connected networks. In the literature, most qualitative stud-
ies focus only on the case of strongly connected transportation network, see e.g. Li
and Zou (2010), Arino and Driessche (2003), Arino (2009), Wang and Zhao (2004). It
seems that there is no established approach to analyse the dynamics with not strongly
connected networks. Here we develop new analytical tools so that the long term behav-
iour of systems with not strongly connected transportation networks can also be under-
stood.

The paper is organised as follows. The formulation and the detailed mathematical
analysis of the model is given in Sects. 2–5 (some detailed calculations are collected
in the Appendix), which may be skipped by a mathematically less inclined reader. We
provide a rigorously proven and complete characterisation of the asymptotic behaviour
of the system for an arbitrary number of regions for any network structure. The main
techniques we use are stability theory of delay differential equations, cooperative sub-
linear systems, and an iterative application of the theory of asymptotically autonomous
semiflows. In particular, we show that there always exists a globally asymptotically
stable equilibrium. In the case of strongly connected transportation network, the basic
reproduction number of the full system (defined as the spectral radius of a next genera-
tion matrix), as usual, serves as a threshold: either the disease dies out in every region,
or the disease persists in every region. However, if the network is not strongly con-
nected, multiple endemic patterns may emerge: some regions may become endemic,
while the disease may be eradicated in some other regions. We provide a systematic
method to determine, based on the network structure and local reproduction numbers,
which regions become endemic and which regions become disease free. The results
are illustrated for the case of two patches in Sects. 6–7. In Sect. 8 we numerically
investigate the scenario when the dispersal rates of susceptible and infective individ-
uals are different. Finally, we give a biological interpretation to each analytical result
in Sect. 9.
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2 Model formulation

We consider an arbitrary number of distinct regions. For n ∈ N+ with n ≥ 2 we define
a set Ω := {1, . . . , n} containing all indices of the regions. For j ∈ Ω , we denote
by S j (t) and I j (t) the numbers of susceptible and infected individuals at time t in
region j , respectively. Let A j be the recruitment rate, d j the natural death rate and δ j

the recovery rate of the infected individuals in region j . We use standard incidence
β j S j I j/(S j + I j ), where β j is the effective contact rate, which is the total contact rate
multiplied by the probability of transmission of infection, in region j . Then we obtain
the basic SIS epidemic model

d S j (t)

dt
= A j − d j S j (t)− β j S j (t)I j (t)

S j (t)+ I j (t)
+ δ j I j (t), (2.1a)

d I j (t)

dt
= β j S j (t)I j (t)

S j (t)+ I j (t)
− (d j + δ j )I j (t), (2.1b)

for j ∈ Ω , where A j , β j and d j are positive and δ j is nonnegative for j ∈ Ω .
Following Liu et al. (2008), we incorporate transportation where it is assumed that
individuals neither die nor give birth during the transportation. If there is a transport
connection from region k to region j , where k, j ∈ Ω and k �= j , then we denote
by s jk(θ, t) and i jk(θ, t) the density of susceptible and infective individuals at time
t with respect to θ , where θ ∈ [0, τ jk] represents the time that they spent in the
transportation from region k to region j at time t (thus they left region k at time
t − θ ), where τ jk ∈ (0,∞) is the time required to complete a one-way travel from

region k to region j . Let n jk(θ, t) = s jk(θ, t)+ i jk(θ, t). Thus,
∫ θ1
θ2

n jk(θ, t)dθ is the
number of individuals who left region k in the time interval [t − θ1, t − θ2], where
τ jk ≥ θ1 ≥ θ2 ≥ 0. In particular, for θ1 = τ jk and θ2 = 0, this gives the total
number of individuals who are being in travel from region k to j at time t . We assume
that susceptible and infected individuals continuously leave region k to region j at a
per capita rate αS

jk ∈ [0,∞) and α jk ∈ [0,∞), respectively. Respective numbers of
susceptible and infected individuals who leave region k to j per unit of time at each
time t are given as

s jk(0, t) = αS
jk Sk(t) and i jk(0, t) = α jk Ik(t). (2.2)

Then the disease dynamics in the transportation from region k to region j is governed
by

(
∂

∂θ
+ ∂

∂t

)

s jk(θ, t) = −β
T
jks jk(θ, t)i jk(θ, t)

s jk(θ, t)+ i jk(θ, t)
+ δT

jki jk(θ, t), (2.3a)

(
∂

∂θ
+ ∂

∂t

)

i jk(θ, t) = βT
jks jk(θ, t)i jk(θ, t)

s jk(θ, t)+ i jk(θ, t)
− δT

jki jk(θ, t), (2.3b)
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where we use the index T to denote parameters during the transportation, thus βT
jk

and δT
jk are respectively the effective contact rate and recovery rate in the transporta-

tion. Note that it is assumed that individuals neither die nor give birth during the
transportation. Then

s jk(θ, t)+ i jk(θ, t) = n jk(θ, t)

= n jk(0, t − θ) = s jk(0, t − θ)+ i jk(0, t − θ)

= αS
jk Sk(t − θ)+ α jk Ik(t − θ). (2.4)

Here, the identity n jk(θ, t) = n jk(0, t − θ) is due to the assumption that there is
neither death nor giving birth on the transportation. From (2.3b) we obtain a logistic
equation as

(
∂

∂θ
+ ∂

∂t

)

i jk(θ, t) = i jk(θ, t)

{
(
βT

jk − δT
jk

)
− βT

jki jk(θ, t)

αS
jk Sk(t − θ)+ α jk Ik(t − θ)

}

.

(2.5)
Using (2.2) as an initial condition, one can explicitly solve (2.5) along the characteristic
lines. For simplicity, let us assume that βT

jk �= δT
jk for any j, k ∈ Ω . Then we have

i jk(τ jk, t) = α jke(β
T
jk−δT

jk )τ jk Ik(t − τ jk)

1 + e
(βT

jk−δT
jk )τ jk −1

βT
jk−δT

jk

βT
jkα jk Ik (t−τ jk)

αS
jk Sk (t−τ jk )+α jk Ik (t−τ jk )

. (2.6)

Note that exτ−1
x > 0 for x ∈ R\{0} and τ > 0. One can also compute s jk(τ jk, t)

explicitly as

s jk(τ jk, t) = αS
jk Sk(t − τ jk)+ α jk Ik(t − τ jk)− i jk(τ jk, t). (2.7)

Note that s jk(τ jk, t) and i jk(τ jk, t) are respectively the population densities of sus-
ceptible and infective individuals entering region j from region k at time t .

For j ∈ Ω it is convenient to define

l S
j :=

∑

k∈Ω
αS

k j , αS
j j := 0, l j :=

∑

k∈Ω
αk j , α j j := 0.

We arrive at the following model:

d S j (t)

dt
= A j −

(
d j + l S

j

)
S j (t)− β j S j (t)I j (t)

S j (t)+ I j (t)
+ δ j I j (t)+

∑

k∈Ω
s jk(τ jk, t),

(2.8a)
d I j (t)

dt
= β j S j (t)I j (t)

S j (t)+ I j (t)
− (d j + δ j + l j

)
I j (t)+

∑

k∈Ω
i jk(τ jk, t), (2.8b)
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for j ∈ Ω . One can see that the transport-related infection model formulated in Liu
et al. (2008) is a special case of system (2.8). If there is no transportation from region
k to region j then we set αS

jk = α jk = 0.

3 The basic reproduction number

For system (2.8), we construct a next generation matrix to define the basic reproduction
number (Diekmann et al. 1990). In absence of infected individuals coming from other
regions via the transportation into a region j , the basic reproduction number in region
j is given as

β j

d j + δ j + l j
. (3.1)

Assuming that there is a transportation connection from region k to region j , we
consider the expected number of infected individuals appearing in region j due to the
transport infection caused by a typical infective individual who was introduced into
region k. Since the probability of leaving the infective population of region k by means
of travel is

α jk
dk+δk+lk

, and the expected number of infected individuals who arrive at

region j if the travel was started with a single infective is e(β
T
jk−δT

jk )τ jk [this follows
from the linear part of (2.5)], taking the product of these two quantities, we get

α jke(β
T
jk−δT

jk )τ jk

dk + δk + lk
.

Thus we define a next generation matrix for (4.1) as

M := diag

(
β1

d1 + δ1 + l1
, . . . ,

βn

dn + δn + ln

)

+
(
α jke(β

T
jk−δT

jk )τ jk

dk + δk + lk

)

n×n

. (3.2)

Since M is a nonnegative matrix, one of the eigenvalues gives the spectral radius of
M, see Theorem 1.1 in Chapter 2 in Berman and Plemmons (1994). We define the
basic reproduction number as the spectral radius of M and denote it by R0.

The following inequality gives a biologically meaningful estimation for the basic
reproduction number.

Proposition 3.1 One has

max
j∈Ω

β j

d j + δ j + l j
≤ R0.

Proof Since

diag

(
β1

d1 + δ1 + l1
, . . . ,

βn

dn + δn + ln

)

≤ M,
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we can apply Corollary 1.5 in Chapter 2 in Berman and Plemmons (1994) to get the
conclusion. ��
From Proposition 3.1 one can see that if the basic reproduction number is less than or
equal to one, then each regional reproduction number is also less than or equal to one.
On the other hand, if there exists a regional reproduction number which is >1, then
the basic reproduction number is also greater than one.

For a square matrix P we denote by s(P) the stability modulus of P , which is
defined as

s (P) := max {Reλ|det (P − λE) = 0} ,

where E is the identity matrix. Let

B :=diag (β1 − (d1 + δ1 + l1) , . . . , βn − (dn + δn+ln)) +
(

α jke

(
βT

jk−δT
jk

)
τ jk

)

n×n
.

We relate the basic reproduction number with the stability modulus of B.

Proposition 3.2 It holds that sign (s (B)) = sign (R0 − 1) .

Proof We define two matrices as

F := diag (β1, . . . , βn)+
(

α jke

(
βT

jk−δT
jk

)
τ jk

)

n×n
,

V := diag (d1 + δ1 + l1, . . . , dn + δn + ln) .

Now one has B = F − V and M = FV −1. Then as in the proof of Theorem 2 in
Driessche and Watmough (2002) we obtain the conclusion. ��
Finally, if M is an irreducible matrix, then by the Perron-Frobenius theorem, the basic
reproduction number is given by a simple eigenvalue of M.

4 Population dynamics

To facilitate the mathematical analysis of the global dynamics of (2.8), here we assume
that αS

jk = α jk for any j, k ∈ Ω, i.e., susceptible and infected individuals continu-
ously leave region k to region j at the same rate (the general case is discussed in
Sect. 8). Then we can consider a system which is described in terms of the total and
infectious population instead of (2.8). The total population dynamics can be written as
a system of linear delay differential equations, which is decoupled from the dynamics
of the infectious population. To denote the total population at region j ∈ Ω at time
t , let N j (t) := S j (t) + I j (t). As an equivalent system to (2.8), with the assumption
αS

jk = α jk for any j, k ∈ Ω, one has

123



Global analysis for spread of infectious diseases 1419

d N j (t)

dt
= A j − (d j + l j

)
N j (t)+

∑

k∈Ω
α jk Nk(t − τ jk), (4.1a)

d I j (t)

dt
= I j (t)

{

β j − (d j + δ j + l j
)− β j

N j (t)
I j (t)

}

+
∑

k∈Ω
i jk(τ jk, t), (4.1b)

where

i jk(τ jk, t) = α jke(β
T
jk−δT

jk)τ jk Ik(t − τ jk)

1 + e
(βT

jk−δT
jk )τ jk −1

βT
jk−δT

jk

βT
jk Ik (t−τ jk )

Nk (t−τ jk )

(4.2)

for j ∈ Ω . We obtain a closed system of delay differential equations (4.1) with (4.2)
being an alternative expression of (2.6), which results from the disease transmission in
the transportation. In the sequel we analyse dynamical properties of (4.1) with (4.2).

4.1 Asymptotic stability of the total population

To analyse the dynamics of the total population, we introduce the vector valued func-
tion N (t) defined as

N (t) := (N1(t), . . . , Nn(t))
T .

We denote by C = C([−τ, 0],Rn) the Banach space of continuous functions mapping
the interval [−τ, 0] into R

n equipped with the sup-norm, where τ := maxk, j∈Ω τk j .
The nonnegative cone of C is defined as C+ := C([−τ, 0],Rn+). Let

G := C
([−τ, 0], intRn+

) ⊂ C+,

which is the set that contains only the strictly positive functions. Due to the biological
interpretation, for (4.1a) we consider initial conditions N (θ) = ψ(θ) for θ ∈ [−τ, 0],
where ψ ∈ G. Then one can see that every component of the solution of (4.1a) is
strictly positive for t > 0.

Remark 4.1 For any nonnegative initial function, system (4.1a) generates a strictly
positive solution. However, we require the initial function of (4.1a) to be in G, in order
to define (4.2) for small t .

To prove asymptotic stability of (4.1a), we use some properties of M-matrices and
diagonally dominant matrices. Let A := (ai j )n×n be an n × n real square matrix. For
A with non-positive off-diagonal entries, A is said to be a nonsingular M-matrix if all
principal minors of A are positive. See also Theorem 5.1 in Chapter 5 in Fiedler (1986)
for equivalence conditions which characterise nonsingular M-matrices (matrices of
class K ). Following Chapter 5 in Fiedler (1986), we say that A is a diagonally dominant
matrix if there exist positive numbers ci , i ∈ {1, 2, . . . . , n} such that
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|aii | ci >

n∑

j=1, j �=i

∣
∣ai j
∣
∣ c j for every i ∈ {1, 2, . . . , n} .

We also refer to Theorem 5.14 in Chapter 5 in Fiedler (1986) to associate diagonally
dominant matrices with M-matrices.

Theorem 4.2 There exists a unique positive equilibrium of (4.1a), where each com-
ponent is strictly positive. The positive equilibrium is globally asymptotically stable.

Proof Let us assume that there exists an equilibrium. Denote it by a column vector

given as N+ := (N+
1 , . . . , N+

n

)T
. We define a column vector and a square matrix as

A := (A1, . . . , An)
T

and

D := diag (d1 + l1, . . . , dn + ln)− (α jk
)

n×n,

respectively. Then the equilibrium satisfies the linear equation

0 = A − DN+. (4.3)

Since DT is a diagonally dominant matrix, D is a diagonally dominant matrix as
well by applying Theorem 5.15 in Fiedler (1986). Moreover, one can prove that D
is an M-matrix by Theorem 5.14 in Fiedler (1986). Thus D is a non-singular matrix
and D−1 ≥ 0, see Theorem 5.1 in Fiedler (1986). Hence, one can solve (4.3) as
N+ = D−1 A ≥ 0, where the inequality holds componentwise. To prove that each
component of the equilibrium is strictly positive, we suppose that there exists j ∈ Ω
such that N+

j = 0. Then it follows that

0 = A j +
∑

k∈Ω
α jk N+

k > 0,

which is a contradiction. Thus each component of the equilibrium is strictly positive.
To show the asymptotic stability, we define x j (t) := N j (t)− N+

j for j ∈ Ω . Then

d

dt
x j (t) = − (d j + l j

)
x j (t)+

∑

k∈Ω
α jk x j (t − τ jk) (4.4)

for j ∈ Ω . Now it is straightforward to apply Theorem 2.1 in Győri (1992) or Theorem
1 in Hofbauer and So (2000), using the property of the square matrix D as an M-matrix,
to conclude that the zero solution of (4.4) is asymptotically stable. ��
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5 Disease transmission dynamics

We introduce a vector valued function I (t) defined as

I (t) := (I1(t), . . . , In(t))
T .

Consider a product space of continuous functions given as �n
j=1C

([−r j , 0
]
,R
)
,

equipped with the sup-norm, where r j := maxk∈� τk j . We use a convention such that
C
([−r j , 0

]
,R
) = R if r j = 0. Let us define the set

X := �n
j=1C

([−r j , 0
]
,R+

)
.

From the biological motivation, the initial function for (4.1) is taken from G × X , i.e.

(N (θ), I (θ)) = (ψ(θ), φ(θ)), θ ≤ 0,

where (ψ, φ) ∈ G × X . Finally, we assume that

φ(θ) ≤ ψ(θ), θ ≤ 0,

which has the obvious biological interpretation that in each region the initial infected
population is a part of the total population. Then we prove well-posedness of the
system (4.1) in Appendix A.1.

Lemma 5.1 For each initial function, system (4.1) generates a unique nonnegative
bounded solution defined for all t > 0. In particular, it holds that 0 ≤ I (t) ≤ N (t)
for t > 0.

Let us define

A := (α jk
)

n×n .

For this matrix we can associate a directed graph [see Fiedler (1986)] with n vertices,
where there is a directed edge from vertex k to vertex j if and only if α jk �= 0. Then
the graph of A reflects the structure of the transport connection among regions. For
example, A is an irreducible matrix if and only if for any pair of two regions there
is a path from one to the other region, i.e., the associated directed graph is strongly
connected. We refer to the scenario in which A is an irreducible matrix as strongly
connected transportation network. We refer to the other scenario in which A is a
reducible matrix as not strongly connected transportation network.
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5.1 Strongly connected transportation network

To consider positive solutions, from the phase space we exclude the disease free
subspace G × {0̂}, where

{0̂} := {φ ∈ X : φ j (θ) = 0, θ ∈ [−r j , 0], j ∈ Ω} .

Then system (4.1) generates a positive solution for a sufficiently large t , see e.g.
Theorem 1.2 in Chapter 5 in Smith (1995) for the proof. Thus there exists σ > 0 such
that I j (t) > 0 for all t > σ and j ∈ Ω .

Remark 5.2 If φ ∈ {0̂}, then I (t) = (0, . . . , 0) for t > 0 holds. It has an obvious
biological interpretation that if there is no infected individual in any of the regions,
then the disease does not spread.

One can consider (4.1b) as a system of non-autonomous delay differential equations
with a non-autonomous term N (t), which is governed by system (4.1a). We derive a
limiting system of (4.1b) using Theorem 4.2. We define a positive function as

g jk(x) := α jke(β
T
jk−δT

jk )τ jk x

1 + e
(βT

jk−δT
jk )τ jk −1

βT
jk−δT

jk

βT
jk x

N+
k

for x ∈ [0,∞) (5.1)

for j, k ∈ Ω . By Theorem 4.2, one can obtain

lim
t→+∞

(
i jk(τ jk, t)− g jk(Ik(t − τ jk))

) = 0,

for any j, k ∈ Ω . As an asymptotically autonomous system of (4.1b), we get the
following system of delay differential equations

d I j (t)

dt
= I j (t)

{

β j − (d j + δ j + l j
)− β j

N+
j

I j (t)

}

+
∑

k∈Ω
g jk
(
Ik(t − τ jk)

)
(5.2)

for j ∈ Ω .
In Appendix A.1 we apply a threshold type result for cooperative systems of func-

tional differential equations in Zhao and Jing (1996) to prove the following theorem.

Theorem 5.3 For (5.2), if R0 ≤ 1, then the trivial equilibrium is globally asymptot-
ically stable in X, whereas if R0 > 1, then there exists a positive equilibrium, where
each component is strictly positive. The positive equilibrium is globally asymptotically
stable in X\{0̂}.
We return to the analysis of (4.1) by exploiting the result in Theorem 5.3. We denote
by N+ := (N+

1 , . . . , N+
n

)
the positive equilibrium of (4.1a), which is given in Theo-

rem 4.2. Then one can see that (4.1) has the disease free equilibrium given as
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(
N+, 0

) = (N+
1 , . . . , N+

n , 0, . . . , 0
)
. (5.3)

We denote by I+ := (
I +
1 , . . . , I +

n

)
the positive equilibrium of (5.2). Then we imme-

diately see that (4.1) has an endemic equilibrium given as

(
N+, I+) = (N+

1 , . . . , N+
n , I +

1 , . . . , I +
n

)
, (5.4)

if R0 > 1. We prove global asymptotic stability of equilibria of (4.1) in Appendix
A.1, where we apply the theory of asymptotically autonomous systems, see Thieme
(1992).

Theorem 5.4 For (4.1), if R0 ≤ 1, then the disease free equilibrium is globally
asymptotically stable in G × X, whereas if R0 > 1, then the endemic equilibrium is
globally asymptotically stable in G × (X\{0̂}).

5.2 Not strongly connected transportation network

For not strongly connected transportation networks, A is a reducible matrix. After
operating a suitable permutation matrix, one can see that there exists m ∈ N+ such
that A has a triangular block form given as

A =

⎛

⎜
⎜
⎜
⎝

A11 0 · · · 0
A21 A22 0
...

. . .
...

Am1 · · · · · · Amm

⎞

⎟
⎟
⎟
⎠
, (5.5)

where each diagonal entry is a square matrix that is either an irreducible matrix or a 1×1
null matrix, see Chapter 2.3 in Berman and Plemmons (1994). We assume that App is a
n p×n p square matrix, where n p is a positive integer. We define a set M := {1, . . . ,m},
containing indices of diagonal entries in (5.5). For every p ∈ M we then define

ωp :=
{
ωp, ωp + 1, . . . , ωp − 1, ωp

}
, where ωp :=∑p−1

k=1 nk +1, ωp :=∑p
k=1 nk

withω1 := 1. Now one has thatΩ = ∪m
p=1ωp, which implies that the whole system can

be divided into m sets of regions. For every p ∈ M, if n p ≥ 2, then the transportation
network among the regions j ∈ ωp is strongly connected, whereas if n p = 1, the set
consists of a single region j ∈ ωp.

Finally, for all p ∈ M we refer to the set of regions j for j ∈ ωp as the pth block,
see Fig. 1 for an example.

Remark 5.5 For a given reducible matrix A, in general, the triangular matrix form
(5.5) is not uniquely determined, thus some blocks are not necessary to be labelled
uniquely. In the system described as in Fig. 1, one can reorder the 1st and the 2nd
blocks.
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1

2

3

4 5

6

7

8

1st block 2nd block 3rd block 4th block
ω1 = {1,2} ω2 = {3,4,5} ω3 = {6} ω4 = {7,8}

Fig. 1 Diagram for transmission of the disease when the transportation network is not strongly connected.
In this example, there are eight regions categorised by four blocks. The arrows indicate the transport
connections

As in Sect. 5.1, to consider positive solutions, we exclude the disease free subspace
from the phase space. Let

X p := �
ωp
j=ωp

C
([−r j , 0

]
,R+

)

for each p ∈ M. Note that now X = �m
p=1 X p. For each p ∈ M we give the disease

free subspace {0̂}p ⊂ X p as

{0̂}p := {φ ∈ X p : φ j (θ) = 0, θ ∈ [−r j , 0], j ∈ ωp
}
.

Let us define X̆ := �m
p=1(X p\{0̂}p). We choose the initial function φ ∈ X̆ . Then

system (4.1) generates a positive solution for a sufficiently large t , in particular, in
absence of the transportation connecting blocks.

We now define a reproduction number for each block. Now the next generation
matrix has a triangular form:

M =

⎛

⎜
⎜
⎜
⎝

M11 0 · · · 0
M21 M22 0
...

. . .
...

Mm1 · · · · · · Mmm

⎞

⎟
⎟
⎟
⎠
,

where each diagonal entry is a square matrix that is either an irreducible matrix or
a 1 × 1 matrix, see again Chapter 2.3 in Berman and Plemmons (1994). For every
p ∈ M we denote the spectral radius of Mpp by Rp, which is the basic reproduction
number for the pth block in absence of infected individuals coming from other blocks
into the pth block via the transportation.

Remark 5.6 For p ∈ M such that n p = 1, one has Rp = βp
dp+δp+l p

.

We analyse the disease transmission dynamics step by step starting from the 1st block.
It is convenient to introduce the following terminology.
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Definition 5.7 For all p ∈ M, we say that the pth block is disease free if

lim
t→∞(I j (t)) j∈ωp = 0

for any solutions in X̆ . We say that the pth block is endemic if there exists a vector
I+

p := (I +
j ) j∈ωp with strictly positive components, and

lim
t→∞(I j (t)) j∈ωp = I+

p

for any solutions in X̆ .

It is straightforward to get the following threshold type result from Theorem 5.4.

Proposition 5.8 The 1st block is disease free if R1 ≤ 1, whereas it is endemic if
R1 > 1.

We employ mathematical induction to analyse the disease dynamics in the whole
system. Let us choose p ∈ M\ {1} arbitrarily. Suppose that all blocks from the 1st
block to the (p − 1)th block are already classified as endemic or disease free.

Definition 5.9 We say that the pth block is accessible from an endemic block if there
exists h ∈ {1, 2, . . . , p − 1} such that the hth block is endemic and Aph �= 0.

The disease dynamics in the pth block is determined as follows, see Appendix A.1.2
for the proof.

Proposition 5.10 For every p ∈ M\ {1} the following statements hold.

(i) Let us assume that the pth block is accessible from an endemic block. Then the
pth block is endemic.

(ii) Let us assume that the pth block is not accessible from an endemic block. Then
the pth block is disease free if Rp ≤ 1, whereas it is endemic if Rp > 1.

We note that the first statement of Proposition 5.10 implies that one endemic block
becomes a trigger to spread the disease to all directly and indirectly accessible blocks
via the transportation. The same structure of the equilibrium is found in a multi-patch
epidemic model without infection during the transportation in Theorem 4 in Arino
and Driessche (2003).

With Proposition 5.10 we can classify each block as endemic or disease free, which
forms an endemic pattern in the whole system. The classification can be done in the
following steps.

Form of the endemic pattern

(i) Determine R1. If R1 > 1,

(a) then the 1st block is endemic,
(b) else the 1st block is disease free.
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Table 1 Classification of the disease free and endemic blocks for the network described in Fig. 1

R1 R2 R3 R4 Disease free blocks Endemic blocks Globally stable
equilibrium

≤1 ≤1 ≤1 ≤1 1, 2, 3, 4 No such block (0, 0, 0, 0)

≤1 ≤1 ≤1 >1 1, 2, 3 4 (0, 0, 0, I+4 )
≤1 ≤1 >1 Any 1, 2 3, 4 (0, 0, I+3 , I+4 )
≤1 >1 Any Any 1 2, 3, 4 (0, I+2 , I+3 , I+4 )
>1 ≤1 Any Any 2 1, 3, 4 (I+1 , 0, I+3 , I+4 )
>1 >1 Any Any No such block 1, 2, 3, 4 (I+1 , I+2 , I+3 , I+4 )

(ii) For p ∈ M\ {1}
(a) if the pth block is accessible from an endemic block,

(i) then the pth block is endemic,
(ii) else determine Rp. If Rp > 1

(A) then the pth block is endemic,
(B) else the pth block is disease free.

Consider the network described as in Fig. 1 for an example. Note that now A has the
form

A =

⎛

⎜
⎜
⎝

A11 0 0 0
0 A22 0 0

A31 A32 A33 0
0 0 A43 A44

⎞

⎟
⎟
⎠ ,

where diagonal entries

A11 ∈ R
2×2+ , A22 ∈ R

3×3+ , A33 ∈ R
1×1+ and A44 ∈ R

2×2+

are irreducible blocks and off-diagonal entries are given as

A31 = (α61 0
)
, A32 = (α63 0 0

)
, A43 =

(
0 α76
0 0

)

.

According to the procedure for the classification, we can determine the disease free
and endemic blocks as in Table 1. This example illustrates that it is possible that the
system admits numerous endemic patterns by having partially endemic equilibria,
where some blocks are disease free and other blocks are endemic. This is in contrast
with a strongly connected network, where all regions are endemic or all of them are
disease free.

In Appendix A.1.2 we prove the following result.

Theorem 5.11 System (4.1) always has an equilibrium that is globally asymptotically
stable. Depending on the structure of the transportation network and reproduction
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numbers R1, R2, . . . , Rm, one can identify the endemic pattern of the equilibrium that
is globally asymptotically stable.

We close this section by describing the complete dynamics for the simplest case,
m = 2 as an application of Theorem 5.11. If A21 = 0 then, applying Theorem 5.4, the
disease dynamics can be determined independently for each block. Thus we consider
the case that A21 �= 0, i.e., the 2nd block is accessible from the 1st block.

Corollary 5.12 Let m = 2 and A21 �= 0. Then the following statements hold.

(i) If max {R1, R2} ≤ 1 then the disease free equilibrium given as E0 = (N+, 0, 0)
is globally asymptotically stable.

(ii) If R2 > 1 ≥ R1 then the equilibrium E2 = (N+, 0, I+
2 ), which is endemic only

for region 1, is globally asymptotically stable.
(iii) If R1 > 1 then the equilibrium E12 = (N+, I+

1 , I+
2 ), which is endemic for both

regions, is globally asymptotically stable.

6 Stability boundaries in a two-parameter plane

We visualise stability boundaries in a two-parameter plane for a system of two regions,
i.e., Ω = {1, 2}. For the two-region system we consider two types of transportation
connection as in Sect. 5, namely bidirectional transportation and unidirectional trans-
portation. Unidirectional transportation may arise in several real scenarios. When an
outbreak of an infectious disease in a two-region system is reported, the structure of
the transportation network may vary, from bidirectional to unidirectional transporta-
tion, since individuals do not likely to travel to the endemic region (Meloni et al.
2011) or one way of transportation may be shut down to implement a disease control
program. Rural-to-urban migration can be another example for unidirectional trans-
portation. From the visualization of stability boundaries in a two-parameter plane one
can see how the network structure of the transportation affects the disease transmission
dynamics.

6.1 Bidirectional transportation

First consider a situation in which the two regions are connected to each other via
bidirectional transportation. We assume that

α jk ∈ (0,∞) for j, k ∈ Ω. (6.1)

Then one obtains A = (α jk) j,k∈Ω as an irreducible matrix. From Theorem 5.4, we
can conclude that the condition

R0 = 1 (6.2)

plays as a threshold condition for the global stability of equilibria. The next generation
matrix (3.2) is given as

M =
(

R1 r12
r21 R2

)

,
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where

R j := β j

d j + δ j + αk j
, r jk := α jke(β

T
jk−δT

jk )τ jk

dk + δk + α jk
(6.3)

for j, k ∈ Ω . Here the notation R j means the basic reproduction number in region j ∈
Ω in absence of infected individuals from another region k, as in Sect. 5.2. Note that
the biological meaning is consistent with R j defined in Sect. 5.2. For the interpretation
of r jk , see Sect. 4. We give an explicit expression for the basic reproduction number.

Proposition 6.1 It holds that

R0 = 1

2

(

R1 + R2 +
√
(R1 − R2)

2 + 4r12r21

)

. (6.4)

Proof The eigenvalues of M are roots of the equation

(R1 − λ)(R2 − λ)− r12r21 = 0.

The roots of this quadratic equation can be computed as

λ1,2 = 1

2

{

(R1 + R2)±
√
(R1 − R2)

2 + 4r12r21

}

.

Since the larger root gives R0, we get (6.4). ��
From (6.4), if r12r21 ≥ 1, then one can easily deduce that R0 > 1 holds for any

(R1, R2) ∈ intR2+. Thus the endemic equilibrium is globally asymptotically stable
everywhere in the (R1, R2)-parameter plane. In this case the transport-related infec-
tion has enough potential to spread the disease in both regions although regional
reproduction numbers might be arbitrarily small. We fix r12 and r21 such that

r12r21 ∈ (0, 1) (6.5)

holds, and define a positive function as

ξ(x) := 1 − r12r21

1 − x
for x ∈ (0, 1 − r12r21) . (6.6)

Proposition 6.2 Let us assume that (6.5) holds. Then R0 ≤ 1 if and only if

R1 ∈ (0, 1 − r12r21) and R2 ∈ (0, ξ(R1)] . (6.7)

Proof First, let us assume that R0 ≤ 1. Since it holds that

R0 >
1

2

(

R1 + R2 +
√
(R1 − R2)

2
)

= max {R1, R2} ,
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 1.5
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 1.5
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 0  0.5  1  1.5  2

R
2

R1

DFE is GAS.

Both regions are disease free.

The endemic equilibrium exists and it is globally asymptotically stable.

Both regions are endemic.

R0 > 1

R0 < 1

1-r12r21

(R1)

Fig. 2 Stability regions of the disease free and the endemic equilibrium in (R1, R2)-parameter plane
for r12r21 ∈ (0, 1) when two regions are connected via bidirectional transportation. The curve is the
stability boundary defined in (6.6). DFE denotes the disease free equilibrium and GAS denotes globally
asymptotically stable

one can see that max {R1, R2} < 1. From (6.4), R0 ≤ 1 if and only if

√
(R1 − R2)

2 + 4r12r21 ≤ 2 − (R1 + R2) . (6.8)

Squaring both sides we get

r12r21 ≤ (1 − R1) (1 − R2) .

Since R2 > 0, one can obtain (6.7). Next we assume that (6.7) holds. One can compute
that

(1 − R1) (1 − R2) ≥ (1 − R1) (1 − ξ(R1)) = r12r21.

Then it is easy to obtain (6.8), which implies R0 ≤ 1. ��
One can see that the condition (6.2) can be expressed as R2 = ξ (R1), which we
call the stability boundary in the (R1, R2)-parameter plane. For the visualization of
the stability boundary, we plot this curve in Fig. 2. One can see that the stability
boundary separates the parameter plane into two distinct regions. We can determine
that the region above the stability boundary is the global stability region of the endemic
equilibrium, whereas the region below the stability boundary is the global stability
region of the disease free equilibrium. It is easy to prove that the stability region of the
disease free equilibrium is smaller than the region {(R1, R2) |R1 ≤ 1 and R2 ≤ 1}, as
shown in Fig. 2. Thus, as in Liu and Takeuchi (2006), Liu et al. (2008), it is possible
that both regional reproduction numbers are <1, but the disease is endemic in both
regions.
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 0
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 1

 1.5
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 0  0.5  1  1.5  2

R
2

R1

E0 is GAS.
Both regions are disease free.

E2 is GAS.
Only region 2 is endemic.

E12 is GAS.
Both regions are endemic.

Fig. 3 Stability boundaries of the disease free and two endemic equilibria in the (R1, R2)-parameter plane
for unidirectional transportation. We denote by E0, E2 and E12 the disease free equilibrium, the endemic
equilibrium for only region 2 and the endemic equilibrium for both regions, respectively. GAS denotes
globally asymptotically stable

6.2 Unidirectional transportation

Next we consider a system with one-way transportation from region 1 to region
2, when the transportation network is not strongly connected. We assume that
α21 ∈ (0,∞) , α12 = 0. For this scenario we have a complete picture of the disease
dynamics from Corollary 5.12 in Sect. 5.2. To visualise the results of Corollary 5.12,
it is natural to choose regional reproduction numbers as two free parameters, then
we can express respective stability regions of equilibria in the (R1, R2)-parameter
plane in Fig. 3. One can see that if the reproduction number for region 1 exceeds one,
then both regions become endemic, even if the reproduction number for region 2 is
<1. This clearly shows the impact of the unidirectional transportation on the disease
transmission dynamics.

7 Travel restrictions for a two-regional system

Since, for multi-patches epidemic models, the basic reproduction number is given as a
spectral radius of the “large” next generation matrix, it is not straightforward to derive
biological interpretations. Limiting the number of regions to two, it is possible to derive
more analytical results for the basic reproduction number, which may give some insight
into the impact of population dispersal on the disease transmission dynamics (Arino
and Driessche 2003; Gao and Ruan 2012; Hsieh et al. 2007; Li and Zou 2010). From
(6.4) with (6.3), one can observe that the basic reproduction number monotonically
increases with respect to the contact rates in the regions, the contact rates in the
transportation and the duration of the transportation; but decreases with respect to the
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mortality rate and recovery rate. This dependency has obvious biological meaning. In
the following we elaborate on the influence of two dispersal rates, α21 and α12. We
define a constant

η := e
1
2

{(
βT

21−δT
21

)
τ21+

(
βT

12−δT
12

)
τ12
}
, (7.1)

which is the basic reproduction number in the limit case when α21 and α12 tend to
infinity:

lim
α12,α21→∞ R0(α21, α12) = η.

To show the parameter dependency, we write R j (αk j ) = R j , r jk(α jk) = r jk for
j, k ∈ Ω . Without loss of generality, one can assume that R1(0) ≥ R2(0), which
implies that, in absence of the transportation, the basic reproduction number in region
1 is larger than that in region 2. Finally, we denote

∂ jR0 := ∂ jR0(α21, α12), j ∈ {1, 2} .

In Appendix A.2 we prove monotonicity of the basic reproduction number with respect
to one dispersal rate:

Theorem 7.1 For (α21, α12) ∈ intR2+ the following statements hold.

(i) Assume that R1(0) > R2(0) holds.

(a) If η > R1(0), then there exists z1 ∈ (0,∞) such that

∂1R0

⎧
⎨

⎩

< 0 for α12 = (0, z1) ,

= 0 for α12 = z1,

> 0 for α12 ∈ (z1,∞)

and ∂2R0 > 0.
(b) If either R1(0) ≥ η > R2(0) or R1(0) > η ≥ R2(0), then ∂1R0 < 0 and

∂2R0 > 0.
(c) If R2(0) > η, then ∂1R0 < 0 and there exists z2 ∈ (0,∞) such that

∂2R0

⎧
⎨

⎩

> 0 for α21 = (0, z2) ,

= 0 for α21 = z2,

< 0 for α21 ∈ (z2,∞) .

(ii) Assume that R1(0) = R2(0) holds.

(a) If η > R1(0), then ∂1R0 > 0 and ∂2R0 > 0.
(b) If R1(0) = η, then ∂1R0 = ∂2R0 = 0.
(c) If R1(0) > η, then ∂1R0 < 0 and ∂2R0 < 0.

Theorem 7.1 suggests that it is important to know the order of the three quantities,
R1(0), R2(0) and η, which measure the risk of infection in region 1, region 2 and in
the transportation. As an example we fix the parameters, except two dispersal rates,
as in Table 2, where η > R1(0) > R2(0) holds. Using the formula (6.4), we plot the
basic reproduction number as a function of (α21, α12) in Fig. 4.
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Table 2 Parameter values for numerical examples

In region 1, j = 1 In region 2, j = 2

β j Effective contact rate 0.35 0.1

d j Mortality rate 1/(70 · 365) 1/(60 · 365)

δ j Recovery rate 1/7 1/7

R j (0) Reproduction number 2.449 0.700

From region 1 to region 2 From region 2 to region 1

j = 2, k = 1 j = 1, k = 2

βT
jk Effective contact rate in the transportation 1.9 1.6

δT
jk Recovery rate in the transportation 0.1 0.1

τ jk Duration of the transportation 0.8 1

η Reproduction number in the transportation 4.349

Effective contact rate in the region is based on Nichol et al. (2010) for human influenza. In this parameter
setting η > R1(0) > R2(0) holds

 0
 0.2
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 0.2

 0.4
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21

12

R0

( , c )

Fig. 4 Shape of the basic reproduction number as a function of two dispersal rates

Theorem 7.1 implies that travel restrictions via reducing dispersal rates are not
always helpful to decrease the basic reproduction number, thus one should carefully see
how dispersal rates affect the basic reproduction number. To understand this we assume
that R1(0) > R2(0), which implies that, in absence of the transportation, individuals
in region 1 are exposed to relatively high risk of infection. One can notice that the
expected sojourn time of an infected individual in region 1, given as 1/(d1 +δ1 +α21),
decreases as increasing α21. Thus infected individuals in region 1 likely start a journey
to the safer place, region 2, as α21 is increasing. If R1(0) ≥ η, then the environment
inside the transportation is also relatively safe from the infection. Hence the dispersal
rate from region 1 to 2 has a positive effect for reducing the basic reproduction number
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as shown in (i)-(b) and (i)-(c) in Theorem 7.1. Let us focus on the scenario described
as

η > R1(0) > R2(0). (7.2)

If α12 is small then infected individuals in region 2 likely to stay at this safer place.
Thus the dispersal rate from region 1 to 2 reduces the basic reproduction number
[see (i)-(a) for small α12 in Theorem 7.1]. On the other hand, if α12 is large, then
the expected sojourn time of an infected individual in region 2 becomes short. Thus
infected individuals in region 2 are likely to start a journey to the more risky region 1,
rather than staying at region 2. Hence increasing α21, the infectious disease is mainly
transmitted in the transportation, where the risk of infection is highest among the
three different environments [see (7.2)], thus the basic reproduction number increases
as well. The dependency with respect to α12 can be discussed similarly.

Monotonicity of the basic reproduction number with respect to the mobility rate is
also investigated in Gao and Ruan (2012), Hsieh et al. (2007). The authors analyti-
cally give sufficient conditions for the monotonicity of the basic reproduction number
and present some numerical examples that shows the basic reproduction number non-
monotonically changes with respect to the mobility rate. Here, in Theorem 7.1, we
completely characterise the monotone dependency of the basic reproduction number,
which takes into account infection during transportation, with respect to one mobility
rate. The result in Theorem 7.1 implies that the travel restriction can have both negative
and positive impact for disease eradication. The authors in Hsieh et al. (2007) also find
the dilution effect that the basic reproduction number decreases as the mobility rate
from a high prevalence patch to a low prevalence patch increases, without assuming
the infection during the transportation.

We can numerically observe how the basic reproduction number changes as the
dispersal rates vary together. In the (α21, α12)-parameter plane we consider a para-
metrised straight line by ζ ∈ R+, along which we vary two parameters. The straight
line can be represented as

(α21, α12) = (ζ, cζ ), ζ ∈ R+,

where c ∈ R+ is a fixed constant characterising the slope, see Fig. 4 for a graphical
explanation. Using the parameter values given in Table 2 we plot the basic reproduction
number as a function of ζ in Fig. 5. For c = 0.001 one can temporarily decrease
the basic reproduction number below unity by reducing dispersal rates, but further
reduction increases the basic reproduction number. For small c, as ζ increases, α12
increases much slower than α21. Thus the basic reproduction number decreases with
respect to the dispersal rates, as explained above, by letting infected individuals in
region 1 board the transportation to region 2, which is the safer place. By further
increasing ζ , infected individuals in region 2 return to region 1 while spreading the
disease in the transportation. Thus, by the same mechanism described above, the basic
reproduction number increases as ξ increases. From Theorem 7.1 it is easy to see that
if R1(0) = R2(0) then the basic reproduction number monotonically either decreases
or increases with respect to ζ . We can conclude that the regional heterogeneity due to
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Fig. 5 Non-monotonicity of the basic reproduction number for five different c

the different infectious risks in regions is responsible for the non-monotonicity of the
basic reproduction number with respect to population dispersal rates.

8 Simulations for the impact of the reduced travel of infectives

The assumption αS
jk = α jk for any j, k ∈ Ω allowed us to perform a complete rig-

orous global analysis of our system, however it is restrictive, whenever infected indi-
viduals are less capable of travelling. In this section we numerically investigate the
general situation, where the dispersal rates of susceptible and infective individuals are
different. It is reasonable to suppose that αS

jk ≥ α jk , thus here we assume α jk = qαS
jk ,

where the parameter q ∈ [0, 1] represents the relative travel rate of infected individu-
als. The special case q = 1 means that the disease is so mild that infected individuals
travel at the same rate as susceptibles (this case was analysed in the previous sections),
while q = 0 means that infected individuals do not travel at all. Generally, we can
see from the simulations on a wide range of parameters that our system shows global
convergence of solutions. However, the parameter q has an important role not only in
determining the values of the steady states, but also in selecting which of the equilibria
is globally attractive. We highlighted two interesting situations in Figs. 6 and 7.

Figure 6 shows a scenario where the local reproduction numbers are <1, but the
disease is sustained in both patches due to travel related infections for q = 1. Reduc-
ing q means that infected individuals travel less, hence the number of travel related
infections decreases, thus one suspects that for q small enough, the disease will be
eradicated, and indeed this is the case [see (b) for q = 0.65].

In Fig. 7, the reproduction number of patch one is >1, while it is smaller than one
on patch two. This implies that in the absence of travel of infected individuals (q = 0),
the disease is endemic only in patch one and dies out in patch two. Allowing the travel
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Fig. 6 The figure depicts a situation when the disease is sustained in both patches with q = 1 (a), but dies
out for q = 0.65 (b). Parameters are taken as in Table 2 with the modification β1 = 0.1, τ21 = 1, and
setting αS

21 = 2 × αS
12 = 0.002, where A1 and A2 are set so that the total population of patch one and two

are 3 × 105 and 1.5 × 105. Solid curve is I1(t), dashed curve is I2(t). In this case both local reproduction
numbers are <1, and the disease is endemic only if sufficiently many infected individuals travel
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Fig. 7 The figure depicts a situation when for q = 0 (a) the disease is endemic in patch one but dies out in
patch 2. For q = 0.05 (b), the disease is endemic in both patches. Parameters are the same as in Fig. 6, only
the transmission rates are modified to β1 = 0.165 and β2 = 0.145. For a better visualization, we started
with large density of infection in patch two
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Fig. 8 Endemic equilibria I∗
1 (solid) and I∗

2 (dashed) as function of q for Figs. 6. and 7

of infected individuals even with a small rate q > 0 makes the disease endemic in
both patches.

The dependence of the endemic equilibria on q in the above cases is illustrated
in Fig. 8. In (a), one can observe a critical q∗, that is a threshold between disease
eradication and persistence. Notice that the endemic equilibria are very sensitive to
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Fig. 9 Monotone increasing, monotone decreasing, and non-monotone dependence of the endemic equi-
librium on q. Parameters are the same as before, except that in a αS

21 = 2 × αS
12 = 0.2, β1 = 0.3, β2 =

0.1, βT = 0.7, and in b β1 = 0.25, β2 = 0

q when q > q∗. In (b), the disease persists on both patches for all q > 0. The
role of q is particularly interesting in the case of strong heterogeneity, when the two
patches poses very different risk. Then, by means of transportation, infected individuals
move to a completely different environment. A particular case is shown in Fig. 9a,
where patch one has high prevalence, while patch two is disease free in the absence
of infected travellers. One can observe a nonmonotone behaviour with respect to q:
for a small travel rate of infected individuals, by transporting them to a safer patch
the density of infection is reduced in patch one. However, increasing the number of
infected travellers, this effect diminishes, as patch two becomes more risky, and at
the same time the increased volume of infected travellers generates more transport
related infections, thus the level of endemicity becomes increasing in patch one as
well as q is further increased. Figure 9b represents the extreme situation, when there
is no transmission at all in patch two (i.e. β2 = 0). Then, the density of infection is a
monotone decreasing function of q on patch one, while it is increasing in q in patch
two.

9 Discussion

We formulated an epidemic model for the spread of an infectious disease along with
population dispersal by a system of delay differential equations. The disease trans-
mission dynamics during transportation is described by a system of partial differential
equations, structuring the population by the time elapsed since the start of the travel as
in Liu et al. (2008). We improve the submodel for disease transmission dynamics dur-
ing transportation, by adding the possibility of recovery during travel, and by allowing
different mobility rates for susceptible and infective populations. Here, the mobility
rate is assumed to depend on the region where the individual currently resides, and the
individuals are homogeneously mixed into the local population upon arrival, thus our
model fits into the framework of the usual patch models in the literature (Arino 2009;
Brauer and Driessche 2001; Cui et al. 2006; Gao and Ruan 2012; Hsieh et al. 2007; Li
and Zou 2010; Wang and Zhao 2004, 2005), that accounts for long-term mobility
such as immigration of infectives. As examples describing short-term mobility
such as tourism and business travels, we refer to Arino and Driessche (2003) and
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Knipl et al. (2013), where the mobility rates depend on the individual’s original and
current locations as well.

To describe the spatial structure and the connectivity of distinct regions, we adopt
the concept of directed graph (Fiedler 1986), which is widely used in the context
of metapopulation type epidemic models, see Arino (2009), Arino and Driessche
(2003). See also Colizza and Vespignani (2007, 2008), Meloni et al. (2011), Poletto
et al. (2012), where the authors use graphs with various degree distributions to cap-
ture human mobility patterns during an epidemic. In the present manuscript, the travel
matrix A describes the connectivity of regions, and from A one can construct a directed
graph, representing the transportation network. Any transportation networks charac-
terised by directed graphs can be classified as either strongly connected or not strongly
connected, in other words, the travel matrix A is either an irreducible or a reducible
matrix. Here we consider both types of transportation network and then show that the
disease dynamics can be characterised by the structure of the transportation network.

For the multi-regional models without incorporating transport-related infection, it
is known that if the transportation network is strongly connected, then the basic repro-
duction number determines whether the disease free equilibrium is globally stable or
the disease is uniformly persistent everywhere, see Wang and Zhao (2004, 2005), Li
and Zou (2010). In Theorem 5.4 we also show that our model admits a threshold-
type dynamics: if the basic reproduction number is less than or equal to one then the
disease free equilibrium is globally asymptotically stable, while if the basic repro-
duction number is>1 then the endemic equilibrium is globally asymptotically stable.
Subsequently we analyse the system when the transportation network is not strongly
connected. In the literature, qualitative analysis for multi-regional systems without
strongly connected transportation network seems to be limited (except Li and Zou
2010; Arino et al. 2006, where only 2 and 3 patches are considered). In Sect. 5.2,
keeping the generality for the number of regions, we consider the disease dynamics in
the reducible case. First we show that the whole multi-regional system can be seen as
a set of blocks, where regions within each block are strongly connected via the trans-
portation. Then we provide a systematic way to determine the endemic situation in
each block, see Proposition 5.10 and the preceding procedure. Proposition 5.10 gives
a simple rule: if the block is accessible from other endemic blocks then that block is
also endemic, otherwise the basic reproduction number for the particular block deter-
mines the endemic situation as stated in Theorem 5.4. Thus, in general, the system
admits partially endemic equilibria, where endemic blocks and disease free blocks
coexist. We further prove that our model always has an equilibrium that is globally
asymptotically stable.

To understand the disease dynamics in a heterogeneous environment, our modelling
and analysis suggest that the first priority is to confirm the strong connectivity of the
transportation network. If it is strongly connected then the basic reproduction number
becomes an important quantity to determine the disease transmission dynamics. If the
transportation network is not strongly connected, then we may relabel the regions so
that the travel matrix A has a triangular form (5.5). From this reordering process, the
whole multi-regional system will be divided into blocks. By following the procedure
in Sect. 5.2 one can determine every possible disease dynamics. Since there may be
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a source block that spreads the disease to other blocks, one may try to decrease the
basic reproduction number of the source block to eradicate the disease.

Our model explicitly incorporates transport-related infection, taking into account
the time to complete travel between regions, differently from the models in Arino
and Driessche (2003), Arino et al. (2007), Bajardi et al. (2011), Colizza et al. (2006),
Colizza and Vespignani (2007, 2008), Meloni et al. (2011), Poletto et al. (2012), Cui
et al. (2006), Liu and Takeuchi (2006), Wang and Zhao (2004). The potential impact
of the transport-related infection can be also seen from the expression of the basic
reproduction number, obtained in (6.4) in Sect. 6, for a two-regional system. If there is
no transport-related infection, one always has r12r21 < 1. However, infection during
the travel may allow r12r21 to exceed one, from which the basic reproduction number
also exceeds one. Thus the transport-related infection itself may have enough potential
to spread the disease in the host population.

We also consider the effect of travel restrictions for the two-regional system via
analysing how population dispersal rates change the basic reproduction number in
Sect. 7. Using mathematical models it is reported that travel restriction can delay
the outbreak of influenza (Hollingsworth et al. 2006; Bajardi et al. 2011; Epstein
et al. 2007). Our results suggest that travel restrictions may not be efficient to con-
trol the basic reproduction number. Similar results are obtained in different models
(Hsieh et al. 2007; Gao and Ruan 2012). It is also shown that the basic reproduction
number does not necessarily decrease as population mobility decreases, see Fig. 5.
Controlling the local infectious process in each region by e.g. reducing contact rates via
isolation policy seems to be more efficient to decrease the basic reproduction number
than reducing the population mobility. In most real situations, infected individuals are
less likely to travel than susceptibles. The impact of this difference on the dynamics
is discussed in details in Sect. 8.

In this manuscript we assume a continuous process of population dispersal. In
reality, airline flights or trains, connecting distinct areas, are periodically scheduled,
thus mobility can be given by periodic (and possibly discontinuous) functions. This
assumption leads to a model by delay differential equations with periodic coefficients,
where it is much harder to draw biological conclusions, due to the difficulties in
the qualitative analysis. Stochastic components may also play a role in the infectious
process, as during the transportation, only a limited number of individuals are confined
into one carrier, even when the total volume of transportation is very large (this holds
for human travel as well as animal transportation). Coupling the stochastic process
during transportation with time delay to a deterministic system on the patches is also
challenging. We leave these considerations as future work.
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Appendix A

We introduce a partial order for real vectors as well as real matrices, which will be used
throughout the appendix. For two l ×m real matrices A = (a jk)l×m and B = (b jk)l×m

we write

A ≥ B if a jk ≥ b jk for all j and k.

Moreover, we write

A > B if A ≥ B and A �= B.

A.1 Disease transmission dynamics

Proof of Lemma 5.1 We define f̃ : R+ × X → R
n as

f̃ j (t, φ) := φ j (0)

{

β j − (d j + δ j + l j
)− β j

N j (t)
φ j (0)

}

+
∑

k∈Ω

α jke(β
T
jk−δT

jk )τ jkφk(−τ jk)

1 + e
(βT

jk−δT
jk )τ jk −1

βT
jk−δT

jk

βT
jkφk (−τ jk )

Nk (t−τ jk)

,

where Ni , i ∈ Ω has to be understood as a nonautonomous term determined by (4.1a).
Since f̃ is locally Lipschitzian with respect to the second argument, there exists ι > 0
such that (4.1b) has a unique local solution on (0, ι), see Theorem 2.3, Chapter 2 in
Hale and Verduyn Lunel (1993). It is easy to see that if φ ≥ 0 and φ j (0) = 0 then
f̃ j (t, φ) ≥ 0 for j ∈ Ω . Thus from Theorem 2.1 of Chapter 5 in Smith (1995), the
solution of (4.1b) is nonnegative. We show the boundedness of the solution. Suppose
that there exists j ∈ Ω and t > 0 such that

I j (t) = N j (t),
d

dt

(
I j (t)− N j (t)

) ≥ 0 and Ik(s) ≤ Nk(s) for k ∈ Ω and s ≤ t.

Since from (2.4), for any k ∈ Ω\{ j}, one has i jk(τ jk, t) ≤ α jk Nk(t − τ jk), we get

d

dt

(
I j (t)− N j (t)

) ≤ −δ j N j (t)− A < 0,

which is a contradiction. Thus I (t) ≤ N (t) follows for t ∈ (0, ι). Boundedness of N (t)
follows from Theorem 4.2, thus I (t) is also bounded. Finally, one can take ι = +∞
by continuation of the solution, see Chapter 2 in Hale and Verduyn Lunel (1993). ��
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A.1.1 Strongly connected transportation network

The limit system (5.2) can be written as

d

dt
I (t) = f (It ),

where the map f : X → R
n is defined by

f j (φ) := φ j (0)

{

β j − (d j + δ j + l j
)− β j

N+
j

φ j (0)

}

+
∑

k∈Ω
g jk
(
φk(−τ jk)

)

for j ∈ Ω .

Proof of Theorem 5.3 We apply Theorem 3.2 in Zhao and Jing (1996). We verify that
f is a cooperative and sublinear map. It is straightforward to see that other assumptions
in Theorem 3.2 in Zhao and Jing (1996) hold, thus we omit it. The Frechét derivative
of f evaluated at ψ ∈ X is given as

D f j (ψ)φ = φ j (0)

{

β j − (d j + δ j + l j
)− 2

β j

N+
j

ψ j (0)

}

+
∑

k∈Ω
g′

jk

(
ψk(−τ jk)

)
φk(−τ jk) (10.1)

for j ∈ Ω and φ ∈ X . Then one can see that f is continuously Frechét differentiable.
For any ψ, φ ∈ X with φ j (0) = 0 and j ∈ Ω one has

D f j (ψ)φ =
∑

k∈Ω
g′

jk

(
ψk(−τ jk)

)
φk(−τ jk) ≥ 0.

Hence, f is a cooperative map in X . Now we define a map F : R
n+ → R

n by

F(x) := f (x̂),

where ·̂ denotes the natural inclusion from R
n to X . We show that f is sublinear and

that F is strictly sublinear, i.e., for any c ∈ (0, 1) it holds that

f (cφ) ≥ c f (φ), F(cx) > cF (x) (10.2)

for any φ ∈ X and x ∈ intRn+. Choose j ∈ Ω arbitrarily. For any c ∈ (0, 1) one can
compute that
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f j (cφ)− c f j (φ) =(1 − c)
β j

N+
j

cφ j (0)+
∑

k∈Ω

{
g jk
(
cφk(−τ jk)

)− cg jk
(
φk(−τ jk)

)}
,

Fj (cx)− cFj (x) = (1 − c)
β j

N+
j

cx j +
∑

k∈Ω

{
g jk (cxk)− cg jk (xk)

}

for any φ ∈ X and x ∈ intRn+. From the definition of g jk in (5.1), for any k ∈ Ω\ { j}
it holds that

g jk (cx)− cg jk (x) ≥ 0, x ∈ [0,∞) ,

thus (10.2) follows. We show that I (t) is bounded. Since there exists ρ such that

∑

k∈Ω
g jk
(
Ik(t − τ jk)

) ≤ ρ,

one can derive a comparison system:

d

dt
y j (t) = y j (t)

{

β j − (d j + δ j + l j
)− β j

N+
j

y j (t)

}

+ ρ

for j ∈ Ω . It is easy to see that y j (t) is bounded, thus so is I j (t). Finally, one
can see that DF(0) = B holds. Thus by Theorem 3.2 in Zhao and Jing (1996) and
Proposition 3.2 the threshold dynamics can be expressed in terms of R0. ��

To discuss the asymptotic stability of equilibria of (4.1), we apply the principle of
linearised stability, see Theorem 6.8 in Chapter VII in Diekmann et al. (1995). Denote
eλ(θ) := (

eλθ , . . . , eλθ
)

for θ ≤ 0 and by E the n × n identity matrix. We prove the
following result.

Lemma 10.1 Let (N+, I) be an equilibrium of (4.1). If all roots of the following
equation

det (D f (I)eλ − λE) = 0, (10.3)

have negative real parts then the equilibrium is asymptotically stable.

Proof We define two maps J1 : G → R
n and J2 : G × X → R

n for the right hand
side of (4.1), i.e., (4.1) can be written as

d

dt
N (t) = J1(Nt ), (10.4a)

d

dt
I (t) = J2(Nt , It ). (10.4b)

For an equilibrium (N+, I) of (4.1), one can derive the characteristic equation as

det

(
D J1(N+)eλ − λE 0

D1 J2(N+, I)eλ D2 J2(N+, I)eλ − λE

)

= 0. (10.5)
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From Theorem 4.2 we know that every root of the equation:

det
(
D J1(N+)eλ − λE

) = 0

has negative real part. Thus we consider the location of the roots of the equation

det
(
D2 J2(N+, I)eλ − λE

) = 0, (10.6)

which is equivalent to (10.3). Thus we obtain the conclusion. ��
Proof of Theorem 5.4 First we prove asymptotic stability of equilibria.

Proposition 10.2 For (4.1) if R0 ≤ 1 then the disease free equilibrium is asymp-
totically stable, whereas if R0 > 1 then the endemic equilibrium is asymptotically
stable.

Proof All roots of (10.3) are located in the right half complex plane if and only if the
trivial equilibrium of the equation

d

dt
y(t) = D f (I)yt (10.7)

is asymptotically stable. The linearised system (10.7) can be written as

d

dt
y j (t) =

{

β j − (d j + l j + δ j
)− 2

β j

N+
j

I j

}

y j (t)+
∑

k∈Ω
g′

jk(Ik)yk(t −τ jk) (10.8)

for j ∈ Ω . We apply Theorem 1 in Hofbauer and So (2000) to (10.8). System (10.8)
with I = 0 becomes

d

dt
y j (t) = {β j − (d j + l j + δ j

)}
y j (t)+

∑

k∈Ω
α jke

(
βT

jk−δT
jk

)
τ jk yk(t − τ jk)

for j ∈ Ω . Let us assume that R0 < 1 holds. Then by Proposition 3.2, one has
s(B) < 0. Since off-diagonal entries of −B are nonpositive, −B is a non-singular
M-matrix, see Lemma 2.1 in Faria (2011) for the proof. From Proposition 3.1 it holds
that

β j − (d j + l j + δ j
)
< 0.

Hence by Theorem 1 in Hofbauer and So (2000) the trivial equilibrium of (10.7) is
asymptotically stable. Next we assume that R0 > 1. We consider system (10.8) with
I = I+. We define a matrix

B(I+) := diag

{

β1

(

1 − 2
I +
1

N+
1

)

− (d1 + l1 + δ1) , . . . , βn

(

1 − 2
I +
n

N+
n

)

− (dn + ln + δn)

}

+
(

g′
jk(I

+
k )
)

n×n
.
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One can see that the equilibrium condition is given as

R(I+)I+ = 0, (10.9)

where

R(I+) := diag

{

β1

(

1 − I +
1

N+
1

)

− (d1 + l1 + δ1) , . . . , βn

(

1 − I +
n

N+
n

)

− (dn + ln + δn)

}

+
(

g jk(I
+
k )

I +
k

)

n×n

.

Since
g jk (I

+
k )

I +
k

> g′
jk(I

+
k ) holds for j, k ∈ Ω , one can see that R(I+) > B(I+). Then

one has
0 = −R(I+)I+ < −B(I+)I+. (10.10)

Since off-diagonal entries of −B(I+) are nonpositive, (10.10) implies that −B(I+) is
an M-matrix (a matrix of class K ), see Theorem 5.1 in Fiedler (1986). Thus−B(I+) is a
non-singular matrix and all principal minors of−B(I+) are positive, i.e., detB(I+) �= 0
and B(I+) is weakly diagonally dominant in the sense of Hofbauer and So (2000).
Finally, from (10.9) one can see that

{

β j

(

1 − I +
j

N+
j

)

− (d j + l j + δ j
)
}

I +
j +

∑

k∈Ω
g jk(I

+
k ) = 0,

which is equivalent to

β j

(

1 − I +
j

N+
j

)

− (d j + l j + δ j
) = − 1

I +
j

∑

k∈Ω
g jk(I

+
k ) < 0

for j ∈ Ω . Thus every diagonal entry of B(I+) is negative. Therefore, by Theorem 1
in Hofbauer and So (2000) we conclude that (10.8) is asymptotically stable. Finally
we prove the stability for the case R0 = 1 by a comparison argument. For any ε there
exists t0 such that N j (t) ≤ N+

j + ε for t > t0. We write N ε
j instead of N+

j + ε. It
holds that

d

dt
I j (t)≤

{

β j − (d j +δ j +l j
)− β j

N ε
j

I j (t)

}

I j (t)+
∑

k∈Ω
α jke

(
βT

jk−δT
jk

)
τ jk Ik(t − τ jk)

for t > t0 and j ∈ Ω . We consider an auxiliary system given by

d

dt
y j (t) =

{

β j − (d j + δ j +l j
)− β j

N ε
j

y j (t)

}

y j (t)+
∑

k∈Ω
α jke

(
βT

jk−δT
jk

)
τ jk yk(t−τ jk)

(10.11)
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for t > t0 with yt0 = It0 . We define a matrix as

F̃(y) := diag

{

β1 − (d1 + l1 + δ1)− β1

N ε
1

y1, . . . , βn − (dn + ln + δn)− βn

N ε
n

yn

}

+
(

g′
jk(I

+
k )
)

n×n
.

Since DF̃(0) = B follows, one can notice that R0 = 1 implies s(DF̃(0)) = s(B) = 0
by Proposition 3.2. Now it is straightforward to apply Theorem 3.2 in Zhao and Jing
(1996), see also the proof of Theorem 5.3, to conclude that the trivial equilibrium
of (10.11) is asymptotically stable for j ∈ Ω . The comparison argument shows the
stability of the disease free equilibrium of (4.1). ��
Proposition 10.3 For (4.1) if R0 ≤ 1 then the disease free equilibrium is globally
attractive in X, whereas if R0 > 1 then the endemic equilibrium is globally attractive
in X\{0̂}.
Proof Since we have the boundedness of solutions from Lemma 5.1, one can show
that forward orbits of (4.1b) are precompact thus the ω-limit sets are not empty, see
e.g. Chapter 5 in Smith (2011). We apply Theorem 4.1 in Thieme (1992). First we
consider the case R0 ≤ 1. From Theorem 5.3 and Remark 5.2 the basin of attraction
of the trivial equilibrium of (5.2) is X . Hence the ω-limit set of every forward orbit
of (4.1b) intersects the basin of attraction. By Theorem 4.1 in Thieme (1992) we can
conclude that every solution of (4.1b) converges to the disease free equilibrium. Next
we consider the case R0 > 1. We exclude the possibility that the ω-limit set of a
forward orbit of (4.1b) contains the trivial element 0̂. Suppose that there is a solution
I (t) of (4.1b) such that

lim
t→∞ I (t) = 0. (10.12)

Since, from Lemma 4.2, it holds that limt→∞ N j (t) = N+
j for j ∈ Ω , for any

ε ∈ (0, 1) and for all j, k ∈ Ω there exists a sufficiently large T such that

β j

N j (t)
I j (t) < ε and

1

1 + e
(βT

jk−δT
jk )τ jk −1

βT
jk−δT

jk

βT
jk Ik (t−τ jk )

Nk (t−τ jk )

> 1 − ε.

For t > T, from (4.1b) we find an estimate

d I j (t)

dt
> I j (t)

{
β j − (d j+δ j + l j )− ε

}+ (1 − ε)
∑

k∈Ω
α jke

(
βT

jk−δT
jk

)
τ jk Ik(t − τ jk).

We consider the following auxiliary system

dy j (t)

dt
=y j (t)

{
β j − (d j+δ j + l j )− ε

}+ (1 − ε)
∑

k∈Ω
α jke

(
βT

jk−δT
jk

)
τ jk yk(t − τ jk).
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For ε ∈ (0, 1) we define a matrix as

Bε := diag (β1 − (d1 + δ1 + l1)− ε, . . . , βn − (dn + δn + ln)− ε)

+ (1 − ε)

(

α jke

(
βT

jk−δT
jk

)
τ jk

)

n×n
.

Since we have s(B) > 0 from Proposition 3.2, for sufficiently small ε one has s(Bε) >
0. We fix ε so that s(Bε) > 0. Since BT

ε is an irreducible matrix with non-negative
off-diagonals, s(BT

ε ) = s(Bε) is a simple eigenvalue with a positive eigenvector, see
Theorem A.5 in Smith and Waltman (1995). Let

q := (q1, . . . , qn)
T

be the positive eigenvector corresponding to s(Bε) for BT
ε i.e. one has that

BT
ε q = s(Bε)q.

We define a functional as

V (yt ) :=
∑

j∈Ω
q j

⎛

⎜
⎝y j (t)+ (1 − ε)

∑

k∈Ω
α jke

(
βT

jk−δT
jk

)
τ jk

t∫

t−τ jk

yk(σ )dσ

⎞

⎟
⎠ .

Then

dV (yt )

dt
=
∑

j∈Ω
q j

[

y j (t)
{
β j − (d j + δ j + l j )− ε

}+ (1 − ε)
∑

k∈Ω
α jke

(
βT

jk−δT
jk

)
τ jk yk(t)

]

= 〈Bε y(t),q〉 ,

where 〈·, ·〉 denotes the scalar product. Since one has that

〈Bε y(t),q〉 =
〈
y(t), BT

ε q
〉
= 〈y(t), s(Bε)q〉 ,

we get dV (yt )
dt > 0. Hence V (yt ) is increasing with respect to t . From a comparison

argument it is easy to see that a positive solution of (4.1b) can not converge to the
trivial equilibrium, which contradicts the assumption (10.12). Thus the ω-limit set of
any forward orbit of (4.1b) does not contain the trivial element. By Theorem 4.1 in
Thieme (1992), each solution of (4.1) converges to the endemic equilibrium. ��

From Propositions 10.2 and 10.3 we obtain Theorem 5.4. ��
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A.1.2 Not strongly connected transportation network

Let us choose p ∈ M\ {1} arbitrarily. The population dynamics in the pth block is
described as

d N j (t)

dt
= A j − (d j + l j

)
N j (t)+

∑

k∈∪p
h=1ωh

α jk Nk(t − τ jk), (10.13a)

d I j (t)

dt
= I j (t)

{

β j − (d j + δ j + l j
)− β j

N j (t)
I j (t)

}

+
∑

k∈∪p
h=1ωh

i jk(τ jk, t)

(10.13b)

for j ∈ ωp.

Proof of Proposition 5.10 (i) From the induction hypothesis there exists c :=(
c j
)

i∈ωp
> 0 such that

lim
t→∞

∑

k∈∪p−1
h=1ωh

i jk
(
τ jk, t

) = c j , j ∈ ωp. (10.14)

Note that there exists i ∈ ωp such that ci > 0 from the assumption that pth block is
accessible from an endemic block. We obtain the following limit system

d I j (t)

dt
= I j (t)

{

β j − (d j + δ j + l j
)− β j

N+
j

I j (t)

}

+
∑

k∈ωp

g jk
(
Ik(t − τ jk)

)+ c j

(10.15)
for j ∈ ωp. We prove global attractivity of (10.15). ��
Lemma 10.4 There exists a positive equilibrium of (10.15) which is globally asymp-
totically stable.

Proof First we show that if a nonnegative equilibrium exists then it is positive and
unique. The existence will be proved in the end. We define a map � : R

n p
+ → R

n p by

� j (x) := x j

{

β j − (d j + δ j + l j
)− β j

N+
j

x j

}

+
∑

k∈ωp

g jk (xk)+ c j .

We denote by a := (a j ) j∈ωp the equilibrium. The equilibrium satisfies

0 = �(a). (10.16)

From the irreducibility there is a path starting from region i , where one has ci > 0,
passing through all regions j ∈ ωp. Along this path we relabel the regions j ∈ ωp as

123



Global analysis for spread of infectious diseases 1447

i = i0 → i1 → · · · → in p . Suppose that ai0 = 0. Since we have ci0 > 0, (10.16)
implies that

0 =
∑

k∈ωp

gi0k (ak)+ ci0 > 0,

which is a contradiction. Thus ai0 > 0. We show that ain+1 > 0 if ain > 0 for
n ∈ {0, 1, . . . , n p − 1

}
. Suppose that ain+1 = 0. Then (10.16) implies that

0 =
∑

k∈ωp

gin+1k (ak)+ cin+1 ≥ gin+1in

(
ain

)
> 0,

which is a contradiction. Thus we get ain+1 > 0. The mathematical induction shows
that each component of the equilibrium is strictly positive. We show the uniqueness
of the equilibrium. We assume that there exist two equilibria, which we denote by
a := (

a j
)

j∈ωp
and b := (

b j
)

j∈ωp
with a �= b. One can, without loss of generality,

assume that there exists j ∈ ωp such that b j > a j holds. Then there exists h ∈ ωp

such that

ah

bh
= min

j∈ωp

a j

b j
∈ (0, 1) .

We define

ε := ah

bh
∈ (0, 1) .

Then we have εb ≤ a. It is easy to see that

�h(εb) ≤ �h(a) = 0.

As in the proof of Theorem 5.3, one can see that � is strictly sublinear, i.e., �(εb) >
ε�(b) = 0. Thus

�h(εb) > ε�h(b) = 0.

Hence it follows

0 = ε�h(b) < �h(εb) ≤ �h(a) = 0,

which is a contradiction. Thus the positive equilibrium is unique. To show the existence
of the equilibrium we define a map f̆ : X p → R

n p by

f̆ j (φ) = φ j (0)

{

β j − (d j + δ j + l j
)− β j

N+
j

φ j (0)

}

+
∑

k∈ωp

g jk
(
φk(t − τ jk)

)+ c j
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for j ∈ ωp. We apply Corollary 2.2 in Chapter 5 in Smith (1995) to show existence
and global attractivity of the equilibrium. Using the monotonicity of g jk one can see
that f̆ satisfies the quasimonotone condition, see Chapter 5 in Smith (1995). For any
initial function φ ∈ X p there exists sufficiently large K such that ‖φ‖ ≤ K and
that f̆ (K̂ ) ≤ 0, where ·̂ is the natural inclusion from R

n p to X p. One also has that
f̆ (0̂) ≥ 0. As in the proof of Theorem 5.3 one can prove that the solution I (t, φ) is
bounded. Thus the forward orbits of φ are precompact and thus the ω-limit set is not
empty, see e.g. Chapter 5 in Smith (2011). Since the equilibrium is unique, it holds
that

lim
t→∞ I (t, K̂ ) = lim

t→∞ I (t, 0̂) = a.

As the semiflow is monotone, from Theorem 1.1 in Chapter 5 in Smith (1995), one
has limt→∞ I (t, φ) = a, i.e. the equilibrium is globally attractive. ��

Let us fix i ∈ ωp such that ci > 0. From (10.14) there exists sufficiently large T
such that

lim
t→∞

∑

k∈∪p−1
h=1ωh

iik (τik, t) ≥ ci

2
> 0

for t > T . Consider an auxiliary equation given as

d

dt
yi (t) = yi (t)

{

βi − (di + δi + li )− βi

N+
i

yi (t)

}

+ ci

2
.

It is easy to see that there exists a unique positive equilibrium that is globally asymp-
totically stable. We denote by u the positive equilibrium. Then one can see that
lim inf t→∞ I (t) ≥ u > 0, which implies that the ω-limit set of any forward orbit
of (10.13) does not contain the trivial equilibrium. By Theorem 4.1 in Thieme (1992)
we conclude that solutions of (10.13) converge to the endemic equilibrium.

(ii) First we notice that

lim
t→∞

∑

k∈∪p−1
h=1ωh

i jk
(
τ jk, t

) = 0, j ∈ ωp (10.17)

holds. Then we get the following limit system

d I j (t)

dt
=I j (t)

{

β j − (d j + δ j + l j
)− β j

N+
j

I j (t)

}

+
∑

k∈ωp

g jk
(
Ik(t − τ jk)

)
, j ∈ ωp.

(10.18)
By Theorem 5.3 we can determine the dynamics of (10.18) in terms of Rp as that if
Rp ≤ 1 then the trivial equilibrium is globally asymptotically stable in X p, whereas
if Rp > 1 then a positive equilibrium exists and it is globally asymptotically stable in
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X p\{0̂}. Applying Theorem 4.1 in Thieme (1992) as in the proof of Proposition 10.3,
one can obtain the conclusion. ��
Proof of Theorem 5.11 Since we have the global attractivity of the equilibrium from
Proposition 5.10, here we only prove stability. For every p ∈ M one has that

f j (ϕ) = ϕ j (0)

{

β j − (d j + δ j + l j
)− β j

N+
j

ϕ j (0)

}

+
∑

k∈∪p
h=1ωh

g jk(ϕk(t − τ jk))

for j ∈ ωp. For every p ∈ M we define a map h p : X = X1 × X2 · · · × Xm → R
n p

as

h p :=
(

fωp
, . . . , fωp

)T
.

We denote by I = (I1, . . . , Im) a given globally attractive equilibrium. It holds that

det (D f (I)eλ − λE)

= det

⎛

⎜
⎜
⎜
⎜
⎝

D1h1(I)eλ − λE1 0 · · · 0
... D2h2(I)eλ − λE2

...
...

. . . 0
D1hm(I)eλ · · · · · · Dmhm(I)eλ − λEm

⎞

⎟
⎟
⎟
⎟
⎠
,

where E p is the n p × n p identity matrix. We get that

det (D f (I)eλ − λE) = �m
p=1det

(
Dph p(I)eλ − λE p

) = 0.

We choose p ∈ M arbitrary. Roots of

det
(
Dph p(I)eλ − λE p

) = 0

are in the right half complex plane if and only if the trivial equilibrium of the following
equation is asymptotically stable:

d

dt
y(t) = Dph p(I)yt , (10.19)

which can be written as

d

dt
y j (t) =

{

β j − (d j + l j + δ j
)− 2

β j

N+
j

I j

}

y j (t)+
∑

k∈ωp

g′
jk(Ik)yk(t − τ jk),

for j ∈ ωp. Let us assume that Ip = 0. Note that Ip = 0 implies Rp ≤ 1. As in
the proof of Proposition 10.2 one can see that the trivial equilibrium of (10.19) is
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asymptotically stable if Rp < 1 and that (10.19) is asymptotically stable if Ip �= 0.
For the case that there exists p such that Ip = 0 with Rp = 1, one can construct
a comparison system, as in the proof of Proposition 10.2, from which stability is
deduced. The proof is tedious but straightforward, thus we omit it here. ��

A.2 Travel restrictions for a two-regional system

We define a parameterised function as

H(α21, α12, λ) :=λ2−(R1(α21)+R2(α12)) λ+(R1(α21)R2(α12)− r12(α12)r21(α21))

for (α21, α12) ∈ intR2+ and λ ∈ R. The basic reproduction number is the larger root
of H = 0. Thus we have

H(α21, α12,R0(α21, α12)) = 0 (10.20)

for (α21, α12) ∈ intR2+. Notice that

r jk(α jk) = e

(
βT

jk−δT
jk

)
τ jk

(

1 − Rk(α jk)

Rk(0)

)

(10.21)

for α jk ∈ R+ and j, k ∈ Ω .

Proposition 10.5 For j ∈ {1, 2} it holds that

sign ∂ jR0(α21, α12) = sign
(R0 (α21, α12)− R j (0)

)
(10.22)

for (α21, α12) ∈ intR2+.

Proof We only prove (10.22) for j = 1. From the symmetry one can get similarly
(10.22) for j = 2. In the following we omit arguments from R0, R j and r jk for
j, k ∈ Ω for a simple presentation. By differentiating (10.20) with respect to α21 we
get

∂1R0 {2R0 − (R1 + R2)} − R0 R′
1 + R′

1 R2 − r12r ′
21 = 0,

which is equivalent to

∂1R0 = R0 R′
1 − R′

1 R2 + r12r ′
21

2R0 − (R1 + R2)
.

Note that 2R0 − (R1 + R2) > 0 for (α21, α12) ∈ intR2+. Since from (10.21) it holds
that

r ′
21 = −e(β

T
21−δT

21)τ21

R1(0)
R′

1,
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we obtain that

∂1R0 = R′
1

2R0 − (R1 + R2)

(

R0 − R2 − r12
e(β

T
21−δT

21)τ21

R1(0)

)

. (10.23)

From (10.20) one has

r12r21 = (R0 − R1) (R0 − R2) .

Using (10.21) we get

r12
e(β

T
21−δT

21)τ21

R1(0)
= r12

r21

R1(0)

(

1 − R1

R1(0)

)−1

= (R0 − R1) (R0 − R2)

R1(0)− R1
,

then we compute that

R0 − R2 − r12
e(β

T
21−δT

21)τ21

R1(0)
= (R0 − R2)

(

1 − R0 − R1

R1(0)− R1

)

= − R0 − R2

R1(0)− R1
(R0 − R1(0)) .

Therefore, from (10.23) we obtain

∂1R0 = −R′
1 (R0 − R2)

{2R0 − (R1 + R2)} (R1(0)− R1)
(R0 − R1(0)) ,

thus we arrive to the conclusion. ��
Next we define two functions of α jk ∈ R+\{0} as

h j (α jk) :=
(

R2
j (0)− η2

)
− Rk(α jk)

Rk(0)

(
R1(0)R2(0)− η2

)
,

where η is defined in (7.1), for j, k ∈ {1, 2} and j �= k. Then we prove

Lemma 10.6 For j, k ∈ {1, 2} and j �= k it holds that

sign H(α21, α12, R j (0)) = sign h j (α jk)

for (α21, α12) ∈ intR2+.

Proof Using (10.21) an equivalent form of H is given as

H(α21, α12, λ)=(λ−R1(α21)) (λ−R2(α12))−η2
(

1 − R2(α12)

R2(0)

)(

1 − R1(α21)

R1(0)

)

.
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We compute H(α21, α12, R j (0)) for j = 1 as

H(α21, α12, R1(0))

= (R1(0)− R1(α21))

{

(R1(0)− R2(α12))− η2

R1(0)

(

1 − R2(α12)

R2(0)

)}

=
(

1 − R1(α21)

R1(0)

){

R2
1(0)− R1(0)R2(α12)− η2

(

1 − R2(α12)

R2(0)

)}

=
(

1 − R1(α21)

R1(0)

)

h1(α12).

Similarly, one can get

H(α21, α12, R2(0)) =
(

1 − R2(α12)

R2(0)

)

h2(α21),

and the conclusion is reached. ��
Now we show a classification for the sign of h1,2. For R1(0) > R2(0) we define a
constant ν ∈ R+\ {0} via the relation

R1(ν) = R2(0).

Lemma 10.7 For (α21, α12) ∈ intR2+ the following statements hold.

(i) Let us assume that R1(0) > R2(0).

(a) If R1(0) < η then there exists z1 ∈ R+\ {0} such that

h1(α12)

⎧
⎪⎨

⎪⎩

> 0 for α12 ∈ (0, z1) ,

= 0 for α12 = z1,

< 0 for α12 ∈ (z1,∞)

and h2(α21) < 0.
(b) If either R1(0) ≥ η > R2(0) or R1(0) > η ≥ R2(0) then h1(α12) > 0 and

h2(α21) < 0.
(c) If R2(0) > η then h1(α12) > 0 and there exists z2 ∈ R+\ {0} such that

ν ∈ (0, z2) (10.24)

and that

h2(α21)

⎧
⎪⎨

⎪⎩

< 0 for α21 ∈ (0, z2) ,

= 0 for α21 = z2,

> 0 for α21 ∈ (z2,∞) .

(ii) Let us assume that R1(0) = R2(0). For j, k ∈ {1, 2} and j �= k one has that
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(a) If R1(0) > η then h j (α jk) > 0.
(b) If R1(0) = η then h j (α jk) = 0.
(c) If R1(0) < η then h j (α jk) < 0.

Proof One can compute that

lim
α jk↓0

h j (α jk) =
(

R2
j (0)− η2

)
−
(

R1(0)R2(0)− η2
)

= R j (0)
(
R j (0)− Rk(0)

)

(10.25)
and that

lim
α jk↑∞ h j (α jk) = R2

j (0)− η2 (10.26)

for j, k ∈ {1, 2} and j �= k. One can see that h j is either a monotone or a constant
function [depending on the sign of R1(0)R2(0) − η]. Thus the combination of two
boundary values given in (10.25) and (10.26) determines the sign of h j (α jk) for
α jk ∈ R+\ {0} as listed. We prove (10.24). One can see that h2(z2) = 0 is equivalent
to

R1(z2)

R1(0)
= R2

2(0)− η2

R1(0)R2(0)− η2 .

We compute that

R1(z2)− R1(ν)

R1(0)
= R2

2(0)− η

R1(0)R2(0)− η
− R2(0)

R1(0)

= − η2
(
R1(0)R2(0)− η2

)
R1(0)

(R1(0)− R2(0))

< 0,

which implies (10.24), since R1 is a decreasing function. ��
Proof of Theorem 7.1 First we consider the sign of ∂1R0. We compute that

∂3 H(α21, α12, R1(0)) = 2R1(0)− R1(α21)− R2(α12). (10.27)

It is easy to see that ∂3 H(α21, α12, R1(0)) > 0. Since, for given parameters α21 and
α12, H is a quadratic function of the third argument λ with a positive coefficient of
λ2, it holds that

sign (R0(α21, α12)− R1(0)) = −sign H(α21, α12, R1(0)) = −sign h1(α12)

by Lemma 10.6. Since from Lemma 10.7 one obtains the sign of h j , by Lemma 10.5
we get the sign of ∂1R0 as in the conclusion. Next we consider the sign of ∂2R0. If
R1(0) = R2(0) then one can obtain the sign as in the same argument above. Let us
assume that R1(0) > R2(0). For α21 ∈ (0, ν) we have

h2(α21) = H(α21, α12, R2(0)) < 0
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from Lemmas 10.7 and 10.6. This implies that R2(0) < R0(α21, α12), thus by Propo-
sition 10.5 we have ∂2R0 > 0 for (α21, α12) ∈ (0, ν)× intR+. For α21 ∈ [ν,∞) we
have

R2(0) ≥ R1(α21).

Computing

∂3 H(α21, α12, R2(0)) = 2R2(0)− R1(α21)− R2(α12) > 0,

we obtain that

sign (R0(α21, α12)− R2(0)) = −sign H(α21, α12, R2(0)) = −sign h2(α21).

Similarly to the argument for ∂1R0, we can determine the sign of ∂2R0. ��
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