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When the body gets infected by a pathogen or receives a vaccine dose, the immune
system develops pathogen-specific immunity. Induced immunity decays in time and
years after recovery/vaccination the host might become susceptible again. Expo-
sure to the pathogen in the environment boosts the immune system thus prolonging
the duration of the protection. Such an interplay of within host and population
level dynamics poses significant challenges in rigorous mathematical modeling of
immuno-epidemiology. The aim of this paper is twofold. First, we provide an
overview of existing models for waning of disease/vaccine-induced immunity and
immune system boosting. Then a new modeling approach is proposed for SIRVS
dynamics, monitoring the immune status of individuals and including both waning
immunity and immune system boosting. We show that some previous models can
be considered as special cases or approximations of our framework.

1. Introduction

Models of SIRS type are a traditional topic in mathematical epidemiology.

Classical approaches present a population divided into susceptibles (S), in-

fectives (I) and recovered (R), and consider interactions and transitions

among these compartments9. Susceptibles are those hosts who either did

not contract the disease in the past or lost immunity against the disease-

causing pathogen. When a susceptible host gets in contact with an infective

one, the pathogen can be transmitted from the infective to the suscepti-

ble and with a certain probability the susceptible host becomes infective

himself. After pathogen clearance the infective host recovers and becomes

immune for some time, afterward he possibly becomes susceptible again (in

certain cases one can talk of life-long immunity). The model can be ex-

tended by adding vaccination. Vaccinees (V) are protected from infection
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for some time, usually shorter than naturally infected hosts.

From the in-host point of view, immunity to a pathogen is the result of

either active or passive immunization. The latter is a transient protec-

tion due to the transmission of antibodies from the mother to the fetus

through the placenta. The newborn is thus immune for several months af-

ter birth26. Active immunization is either induced by natural infection or

can be achieved by vaccine administration35,15.

Let us first consider the case of natural infection. A susceptible host,

also called naive host, has a very low level of specific immune cells for a

pathogen (mostly a virus or a bacterium). The first response to a pathogen

is nonspecific, as the innate immune system cannot recognize the physi-

cal structure of the pathogen. The innate immune response slows down

the initial growth of the pathogen, while the adaptive (pathogen-specific)

immune response is activated. Clonal expansion of specific immune cells

(mostly antibodies or CTL cells) and pathogen clearance follow. The pop-

ulation of pathogen-specific immune cells is maintained for long time at

a level that is much higher than in a naive host. These are the so-called

memory cells and are activated in case of secondary infection (see Figure

1, adapted from Barbarossa and Röst6). Memory cells rapidly activate the

immune response and the host mostly shows mild or no symptoms2.

Each exposure to the pathogen might have a boosting effect on the pop-

ulation of specific memory cells. Indeed, the immune system reacts to a

new exposure as it did during primary infection, thus yielding an increased

level of memory cells. Though persisting for long time after pathogen clear-

ance, the memory cell population slowly decays and in the long run the host

might lose his pathogen-specific immunity37.

Vaccine-induced immunity works in a similar way as immunity induced

by the natural infection. Agents contained in vaccines resemble, in a weaker

form, the disease-causing pathogen and force a specific immune reaction

without leading to the disease. If the vaccine is successful, the host is

immunized for some time. Vaccinees experience immune system boosting

and waning immunity, just as hosts recovered from natural infection do. In

general, however, disease-induced immunity induces a much longer lasting

protection than vaccine-induced immunity does35.

Waning immunity might be one of the factors which cause, also in

highly developed regions, recurrent outbreaks of infectious diseases such

as measles, chickenpox and pertussis. On the other side, immune system

boosting due to contact with infectives prolongs the protection duration. In
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Figure 1. Level of pathogen-specific immune cells with respect to the time. The solid
line represents the case of natural infection, the dotted line represents the immune status
of a vaccinated host. Generation of memory cells takes a few weeks: once primary
infection (respectively, vaccination) occurred, the adaptive immune system produces a
high number of specific immune cells (clonal expansion). After pathogen clearance,
specific immune cells (memory cells) are maintained for years at a level that is much
higher than in a naive host. Memory cells are activated in case of secondary infection.

a highly vaccinated population there are a lot of individuals with vaccine-

induced immunity and few infection cases, as well as many individuals with

low level of immunity. In other words, if a high portion of the population

gets the vaccine, there are very few chances for exposure to the pathogen

and consequently for immune system boosting in protected individuals.

In order to understand the role played by waning immunity and immune

system boosting in epidemic outbreaks, in the recent past several math-

ematical models were proposed. Few of these models describe only in-

host processes during and after the infection37,16. Many more models, for-

mulated in terms of ordinary differential equations (ODEs), consider the

problem only at population level, defining compartments for individuals

with different levels of immunity and introducing transitions between these

compartments10,17. Vaccinated hosts or newborns with passive immunity

are often included in the model equations and waning of vaccine-induced

or passive immunity are observed33,31,11,3,22,5,30.

To describe the sole waning immunity process, authors have sometimes

chosen delay differential equation (DDE) models with constant or dis-

tributed delays21,36,8,7,38. The delay represents the average duration of the

disease-induced immunity. However, neither a constant nor a distributed
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delay allows for the description of immune system boosting.

Models which include partial differential equations (PDEs) mostly de-

scribe an age-structured population27,20,33 and consider pathogen trans-

mission among the different age groups (newborns, children, pupils, adults,

. . . ). Rare examples suggest a physiologically structured approach with

populations structured by the level of immunity, coupling within-host and

between-hosts dynamics25,6.

The goal of the present book chapter is twofold. On the one side, we

found necessary to provide a comprehensive overview of previously pub-

lished models for waning of disease/vaccine-induced immunity and immune

system boosting (Sect. 2). On the other side, in Sect. 3 we propose a new

modeling framework for SIRVS dynamics, monitoring the immune status

of individuals and including both waning immunity and immune system

boosting.

2. Mathematical Models for Waning Immunity and

Immune System Boosting

In the following we provide an overview on previous mathematical models

for waning immunity and immune system boosting. We shall classify these

models according to their mathematical structure (systems of ODEs, PDEs

or DDEs).

2.1. Systems of ODEs

Mossong and coauthors were among the first to suggest the inclusion of

individuals with waning immunity in classical SIRS systems31. Motivated

by the observation that measles epidemics can occur even in highly vac-

cinated populations, the authors set up a model to study the waning of

vaccine-induced immunity and failure of seroconversion as possible causes

for recurrent outbreaks. Their compartmental model includes hosts with

the so-called “vaccine-modified measles infection” (VMMI) which can occur

in people with some degree of passive immunity to the virus, including those

previously vaccinated. Assuming that not all vaccinees are protected from

developing VMMI, the authors classify vaccinees into three groups: imme-

diately susceptible to VMMI (weak response), temporarily protected who

become susceptible to VMMI due to waning of vaccine-induced immunity

(intermediate response), and permanently protected from VMMI (strong

response). Infection occurs due to contact with infectious individuals (both

 B
IO

M
A

T
 2

01
4 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 L
A

 T
R

O
B

E
 U

N
IV

E
R

SI
T

Y
 o

n 
03

/1
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 29, 2015 13:54 BIOMAT-14-Intl.Symposium mvb˙gr˙biomath2014chap˙FINAL page 189

189

regular measles infection and VMMI). The resulting compartmental model

includes waning of vaccine-induced immunity but not of disease-induced

immunity, nor immune system boosting. Similar to McLean and Blower28,

Mossong et al. define a parameter φ to describe the impact of the vaccine:

if φ < 1, then vaccine failure is possible. Analytical results by Mossong and

coauthors31 show that the main effect of VMMI is to increase the overall

reproduction number of the infection.

Inspired by Mossong’s work, in 2003-2004 Glass, Grenfell and

coauthors14,13,12 proposed modifications and extensions of the system by

Mossong et al.31. The basic model is similar to the ODE system by Mossong

et al.31, with a group of subclinical cases which carry the pathogen with-

out showing symptoms11. In addition, the distribution of antibody levels

in immune hosts (included in the ODEs coefficients) and immune system

boosting are introduced: the average antibody level in an immune host in-

creases due to contact with infective or subclinical hosts. This model was

used to fit measles data in England12. Further, Grenfell and coauthors ex-

tend the basic model to consider measles transmission in a meta-population

with N patches13.

Immune system boosting in vaccinees was further studied by Arinamin-

pathy et al.3. The authors introduce two models. In the first one vaccinees

are separated from non-vaccinated hosts. Both groups of individuals are

classified into susceptible, infective and immune, but in contrast to the

models by Glass, Grenfell, Mossong et al.14,13,12,31, there is no compart-

ment for subclinical cases. Non-vaccinated hosts do not undergo immune

system boosting. For vaccinated hosts the authors include a so called “self-

boosting” of vaccine, so that contact with infectives moves susceptible vac-

cinees to the immune vaccinated compartment. The second model extends

the first one with a new compartment for hosts with waning immunity (W).

These can receive immune system boosting due to contact with infectives or

move back to the susceptible compartment due to immunity loss. Numer-

ical simulations show possible sustained oscillations. The SIRWS system

was partially analyzed by Dafilis et al.10.

Heffernan and Keeling16 proposed an in-host model to understand the be-

havior of the immune system during and after an infection. Activation of

immune system effectors and production of memory cells depend on the

virus load. When not stimulated by the virus, the number of activated

cells decays (waning immunity). Vaccination is simulated by changing the
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initial conditions for the virus load. Numerical simulations show that the

number of infected immune system cells in a vaccinated patient reaches

approximately half of what is reached in a patient who undergoes natural

infection. In turn, the level of immunity gained after one dose of vaccine

is the same as the level observed in a measles patient 4 years after natural

infection. The in-host model by Heffernan and Keeling16 was extended by

the same authors to a population model (SEIRS) with waning immunity

and immune system boosting17. In contrast to classical SEIRS models, the

class R refers here to individuals protected by short-term immune memory,

while the class S refers to those individuals who have lost this short-term

protection and may experience immune system boosting. Each compart-

ment is classified according to the level of immunity, which can be related

to the number of memory cells. Newborns are recruited into the susceptible

class S0 (lowest level of immunity). During exposure and infection the host

does not change his level of immunity, that is, transition occurs from Sj to

Ej to Ij for each j ∈ N. Hosts in S and R experience waning immunity

and transit from Sj to Sj−1 (respectively from Rj to Rj−1). Immune sys-

tem boosting is due to recovery from infection and is incorporated into the

equations with transition terms from Ij to Rk, with k ≥ j. The resulting

large system of ODEs, with a very high number of parameters, is quite hard

to approach from an analytical point of view, hence the authors make use

of numerical simulations to investigate the long term behavior. A somehow

simplified version of the ODE system by Heffernan and Keeling17 was pro-

posed by Reluga et al.32. A similar large system of ODEs was introduced

by Lavine et al.22, extending the SIRWS model by Mossong, Glass and

Grenfell31,11, by including several levels of immunity for immune hosts (R)

and hosts with waning immunity (W), as well as age classes for all com-

partments. The authors claim that the model can explain several observed

features of pertussis in US, in particular a shift in the age-specific incidence

and the re-emergence of the disease in a highly vaccinated population.

2.2. System of DDEs

Delay models with constant or distributed delay have been introduced to

describe waning of disease-induced or vaccine-induced immunity. A simple

SIRS system with constant delay is given by

Ṡ(t) = µ(1 − S(t))− φS(t)f(I(t)) + γI(t− τ)e−µτ

İ(t) = φS(t)f(I(t)) − (µ+ γ)I(t)

Ṙ(t) = γI(t)− µR(t)− γI(t− τ)e−µτ .

(1)
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This model was studied by Kyrychko and Blyuss21, who provided results on

existence, uniqueness and non-negativity of solutions, linear and global sta-

bility of the disease-free equilibrium, as well as global stability of the unique

endemic equilibrium. A special case of (1) was considered some years later

by Taylor and Carr36. An extension of system (1) with distributed delay

was proposed by Kyrychko and Blyuss8 and shortly after by Bhattacharya

and Adler7.

A more general model with distributed delay and vaccination was pro-

posed by Arino et al.4. Their system includes three compartments (suscep-

tible, infective and vaccinated hosts) in a population which remains con-

stant in time. Vaccine-induced immunity might be only partial, resulting

in vaccinated individuals becoming infective. Systems of ODEs or DDEs

can be obtained from the general model by a proper choice of the kernel

(see also Hethcote et al.19,18).

Recently, Yuan and Bélair proposed a SEIRS model with integro-

differential equations which resembles the systems by Arino, Hethcote

et al.4,19. The probability that an individual stays in the exposed class

(E) for t units of time is P (t), hence,

E(t) =

∫ t

0

β
S(u)I(u)

N
e−b(t−u)P (t− u) du.

Similarly, Q(t) is the probability that an individual is immune t units of

time after recovery, thus

R(t) =

∫ t

0

γI(u)e−b(t−u)Q(t− u) du.

For a certain choice of the probabilities P and Q, the problem can be re-

duced to a system with one or two constant delays. The authors show

existence of an endemic equilibrium and boundedness of solutions in a pos-

itive simplex. For the system with one constant delay, results for existence

of a global attractor as well as the proof of persistence of the disease in case

R0 > 1 are provided.

2.3. Systems of PDEs

Structured populations in the context of waning immunity and immune sys-

tem boosting have been motivated in different ways. Often the structure

can be found in the biological age27,26,20,33, and is used to observe disease

transmission among babies, children, adults and seniors. Only few works

suggest models for physiologically structured populations25,6.
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McLean and Anderson27,26 proposed a model for measles transmission

which includes a compartment for babies protected by maternal antibod-

ies. Indeed, mothers who have had measles or have been vaccinated transfer

measles immunity to the baby through the placenta. For several months

after birth (ca. 2 months if the mother was vaccinated, ca. 4 months if she

had the disease26) the baby is still protected by maternal antibodies and

should not be vaccinated. The model by McLean and Anderson27 consid-

ers only waning of maternally induced immunity in the context of measles

infection. Few years before McLean, Katzmann and Dietz20 proposed a bit

more general model, which includes also waning of vaccine-induced immu-

nity. In both cases, the age structure was used to determine the optimal

age for vaccination. A compartment for adult hosts with waning immunity

who can also receive immune system boosting was introduced only years

later by Rouderfer et al.33. A further deterministic system of ODEs for ma-

ternally induced immunity in measles was proposed by Moghadas et al.29.

Different is the approach when physiologically structured populations are

considered. Martcheva and Pilyugin25 suggest an SIRS model in which

infective and recovered hosts are structured by their immune status. In

infective hosts the immune status increases over the course of infection,

while in recovered hosts the immune status decays at some non-constant

rate. When the immune status has reached a critical level, recovered hosts

transit from the immune to the susceptible compartment.

A general framework for SIRS systems, modeling waning immunity and

immune system boosting, and combining the in-host perspective with the

population dynamics, was proposed by Barbarossa and Röst6.

3. A General Modeling Framework

In this section we extend the model by Barbarossa and Röst6 to include

vaccine-induced immunity. As in the works by Martcheva and Pilyugin,

Barbarossa and Röst25,6, we couple the in-host with the between-hosts dy-

namics, focusing on the effects of waning immunity and immune system

boosting on the population dynamics. In contrast to the models proposed

by Heffernan and Keeling, Lavine et al.17,22, we shall maintain the num-

ber of equations as low as possible. The resulting model (V1) is a system

of ODEs coupled with two PDEs. The ODE systems by Mossong, Arino,

Glass, Grenfell et al.31,11,3,5,30, as well as extensions of the DDEs systems
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in the works of Talyor and Carr, Yuan and Bélair 36,38, can be recovered

from our modeling framework.

Setting up our model we do not restrict ourselves to a particular pathogen.

The model (V1) can be adapted to several epidemic outbreaks (e.g. measles,

chickenpox, rubella, pertussis) by ad-hoc estimating coefficients from avail-

able experimental data24,1,23.

3.1. Model ingredients

3.1.1. Originally susceptible and infectives hosts

Let S(t) denote the total population of originally susceptible hosts. These

are susceptible individuals which have neither received vaccination nor have

been infected before. Newborns enter the susceptible population at rate

b(N), dependent on the total population size N . For simplicity we assume

that the natural death rate d > 0 does not depend on N . Assume that

b : [0,∞) → [0, b+], N 7→ b(N), with 0 < b+ < ∞, is a nonnegative

function, with b(0) = 0. Finally, assume that in absence of disease-induced

death there exists an equilibrium N∗ such that b(N∗) = dN∗.

Let I(t) denote the total infective population at time t. Infection of

susceptible individuals occurs by contact, at rate βI/N . Infected hosts

recover at rate γ > 0. When we include disease-induced death at rate

dI > 0, the equilibrium N∗ satisfies

b(N∗) = dN∗ + dII
∗.

3.1.2. Immune individuals

Let us denote by r(t, z) the density of recovered individuals with disease-

induced immunity level z ∈ [zmin, zmax] at time t. The total population of

recovered hosts is given by

R(t) =

∫ zmax

zmin

r(t, z) dz.

The parameter z describes the immune status and can be related to the

number of specific immune cells of the host. The value zmax corresponds

to maximal immunity, whereas zmin corresponds to low level of immunity.

Individuals who recover at time t enter the immune compartment with

maximal level of immunity zmax. The level of immunity tends to decay in

time and when it reaches the minimal value zmin, the host becomes sus-

ceptible again. However, exposure to the pathogen can boost the immune
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system from z ∈ [zmin, zmax] to any higher status. It is not straightfor-

ward to determine how this kind of immune system boosting works, as no

experimental data are available. Nevertheless, laboratory analysis on vac-

cines tested on animals or humans suggest that the boosting efficacy might

depend on several factors, among which the current immune status of the

recovered host and the amount of pathogen he receives1,24. Possibly, ex-

posure to the pathogen can restore the maximal level of immunity, just as

natural infection does6.

Let p(z, z̃), z ≥ z̃, z, z̃ ∈ R denote the probability that an individual

with immunity level z̃ moves to immunity level z, when exposed to the

pathogen. Due to the definition of p(z, z̃), we have p(z, z̃) ∈ [0, 1], z ≥ z̃

and

p(z, z̃) = 0, for all z < z̃.

As we effectively consider only immunity levels in the interval [zmin, zmax],

we set

p(z, z̃) = 0, for all z̃ ∈ (−∞, zmin) ∪ (zmax,∞).

Then we have
∫ ∞

−∞

p(z, z̃) dz =

∫ zmax

z̃

p(z, z̃) dz = 1, for all z̃ ∈ [zmin, zmax].

Exposure to the pathogen might restore exactly the immunity level induced

by the disease (zmax). In order to capture this particular aspect of immune

system boosting, we write the probability p(z, z̃) as the combination of a

continuous (p0) and atomic measures (Dirac delta):

p(z, z̃) = cmax(z̃)δ(zmax − z̃) + c0(z̃)p0(z, z̃) + c1(z̃)δ(z − z̃),

where

• cmax : [zmin, zmax] → [0, 1], y 7→ cmax(y), is a continuously differ-

entiable function and describes the probability that, due to contact

with infectives, a host with immunity level y boosts to the maximal

level of immunity zmax.

• c0 : [zmin, zmax] → [0, 1], y 7→ c0(y), is a continuously differentiable

function and describes the probability that, due to contact with

infectives, a host with immunity level y boosts to any other level

z ∈ (y, zmax), according to the continuous probability p0(z, y).

• c1(y) = 1 − cmax(y) − c0(y) describes the probability that get-

ting in contact with infectives, the host with immunity level

y ∈ [zmin, zmax] does not experience immune system boosting.
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The immunity level decays in time at some rate g(z) which is the same

for all recovered individuals with immunity level z. In other words, the

immunity level z follows

d

dt
z(t) = g(z),

with g : [zmin, zmax] → (0,Kg], Kg < ∞ continuously differentiable. The

positivity of g(z) is required from the biological motivation. Indeed, if

g(z̃) = 0 for some value z̃ ∈ [zmin, zmax], there would be no change of

the immunity level at z̃, contradicting the hypothesis of natural decay of

immune status. In absence of immune system boosting, we have that

∫ zmax

zmin

1

g(x)
dx

is the time a recovered host remains immune (see Barbarossa and Röst6).

3.1.3. Vaccination

We structure the vaccinated population by the level of immunity as well.

Let v(t, z) be the density of vaccinees with immunity level z ∈ [zmin, zmax]

at time t. The total population of vaccinated hosts is given by

V (t) =

∫ zmax

zmin

v(t, z) dz.

Vaccination infers a level of immunity zvax, which is lower than the level of

immunity after natural infection: zmax > zvax > zmin
35. As in recovered

individuals, the level of immunity of a vaccinated host tends to decay in

time and when it reaches the minimal value zmin, the host becomes suscep-

tible again. However, also in vaccinated hosts, exposure to the pathogen can

boost the immunity level z ∈ [zmin, zvax] to any higher value in [zmin, zmax].

Immune system boosting is described by the probability p(z, z̃), as in re-

covered hosts. We consider the possibility that exposure to the pathogen

boosts the immune system of a vaccinated individual to z ∈ (zvax, zmax].

Vaccinated hosts with z ∈ (zvax, zmax] have an immune status which can

be compared to the one of hosts who recovered from natural infection.

It is reasonable to assume that in vaccinated individuals the immunity

level decays in time at the same rate g, as in hosts who underwent nat-

ural infection. In absence of exposure to the pathogen (hence in absence

of immune system boosting), the time that a vaccinee remains immune is
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shorter than the time a recovered host does:
∫ zvax

zmin

1

g(x)
dx <

∫ zmax

zmin

1

g(x)
dx.

Let us define the vaccination rate at birth α > 0. We assume that originally

susceptible (adult) individuals get vaccinated at rate φ ≥ 0.

3.1.4. Becoming susceptible again

In absence of immune system boosting both disease-induced and vaccine-

induced immunity fade away. Individuals who lose immunity either after

recovery from infection or after vaccination, enter the class S2 of susceptible

individuals who shall not get a new dose of vaccine. A host who had the

disease or got vaccination relies indeed on the induced-immunity and is not

aware of the fact that his level of immunity might have dropped below the

critical immunity threshold.

We denote by S2(t) the population at time t of susceptible hosts who are

not going to receive vaccination.

3.2. Model equations

In view of all what we have mentioned above, we can easily write down

the equations for the compartments S, I and S2. Let initial values S(0) =

S0 ≥ 0, I(0) = I0 ≥ 0 and S2(0) = S0

2 ≥ 0 be given. The population of

originally susceptible individuals is governed by

Ṡ(t) = b(N(t))(1 − α)
︸ ︷︷ ︸

birth

− φS(t)
︸ ︷︷ ︸

vaccination

− β
S(t)I(t)

N(t)
︸ ︷︷ ︸

infection

− dS(t)
︸ ︷︷ ︸

death

, (2)

whereas hosts who become susceptible due to immunity loss follow

Ṡ2(t) = − β
S2(t)I(t)

N(t)
︸ ︷︷ ︸

infection

− dS2(t)
︸ ︷︷ ︸

death

+ ΛR
︸︷︷︸

immunity loss

after recovery

+ ΛV
︸︷︷︸

immunity loss

after vaccination

.

The term ΛR (respectively ΛV ), which represents transitions from the im-

mune (respectively, the vaccinated) compartment to the susceptible one,

will be specified below together with the dynamics of the recovered (re-

spectively, vaccinated) population.
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Both kinds of susceptible hosts can become infective due to contact with

infective hosts:

İ(t) = β
S(t)I(t)

N(t)
︸ ︷︷ ︸

infection of S

+ β
S2(t)I(t)

N(t)
︸ ︷︷ ︸

infection of S2

− γI(t)
︸ ︷︷ ︸

recovery

− dI(t)
︸ ︷︷ ︸

natural
death

− dII(t)
︸ ︷︷ ︸

disease-induced
death

.

(3)

To obtain an equation for the recovered individuals, structured by their

levels of immunity, one can proceed similarly to size structured models or

as it was done for the immune population by Barbarossa and Röst6. The

result is the following PDE. Let a nonnegative initial distribution r(0, z) =

ψ(z), z ∈ [zmin, zmax] be given. For t > 0, z ∈ [zmin, zmax] we have

∂

∂t
r(t, z)− ∂

∂z
(g(z)r(t, z)) = −dr(t, z) + β

I(t)

N(t)

∫ z

zmin

p(z, x)r(t, x) dx

− r(t, z)β
I(t)

N(t)
,

(4)

with the boundary condition

g(zmax)r(t, zmax) = γI(t) + β
I(t)

N(t)

∫ zmax

zmin

p(zmax, x)r(t, x) dx. (5)

Equation (4) expresses the rate of change in the density of recovered indi-

viduals according to immune level due to natural waning, mortality, and

boosting. The boundary condition (5) includes newly recovered individu-

als as well as those recovered individuals, who just received a boost which

elevated their immune system to maximal level.

Next we shall consider the vaccinated population. Again, by structuring

this group according to immunity level, one has the PDE

∂

∂t
v(t, z) =

∂

∂z
(g(z)v(t, z))− dv(t, z) + β

I(t)

N(t)

∫ z

zmin

p(z, x)v(t, x) dx

− v(t, z)β
I(t)

N(t)
+ δ(z − zvax) (φS(t) + αb(N(t))) ,

(6)

and

g(zmax)v(t, zmax) = β
I(t)

N(t)

∫ zmax

zmin

p(zmax, x)v(t, x) dx, (7)

provided with a nonnegative initial distribution v(0, z) = ψv(z), z ∈
[zmin, zmax]. Observe that newly vaccinated hosts do not enter the vac-

cinated population at zmax, but at the lower value zvax, which is expressed
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in equation (6) as an impulse at z = zvax by the term with the Dirac delta

δ(z − zvax).

It becomes evident that the quantity ΛR, initially introduced in the S2

equation to represent the number of hosts who experienced immunity loss,

is given by the number g(zmin)r(t, zmin) of immune hosts who reached the

minimal level of immunity after recovery from natural infection. Similarly,

ΛV is the number g(zmin)v(t, zmin) of vaccinated hosts who reached the

minimal level of immunity. Hence we have

Ṡ2(t) = − β
S2(t)I(t)

N(t)
︸ ︷︷ ︸

infection

− dS2(t)
︸ ︷︷ ︸

death

+ g(zmin)r(t, zmin)
︸ ︷︷ ︸

ΛR

+ g(zmin)v(t, zmin)
︸ ︷︷ ︸

ΛV

.

(8)

In the following we refer to the complete system (2) – (8) as to model

(V1).

4. Connection to Other Mathematical Models

4.1. Connection to ODE models

As it was shown by Barbarossa and Röst6 for a simpler problem, model

(V1) can be reduced to a system of ODEs analogous to those proposed

by several authors31,11,3,22,17,30. The connection between model (V1) and

the ODE system is given by the method of lines, a technique in which all

but one dimensions are discretized34. In our case, we shall discretize the

immunity level (z) and obtain a system of ODEs in the time variable.

Let us define a sequence {zj}j∈N
, with hj := zj+1−zj > 0, for all j ∈ N. To

keep the demonstration as simple as possible, we choose a grid with only

a few points, z1 := zmin < zW := zvax < zF < zmax and for simplicity

(or possibly after a rescaling) assume that hj = 1 for all j. We define the

following subclasses of the immune/vaccinated population:

• RF (t) := r(t, zF ), immune hosts with high level of immunity at

time t. As their immunity level is quite high, these individuals do

not experience immune system boosting. Immunity level decays at

rate µ := g(zF ) > 0.

• RW (t) := r(t, zW ), immune hosts with intermediate level of immu-

nity at time t. These individuals can get immune system boosting

and move to RF . Immunity level decays at rate ν := g(zW ) > 0.
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• RC(t) := r(t, zmin), immune hosts with critically low level of immu-

nity at time t. With probability θ boosting moves RC individuals

to RW (respectively, with probability (1 − θ) to RF ). Immunity

level decays at rate σ := g(zmin) > 0. If they do not get im-

mune system boosting, these hosts move to the class S2 (become

susceptible again).

• VR(t) := v(t, zF ), vaccinated hosts who thanks to immune system

boosting gained a very high level of immunity at time t. These

individuals do not experience immune system boosting. Immunity

level decays at rate µ.

• V0(t) := v(t, zW ), vaccinated individuals at time t with maximal

vaccine-induced immunity. This class includes new vaccinees. If

their immune system gets boosted hosts move to VR. Immunity

level decays at rate ν.

• VC(t) := v(t, zmin), vaccinees with critically low level of immunity

at time t. With probability ξ boosting moves VC hosts to V0 and

with probability (1 − ξ) to VR. Immunity level decays at rate σ.

If they do not receive immune system boosting, VC hosts move to

S2.

To show how the PDE system can be reduced to a system of ODEs by

means of the method of lines, we consider a simple example. Let us neglect

immune system boosting for a moment. Then the PDE for r(t, z) in model

(V1) becomes

∂

∂t
r(t, z) =

∂

∂z

(

g(z)r(t, z)
)

− dr(t, z), z ∈ [zmin, zmax], (9)

with boundary condition Rzmax
(t) := r(t, zmax) = γI(t)/g(zmax). Using

forward approximation for the z-derivative in (9), we obtain, e.g., for RF (t)
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the following differential equation:

ṘF (t) =
∂

∂t
r(t, zF )

=
∂

∂z

(

g(zF )r(t, zF )
)

− dr(t, zF )

≈ g(zmax)r(t, zmax)− g(zF )r(t, zF )

zmax − zF
︸ ︷︷ ︸

=1

− dr(t, zF )

= g(zmax)Rzmax
(t)− µRF (t)− dRF (t)

= γI(t)− (µ+ d)RF (t).

Analogously one can find equations for RW , RC , VR, V0 and VC . Alto-

gether we obtain a system of ordinary differential equations in which a

linear chain of ODEs replaces the PDEs for the immune and the vaccinated

class:

Ṡ(t) = (1− α)b(N(t)) − φS(t)− β
S(t)I(t)

N(t)
− dS(t)

İ(t) = β
I(t)

N(t)
(S(t) + S2(t)) − (γ + d+ dI)I(t)

ṘF (t) = γI(t)− µRF (t)− dRF (t)

ṘW (t) = µRF (t)− νRW (t)− dRW (t)

ṘC(t) = νRW (t)− σRC(t)− dRC(t)

V̇R(t) = −µVR(t)− dVR(t)

V̇0(t) = φS(t) + αb(N(t)) + µVR(t)− νV0(t)− dV0(t)

V̇C(t) = νV0(t)− σVC(t)− dVC(t)

Ṡ2(t) = −βS2(t)I(t)

N(t)
− dS2(t) + σ(RC(t) + VC(t)).

The method of lines can be applied to the full model (V1) as well6. To this

purpose it is necessary to discretize the boosting probability p(z, z̃) (this is

expressed by the parameters ξ and θ below). Incorporating the boosting

effect, the result is the following system of ODEs.
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Ṡ(t) = (1− α)b(N(t)) − φS(t)− β
S(t)I(t)

N(t)
− dS(t)

İ(t) = β
I(t)

N(t)
(S(t) + S2(t))− (γ + d+ dI)I(t)

ṘF (t) = γI(t)− µRF (t) − dRF (t) + β
I(t)

N(t)
(RW (t) + (1 − θ)RC(t))

ṘW (t) = µRF (t)− νRW (t)− dRW (t) + β
I(t)

N(t)
(θRC(t)−RW (t))

ṘC(t) = νRW (t)− σRC(t)− dRC(t)− β
I(t)

N(t)
RC(t)

V̇R(t) = β
I(t)

N(t)
(V0(t) + (1− ξ)VC(t))− µVR(t)− dVR(t)

V̇0(t) = φS(t) + αb(N(t)) + µVR(t)− νV0(t)− dV0(t)

+ β
I(t)

N(t)
(ξVC(t)− V0(t))

V̇C(t) = νV0(t)− σVC(t)− dVC(t)− β
VC(t)I(t)

N(t)

Ṡ2(t) = −βS2(t)I(t)

N(t)
− dS2(t) + σ(RC(t) + VC(t)).

The linear chain of ODEs provides a rough approximation of the PDEs in

model (V1). Indeed, with the method of lines we approximate the PDE dy-

namics considering only changes at the grid points (zmin, zW , zF ), whereas

the dynamics remains unchanged in each immunity interval [zj, zj+1]. We

consider as representative point of the interval the lowest boundary zj - for

this reason we do not have a differential equation for Rzmax
(t) or Vzmax

(t).

4.2. Connection to DDE models

Delay models with constant delay can be recovered from special cases of

model (V1). We show here how to obtain the classical SIRS model with

delay studied by Taylor and Carr36, or extensions thereof.

In the following we neglect boosting effects and vaccination. Further we

do not distinguish between originally susceptibles and host who have lost

immunity, hence w.r.t. model (V1) we identify the classes S and S2. From

our assumptions, the disease-induced immunity lasts for a fix time, τ > 0
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years, given by
∫ zmax

zmin

1

g(x)
dx = τ.

We can express the total immune population at time t as the number of

individuals who recovered in the time interval [t− τ, t],

R(t) = γ

∫ t

t−τ

I(y)e−d(t−y) dy = γ

∫ τ

0

I(t− x)e−dx dx.

Differentiation with respect to t yields

Ṙ(t) = γI(t)− γI(t− τ)e−dτ − dR(t). (10)

On the other side, we have the definition in terms of distribution of immune

individuals,

R(t) =

∫ zmax

zmin

r(t, z) dz.

Differentiate the last relation and compare with (10):

g(zmax)r(t, zmax) = γI(t), g(zmin)r(t, zmin) = γI(t− τ)e−dτ .

This means that individuals with maximal level of immunity are those who

recover from infection. If a host who recovers at time t1 survives up to time

t1+τ , he exits the R class and enter S. In turn, we find a delay term in the

equation for S too, and have a classical SIRS model with constant delay

Ṡ(t) = b(N(t))− β
S(t)I(t)

N(t)
− dS(t) + γI(t− τ)e−dτ

İ(t) = β
S(t)I(t)

N(t)
− (γ + d+ dI)I(t)

Ṙ(t) = γI(t)− γI(t− τ)e−dτ − dR(t),

which was studied by Taylor and Carr36.

Now we can include again vaccination and the class S2 as in the general

model (V1). We assume that vaccine-induced immunity lasts for a time

τv > 0,

τv :=

∫ zvax

zmin

1

g(x)
dx <

∫ zmax

zmin

1

g(x)
dx =: τ.
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With similar arguments as for the immune population, we obtain the rela-

tions

g(zvax)v(t, zvax) = αb(N(t)) + φS(t),

g(zmin)v(t, zmin) = (αb(N(t− τv)) + φS(t− τv)) e
−dτv ,

and find a system with two constant delays

Ṡ(t) = (1− α)b(N(t)) − φS(t)− β
S(t)I(t)

N(t)
− dS(t)

İ(t) = β
I(t)

N(t)
(S(t) + S2(t))− (γ + d+ dI)I(t)

Ṙ(t) = γI(t)− γI(t− τ)e−dτ − dR(t)

V̇ (t) = αb(N(t)) + φS(t)− (αb(N(t− τv)) + φS(t− τv)) e
−dτv − dV (t)

Ṡ2(t) = −βS2(t)I(t)

N(t)
− dS2(t) + γI(t− τ)e−dτ

+ (αb(N(t− τv)) + φS(t− τv)) e
−dτv .
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A/2-11-1-2012-0001 National Excellence Program. GR was supported by

Hungarian Scientific Research Fund OTKA K109782 and TÁMOP-4.2.2.A-
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