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a b s t r a c t

We show that disease transmission models in a spatially heterogeneous environment can have a large number

of coexisting endemic equilibria. A general compartmental model is considered to describe the spread of an

infectious disease in a population distributed over several patches. For disconnected regions, many boundary

equilibria may exist with mixed disease free and endemic components, but these steady states usually

disappear in the presence of spatial dispersal. However, if backward bifurcations can occur in the regions,

some partially endemic equilibria of the disconnected system move into the interior of the nonnegative cone

and persist with the introduction of mobility between the patches. We provide a mathematical procedure that

precisely describes in terms of the local reproduction numbers and the connectivity network of the patches,

whether a steady state of the disconnected system is preserved or ceases to exist for low volumes of travel.

Our results are illustrated on a patchy HIV transmission model with subthreshold endemic equilibria and

backward bifurcation. We demonstrate the rich dynamical behavior (i.e., creation and destruction of steady

states) and the presence of multiple stable endemic equilibria for various connection networks.

© 2014 Elsevier Inc. All rights reserved.
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. Introduction

Compartmental epidemic models have been considered widely in

he mathematical literature since the pioneering works of Kermack,

cKendrick and many others. Investigating fundamental properties

f the models with analytical tools allows us to get insight into the

pread and control of the disease, by gaining information about the

olutions of the corresponding system of differential equations. De-

ermining steady states of the system and knowing their stability is

f particular interest if one thinks of the long term behavior of the

olution as final epidemic outcome.

In most deterministic models for communicable diseases, there

re two types of steady states: one is disease free, meaning that the

isease is not present in the population, and the other one is en-

emic, when the infection persists with a positive state in some of

he infected compartments. In such situation, the basic reproduction

umber (R0) usually works as a threshold for the stability of fixed

oints. Typically, the disease free equilibrium is locally asymptotically

table whenever this quantity—defined as the number of secondary

ases generated by an index infected individual who was introduced

nto a completely susceptible population—is less than unity, and for
∗ Corresponding author: Tel: +36 62 34 3310.
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alues of R0 greater than one, the endemic fixed point emerging

t R0 = 1 takes stability over by making the disease free state un-

table. This phenomenon, known as forward bifurcation at R0 = 1,

s in contrary to some other cases when more than two equilibria

oexist in certain parameter regions. Backward bifurcation presents

uch a scenario, when there is an interval for values of R0 to the left

f one where there is a stable and an unstable endemic fixed point

esides the unique disease free equilibrium. Such dynamical struc-

ure of fixed points has been observed in several biological models

onsidering multiple groups with asymmetry between groups and

ultiple interaction mechanisms (for an overview see, for instance,

umel [8] and the references therein). However, examples can also

e found in the literature where the coexistence of multiple non-

rivial steady states is not due to backward transcritical bifurcation

f the disease free equilibrium: in the age-structured SIR model ana-

yzed by Franceschetti et al. [6] endemic equilibria arise through two

addle-node bifurcations of a positive fixed point, moreover Wang

17] found backward bifurcation from an endemic equilibrium in a

imple SIR model with treatment.

In case of forward transcritical bifurcation, the classical disease

ontrol policy can be formulated. The stability of the endemic state is

ypically accompanied with the persistence of the disease in the pop-

lation as long as the reproduction number is larger than one, and

ontrolling the epidemic in a way such that R0 decreases below one

uccessfully eliminates the infection, since every solution converges

http://dx.doi.org/10.1016/j.mbs.2014.08.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2014.08.012&domain=pdf
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(a) e1 = 2, e2 = 2, e3 = 1,
R1 < 1, R2 < 1, R3 > 1.

(b) e1 = 2, e2 = 1, e3 = 1,
R1 < 1, R2 > 1, R3 > 1.

(c) e1 = 1, e2 = 1, e3 = 1,
R1 > 1, R2 > 1, R3 > 1.

Fig. 1. We illustrate the behavior of steady states in the system of three regions con-

nected to each other by a complete mobility network, for three different cases in the

values of local reproduction numbers. Dots on the schematic diagrams depict infected

components of equilibria of the disconnected system, and ei denotes the number of

positive fixed points in region i, i = 1, 2, 3. Mobility has no impact on the disease

free equilibrium (orange dot). Componentwise positive steady states (blue dots) are

preserved in the system with traveling, as they continuously depend on the mobility

parameter α. A boundary endemic equilibrium moves out from the nonnegative octant

with the introduction of traveling if the equilibrium has a component corresponding

to a region, which is disease free in the absence of traveling and has local reproduction

number (R) greater than one (red dot). Other boundary steady states move into the

interior of the nonnegative octant (green dots). (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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to the disease free equilibrium when R0 < 1. On the other hand,

the presence of backward bifurcation with a stable non-trivial fixed

point forR0 < 1 means that bringing the reproduction number below

one is only necessary but not sufficient for disease eradication. Nev-

ertheless, multiple endemic equilibria have further epidemiological

implications, namely that stability and global behavior of the models

that exhibit such structure are often not easy to analyze, henceforth

little can be known about the final outcome of the epidemic.

Multi-city epidemic models, where the population is distributed in

space over several discrete geographical regions with the possibility

of individuals’ mobility between them, provide another example for

rich dynamics. In the special case when the cities are disconnected,

the model possesses a large number of steady states (i.e., the product

of the numbers of equilibria in the one-patch models corresponding

to each city). However, the introduction of traveling has a signifi-

cant impact on steady states, as it often causes substantial technical

difficulties in the fixed point analysis and, more importantly, makes

certain equilibria disappear. Some works in the literature deal with

models where the system with traveling exhibits only two steady

states, one disease free with the infection not present in any of the

regions, and another one, which exists only for R0 > 1, correspond-

ing to the situation when the disease is endemic in each region (see,

for instance, Arino [1], Arino and van den Driessche [2]). Other stud-

ies which consider the spatial dispersal of infecteds between regions

(Gao and Ruan [7], Wang and Zhao [18] and the references therein) do

not derive the exact number for the steady states, but show the global

stability of a single disease free fixed point for R0 < 1, and claim the

uniform persistence of the disease for R0 > 1 which implies the ex-

istence of at least one (componentwise) positive equilibrium.

The purpose of this study is to investigate the impact of individuals’

mobility on the number of equilibria in multiregional epidemic mod-

els. A general deterministic model is formulated to describe the spread

of infectious diseases with horizontal transmission. The framework

enables us to consider models with multiple susceptible, infected and

removed compartments, and more significantly, with several steady

states. The model can be extended to an arbitrary number of regions

connected by instantaneous travel, and we investigate how mobility

creates or destroys equilibria in the system. First we determine the

exact number of steady states for the model in disconnected regions,

then give a precise condition, in terms of the reproduction numbers

of the regions and the connecting network, for the persistence of

equilibria in the system with traveling. The possibilities for a three-

patch scenario with backward bifurcations (i.e., when two endemic

states are present for local reproduction numbers less than one) are

sketched in Fig. 1 (cf. Corollary 10).

The paper is organized as follows. A general class of compart-

mental epidemic models is presented in Section 2, including multi-

group, multistrain and stage progression models. We consider r

regions which are connected by means of movement between the

subpopulations, and use our setting as a model building block in each

region. Section 3 concerns with the unique disease free equilibrium

of the multiregional system with small volumes of mobility, while

in Sections 4–6 we consider the endemic steady states of the discon-

nected system, and specify conditions on the connection network and

the model equations for the persistence of fixed points in the system

with traveling. We close Sections 4–6 with corollaries that summarize

the achievements. The results are applied to a model for HIV trans-

mission in three regions with various types of connecting networks

in Section 7, then this model is used for the numerical simulations of

Section 8 to give insight into the interesting dynamics with multiple

stable endemic equilibria, caused by the possibility of traveling.

2. Model formulation

We consider an arbitrary (r) number of regions, and use upper

index to denote region i, i ∈ {1, . . . r}. Let xi ∈ Rn, yi ∈ Rm and zi ∈ Rk
epresent the set of infected, susceptible and removed (by means of

mmunity or recovery) compartments, respectively, for n, m, k ∈ Z+.

he vectors xi, yi and zi are functions of time t. We assume that all

ndividuals are born susceptible, the continuous function gi(xi, yi, zi)
odels recruitment and also death of susceptible members. It is as-

umed that gi is r − 1 times continuously differentiable. The n × n

atrix −Vi describes the transitions between infected classes as well

s removals from infected states through death and recovery. It is

easonable to assume that all non-diagonal entries of Vi are non-

ositive, that is, Vi has the Z sign pattern [16]; moreover the sum of

he components of Viu should also be nonnegative for any u ≥ 0. It is

hown in [16] that such a matrix is a non-singular M-matrix, more-

ver (Vi)−1 ≥ 0. Furthermore, we let Di be a k × k diagonal matrix

hose diagonal entries denote the removal rate in the corresponding

emoved class.

Disease transmission is described by the m × n matrix func-

ion Bi(xi, yi, zi), assumed Cr−1 on Rn+ × (Rm+ \ {0})× Rk+, an

lement β i
p,q(x

i, yi, zi) represents transmission between the pth
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usceptible class and the qth infected compartment. The term

diag(yi)Bi(xi, yi, zi)xi)p thus has the form (yi)p
∑n

q=1 β i
p,q(x

i)q, p ∈
1, . . . m}. For each pair (p, q) ∈ {1, . . . m} × {1, . . . n} we define a non-

egative n-vector ηi
p,q which distributes the term (yi)pβ i

p,q(x
i)q into

he infected compartments; it necessarily holds that
∑n

j=1(η
i
p,q)j = 1.

enceforth, individuals who enter the jth infected class when turn-

ng infected are represented by
∑m

p=1

∑n
q=1(η

i
p,q)j(y

i)pβ i
p,q(x

i)q, which

llows us to interpret the inflow of newly infected individuals into
i as F i(xi, yi, zi)xi with (F i)j,q = ∑m

p=1(η
i
p,q)j(y

i)qβ i
p,q, j, q ∈ {1, . . . n}.

ecovery of members of the qth disease compartment into the pth re-

oved class is denoted by the (p, q)th entry of the k × n nonnegative

atrix Zi.

In case of disconnected regions, we can formulate the equations

escribing disease dynamics in region i, i ∈ {1, . . . r}, as

d

dt
xi = F i(xi, yi, zi)xi − Vixi,

d

dt
yi = gi(xi, yi, zi)− diag(yi)Bi(xi, yi, zi)xi,

d

dt
zi = −Dizi + Zixi. (Li)

ue to its general formulation, our system is applicable to describe

broad variety of epidemiological models in the literature. This is

llustrated with some simple examples.

xample 1. Multigroup models

Epidemiological models where, based on individual behavior, mul-

iple homogeneous subpopulations (groups) are distinguished in the

eterogeneous population, are often called multigroup models. The

ifferent individual behavior is typically reflected in the incidence

unction as, for instance, by sexually transmitted diseases the prob-

bility of becoming infected depends on the number of contacts the

ndividual makes, which is closely related to his/her sexual behav-

or. In terms of our system (Li), such a model is realized if n = m = k

olds and the vector ηi
p,q is defined as its pth component is one with

ll other elements zero, meaning that individuals who are in the pth

usceptible group go into the pth infected class when contracting the

isease. A simple SIR-type model with constant recruitment �j into

he jth susceptible class, and μj and γj as natural mortality rate of the

th subpopulation and recovery rate of individuals in Ij, j ∈ {1, . . . n},

ecomes a multigroup model if its ODE system reads

d

dt
Sj(t) = �j −

n∑
q=1

βj,qIq(t)Sj(t)− μjSj(t),

d

dt
Ij(t) =

n∑
q=1

βj,qIq(t)Sj(t)− γjIj(t)− μjIj(t),

d

dt
Rj(t) = γjIj(t)− μjRj(t).

ee also the classical work of Hethcote and Ark [9] for epidemic spread

n heterogeneous populations.

xample 2. Stage progression models

These models are designed to describe the spread of infectious

iseases where all newly infected individuals arrive to the same

ompartment and then progress through several infected stages un-

il they recover or die. If we let ηi
p,q = (1, 0, . . . 0) for every (p, q) ∈

1, . . . m} × {1, . . . n} then Eq. (Li) becomes a stage progression model.

he example

d

dt
S(t) = � −

n∑
q=1

βqIq(t)S(t)− μ
S
S(t),

d

dt
I1(t) =

n∑
q=1

βqIq(t)S(t)− γ1I1(t)− μ1I1(t),
d

dt
I2(t) = γ1I1(t)− γ2I2(t)− μ2I2(t),

...

d

dt
In(t) = γn−1In−1(t)− γnIn(t)− μnIn(t),

d

dt
R(t) = γnIn(t)− μ

R
R(t)

rovides such a framework with one susceptible and one removed

lass. The more general model presented by Hyman et al. [10] consid-

rs different infected compartments to represent the phenomenon of

hanging transmission potential throughout the course of the infec-

ious period.

xample 3. Multistrain models

Considering more than one infected class in an epidemic model

ight be necessary because of the coexistence of multiple disease

trains. Individuals infected by different subtypes of pathogen belong

o different disease compartments, and a new infection induced by

strain always arises in the corresponding infected class. Using the

nterpretation of (ηp,q) in Eq. (Li), this can be modeled with the choice

f (ηi
p,q)q = 1, p ∈ {1, . . . m}, q ∈ {1, . . . n}. However, it is not hard to

ee that the model described by the system

d

dt
S(t) = � −

n∑
q=1

βqIq(t)S(t)− μ
S
S(t),

d

dt
Ij(t) = βjS(t)Ij(t)− γjIj(t)− μjIj(t), j = 1, . . . n,

d

dt
R(t) =

n∑
q=1

γqIq(t)− μ
R
R(t)

lso exhibits such a structure. van den Driessche and Watmough [16]

efer to several works for multistrain models in Section 4.4, and they

lso provide a system with two strains and one susceptible class as

n example; though, we point out that their model incorporate the

ossibility of “super-infection” which is not considered in our frame-

ork.

After describing our general disease transmission model in r sep-

rated territories, we connect the regions by means of traveling with

he assumptions that travel occurs instantaneously. We denote the

atrices of movement rates from region j to region i, i, j ∈ {1, . . . r},

�= j, of infected, susceptible and removed individuals by Aij
x , Aij

y

nd Aij
z , respectively, which have the form Aij

x = diag(αij
x,1, . . . αij

x,n),
ij
y = diag(αij

y,1, . . . αij
y,m) and Aij

z = diag(αij
z,1, . . . αij

z,k
), where all en-

ries are nonnegative. For connected regions, our model in region

reads

d

dt
xi = F i(xi, yi, zi)xi − Vixi −

r∑
j=1
j �=i

Aji
x xi +

r∑
j=1
j �=i

Aij
x xj,

d

dt
yi = gi(xi, yi, zi)− diag(yi)Bi(xi, yi, zi)xi −

r∑
j=1
j �=i

Aji
yyi +

r∑
j=1
j �=i

Aij
yyj,

d

dt
zi = −Dizi + Zixi −

r∑
j=1
j �=i

Aji
z zi +

r∑
j=1
j �=i

Aij
z zj. (Ti)

. Disease free equilibrium and local reproduction numbers

In the absence of traveling, i.e., when αij
x,·, α

ij
y,·, α

ij
z,· = 0 for all i, j ∈

1, . . . r}, the equations for a given region i are independent of the

quations of other regions. We assume that for each i, the equation

i(0, yi
0, 0) = 0
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has a unique solution yi
0 > 0; this yields that there exists a unique

disease free equilibrium (0, yi
0, 0) in region i, since xi

0 = 0 and the third

equation of (Li) implies zi
0 = 0. We also suppose that all eigenvalues of

the derivative gi
yi(0, yi

0, 0) have negative real part, which establishes

the local asymptotic stability of (yi
0, 0) in the disease free system

d

dt
yi = gi(0, yi, zi),

d

dt
zi = −Dizi.

When system (Li) is close to the disease free equilibrium, the dynamics

in the infected classes can be approximated by the linear equation

d

dt
xi = (Fi − Vi)xi,

where we use the notation Fi = F i(0, yi
0, 0). The transmission ma-

trix Fi represents the production of new infections while Vi describes

transition between and out of the infected classes. Clearly Fi is non-

negative, which together with (Vi)−1 ≥ 0 implies the non-negativity

of Fi(Vi)−1. We recall that the spectral radius ρ(A) of a matrix A ≥ 0

is the largest real eigenvalue of A (according to the Frobenius–Perron

theorem, such an eigenvalue always exists for non-negative matrices,

and it dominates the modulus of all other eigenvalues). We define the

local reproduction number in region i as

Ri = ρ(Fi(Vi)−1).

In region i, the stability of the disease free fixed point is determined by

the eigenvalues of the Jacobian of Eq. (Li) evaluated at the equilibrium.

It is not hard to derive that the dominant eigenvalue of Fi − Vi gives

the dominant eigenvalue of the Jacobian. Using the definition of Ri,

the next result can be deduced from [16].

Proposition 1. The point (0, yi
0, 0) is locally asymptotically stable in

Eq. (Li) if Ri < 1, and unstable if Ri > 1.

If the regions are disconnected, the basic (global) reproduction

number arises as the maximum of the local reproduction numbers,

hence we arrive to the following simple proposition.

Proposition 2. The system (L1)–(Lr) has a unique disease free equilib-

rium E0
df

= (0, y1
0, 0, . . . 0, yr

0, 0), which is locally asymptotically stable if

RB
0 < 1 and is unstable if RB

0 > 1, where we define

RB
0 = max

1≤i≤r
Ri.

Let us suppose that all movement rates admit the form αij
x,· =

α · c
ij
x,·, αij

y,· = α · c
ij
y,·, αij

z,· = α · c
ij
z,·, where the nonnegative constants

c
ij
x,·, c

ij
y,· and c

ij
z,· represent connectivity potential, and we can think

of α ≥ 0 as the general mobility parameter. Using the notation

C
ij
w = diag(cij

w,1, . . . c
ij
w,n) makes Aij

w = αC
ij
w, w ∈ {x, y, z}. With this for-

mulation, we can control all movement rates at once, through the

parameter α. Moreover, it allows us to rewrite systems (T1) – (Tr) in

the compact form

d

dt
X = T (α,X ) (1)

with X = (x1, y1, z1, . . . xr, yr, zr)T ∈ Rr(n+m+k) and T = (T 1,x,T 1,y,

T 1,z, . . .T r,x,T r,y,T r,z)T : R × Rr(n+m+k) → Rr(n+m+k), where T i,x, T i,y

and T i,z are defined as the right hand side of the first, second

and third equation, respectively, of system (Ti), i ∈ {1, . . . r}. We

note that T is an r − 1 times continuously differentiable func-

tion on (R × Rn+ × (Rm+ \ {0})× Rk+ × · · · × Rn+ × (Rm+ \ {0})× Rk+), and

Eq. (1) gives system (L1)–(Lr) for α = 0.

As pointed out in Proposition 2, the point E0
d f

= (0, y1
0, 0, . . .

0, yr , 0) is the unique disease free equilibrium of (L1)–(Lr). Since this
0
ystem coincides with (T1)– (Tr) for α = 0, it holds that T (0, E0
df
) = 0,

hat is, E0
df

is a disease free steady state of (T1) – (Tr) when α = 0,

nd it is unique. The following theorem establishes the existence of a

nique disease free equilibrium of this system for small positive α.

heorem 3. Assume that the matrix
(

∂T
∂X

)
(0, E0

df
) is invertible. Then,

y means of the implicit function theorem there exists an α0 > 0, an

pen set U0 containing E0
df

, and a unique r − 1 times continuously differ-

ntiable function f0 = (fx1
0
, fy1

0
, fz1

0
, . . . fxr

0
, fyr

0
, fzr

0
)T : [0, α0) → U0 such

hat f0(0) = E0
df

and T (α, f0(α)) = 0 for α ∈ [0, α0). Moreover, α0 can

e defined such that f0 is the unique disease free equilibrium of system

T1)–(Tr) on [0, α0).

roof. The existence of f0, the continuous function which satisfies

he fixed point equations of (1) for small α, is straightforward so it

emains to show that it defines a disease free steady state when α is

ufficiently close to zero.

We consider the following system for the susceptible classes of

he model with traveling

d

dt
y1 = g1(0, y1, 0)−

r∑
j=1
j �=1

αC
j1
y y1 +

r∑
j=1
j �=1

αC
1j
y yj,

... (2)

d

dt
yr = gr(0, yr, 0)−

r∑
j=1
j �=r

αC
jr
y yr +

r∑
j=1
j �=r

αC
rj
y yj.

he Jacobian evaluated at the disease free equilibrium and α = 0

eads diag(gi
yi(0, yi

0, 0)), its non-singularity follows from the assump-

ion (made earlier in this section) that all eigenvalues of gi
yi(0, yi

0, 0),

∈ {1, . . . r}, have negative real part. We again apply the implicit func-

ion theorem and get that in the absence of the disease, the suscep-

ible subsystem obtains a unique equilibrium for small values of α.

ore precisely, there is an r − 1 times continuously differentiable

unction f̃
y

0 (α) ∈ Rrm, which satisfies the steady-state equations of

2) whenever α is in [0, α̃0) with α̃0 close to zero, and it also holds

hat f̃
y

0 (0) = (y1
0, . . . yr

0)
T . On the other hand, we note that the point

0, (f̃ y
0 )1, 0, . . . 0, (f̃ y

0 )r, 0)T is an equilibrium solution of system (T1)–

Tr), and by uniqueness it follows that f0 = (0, (f̃ y
0 )1, 0, . . . 0, (f̃ y

0 )r, 0)T ,

nd necessarily (fy1
0
, . . . fyr

0
)T = f̃

y
0 , for α < min{α0, α̃0}. By continuity

t is clear from f
yi

0
(0) = yi

0 > 0, i ∈ {1, . . . r}, that α0 can be defined

uch that f0 is nonnegative, and thus, it is a disease free fixed point of

T1)–(Tr) which is biologically meaningful.

If E0
df

is locally asymptotically stable in system (L1)–(Lr) then

∂T
∂X

)
(0, E0

df
)has only eigenvalues with negative real part, and there-

ore is invertible. By continuity of the eigenvalues with respect to

arameters, all eigenvalues of
(

∂T
∂X

)
(α, f0(α))have negative real part

f α is sufficiently small. Similarly, if E0
df

is unstable and
(

∂T
∂X

)
(0, E0

df
)

s non-singular then for α close enough to zero, f0(α) has an eigen-

alue with positive real part and thus, is unstable. We have learned

rom Proposition 2 that RB
0 works as a threshold for the stability of

he disease free steady state for α = 0, and now we obtain that this

s not changed when traveling is introduced with small volumes into

he system.

roposition 4. There exists an α∗
0 > 0 such that f0(α) is locally

symptotically stable on [0, α∗
0) if RB

0 < 1, and in case RB
0 > 1 and

et
(

∂T
∂X

)
(0, E0

df
) �= 0, α∗

0 can be chosen such that it also holds that f0(α)

s unstable for α < α∗.
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. Endemic equilibria

Next we examine endemic equilibria (x̂i, ŷi, ẑi), x̂i �= 0, of system

Li). We assume that the functions and matrices defined for the model

re such that either ŵi = 0 or ŵi > 0 holds for w ∈ {x, y, z}, that is,

n region i if any of the infected (susceptible) (removed) compart-

ents are at positive steady state then so are the other infected (sus-

eptible) (removed) classes. Endemic fixed points thus admit x̂i > 0,

hich implies ŷi > 0 and ẑi > 0. Indeed, the equilibrium condition for

ystem (Li)

Dizi + Zixi = 0+
nd Zi ≥ 0, Zi �= 0 gives ẑi �= 0 if x̂i > 0, so our assumption above im-

lies that zi is at positive steady state in endemic equilibria. On the

ther hand, ŷi = 0 would make F i = 0, so using the non-singularity

f Vi and the first equation of (Li), Vix̂i = 0 contradicts x̂i > 0. En-

emic equilibria of the regions can thus be referred to as positive

xed points.

Without connections between the regions, let region i have ei ≥ 1

ositive fixed points (x̂i, ŷi, ẑi)1, . . . (x̂i, ŷi, ẑi)ei
. Then the disconnected

ystem (L1)–(Lr) admits
(∏r

i=1(ei + 1)
) − 1 endemic equilibria of the

orm EE0 = (EE1, . . . EEr), EEi ∈ {(0, yi
0, 0), (x̂i, ŷi, ẑi)1, . . . (x̂i, ŷi, ẑi)ei

},

nd EE0 �= (0, y1
0, 0, . . . 0, yr

0, 0), the disease free steady state. In the

equel we will use the general notation EE0 = (x̂1, ŷ1, ẑ1, . . . x̂r, ŷr, ẑr),
here x̂i = 0 for an i means (x̂i, ŷi, ẑi) = (0, yi

0, 0). The upper index

0’ in EE0 stands for α = 0. We note that T (0, EE0) = 0 holds with T
efined for system (1).

The implicit function theorem is also applicable for any of the

ndemic equilibria under the assumption that the Jacobian of system

1) evaluated at the fixed point and α = 0 has nonzero determinant.

e remark that whenever EE0 is asymptotically stable, that is, EEi is

symptotically stable in Eq. (Li) for all i ∈ {1, . . . r}, then
(

∂T
∂X

)
(0, EE0)

as no eigenvalues on the imaginary axis and thus, is nonsingular.

heorem 5. Assume that the matrix
(

∂T
∂X

)
(0, EE0) is invertible. Then,

y means of the implicit function theorem there exists an αE, an open

et UE containing EE0, and a unique r − 1 times continuously differ-

ntiable function f = (fx̂1 , fŷ1 , fẑ1 , . . . fx̂r , fŷr , fẑr )T : [0, αE) → UE such

hat f (0) = EE0 and T (α, f (α)) = 0 for α ∈ [0, αE). By continuity of

igenvalues with respect to parameters, det
(

∂T
∂X

)
(0, EE0) �= 0 implies

et
(

∂T
∂X

)
(α, f (α)) �= 0 for α sufficiently small, thus on an interval

0, α∗
E) it holds that f (α) is a locally asymptotically stable (unstable)

teady state of (T1)–(Tr) whenever EE0 is locally asymptotically stable

unstable) in (L1)–(Lr).

The last theorem means that, under certain assumptions on

ur system, for every equilibrium EE0 of the disconnected system

L1)–(Lr) there is a fixed point f (α), f (0) = EE0, of (T1)–(Tr) close to

E0 when α is sufficiently small. If EE0 has only positive components

hen so does f (α), so we arrive to the following result.

heorem 6. If EE0 is a positive equilibrium of (L1)–(Lr) then αE in

heorem 5 can be chosen such that f (α) > 0 holds for α ∈ [0, αE). This

eans that the equilibrium EE0 of the disconnected system is preserved

or small volumes of movement by a unique function which depends

ontinuously on α.

On the other hand, EE0 = f (0) will have some zero components

hen there is a region i, i ∈ {1, . . . r}, where x̂i = 0 and ẑi = 0 hold,

hat is, the fixed point is on the boundary of the nonnegative cone of
r(n+m+k). Nevertheless, we recall that EE0 is an endemic equilibrium

o there exists a j ∈ {1, . . . r}, j �= i, such that x̂j > 0. In the sequel, such

xed points will be referred to as boundary endemic equilibria. The

iological interpretation of such a situation is that, when the regions

re disconnected, the disease is endemic in some regions but is not

resent in others. In this case f (α) may move out of the nonnegative
one of Rr(n+m+k) as α increases, which means that,f (α)—though is a

xed point of system (T1)–(Tr)—is not biologically meaningful. Hence-

orth, it is essential to describe under which conditions is f (α) ≥ 0

ulfilled. This will be done in the following two lemmas. Before we

roceed, let us introduce a definition to facilitate notations and ter-

inology.

efinition 1. Consider an endemic equilibrium EE0 of system

L1)–(Lr).

• If there is a region i which is at a disease free steady state in EE0

then we say that region i is DFAT (disease free in the absence of

traveling) in the endemic equilibrium EE0, that is, x̂i = 0.
• If there is a region j which is at an endemic (positive) steady state

in EE0 then we say that region j is EAT (endemic in the absence of

traveling) in the endemic equilibrium EE0, that is, x̂j > 0.

emma 7. Consider a boundary endemic equilibrium EE0 of system

L1)–(Lr). For the function f (α) defined in Theorem 5 to be nonnegative

or small α, it is necessary and sufficient to ensure that fx̂i(α) ≥ 0 holds

or all i such that x̂i = 0 in EE0, that is, i is DFAT.

roof. We recall that in an endemic equilibrium, ŷj > 0 holds by as-

umption for any j ∈ {1, . . . r}, thus for an i with x̂i = 0 the positivity

f fŷi(α) for small α follows from fŷi(0) = yi
0 and the continuity of f .

rom Eq. (Ti) we derive the fixed point equation

Z1 0 . . . 0

0 Z2 . . . 0

...
...

. . .
...

0 0 . . . Zr

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

fx̂1(α)

fx̂2(α)

...

fx̂r (α)

⎞
⎟⎟⎟⎟⎟⎠ = Mz

⎛
⎜⎜⎜⎜⎜⎝

fẑ1(α)

fẑ2(α)

...

fẑr (α)

⎞
⎟⎟⎟⎟⎟⎠ , (3)

here Mz is defined as

z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1 + ∑
r
j=1
j �=1

αC
j1
z −αC12

z . . . −αC1r
z

−αC21
z D2 + ∑

r
j=1
j �=2

αC
j2
z . . . −αC2r

z

...
...

. . .
...

−αCr1
z −αCr2

z . . . Dr + ∑
r
j=1
j �=r

αC
jr
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

ll non-diagonal elements of this rk × rk matrix are non-positive,

hus it has the Z sign pattern [16]. Moreover, we also note that in

ach column the diagonal element dominates the absolute sum of

ll non-diagonal entries since Di > 0, i ∈ {1, . . . r}. Then, we can apply

heorem 5.1 in [5] where the equivalence of properties 3 and 11

laims that Mz is invertible with the inverse nonnegative. Using the

on-negativity of Zi, i ∈ {1, . . . r}, and Eq. (3) we get that fẑi(α) ≥ 0 for

ll i ∈ {1, . . . r} whenever the vector (fx̂1(α), . . . fx̂r (α)) is nonnegative.

f x̂j > 0 in a region j, meaning that the region is endemic in the absence

f traveling, then for α close to zero it holds that fx̂j(α) > 0 since f is

ontinuous and fx̂j(0) = x̂j. It is therefore enough (though, clearly, also

ecessary as well) to guarantee the nonnegativity of fx̂i(α) for each

egion i where x̂i = 0, that is, the region is DFAT.

emma 8. Consider a boundary endemic equilibrium EE0 of system

L1)–(Lr). If
df

x̂i

dα
(0) > 0 is satisfied for the function f defined in Theorem 5

henever region i is DFAT in EE0, then fx̂i(α) is positive for α sufficiently

mall. On the other hand, if there is a region i which is DFAT and for

hich
df

x̂i

dα
(0) has a negative component, then there is no interval for α

o the right of zero such that f (α) is nonnegative. Moreover, the derivative
df

x̂i

dα
(0) satisfies the equation

Vi − Fi
) dfx̂i

dα
(0) =

r∑
j=1
j �=i

C
ij
x x̂j. (4)
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Proof. From the preceding discussion, the first part of the lemma is

obvious. We only need to derive the formula (4). To this end, consider

a region i where x̂i = 0, this is, i is a DFAT region in EE0. Using the

equilibrium condition T i,x(α, f (α)) = 0, we obtain

d

dα

(
F i( fx̂i(α), fŷi(α), fẑi(α))fx̂i(α)− Vifx̂i(α)

−
r∑

j=1
j �=i

αC
ji
x fx̂i(α)+

r∑
j=1
j �=i

αC
ij
x fx̂j(α)

)

= d

dα
(F i( fx̂i(α), fŷi(α), fẑi(α)))fx̂i(α)

+F i( fx̂i(α), fŷi(α), fẑi(α)) · dfx̂i

dα
(α)

− Vi dfx̂i

dα
(α)−

r∑
j=1
j �=i

C
ji
x fx̂i(α)

−
r∑

j=1
j �=i

αC
ji
x

dfx̂i

dα
(α)+

r∑
j=1
j �=i

C
ij
x fx̂j(α)+

r∑
j=1
j �=i

αC
ij
x

dfx̂j

dα
(α) = 0, (5)

where we remark that T i,x is differentiable at fixed points since

fŷi(α) > 0 and T i ∈ Cr−1 when yi �= 0. Evaluating Eq. (5) at α = 0 gives

(
F i(0, ŷi, ẑi)− Vi

) dfx̂i

dα
(0) = −

r∑
j=1
j �=i

C
ij
x x̂j,

where we used that fx̂j(0) = x̂j, fŷj(0) = ŷj and fẑj(0) = ẑj for j ∈ {1, . . . r}
and x̂i = 0. Note that (0, ŷi, ẑi) is an equilibrium in Eq. (Li) and, since its

component for the infected classes is zero, it equals the unique disease

free equilibrium (0, yi
0, 0). This makes F i(0, ŷi, ẑi) = F i(0, yi

0, 0), so

with the definition of Fi in Section 3, the above equations reformulate

as(
Vi − Fi

) dfx̂i

dα
(0) =

r∑
j=1
j �=i

C
ij
x x̂j.

Before we investigate the solutions of Eq. (4), let us point out

a few things. When introducing traveling, a fixed point of (T1)–(Tr)
moves along the continuous function f (α). In the case when there

are regions where the disease is not present without traveling and

the fixed point f has zeros for α = 0, it is possible that f (α) is non-

positive for small positive α. The epidemiological implication of such

a situation is that boundary equilibria of the disconnected system

might disappear when traveling is introduced.

For a boundary endemic equilibrium f (0) = EE0, Lemmas 7 and

8 describe when such a case is realized, and give condition for the

non-negativity of f (α) for small positive α. The Eq. (4) is derived for

an i ∈ {1, . . . r} for which fx̂i(0) = x̂i = 0 holds; the right hand side of

Eq. (4) is a nonnegative n-vector with the qth component having

the form (
∑r

j=1
j �=i

C
ij
x x̂j)q = ∑r

j=1
j �=i

c
i,j
x,q(x̂

j)q. It is clear that (
∑r

j=1
j �=i

C
ij
x x̂j)q is

positive if and only if there exists a jq ∈ {1, . . . r}, jq �= i, such that

(x̂jq)q > 0 and c
i,jq
x,q > 0, or with words, there is a region jq where the

qth infected class is in a positive steady state in EE0, and there is a

connection from that class toward the qth infected class of region i

(we remark that (x̂jq)q > 0 implies x̂jq > 0, yielding that the region jq
is EAT). We obtain the following theorem.

Theorem 9. Assume that there is a region i, i ∈ {1, . . . r}, which is DFAT

in the boundary endemic equilibrium EE0 of system (L1)–(Lr). Then for the

function fx̂i defined in Theorem 5, it is satisfied that
df

x̂i

dα
(0) ≥ 0 if Ri < 1,

and
df

x̂i

dα
(0) has a non-positive component if Ri > 1. Furthermore, if we

assume that
∑r

j=1
j �=i

C
ij
x x̂j > 0, then it holds that

df
x̂i

dα
(0) > 0 if Ri < 1, and

df
x̂i

dα
(0) has a strictly negative component if Ri > 1.
roof. From the properties of Vi described in Section 2 and the

on-negativity of Fi, we get that (Vi − Fi)p,q ≤ 0 holds for p �= q,

ence (Vi − Fi) has the Z sign pattern. Theorem 5.1 in [5] says that
i − Fi is invertible and (Vi − Fi)−1 ≥ 0 if and only if all eigenvalues of
i − Fi have positive real part (properties 11 and 18 are equivalent);

r analogously, Fi − Vi is invertible and (Vi − Fi)−1 ≥ 0 if and only if

ll eigenvalues of Fi − Vi have negative real part. It is known [16] that

ll eigenvalues of the matrix Fi − Vi have negative real part if and only

f Ri < 1, the maximum real part of the eigenvalues is zero if and only

f Ri = 1, and there is an eigenvalue with strictly positive real part if

nd only if Ri > 1.

We conclude that if Ri < 1 holds then the equality

dfx̂i

dα
(0) =

(
Vi − Fi

)−1

⎛
⎜⎝ r∑

j=1
j �=i

C
ij
x x̂j

⎞
⎟⎠

erived from Eq. (4) shows that
df

x̂i

dα
(0) is nonnegative. If the sum on

he right hand side is strictly positive (which is possible since EE0

s an endemic equilibrium hence there is a region j ∈ {1, . . . r}, j �= i,

here x̂j > 0; furthermore the matrix C
ij
x is also nonnegative), then

et(Vi − Fi)−1 �= 0 yields
df

x̂i

dα
(0) > 0.

Next we consider the case when Ri > 1. Theorems 5.3 and 5.11

n [5] state that if A is a square matrix which satisfies (A)p,q ≤ 0 for

�= q and if there exists a vector x > 0 such that Ax ≥ 0, then every

igenvalue of A has nonnegative real part. We have seen that Vi −
i has an eigenvalue with negative real part if Ri > 1. Hence, using

he non-negativity of the right hand side of Eq. (4), we get for A =
i − Fi that there exists no positive vector x such that (Vi − Fi)x ≥ 0.

oreover, Theorem 5.1 in [5] yields that there is no x ≥ 0 such that

Vi − Fi)x > 0; it follows from the equivalence of properties 1 and

8 of Theorem 5.1 that for the existence of such x all eigenvalues of
i − Fi should have positive real part. If

∑r
j=1
j �=i

C
ij
x x̂j > 0, then we get

hat
df

x̂i

dα
(0) should satisfy an inequality of the form (Vi − Fi)x > 0,

hich in the light of the argument above is only possible if
df

x̂i

dα
(0)has

negative component.

Theorem 9 together with Lemmas 7 and 8 gives conditions for

he persistence of endemic equilibria in system (T1) – (Tr) for small

olumes of travel. If the fixed point EE0 is a boundary endemic equilib-

ium of system (L1)–(Lr) with a DFAT region i (that is, x̂i = fx̂i(0) = 0)

ut, once traveling is introduced, to every infected class in i there is

n inflow from another region which is EAT (i.e., if the right hand side

f Eq. (4) is positive), then f (0) = EE0 leaves the nonnegative cone of

r(n+m+k) ifRi > 1, since
df

x̂i

dα
(0)has a negative component and hence,

o does fx̂i(α) for small α. On the other hand, if for every DFAT region

, i ∈ {1, . . . r}, it holds that the local reproduction number is less than

ne, and to each infected class there is an inflow from an EAT region

y means of individuals’ movement, then
df

x̂i

dα
(0) > 0 for each such i

mplies that the endemic equilibrium is preserved in system (T1) –

Tr) when α is small.

We understand that there is a limitation in applying the results of

he above stated theorem: to decide whether an endemic steady state

f the disconnected system continues to exist in the system with trav-

ling, we need to know the structure of the connecting network and

equire the pretty restrictive property that for each i ∈ {1, . . . r} with

ˆi = 0, for each q ∈ {1, . . . n} there exists a jq ∈ {1, . . . r}, jq �= i, such that

x̂jq)q > 0 and c
i,jq
x,q > 0. In the next section, we turn our attention to the

ase when this property does not hold, that is, there is a region i which

s DFAT and the right hand side of Eq. (4) is not positive (nevertheless,

e emphasize that the sum—by its the biological interpretation—is

lways nonnegative). We conclude this section with a corollary which

ummarizes our findings. The result covers the special case when the

onnecting network of all infected classes is a complete network.
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orollary 10. Consider a boundary endemic equilibrium EE0 of system

L1)–(Lr). Assume that
∑r

j=1
j �=i

C
ij
x x̂j > 0 is satisfied whenever i, i ∈ {1, . . . r},

s a DFAT region in EE0; we note that this condition always holds if the

onstant c
j,l
x,q is positive for every j, l ∈ {1, . . . r} and q ∈ {1, . . . n}, mean-

ng that all possible connections are established between the infected

ompartments of the regions. Then, in case Ri < 1 holds in all DFAT re-

ions i, we get that EE0 is preserved for small volumes of traveling by a

nique function which depends continuously on α. If there exists a region

which is DFAT and where Ri > 1, then EE0 moves out of the feasible

hase space when traveling is introduced.

. The role of irreducibility of Vi − Fi

Knowing the steady states of the disconnected system (L1)–(Lr), we

re interested in the effect of incorporating the possibility of individu-

ls’ movement on the equilibria. The differential system of connected

egions (T1)–(Tr) reduces to (L1)–(Lr) when the general mobility pa-

ameter α equals zero, thus whenever the Jacobian of (T1)–(Tr)evalu-

ted at an equilibrium of (L1)–(Lr)and α = 0,
(

∂T
∂X

)
(0, EE0), is nonsin-

ular, the existence of a fixed point f (α) in (T1)–(Tr) is guaranteed for

mall α by the implicit function theorem. Theorem 6 implies that if

(0) = EE0 is a positive steady state of (L1)–(Lr) then so is f (α) in (T1)–
Tr). On the other hand, in case EE0 is a boundary endemic equilibrium

nd x̂i = fx̂i(0) = 0 holds for some i ∈ {1 . . . r}—meaning that region i

s at disease free state (DFAT) when the system is disconnected—then

he continuous dependence of f on α allows that the fixed point might

ove out of the feasible phase space as α becomes positive.

In Section 4 we gave a full picture of the behavior of f (α) for small

in the case when the condition
∑r

j=1
j �=i

C
ij
x x̂j > 0 holds for each region

which is DFAT (for a summary, see Corollary 10). If this condition is

ot satisfied, then Theorem 9 yields that the derivative
df

x̂i

dα
(0) is non-

egative but may have some zero components if Ri < 1, and though

t cannot be positive if Ri > 1, it might happen that it is still nonneg-

tive. Following this argument, it is clear that the problematic case

s when
df

x̂i

dα
(0) ≥ 0 and either the derivative is identically zero, or it

as both positive and zero components. In both situations, Lemmas 7

nd 8 through Eq. (4) do not provide enough information to decide

hether the boundary endemic equilibrium will be preserved once

raveling is incorporated.

In this section, we investigate the question of under what con-

itions can the derivative be nonnegative but non-positive, and we

ecall that this can only happen if the right hand side of Eq. (4) is not

ositive.

.1. The case when Vi − Fi is irreducible

By making an additional assumption on the matrix Vi − Fi, we

rove that the result of Theorem 9 can be improved. More precisely,

f it holds that Vi − Fi is irreducible then it is not possible that the

erivative in Eq. (4) has both positive and zero but no negative com-

onents.

The proofs of the next theorem and proposition follow from ir-

educible matrix theory (see Lemma A.3 in Appendix A). We remark

hat parts of the results of the theorem are to be found in Theorem 5.9

5], that is, if Vi − Fi is irreducible then Eq. (4) has a positive solution.

heorem 11. Assume that there is a region i, i ∈ {1, . . . r}, which is

FAT in the endemic equilibrium EE0 of system (L1)–(Lr), and Vi − Fi is

rreducible. If
∑r

j=1
j �=i

C
ij
x x̂j �= 0, then for the function fx̂i defined in Theorem

it is satisfied that
df

x̂i

dα
(0) > 0 if Ri < 1, and

df
x̂i

dα
(0) � 0 if Ri > 1.

roposition 12. Assume that there is a region i, i ∈ {1, . . . r}, which is

FAT in the endemic equilibrium EE0 of system (L1)–(Lr), and Vi − Fi
s irreducible. If
∑r

j=1
j �=i

C
ij
x x̂j = 0, then

df
x̂i

dα
(0) = 0 is the only solution if

i < 1, and in the case when Ri > 1 the derivative
df

x̂i

dα
(0) is either zero

r has a negative component.

We summarize our findings as follows. We consider every region i,

∈ {1, . . . r}, which is DFAT in a boundary endemic equilibrium f (0) =
E0 of (L1)–(Lr). If the derivative in Eq. (4) has some zero but no

egative components, then Lemmas 7 and 8 are insufficient to decide

hether the fixed point f (α) will be biologically meaningful in the

ystem of connected regions. In the case when
∑r

j=1
j �=i

C
ij
x x̂j �= 0 (with

ords, some infected classes of region i have inflow of individuals

rom EAT regions), the statement of Theorem 9 can be sharpened if

he extra assumption of Vi − Fi being irreducible holds: as pointed

ut in Theorem 11, the derivative in Eq. (4) is positive if Ri < 1, and

as a negative component if Ri > 1. Applying the results of Lemmas 7

nd 8, this means that if every DFAT region i has inflow from an EAT

egion and Vi − Fi is irreducible in all such regions i, then f (α) is a

ositive steady state of (T1)–(Tr) if Ri < 1 holds in all DFAT regions.

n the other hand, f (α) is not a biologically meaningful equilibrium

f there is a region where x̂i = 0 and the local reproduction number is

reater than one. For conclusion, we state a corollary which is similar

o the one at the end of Section 4.

orollary 13. Consider a boundary endemic equilibrium EE0 of system

L1)–(Lr). Assume that
∑r

j=1
j �=i

C
ij
x x̂j �= 0 is satisfied whenever i, i ∈ {1, . . . r},

s a DFAT region in EE0; we remark that this situation is realized if each

FAT region has at least one infected class with connection from an EAT

egion. In addition, we also suppose that Vi − Fi is irreducible for DFAT

egions. Then, in case Ri < 1 holds in all DFAT regions, we get that EE0

s preserved for small volumes of traveling by a unique function which

epends continuously on α. If there exists a region i which is DFAT and

here Ri > 1, then EE0 moves out of the feasible phase space when

raveling is introduced.

.2. What if Vi − Fi is reducible?

An n × n square matrix A is called reducible if the set {1, . . . n}
an be divided into two disjoint nonempty subsets {j1, . . . js} and

js+1, . . . jn} such that (A)jp,jq = 0 holds whenever p ∈ {1, . . . s} and

∈ {s + 1, . . . n}. An equivalent definition is that, with simultaneous

ow and/or column permutations, the matrix can be placed into a

orm to have an s × (n − s)zero block. When an infectious agent is in-

roduced into a fully susceptible population in some region i, then—as

ointed out in Section 3—the matrix Fi − Vi describes disease prop-

gation in the early stage of the epidemic, as the change in the rest

f the population can be assumed negligible during the initial spread.

f Fi − Vi = −(Vi − Fi) is reducible, then without loss of generality we

an assume that it can be decomposed into

i − Vi =
(

Rr×r Sr×s

Ss×r Rs×s

)
,

here r = n − s, the dimensions of the sub-matrices are indicated

n lower indexes and Ss×r is the zero matrix. This means that there

re s infected classes in region i which have no inflow induced by

he other r = n − s infected classes of region i in the initial stage

f the epidemic (by the expression “inflow induced by an infected

lass”, we mean either transition from the class described by matrix
i, or the arrival of new infections generated by the infected class

escribed by Fi).

In the sequel, we assume that such dynamical separation of the

nfected classes is not realized in any of the regions; or with other

ords, for each i the matrices Fi and Vi are defined in the model

uch that Fi − Vi is irreducible. The biological consequence of this as-

umption is that whenever a single infected compartment of a DFAT
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Fig. 2. We consider three regions with three infected classes (r = 3, n = 3). Every

infected class of region 2 has an inbound link from region 3 (green arrows). This means

that region 2 has direct connection from 3, but 3 also has direct connection from 2

since c32
x,2, c32.

x,3 > 0, that is, there are links from the second and third infected classes of

region 2 to the corresponding compartments of region 3 (blue arrows). Region 1 has

no direct connection from either 2 or 3, and there is direct connection from region 1

to 2 (red arrow) but not to 3. On the other hand, 3 is reachable from 1 because there

is a path from 1 to 3 via region 2. Region 1 is not reachable from any of the other two

regions. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)
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region imports infection via a link from the corresponding infected

class of an EAT region, then the disease will spread in all infected

classes of the DFAT region, and not only in the one which has connec-

tion from the EAT region. Furthermore, we note that the irreducibility

of Fi − Vi also ensures by means of Lemma A.3 that the fixed point

equation ( f i − Vi)xi = 0 of system (Li) has only componentwise posi-

tive solutions besides the disease free equilibrium. This remark is in

conjunction with the assumption made for the equilibria in Section 4.

The criterion that Fi − Vi is irreducible, is satisfied in a wide range

of well-known epidemiological models. However, we remark that our

results obtained in Sections 3 and 4 also hold in the general case, i.e.,

when the matrix is reducible.

6. When the first derivative does not help—DFAT regions with no

connection from EAT regions

We consider an endemic equilibrium EE0 of system (L1)–(Lr), our

aim is to investigate the solution f (α) of the fixed point equations of

system (T1)–(Tr), for which f (0) = EE0, when α is small but positive.

The case of positive fixed points has been treated in Theorem 6. If EE0

is boundary endemic equilibrium, then we assume that the matrix

Vi − Fi is irreducible for every DFAT region i; if for each such i it holds

that
∑r

j=1
j �=i

C
ij
x x̂j �= 0, then Corollary 13 describes precisely under what

conditions is f (α)a nonnegative steady state. It remains to handle the

scenario when there exists a region i which is DFAT but
∑r

j=1
j �=i

C
ij
x x̂j = 0,

that is, the region i is disease free in the disconnected system and so

are all the regions which have a direct connection to the infected

classes of i in (T1)–(Tr). We emphasize that under “direct connection

from a region j to i” we do not necessarily mean that all infected classes

of i have an inbound link from j; in the sequel, we use this term to

describe the case when C
ij
x = diag(cij

x,1, . . . c
ij
x,n) �= 0, that is, there is an

infected compartment of j which is connected to i. See Fig. 2 which

further illustrates the definition.

Henceforth, we proceed with the case when there is a region i

which is DFAT in EE0 and has no direct connection from any EAT

regions. For such i, Proposition 12 yields that our approach of in-

vestigating the non-negativity of f (α) using Lemma 8 and the first

derivative from Eq. (4), fails. However, we assume that
df

x̂l

dα
(0) ≥ 0

holds for all DFAT regions where x̂l = fx̂l(0) = 0 and
∑r

j=1
j �=l

C
lj
xx̂j �= 0,

since if the derivative has a negative component then—as pointed

out in Corollary 13—f (α)moves out of the feasible phase space when

α increases, and there is no further examination necessary. First we

state a few results for later use.

Lemma 14. For any positive integer N, N ≤ r − 1, it holds that

(Vi − Fi)
dNfx̂i

dαN
(0) = N

r∑
j=1
j �=i

C
ij
x

dN−1fx̂j

dαN−1
(0)

whenever region i, i ∈ {1, . . . r}, is DFAT in the boundary equilibrium EE0,

and
dl f

x̂i

dαl (0) = 0 for every l < N.

Proof. In case N = 1, the equation in the proposition reads as Eq. (4).

Let us assume that N ≥ 2 and
df

x̂i

dα
(0) = 0. We return to Eq. (5) to obtain

the Nth derivative of the equation of xi in Eq. (Ti) as

dN

dαN

(
F i( fx̂i(α), fŷi(α), fẑi(α))fx̂i(α)− Vifx̂i(α)

−
r∑

j=1
j �=i

αC
ji
x fx̂i(α)+

r∑
j=1
j �=i

αC
ij
x fx̂j(α)

)

=
N∑

l=0

(
N

l

)
dN−l

dαN−l
(F i( fx̂i(α), fŷi(α), fẑi(α)))

dlfx̂i

dαl
(α)
− Vi dNfx̂i

dαN
(α)−

N∑
l=0

(
N

l

) r∑
j=1
j �=i

dN−l
(
αC

ji
x

)
dαN−l

· dlfx̂i

dαl
(α)

+
N∑

l=0

(
N

l

) r∑
j=1
j �=i

dN−l
(
αC

ij
x

)
dαN−l

· dlfx̂j

dαl
(α) = 0. (6)

s fŷi(α) > 0, it is satisfied by assumption that F i is r − 1 times con-

inuously differentiable in the respective point. Clearly
dN−l(αC

ij
x )

dαN−l = 0

henever N − l ≥ 2, moreover
d(αC

ij
x )

dα
= C

ij
x , so if

dl f
x̂i

dαl (0) = 0 holds for

ll l < N then Eq. (6) at α = 0 reads

Vi − Fi)
dNfx̂i

dαN
(0) = N

r∑
j=1
j �=i

C
ij
x

dN−1fx̂j

dαN−1
(0), (7)

ince ( fx̂i(0), fŷi(0), fẑi(0)) = (0, yi
0, 0) and Fi = F(0, yi

0, 0).

Our interpretation of the term “direct connection from a region j to

he infected classes of i” can be extended to the expression “path from

region j to the infected classes of i”, representing a chain of direct

onnections via other regions, starting at j and ending in i. Fig. 2

rovides an example for three regions, where there is a path from

egion 1 to 3 via 2 (this is, c21
x,1, c32

x,2 > 0). We note, however, that the

ath does not necessarily consist of the same type of infected classes

n the regions. Considering the above example, infection imported to

egion 2 via the link from x1
1 to x2

1 spreads in other infected classes of

egion 2 as well, by means of the irreducibility of V2 − F2 (represented

y dashed arrows in the figure). This also enables the disease to reach

egion 3 via the links from x2
2 to x3

2 and from x2
3 to x3

3. We also remark

hat the notation “path from a region j to the infected classes of i”

ncludes the special case when the path consists of i and j only, i.e.,

here is a direct connection from j to i. We now define the shortest

istance from EAT regions to a DFAT region.

efinition 2. Consider a region i which is DFAT in the boundary en-

emic equilibrium EE0. We define Mi as the least nonnegative integer

uch that in system (T1)–(Tr) there is a path, starting with an EAT

egion j, ending with region i, and containing Mi regions in-between.

f there is no such path then let Mi = r − 1.

If there is a direct connection from an EAT region j to the infected

lasses of i then this definition implies Mi = 0. We also note that

i ≤ r − 2 always holds whenever the path described above exists.

n the sequel, we omit the words “infected classes” from the expres-

ion “direct connection (path) from j to i” for convenience. Clearly,
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nfection from endemic regions to disease free territories are never

mported via links between non-infected compartments of different

egions, so to decide whether the disease arrives to a region it is

nough to know the graph connecting infected compartments.

We say that “region i is reachable from region j” if there is a path

rom (the infected classes of) j to (the infected classes of) i. Directly

onnected regions are clearly reachable. Now we are in the position

o prove one of the main results of this section.

heorem 15. Assume that in the boundary endemic equilibrium EE0,

here is a region i which is DFAT and for which Ri > 1 holds, furthermore

is reachable from an EAT region. Then there is an α∗ > 0 such that f (α)
as a negative component for α ∈ (0, α∗), meaning that EE0 moves out

f the feasible phase space when traveling is introduced.

roof. The proof is by contradiction. We assume that EE0 is such

hat there are regions i0 and i+ where x̂i0 = 0, x̂i+ > 0, Ri0 > 1 and

0 is reachable from i+, moreover there exists an α∗∗ > 0 such that

(α) ≥ 0 for 0 ≤ α ≤ α∗∗, this is, the equilibrium EE0 = f (0) of the

isconnected system remains biologically meaningful in the system

ith traveling. This also means that for all j with x̂j = 0 it necessarily

olds that
df

x̂j

dα
(0) ≥ 0.

If regions i0 and i+, as described above, exist then there is a minimal

istance between such regions, i.e., there exists a least nonnegative

nteger L ≤ r − 2 such that there is a path (connecting infected com-

artments of regions) from an EAT region via L regions to a region

hich is DFAT in (L1)–(Lr). In the case when L = 0 Theorem 11 imme-

iately yields contradiction, so we can assume that L ≥ 1. We label

he regions which are part of the minimal-length path by i, i∗1, . . . i∗L ,
∗
L+1, where x̂i = x̂i∗

1 = . . . x̂i∗
L = 0, x̂i∗

L+1 > 0, moreover note that Ri > 1

nd Ri∗
j < 1 hold for j = 1, . . . L. See the path depicted in Fig. 5.

The fact that x̂i∗
L = f

x̂
i∗
L
(0) = 0 gives

Vi∗L − Fi∗L
) df

x̂
i∗
L

dα
(0) =

r∑
j=1
j �=i∗

L

C
i∗L ,j
x fx̂j(0)

y Lemma 14. The equation has a non-zero right hand side since

ˆi∗
L+1 = f

x̂
i∗
L+1

(0) > 0, so Lemma A.3 (see Appendix A) andRi∗
L < 1 imply

df
x̂
i∗
L

dα
(0) > 0. A similar equation

Vi∗L−1 − Fi∗L−1

) df
x̂

i∗
L−1

dα
(0) =

r∑
j=1

j �=i∗
L−1

C
i∗L−1,j
x fx̂j(0)

ollows from x̂i∗
L−1 = 0. We note that Mi∗

L−1
= 1, where M was defined

n Definition 2, hence fx̂j(0) = 0 holds for every j such that C
i∗
L−1

,j

x �= 0.

he zero right hand side, Lemma A.3 andRi∗
L−1 < 1 yield

df
x̂
i∗
L−1

dα
(0) = 0,

o we can apply Lemma 14 to derive

Vi∗L−1 − Fi∗L−1

) d2f
x̂

i∗
L−1

dα2
(0) = 2

r∑
j=1

j �=i∗
L−1

C
i∗L−1,j
x

dfx̂j

dα
(0).

f there is a j such that C
i∗
L−1

,j

x �= 0 and
df

x̂j

dα
(0) � 0, then fx̂j(0) = 0 would

ean that fx̂j(α)has a negative component for small α, and f (α) is not

n the nonnegative cone, which violates our assumption that f (α) ≥
for α sufficiently small. Thus, each such derivative is necessarily

onnegative, moreover we have showed that
df

x̂
i∗
L

dα
(0) > 0 is satisfied,

hich makes the right hand side of the last equation positive. This,

ith the use Lemma A.3, implies
d2f

x̂
i∗
L−1

d2α
(0) > 0 since Ri∗

L−1 < 1.

Next we consider region i∗L−2, where Mi∗
L−2

= 2. For any region j for

hich C
i∗
L−2

,j

x �= 0, it holds that Mj ≥ 1, thus fx̂j(0) = 0 and
df

x̂j

dα
(0) = 0
old by Lemma A.4 (see Appendix A) and the assumption that f (α) ≥ 0

or small α. Thus, the right hand side of equation

Vi∗L−2 − Fi∗L−2

) df
x̂

i∗
L−2

dα
(0) =

r∑
j=1

j �=i∗
L−2

C
i∗L−2,j
x fx̂j(0)

s zero, from Ri∗
L−2 < 1 and Lemma A.3 it follows that

df
x̂
i∗
L−2

dα
(0) = 0,

nd thus Lemma 14 yields

Vi∗L−2 − Fi∗L−2

) d2f
x̂

i∗
L−2

dα2
(0) = 2

r∑
j=1

j �=i∗
L−2

C
i∗L−2,j
x

dfx̂j

dα
(0).

e get again that
d2f

x̂
i∗
L−2

dα2 (0) = 0 since, as we have seen above, all

erivatives in the right hand side are zero and Ri∗
L−2 < 1 also holds, so

emma A.3 makes the second derivative of f
x̂

i∗
L−2

zero. Finally, using

hat
dl f

x̂
i∗
L−2

dαl (0) = 0 for l = 0, 1, 2, we derive

Vi∗L−2 − Fi∗L−2

) d3f
x̂

i∗
L−2

dα3
(0) = 3

r∑
j=1

j �=i∗
L−2

C
i∗L−2,j
x

d2fx̂j

dα2
(0),

here C
i∗
L−2

,i∗
L−1

x �= 0 and
d2f

x̂
i∗
L−1

dα2 (0) > 0. If there is a j, C
i∗
L−2

,j

x �= 0, for

hich
d2f

x̂j

dα2 (0)has a negative component then so does fx̂j(α) and f (α)

or small α since
df

x̂j

dα
(0) = 0 and fx̂j(0) = 0, which is a contradiction.

therwise, the right hand side of the last equation is positive (it holds

hat
d2f

x̂
i∗
L−1

dα2 (0) > 0), thus the positivity of
d3f

x̂
i∗
L−2

dα3 (0) follows from
i∗
L−2 < 1 and Lemma A.3.

Following these arguments, one can prove that
dl+1f

x̂
i∗
L−l

dαl+1 (0) > 0 for

= 0, 1, . . . L − 1 (we remark that for l = L − 1 this reads
dLf

x̂
i∗
1

dαL (0) > 0),

nd that for any fixed l and k ≤ l, it holds that
dkf

x̂
i∗
L−l

dαk (0) = 0. We

ote that Mi = L, which according to Lemma A.4 also means that
dl f

x̂i

dαl (0) = 0 for l ≤ Mi = L, since fx̂i(α) ≥ 0 holds for small α by as-

umption. Henceforth, we can apply Lemma 14 and derive

Vi − Fi)
dL+1fx̂i

dαL+1
(0) = L

r∑
j=1
j �=i

C
i,j
x

dLfx̂j

dαL
(0).

i = L implies Mj ≥ L − 1 for any j for which C
i,j
x �= 0, hence

dl f
x̂j

dαl (0) = 0

s satisfied for l = 0, 1, . . . L − 1. The assumption f (α) ≥ 0 for small

yields fx̂j(α) ≥ 0 for any region j with C
i,j
x �= 0, so

dLf
x̂j

dαL (0) � 0 is

mpossible; this together with
dLf

x̂
i∗
1

dαL (0) > 0 results in the positivity of

he right hand side of the above equation. As Ri > 1 holds, it follows

rom Lemma A.3 that
dL+1f

x̂i

dαL+1 (0) has a negative component, but we

howed that
dl f

x̂i

dαl (0) = 0 when 0 ≤ l ≤ L, so for small α it follows that

x̂i(α) � 0, a contradiction. The proof is complete.

Theorem 15 ensures that for a boundary endemic equilibrium

(0) = EE0 of (L1)–(Lr), the point f (α) defined by Theorem 5 will not

e a biologically meaningful fixed point of system (T1)–(Tr) if there is

DFAT region i in EE0 where Ri > 1 and which is reachable from an

AT region in EE0. The question, whether the condition Ri > 1 is cru-

ial, comes naturally. We need the following result which is proved

n Appendix A.

emma 16. Assume that in the boundary endemic equilibrium EE0, there

s no DFAT region j for which Rj > 1 and Mj < r − 1. Then for a region i

hich is DFAT, it holds that
dl f

x̂i

dαl (0) = 0 for l ≤ Mi.
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The next theorem is the key to answer the question stated earlier,

that is, an endemic equilibrium f (0) = EE0 of (L1)–(Lr) will persist in

the system of connected regions via the uniquely defined function

f (α) for small volumes of traveling if Ri < 1 holds in all DFAT regions

of EE0 which are reachable from an EAT region. In what follows, we

prove that fx̂i has a positive derivative whenever region i is DFAT with

local reproduction number less than one, and reachable from a region

j which is EAT. Then, with the help of Lemma 16, the statement yields

that fx̂i(α) is positive for small α, and thus f (α) is also positive by

Lemma 7.

Theorem 17. Assume that in the boundary endemic equilibrium EE0,

there is no DFAT region j for which Rj > 1 and Mj < r − 1. Then for a

DFAT region i where Ri < 1, it holds that
dMi+1f

x̂i

dαMi+1 (0) > 0 if Mi < r − 1.

Proof. The proof is by induction. For any i0 such that x̂i0 = 0, Ri0 < 1

and Mi0
= 0, Theorem 11 yields

df
x̂i0

dα
(0) > 0. Whenever Mi1

= 1 is

satisfied in a region i1 where x̂i1 = 0 and Ri1 < 1, Lemma 16 implies
df

x̂i1

dα
(0) = 0, so using Lemma 14 we derive

(Vi1 − Fi1)
d2fx̂i1

dα2
(0) = 2

r∑
j=1
j �=i1

C
i1,j
x

dfx̂j

dα
(0).

For every j with C
i1,j
x �= 0 it holds that Mj ≥ 0 (we remark that M is

well-defined for such regions because Mi1
�= 0 implies that each such

j is a DFAT region). If either Mj = r − 1 (this always holds if Rj > 1)

or 1 ≤ Mj < r − 1, then Lemma 16 gives
df

x̂j

dα
(0) = 0, and whenever

Mj = 0 then necessarily Rj < 1, so
df

x̂j

dα
(0) > 0 holds by induction.

Nevertheless, the positivity of the right hand side of the last equa-

tion is guaranteed because we know from Mi1
= 1 that there must

exist a j with Mj = 0 and Rj < 1, hence the inequality
d2f

x̂i1

dα2 (0) > 0

follows by using Lemma A.3.

We assume that the statement of the theorem holds for an L,

0 < L < r − 2, that is,
dL+1f

x̂iL

dαL+1 (0) > 0 if Mi = L, x̂iL = 0 and RiL < 1. We

take a region iL+1, MiL+1
= L + 1, x̂iL+1 = 0 and RiL+1 < 1, and obtain

the equation

(ViL+1 − FiL+1)
dL+2fx̂iL+1

dαL+2
(0) = (L + 1)

r∑
j=1

j �=iL+1

C
iL+1,j
x

dL+1fx̂j

dαL+1
(0)

by using Lemmas 16 and 14. MiL+1
= L + 1 makes Mj ≥ L for each j

where C
iL+1,j
x �= 0, and by examining the derivatives on the right hand

side of this equation, we get from Lemma 16 that
dL+1f

x̂j

dαL+1 (0) = 0 for

each j, C
iL+1,j
x �= 0, whenever Mj ≥ L + 1. The case when Mj = L is only

possible if Rj < 1, and for each such j the inequality
dL+1f

x̂j

dαL+1 (0) > 0

holds by induction. Hence, the right hand side of the last equation is

positive because all the derivatives in it are nonnegative, and MiL+1
=

L + 1 implies that there is a j with Mj = L. We apply Lemma A.3 to get

that
dL+2f

x̂
iL+1

dαL+2 (0) > 0, which completes the proof.

Let us now summarize what we have learned about steady states

of system (T1)–(Tr) for small volumes of traveling (represented by

the parameter α) between the regions. With some conditions on the

model equations described in Theorems 3 and 5, for every equilibrium

of the disconnected system there exists a unique continuous function

of α on an interval to the right of zero, which satisfies the fixed point

equations of (T1)–(Tr). As discussed in Theorems 3 and 6, f0 corre-

sponding to the unique disease free equilibrium of (L1)–(Lr) defines

a disease free fixed point for α ∈ [0, α0), moreover if f (0) is positive

then f (α) > 0 holds for α sufficiently close to zero. With other words,
he connected system (T1)–(Tr) admits a single infection free equilib-

ium and also several positive fixed points for small α, regardless of

he connections between the regions.

On the other hand, the structure of the connection network plays

n important role when we consider boundary endemic equilibria,

.e., when some regions are disease free for α = 0. If there are regions

and j such that i is reachable from j then by increasing α, the fixed

oint f (α) moves out of the nonnegative cone whenever f (0) = EE0

s such that x̂i = 0, Ri > 1, and x̂j > 0, that is, j is an EAT region and

is a DFAT region with local reproduction number greater than one.

owever, a boundary equilibrium of the disconnected system will

ersist through f for small volumes of traveling in (T1)–(Tr) if the local

eproduction number is less than one in all DFAT regions which are

eachable from EAT regions. These last conclusions are stated below

n the form of a corollary.

orollary 18. Consider a boundary endemic equilibrium EE0 of system

L1)–(Lr). Assume that there is a DFAT region i in EE0 with Ri > 1, and

is reachable from a region which is EAT. Then EE0 moves out of the

easible phase space when traveling is introduced. On the other hand, if

here is no such region i in the system, then EE0 is preserved for small

olumes of traveling, and the equilibrium is given by a unique function

hich depends continuously on α.

. Application to an HIV model on three patches

Human immunodeficiency virus infection/acquired immunode-

ciency syndrome (HIV/AIDS) is one of the greatest public health

oncerns of the last decades worldwide. UNAIDS, the Joint United

ations Programme on HIV/AIDS reports an estimated 35.3 (32.2–

8.8) million people living with HIV in 2012 [11]. Though the data

f 2.3 (1.9–2.7) million infections acquired in 2012 show a decline in

he number of new cases compared to 2001, enormous effort is de-

oted to halt and begin to reverse the epidemic. Developing vaccine

hich provides partial or complete protection against HIV infection

emains a striking challenge of modern times. IAVI—The International

IDS Vaccine Initiative [15] believes that the earlier results on com-

ining the two major approaches of stimulating antibody production

nd HIV infection clearance in the human body provides grounds for

ptimism and confidence in designing HIV vaccines.

There are several compartmental models (see, for instance,

3,4,12,13]) which deal with the mathematical modeling of HIV infec-

ion dynamics. The following model for the transmission of HIV with

ifferential infectivity was given by Sharomi et al. [14]

d

dt
S = (1 − p)� − μS − λS + γ SV ,

d

dt
SV = p� − μSV − qλSV − γ SV ,

d

dt
Y1 = ρ1λS − (μ + σ1)Y1,

d

dt
Y2 = ρ2λS − (μ + σ2)Y2,

d

dt
W1 = π1qλSV − (μ + θ1σ1)W1,

d

dt
W2 = π2qλSV − (μ + θ2σ2)W2,

d

dt
A = σ1Y1 + σ2Y2 + θ1σ1W1 + θ2σ2W2 − (δ + μ)A, (H)

here the population is divided into the disjoint classes of unvac-

inated (S) and vaccinated (SV ) susceptibles, unvaccinated infected

ndividuals with high (Y1) and low (Y2) viral load, vaccinated infected

ndividuals with high (W1) and low (W2) viral load, and individuals

n AIDS stage of infection (A). Note that instead of the notation X and

of the unvaccinated and vaccinated susceptible classes applied in
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14], we use S and SV to avoid confusion with the matrix Vi and vector

used in Section 3. The total population of individuals not in the

IDS stage is denoted by N, N = S + SV + Y1 + Y2 + W1 + W2. Disease

ransmission is modeled by standard incidence, with transmission

oefficients β1 and β2 in the infected classes with high and low vi-

al load. The force of infection λ arises as λ = ∑2
j=1

(
βj

Yj

N + βjsj
Wj

N

)
.

elative infectiousness of members of the W1 and W2 compartments

s represented by s1 and s2. Parameter � is the constant recruitment

ate into the population, while μ stands for natural mortality. Sus-

eptible individuals are immunized by vaccination with probability p,

nd γ is the rate of waning immunity. In the classes of infected indi-

iduals with high and low viral load the progression of the disease is

odeled by σ1 and σ2. Modification parameters θ1 and θ2 are used to

ccount for the reduction of the progression rates in W1 and W2. The

isease-induced mortality rate δ is introduced into the equation of A,

he individuals in the AIDS stage. All model parameters are assumed

ositive.

It holds that the system (H) has a unique disease free equi-

ibrium EH
df

= (S0, (SV)0, λ0, A0) with S0 = (γ +(1−p)μ)�
μ(μ+γ ) > 0, (SV)0 =

p�
μ+γ > 0 and λ0 = 0, A0 = 0, which is globally asymptotically sta-

le in the disease free subspace. Moreover, by Lemma 3 [14] EH
df

s a locally asymptotically stable (unstable) steady state of Eq. (H)

f RH < 1 (RH > 1), where the reproduction number RH is defined

y

H = 1

N0

(
B1X0

(μ + σ1)(μ + σ2)
+ B2V0

(μ + θ1σ1)(μ + θ2σ2)

)

ith N0 = S0 + (SV)0 and B1 = β2ρ2(μ + σ1)+ β1ρ1(μ + σ2), B2 =
(π2s2β2(μ + θ1σ1)+ π1s1β1(μ + θ2σ2)). It easily follows from the

odel equations that in an equilibrium, an infected compartment is

t a positive steady state if and only if all components of the fixed

oint are positive. According to Theorem 4 [14], system (H) has a

nique endemic equilibrium if RH > 1, nevertheless positive fixed

oints can exist for RH < 1 as well. Under certain conditions on the

arameters, the model exhibits backward bifurcation at RH = 1, that

s, a critical value Rc < 1 can be defined such that there are two dis-

inct positive equilibria for values of RH in (Rc, 1) (see Sharomi et al.

14] for details).

We consider r patches and investigate the dynamics of HIV in-

ection by incorporating the possibility of traveling into model (H).

n each region, the same model compartments can be defined as

n the one-patch model. Upper index ‘i’ is used to label the classes

f region i, i ∈ {1, . . . r}. In terms of our notations in system (Ti),

= 4, m = 2, k = 1 and we let xi = (Yi
1, Yi

2, Wi
1, Wi

2)
T , yi = (Si, Si

V)T ,
i = Ai. The equalities Di = −(δi + μi)zi, Zi = (σ i

1, σ i
2, θ i

1σ
i
1, θ i

2σ
i
2)

nd

i(xi, yi, zi) =
(
(1 − pi)�i

pi�i

)
+

(−μi γ i

0 −γ i − μi

)
yi,

Vi =

⎛
⎜⎜⎜⎜⎜⎜⎝

μi + σ i
1 0 0 0

0 μi + σ i
2 0 0

0 0 μi + θ i
1σ

i
1 0

0 0 0 μi + θ i
2σ

i
2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Bi = 1

Ni

⎛
⎝ β i

1 β i
2 si

1β
i
1 si

2β
i
2

qiβ i
1 qiβ i

2 qisi
1β

i
1 qisi

2β
i
2

⎞
⎠ ,

ηi
1,· = (ρ i

1, ρ i
2, 0, 0)T , ηi

2,· = (
0, 0, π i

1, π i
2

)T
(8)

ut the multiregional HIV model (H1)–(Hr) into the form of system

L1)–(Lr), moreover Fi arises as
Fi =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β i
1ρ

i
1Si

0

Ni
0

β i
2ρ

i
1Si

0

Ni
0

si
1β

i
1ρ

i
1Si

0

Ni
0

si
2β

i
2ρ

i
1Si

0

Ni
0

β i
1ρ

i
2Si

0

Ni
0

β i
2ρ

i
2Si

0

Ni
0

si
1β

i
1ρ

i
2Si

0

Ni
0

si
2β

i
2ρ

i
2Si

0

Ni
0

β i
1π

i
1qi

(
Si

V

)
0

Ni
0

β i
2π

i
1qi

(
Si

V

)
0

Ni
0

si
1β

i
1π

i
1qi

(
Si

V

)
0

Ni
0

si
2β

i
2π

i
1qi

(
Si

V

)
0

Ni
0

β i
1π

i
2qi

(
Si

V

)
0

Ni
0

β i
2π

i
2qi

(
Si

V

)
0

Ni
0

si
1β

i
1π

i
2qi

(
Si

V

)
0

Ni
0

si
2β

i
2π

i
2qi

(
Si

V

)
0

Ni
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

y introducing parameter c
ij
w to represent the connectivity potential

rom class wj to wi, w ∈ {S, SV , Y1, Y2, W1, W2, A} and i, j ∈ {1, . . . r}, i �=
, α as general mobility parameter, system (H1)–(Hr) can be extended

o (T1)–(Tr) in the same way as described in Section 2 to get an epi-

emic model with HIV dynamics in r regions connected by traveling.

.1. Disease free equilibrium for arbitrary volumes of travel

We recall that system (H) has a single disease free fixed point

0, y0, 0)with y0 = (
S0, (SV)0

)T
, which is locally asymptotically stable

f RH < 1 and unstable if RH > 1. This also means that the system of

he regions connected with traveling (T1)–(Tr)admits a single disease

ree steady state when the general mobility parameter α equals zero.

e now show that for the HIV model, the connected system has a

isease free equilibrium for every α > 0 as well.

heorem 19. The connected system of r regions with HIV dynamics

dmits a unique disease free equilibrium for any α ≥ 0. It also holds that

he classes of individuals in the AIDS stage are at zero steady state.

roof. When the infected classes are at zero steady state in the HIV

odel, we obtain the fixed point equations

⎛
⎜⎝

p1�1

...

pr�r

⎞
⎟⎠ = MSV

⎛
⎜⎜⎝

ŜV

1
(α)
...

ŜV

r
(α)

⎞
⎟⎟⎠ ,

iag(γ i) ·

⎛
⎜⎜⎝

ŜV

1
(α)
...

ŜV

r
(α)

⎞
⎟⎟⎠ +

⎛
⎜⎝
(1 − p1)�1

...

(1 − pr)�r

⎞
⎟⎠ = MS

⎛
⎜⎜⎝

Ŝ1(α)
...

Ŝr(α)

⎞
⎟⎟⎠ , (9)

0 = MA

⎛
⎜⎜⎝

Â1(α)
...

Âr(α)

⎞
⎟⎟⎠

ith

SV
=

⎛
⎜⎜⎜⎝

∑
r
j=1
j �=1

αc
j1
SV

+ μ1 + γ 1 . . . −αc1r
SV

...
. . .

...

−αcr1
SV

. . .
∑

r
j=1
j �=r

αc
jr
SV

+ μr + γ r

⎞
⎟⎟⎟⎠ ,

MS =

⎛
⎜⎜⎜⎝

∑
r
j=1
j �=1

αc
j1
S + μ1 . . . −αc1r

S

...
. . .

...

−αcr1
S . . .

∑
r
j=1
j �=r

αc
jr
S + μr

⎞
⎟⎟⎟⎠ ,

MA =

⎛
⎜⎜⎜⎝

∑
r
j=1
j �=1

αc
j1
A + μ1 + δ1 . . . −αc1r

A

...
. . .

...

−αcr1
A . . .

∑
r
j=1
j �=r

αc
jr
A + μr + δr

⎞
⎟⎟⎟⎠ .
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Reducible network. Complete network.Irreducible network.(a) (b) (c)

Fig. 3. Example of reducible, irreducible and complete travel networks for three re-

gions. Though both 1 and 2 are reachable from region 3, by (a) there is no connection

to 3 from the other two regions. Adding a link from 1 to 3 on (b) makes the network

irreducible, though not complete. In the example depicted in (c) the regions are directly

connected to each other, which means that the network is complete and also clearly

irreducible.
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Similarly as discussed in Section 4 for the matrix Mz, Theorem 5.1 [5]

implies that the inverses of MSV
, MS and MA exist and are nonnegative.

It immediately follows that Âi(α) = 0, ŜV
i
(α) > 0 and Ŝi(α) > 0, i ∈

{1, . . . r}, for the unique solution of Eq. (9).

7.2. Endemic equilibria

In Section 4 we required x̂i > 0 (that is, x̂i ≥ 0 with both zero and

positive components not possible) for endemic steady states. We re-

call that this is fulfilled in the HIV model since the model parameters

are assumed positive. At positive fixed points, gi and Bi defined in

Eq. (8) are infinitely many times continuously differentiable, hence

it is possible to derive Eqs. (4) and (7). The analysis in Section 6 has

been carried out with the extra condition that the matrix Vi − Fi is

irreducible, which is indeed the case for the HIV model.

Theorem 5 contains condition on the non-singularity of the Jaco-

bian of the system evaluated at an endemic fixed point and α = 0. The

matrix
(

∂T
∂X

)
(0, ·)has block diagonal form, with the block

(
∂T i

∂X i

)
(0, ·)

corresponding to region i, where we denote X i = (xi, yi, zi)T and T i =
(T i,x,T i,y,T i,z)T . This gives det

(
∂T
∂X

)
(0, ·) = ∏r

i=1 det
(

∂T i

∂X i

)
(0, ·), so

we conclude that the Jacobian of the system of r regions is non-

singular at a fixed point if and only if det
(

∂T i

∂X i

)
(0, ·) �= 0 holds in

each region i. It is not hard to see that the matrix
(

∂T i

∂X i

)
(0, ·) gives

the Jacobian of (Hi) without traveling, that is, it suffices to consider

the steady state components in each region separately. The Jacobian

evaluated at a stable equilibrium has only eigenvalues with negative

real part, which guarantees the non-singularity of the matrix. On the

other hand, in the case when the fixed point is unstable, we only know

that the determinant has an eigenvalue with positive real part, which

does not exclude singularity of the Jacobian.

It is conjectured from an example of [14] that if RH > 1 in the one-

patch HIV model then the positive fixed point is locally asymptotically

stable and the disease free equilibrium is unstable, furthermore in

case the model exhibits backward bifurcation, one of the endemic

steady states is locally asymptotically stable while the other one is

unstable for Ri
c < Ri

H < 1. As noted above, the matrix
(

∂T i

∂X i

)
(0, ·) is

always invertible at stable equilibria, and we use the same set of

parameter values as the example in [14] to illustrate a case when the

determinant of
(

∂T i

∂X i

)
(0, ·) is non-zero at unstable fixed points. The

continuous dependence of the determinant on parameters implies

that the situation when the Jacobian is singular is realized only in

isolated points of the parameter space. In fact, for ρ i
1 = 0.3, ρ i

2 = 0.7,

σ i
1 = 0.45, σ i

2 = 17, β i
1 = 0.85, β i

2 = 0.1, si
1 = 1, si

2 = 1, π i
1 = 0.9, π i

2 =
0.1, θ i

1 = 0.5, θ i
1 = 0.5, qi = 0.5, μi = 0.05, γ i = 0.05, �i = 1 and pi =

0.999, the condition for backward bifurcation holds and Ri
c < Ri

H < 1

[14], moreover the positive equilibria (X̂i, V̂ i, λ̂i, Âi)1,2 with (λ̂i)1 =
0.0195 and (λ̂i)2 = 0.1492 are unstable and stable, respectively, and

the Jacobian evaluated at (Ŝi, ŜV
i
, λ̂i, Âi)1 is non-singular. For β i

1 =
1 we have Ri

H = 1.12 > 1, and the disease free steady state EH,i
df

=
(Si

0, (Si
V)0, 0, 0) is unstable with non-singular Jacobian.

In the sequel, we assume that the model parameters are set such

that
(

∂T
∂X

)
(0, ·) �= 0 at the fixed points and thus the conditions of

Theorem 5 hold. Then, as discussed above, all the assumptions made

throughout Sections 2–6 are satisfied, and we conclude that the re-

sults obtained in these sections for the general model are applicable

for the multiregional HIV model with traveling. We use this model to

demonstrate our findings in the case when r = 3. We assume that the

necessary conditions for backward bifurcation are satisfied in all three

regions. Then each region i can have one (the case when Ri
H < Ri

c),

three (the case when Ri
c < Ri

H < 1) or two (the case when Ri
H > 1)

equilibria, including the disease free steady state. Thus, without trav-
ling the united system of three regions with HIV dynamics has a

isease free equilibrium and 1φ · 3ψ · 2ω − 1 endemic steady states,

here for the integers φ,ψ and ω it holds that 0 ≤ φ,ψ,ω ≤ 3 and

+ ψ + ω = 3. It is easy to check that the possibilities for the number

f equilibria are 1, 2, 3, 4, 6, 8, 9, 12, 18 and 27.

Theorem 19 guarantees the existence and uniqueness of the dis-

ase free fixed point when traveling is incorporated into the system.

heorem 6 and Corollary 18 give a full picture about the (non-) persis-

ence of endemic steady states: a boundary endemic equilibrium of

he disconnected system, where there is a DFAT region i with Ri
H > 1

hich is reachable from an EAT region, will not be preserved in the

onnected system for any small volumes of traveling, however all

ther endemic fixed points of the disconnected system will exist if the

obility parameter α is small enough. It is obvious that the mobility

etwork connecting the regions plays an important role in deriving

he exact number of steady states of the system with traveling. In

hat follows, we give a complete description of the possible cases.

.3. Irreducible connection network

First we consider the case when each region is reachable from any

ther region, that is, the graph consisting of nodes as regions and di-

ected edges as direct connections from (the infected classes of) one

egion to (the infected classes of) another region, is irreducible. Such

etwork is realized if we think of the nodes as distant territories and

he edges as one-way air travel routes. Note that the irreducibility

f the network does not mean that each region is directly accessible

rom any other one; as experienced by the global airline network of

he world, some territories are linked to each other via the corre-

pondence in a third region. Fig. 3 give examples of irreducible an

educible connection networks.

heorem 20. If the network connecting three regions with HIV dynamics

s irreducible then the number of fixed points of the disconnected system,

hich persists in (T1)–(T3) for small volumes of traveling, can be 1, 2, 3, 4,

, 10 or 27, depending on the local reproduction numbers in the regions.

s pointed out in Theorem 19, the unique disease free equilibrium always

xists in (T1)–(T3).

roof. We distinguish four cases on the number of regions with local

eproduction number greater than one.

ase 1. No regions with Ri
H > 1.

This case is easy to treat: if in all three regions the local reproduc-

ion number is less than one, then Theorem 17 implies that all fixed

oints of the disconnected system of three regions are preserved for

ome small positive α. If Ri
H < 1 for i = 1, 2, 3, the system (L1)–(L3)

ay have 1 (if Ri
H < Ri

c for i = 1, 2, 3), 3 (if Ri1 < Ri1
c , Ri2 < Ri2

c

nd Ri3
c < Ri3 < 1, {i1, i2, i3} = {1, 2, 3}) , 9 (if Ri1 < Ri1

c and Ri2
c <

i2 < 1,Ri3
c < Ri3 < 1, {i1, i2, i3} = {1, 2, 3}) or 27 (ifRi

c < Ri < 1 for

= 1, 2, 3) equilibria.

ase 2. Exactly one region with Ri > 1.
H
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Let this region be labeled by i1, system (Hi1
)has a disease free and

positive fixed point. By Theorem 15 and the assumption that i1 is

eachable from both other regions, we get that no endemic equilib-

ium of (L1)–(L3), where i1 is DFAT, persists with traveling. It follows

hat besides the disease free equilibrium (when none of the regions is

ndemic), only fixed points with x̂i1 = f
x̂i1

(0) > 0 will exist for small

olumes of traveling, which makes the total number of equilibria 2

1 disease free + 1 endemic if Ri2 < Ri2
c , Ri3 < Ri3

c ), 4 (1 disease free

3 endemic if either Ri2 < Ri2
c and Ri3

c < Ri3 < 1, or Ri3 < Ri3
c and

i2
c < Ri2 < 1) or 10 (1 disease free + 9 endemic if Ri2

c < Ri2 < 1,
i3
c < Ri3 < 1).

ase 3. Exactly two regions with Ri
H > 1.

We let the reader convince him- or herself that if Ri1 > 1 and
i2 > 1 (i1, i2 ∈ {1, 2, 3}) hold then a total number of 2 or 4 fixed

oints of the disconnected regions may persist in system (T1)–(T3) for

mall α. The proof can be led in a similar way as by Case 2, consid-

ring the two possibilities Ri3 < Ri3
c and Ri3

c < Ri3 < 1 for the local

eproduction number of the third region. One again gets that the equi-

ibrium where all the regions are disease free will exists, moreover

t is worth recalling that no region with Ri
H > 1 can be DFAT while

nother region is EAT.

ase 4. All three regions with Ri
H > 1.

We apply Theorems 15 and 17 to get that if any of the regions

s DFAT then so should be the other two for an equilibrium to per-

ist in (T1)–(T3) for small α. This implies that only 2 fixed points of

H1)–(H3), the disease free and the endemic with all three regions

t positive steady state, will be preserved once traveling is incorpo-

ated.

To summarize our findings, we note that the introduction of trav-

ling via an irreducible network into (H1)–(H3)never gives rise to sit-

ations when precisely 6, 8, 12 and 18 fixed points of the disconnected

ystem continues to exist with traveling. Nevertheless, evidence has

een showed that new dynamical behavior (namely, the case when 10

quilibria coexist) can occur when connecting the regions by means

f small volume traveling. We conjecture that lifting the irreducibility

estriction on the network results in even more new scenarios. This

s proved in the next subsection.

.4. General connection network

It is clear that with the help of Theorems 15 and 17, the number of

xed points in the disconnected system which persist with traveling

an be easily determined for any given (not necessarily irreducible)

onnecting network. The next theorem discusses all the possibilities

n the number of equilibria. Examples are also provided to illustrate

he cases.

heorem 21. Depending on the local reproduction numbers and the

onnections between the regions, the system of three regions for HIV

ynamics with traveling (T1)–(T3) preserves 1–7, 9, 10, 12, 18 or 27

xed points of the disconnected system for small volumes of traveling. As

ointed out in Theorem 19, the unique disease free equilibrium always

xists in (T1)–(T3).

roof. The existence of the unique disease free steady state is guar-

nteed by Theorem 19. The proof will be done in the following

teps:

tep 1. We show that there is no travel network such that 13–17 or

19–26 equilibria persist.

tep 2. We prove that the system of three regions with traveling can-

not have 8 or 11 fixed points.

tep 3. We demonstrate through examples that all other numbers of

equilibria up to 27 can be realized.
Step 1.

We note that if eitherRi
H < Ri

c holds in any of the regions, or there

re two or more regions where Ri
H > 1, then the number of fixed

oints does not exceed 12. Thus, to have at least 13 equilibria there

ust be two regions i1, i2 with Ri1
c < Ri1

H < 1 and Ri2
c < Ri2

H < 1. If

he third region also has three fixed points—that is, Ri3
c < Ri3

H < 1—

hen there is no region with local reproduction number greater than

ne, and thus Theorem 17 yields the existence of 27 steady states.

therwise Ri3
H is greater than one and region i3 has two equilibria,

ne disease free and one endemic. In this case, by Theorem 5 there are

fixed points where x̂i3
> 0, all of which preserved for small volumes

f traveling. The possible number of equilibria with x̂i3
= 0, which

xist with traveling, is one (if i3 is reachable from both regions), 3 (if

3 is reachable from only one of them) and 9 (if i3 is unreachable).

e conclude that there are only two values greater than 12 for the

ossible number of fixed points in the travel system, which are 18

nd 27.

Step 2.

We distinguish five cases to consider:

(i) Ri
c < Ri

H < 1 for i = 1, 2, 3;

(ii) Ri1
c < Ri1

H < 1, Ri2
c < Ri2

H < 1, Ri3
H > 1, {i1, i2, i3} = {1, 2, 3};

(iii) Ri1
c < Ri1

H < 1, Ri2
H > 1, Ri3

H > 1, {i1, i2, i3} = {1, 2, 3};

(iv) Ri
H > 1 for i = 1, 2, 3;

(v) there is an i1 such that Ri1
H < Ri1

c , i1 ∈ {1, 2, 3}.

n case (i) each region has three equilibria, hence the connected sys-

em obtains 27 fixed points for small α. We have seen in Step 1 that

here are 10, 12 or 18 equilibria in a network with the regions such

hat case (ii) holds.

Let us assume that case (iii) is realized, and henceforth the system

as maximum 12 fixed points. If neither i2 nor i3 is reachable from

1, then the persistence of an equilibrium for small α is independent

f the steady state value x̂i1
, thus the number of possible fixed points

s a multiple of three, which does not hold for 8 or 11. On the other

and, if there is a connection from i1 to any of i2 and i3, then some

quilibria may vanish once traveling is incorporated. More precisely,

et i2 be reachable from i1. By Theorem 15, steady states where region

2 is DFAT and i1 is EAT do not exist in the connected system, which

eans that the connection from i1 to i2 destroys 2 · 1 · 2 = 4 fixed

oints out of the maximum 12 (note that in region i1 there are two

ositive equilibria, and the steady state value of i3 does not change

he non-persistence of fixed points of the type x̂i2
= 0, x̂i1

> 0). This

mmediately makes 11 equilibria impossible. By means of the above

rguments, either x̂i1
= x̂i2

= 0 or x̂i2
> 0 must be satisfied for each

xed point which persists, and their number can be maximum 8. In

articular the equilibria, E1 where x̂i1
= x̂i2

= 0, x̂i3
> 0 and E2 where

ˆi2
> 0, x̂i1

> 0, x̂i3
= 0, are such fixed points. E1 persists with traveling

nly if the network is such that i2 is unreachable from i3, so in this

ase there must be a path from i1 to i3 due to the connectedness of the

etwork (recall that we assumed that i2 is reachable from i1, so any

ink from i3 would make i2 reachable from i3). However, this structure

akes the persistence of E2 for small α impossible, and we get that

here cannot be 8 steady states in the case when Ri2
H ,Ri3

H > 1 and
i1
c < Ri1

H < 1.

The maximum number of equilibria in cases (iv) and (v) are 8 and

, respectively, which observation finishes the investigation of the

ersistence of 11 steady states in the system with traveling. In case

iv), some of the 8 fixed points obtained in the disconnected system

learly would not persist in the connected system: if, for instance,

here is a link from i1 to i2 then the equilibrium where x̂i1
> 0 and

ˆi2
= 0, would not be preserved for positive α. If case (v) is realized

nd there is a region with local reproduction number greater than one,

hen the system cannot have more than 6 steady states. Otherwise
i < 1 holds for all i ∈ {1, 2, 3} in case (v), and Theorem 17 yields
H
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(a) (c)(b)4 equilibria 6 equilibria

(d) 7 equilibria

5 equilibria

Fig. 4. Examples of the travel network for three regions with R1
c < R1

H < 1 and

R2
H,R3.

H > 1.
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that all fixed points of the disconnected system continue to exist

once traveling is incorporated. It is not hard to check that the number

of equilibria is never 8.

Step 3.

Any network where Ri
H < Ri

c is satisfied for all i, exhibits only

the disease free equilibrium. It is straightforward to see that the

complete network of three regions has 2 fixed points when Ri
H > 1

for i ∈ {1, 2, 3}, and if there is one, two or three region(s) where

Ri
c < Ri

H < 1 while Rj
H < Rj

c holds in the remaining region(s), then

independently of the connections, the connected system preserves 3,

9 or 27 equilibria, respectively, of the disconnected system from small

volume traveling.

Any network where Ri1
c < Ri1

H < 1, Ri2
c < Ri2

H < 1, Ri3
H > 1 and i3

is reachable from both other regions, works as a suitable example for

the case of 10 fixed points, since this way the disease free equilibrium

coexists with 9 steady states where x̂i3
> 0. A way to obtain 12 and 18

fixed points has been described in Step 1, and we use the case when

R1
c < R1

H < 1 and R2
H,R3

H > 1 to construct examples for 4, 5, 6 and

7 steady states. Fig. 4 depicts one possibility for the network of each

case, though it is clear that there might be several ways to get the

same number of equilibria.

If both regions 2 and 3 are reachable from 1, then fixed points

where x̂i1
> 0 are preserved with traveling only if x̂i2

> 0 and x̂i3
> 0

also hold. On the top of these two positive equilibria, there surely ex-

ists the disease free steady state plus 1, 2 or 3 non-zero fixed point(s)

with x̂i1
= 0, depending on whether region 2 is reachable from 3 and

vice versa, as illustrated in Fig. 4(a)–(c). If region 3 is reachable from

both 1 and 2, then x̂i3
= 0 is only possible in the disease free equi-

librium; although all 6 fixed points where region 3 is at the endemic
Fig. 5. A path of regions i∗L+1, i∗L , . . . i∗2, i∗1 and i, having the property that regions i and

i∗1, i∗2, . . . i∗L are DFAT, Ri > 1 and Rj < 1 for j ∈ {i∗1, i∗2, . . . i∗L}, furthermore region i∗L+1.
is

EAT.

a

r
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t

r

fi

t
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d
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t

s

a

teady state, persist for small volumes of traveling if there is no con-

ection from 1 to 2 (Fig. 4(d) shows such a situation).

The dynamics of the HIV model in connected regions is worth

nvestigating in more depth, although this is beyond the scope of

his study. However, the numerical simulations presented in the next

ection reveal some interesting behavior of the model.

. Rich dynamical behavior

This section is devoted to illustrate the rich dynamical behavior in

he model. The epidemiological consequence of the existence of mul-

iple positive equilibria in one-patch models is that the epidemic can

ave various outcomes, because solutions with different initial val-

es might converge to different steady states. Stable fixed points are

f particular interest as they usually attract solutions starting in the

eighborhood of other (unstable) steady states. For instance, in case

f backward bifurcation the presence of a stable positive equilibrium

or R < 1 makes it possible that the disease sustains itself even if the

umber of secondary cases generated by a single infected individual

s less than one. However, considering multiple patches with connec-

ions from one to another deeply influences local disease dynamics,

ince the travel of infected agents induces outbreaks in disease free

egions. The inflow of infected individuals might change the limiting

ehavior when pushing a certain solution into the attracting region

f a different steady state, and it also may modify the value of fixed

oints.

Henceforth, knowing the stability of equilibria in the connected

ystem of regions is of key importance. For small volumes of travel-

ng, not only the number of fixed points but also their stability can

e determined. Whenever a steady state of the disconnected regions

ontinues to exists in the system with traveling by means of the im-

licit function theorem, its stability is not changed on a small interval

f the mobility parameter α. This means that equilibria of (T1)–(Tr)
hich have all r components stable in the disconnected system, are

table. On the other hand, every steady state which contains an un-

table fixed point as a component, is unstable when α = 0 and thus

lso for small positive α. In this paper, the conditions for the persis-

ence of steady states with the introduction of small volume traveling

as been described: by a continuous function of α, all fixed points of

L1)–(Lr) will exist in the connected system, except those for which

here is a DFAT region with R > 1 and to which the connecting net-

ork establishes a connection from an EAT territory. However, in

ne-patch models infection free steady states are typically unstable

orR > 1, thus the above argument yields that incorporating traveling

ith low volumes preserves all stable fixed points of the disconnected

ystem, since the equilibria which disappear when α exceeds zero are

nstable.

The dependence of the dynamics on movement is illustrated for

he HIV model. To focus our attention to how α influences the fixed

oints, their stability and the long time behavior of solutions, we let

ll model parameters but the local reproduction numbers in the three

egions to be equal. In Figs. 6–10, the evolution of four solutions with

ifferent initial conditions were investigated as α increases from zero

hrough small volumes to larger values.

If all three regions exhibit backward bifurcation, and the local

eproduction numbers are set such that besides the disease free

xed point, there are two positive equilibria (X̂i, V̂ i, λ̂i, Âi)1,2, λ̂1 < λ̂2,

hen—as described in Section 7—27 steady states exist for small α.

ssuming that the conjectures of Section 7 about the stability of the

isease free equilibrium and the steady state with λ̂2, and the insta-

ility of the positive fixed point with λ̂1 hold in each region, we get

hat system (T1)–(Tr)with HIV dynamics exhibits 8 stable and 19 un-

table steady states on an interval for α. This is confirmed by Figs. 6

nd 7, where two cases of irreducible and reducible travel networks
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(b) α = 10−5
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(c) α = 10−3
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Fig. 6. Solutions of system (T1)–(T3) with HIV dynamics for different travel volumes. The three regions are considered to be symmetric in every parameter value, we applied the

parameter set given in Section 7 so that Ri
c < Ri

H < 1 is satisfied for i = 1, 2, 3. We use the irreducible connection network depicted in Fig. 3(b), where the connectivity potential

parameters c12, c21, c23, c31 are equal to one in all model classes. Solid and dashed gray lines correspond to steady state solutions in the regions in the absence of traveling. Initial

values were chosen as Si(0) = 10, Si
v(0) = 5, Yi
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t

ere considered (see the captions of Figs. 6 and 7 for more detailed

escription of the networks), and R1
H = R2

H = R3
H holds. Introduc-

ng low volume traveling (e.g., setting α = 10−5 in our examples)

ffects neither the stability of steady states nor the limiting behavior

f solutions. However, the difference in the type of the connecting

etwork manifests for larger movement rates, as the conditions for
isease eradication clearly change along with the equilibrium values

see Figs. 6 and 7(c) and (d) where α were chosen as 10−3 and 10−1,

espectively).

When there are regions with local reproduction numbers larger

han one in the network, certain fixed points of the disconnected sys-

em disappear with the introduction of traveling; this phenomenon
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Fig. 7. Solutions of system (T1)–(T3) with HIV dynamics for different travel volumes. The three regions are considered to be symmetric in every parameter value, we applied the

parameter set given in Section 7 so that Ri
c < Ri

H < 1 is satisfied for i = 1, 2, 3. We use the reducible connection network depicted in Fig. 3(a), where the connectivity potential

parameters c12, c21, c23 are equal to one in all model classes. Solid and dashed gray lines correspond to steady state solutions in the regions in the absence of traveling. Initial

values were chosen as Si(0) = 10, Si
v(0) = 5, Yi
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is reasonably expected to have an impact on the final outcome

of the epidemic. For all three networks used for the simulations

in Figs. 8–10, the number of infected individuals takes off in re-

gions with Ri
H > 1 for small α, regardless of the initial conditions

(see figures (b) where α = 10−5 and, in particular, the cases when

λ (0) = λ (0) = 0). The results for larger travel volumes (in the sim-
2 3
lations the two settings of α = 10−3 and 10−1 were considered)

urther support the conjecture that solutions converge to positive

teady states in regions with reproduction number greater than

ne. However, the case when regions 2 and 3 (R2
H,R3

H > 1) are

ot reachable from each other and a single endemic equilibrium

eems to attract all solutions (illustrated in Fig. 8) is in contrary to
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Fig. 8. Solutions of system (T1)–(T3) with HIV dynamics for different travel volumes. The three regions are considered to be symmetric in every parameter value but the local

reproduction numbers, we applied the parameter set given in Section 7 with β i
1 = 0.85 and β i

2 = β i
3 = 1 so that R1

c < R1
H < 1 and R2

H,R3
H > 1 are satisfied. We use the connection

network depicted in Fig. 4(c), where the connectivity potential parameters c21 = c31 are equal to one in all model classes. Solid and dashed gray lines correspond to steady state

solutions in the regions in the absence of traveling. Initial values were chosen as Si(0) = 10, Si
v(0) = 5, Yi
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Fig. 9. Solutions of system (T1)–(T3) with HIV dynamics for different travel volumes. The three regions are considered to be symmetric in every parameter value but the local

reproduction numbers, we applied the parameter set given in Section 7 with β i
1 = 0.85 and β i

2 = β i
3 = 1 so that R1

c < R1
H < 1 and R2

H,R3
H > 1 are satisfied. We use the connection

network depicted in Fig. 4(b), where the connectivity potential parameters c12 = c21 = c31 are equal to one in all model classes and zero otherwise. Solid and dashed gray lines

correspond to steady state solutions in the regions in the absence of traveling. Initial values were chosen as Si(0) = 10, Si
v(0) = 5, Yi

2(0) = 0, Wi
2(0) = 0 for i = 1, 2, 3, and Y1

1 (0) = 0.1,

W1
1 (0) = 0.5, Y2

1 (0) = 0, W2
1 (0) = 0, Y3

1 (0) = 0, W3
1 (0) = 0 (blue curve), Y1

1 (0) = 1, W1
1 (0) = 1, Y2

1 (0) = 0, W2
1 (0) = 0, Y3

1 (0) = 0.2, W3
1 (0) = 0 (red curve), Y1

1 (0) = 0.4, W1
1 (0) = 0.3,

Y2
1 (0) = 0, W2

1 (0) = 0, Y3
1 (0) = 0, W3

1 (0) = 0 (black curve), Y1
1 (0) = 1, W1

1 (0) = 0, Y2
1 (0) = 5, W2

1 (0) = 5, Y3
1 (0) = 0, W3

1 (0) = 0 (green curve). (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Solutions of system (T1)–(T3) with HIV dynamics for different travel volumes. The three regions are considered to be symmetric in every parameter value but the local

reproduction numbers, we applied the parameter set given in Section 7 with β i
1 = 0.85 and β i

2 = β i
3 = 1 so that R1

c < R1
H < 1 and R2

H,R3
H > 1 are satisfied. We use the complete

connection network depicted in Fig. 3(c), where the connectivity potential parameters cij , i, j ∈ {1, 2, 3}, i �= j, are equal to one in all model classes. Solid and dashed gray lines

correspond to steady state solutions in the regions in the absence of traveling. Initial values were chosen as Si(0) = 10, Si
v(0) = 5, Yi

2(0) = 0, Wi
2(0) = 0 for i = 1, 2, 3, and Y1
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color in this figure legend, the reader is referred to the web version of this article.)
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the situation experienced in Fig. 9, since we see that establishing

a path from region 2 to 3 via region 1 results in the emergence of

another positive (possibly locally stable) steady state in region 3.

Nevertheless, comparing Figs. 8 and 9 with reducible networks to

Fig. 10 where a complete connecting network was considered, high-

lights the role of the irreducibility of the network on the dynamics.

Whereas in case of reducible networks, the final epidemic outcome

in a region with RH strongly depends on initial conditions and con-

nections to other regions, making each region reachable from another

sustains the epidemic in region 1 (where R1
c < R1

H < 1) by giving rise

to a single positive steady state of the system. This has an implica-

tion on the long term behavior of solutions in regions with RH > 1

as well, since direct connections seem to stabilize only one endemic

equilibrium in regions 2 and 3, and exclude the existence of other

steady states.

In summary, the theoretical analysis performed throughout the

paper is in accordance with the numerical simulations for small val-

ues of the general mobility parameter α. More importantly, it also

provides full information about the fixed points of (L1)–(Lr), namely

it determines their (non-)persistence and stability in the system with

traveling. On the other hand, little is known about the solutions of

the model when the travel volume is larger, as the structure of the

connecting network and initial values deeply influence the dynamics.

9. Conclusion

In this paper, a general class of differential epidemic models with

multiple susceptible, infected and removed compartments was con-

sidered. We provided examples of multigroup, multistrain and stage

progression models to illustrate the broad range of applicability of our

framework to describe the spread of infectious diseases in a popula-

tion of individuals. The model setup allows us to investigate disease

dynamics models with multiple endemic steady states. Such models

have been considered in various works in the literature, including

studies which deal with the phenomenon of backward bifurcation.

We extended our framework to an arbitrary number of regions and

incorporated the possibility of mobility of individuals (e.g., traveling)

between the regions into the model. Motivated by well known mul-

tiregional models, where the exact number of steady states have not

been explored, our aim in this work was to reveal the implication

of mobility between the regions on the structure of equilibria in the

system.

We introduced a parameter α to express the general mobility in-

tensity, while differences in the connectedness of the regions were

modeled by constants, each describing the relative connectivity of

one territory to another. Considering the model equations of the con-

nected system as a function of the model variables and α, the implicit

function theorem enabled us to represent steady states as continuous

functions of the mobility parameter. We showed that the unique dis-

ease free equilibrium, and all componentwise positive fixed points of

the disconnected system, continue to exist in the system with trav-

eling for small α, with their stability unchanged. On the other hand,

boundary equilibria of the system with no traveling (this is, steady

states with some regions without infection and others endemic for

α = 0) may disappear when α becomes positive. More precisely, such

steady states might move out of the nonnegative cone along the con-

tinuous function established by means of the implicit function theo-

rem, and thus, become no longer biologically meaningful.

In the analysis performed in the paper, we gave necessary and suf-

ficient condition for the persistence of such equilibria in the system

with traveling, for various types of the connecting network. It turned

out that the local reproduction numbers and the structure of the

graph—describing connections between the infected compartments

of the regions—play an important role. If each infected compartment

is connected to every other infected class of the same type of other

regions—implying that the connecting network includes every pos-
ible link—then a boundary equilibrium of the disconnected system

ould not persist with traveling if and only if there is a component of

he fixed point which corresponds to a disease free region with local

eproduction number greater than one. Assuming an extra condition

n the infected subsystem in each region, we showed that the same

tatement holds in the case when the connection network of infected

lasses is not complete but is still irreducible (meaning that each re-

ion is reachable from any other one via a series of links between

ny of the infected classes, see Fig. 2 which illustrates such a situ-

tion). The result also extends to the most general case of arbitrary

onnection network of the infected classes. It was proved that steady

tates of the disconnected system which have a disease free region

ith R > 1, disappear from the system if there is a connection to this

egion—maybe via several other regions—from a territory where the

isease is endemic. Nevertheless, all other equilibria of the system

ithout traveling continue to exist for small values of the mobility

arameter α. The epidemiological implication of this behavior is that,

ven for small volumes of traveling, all regions with local reproduc-

ion number greater than one will be invaded by the disease unless

hey are unreachable from endemic territories. Direct or indirect con-

ections from regions with positive disease state make the inflow of

nfecteds possible, and then the imported cases spread the disease in

he originally disease free region due to R > 1.

In the most common situation of forward transcritical bifurcation

f the disease free equilibrium at R = 1—when the disease cannot

e sustained for values of R less than one—our results yield that only

onnections from regions with R > 1 have impact on the equilibria of

he disconnected system. If a region with R > 1 is susceptible in the

bsence of traveling then isolating it from endemic territories keeps

he region free of infection, so denying all connections from regions

ith R > 1 is a successful intervention strategy. However, the dy-

amics becomes more complicated when small volume traveling is

ncorporated into a system of multiple regions with some exhibit-

ng the phenomenon of backward bifurcation. In case when endemic

quilibria exist for R < 1 as well, protecting a region with R > 1 from

he disease by denying the entrance of individuals from areas where

he reproduction number is greater than one, is no longer sufficient—

hough, still necessary—to prevent the outbreak. Such situation was

llustrated by an HIV transmission model for three regions, where

nder certain conditions, the dynamics undergoes backward bifur-

ation in each region. We calculated the possible number of steady

tates of the disconnected system which persist with the introduction

f traveling with small volumes into the system. It was also illustrated

y several examples on the network structure and model parameter

etting that mobility of individuals between the regions gives rise

o various scenarios for the limiting behavior of solutions, and thus

akes the outcome of the epidemic difficult to predict.
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ppendix A

The next three results are used in the proofs of Theorem 11 and

roposition 12 in Section 5.
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roposition A.1. If v is a nonnegative solution of (Vi − Fi)v = u with

≥ 0, then vq = 0 implies uq = 0, q ∈ {1, . . . n}.

roof. The statement immediately follows from the Z sign property

f Vi − Fi.

emma A.2. If v is a solution of (Vi − Fi)v = u with u ≥ 0 such that v is

onnegative and has both zero and positive components, then the matrix
i − Fi is reducible.

roof. If v consists of zero and positive components then without loss

f generality, we can assume that there are r, s > 0, r + s = n such that

can be represented as v = (v1, . . . vr, vr+1, . . . vr+s)T with v1, . . . vr > 0

nd vr+1, . . . vr+s = 0. We decompose Vi − Fi as

i − Fi =
(

Rr×r Sr×s

Ss×r Rs×s

)

ith the r × r, r × s, s × r and s × s dimensional matrices

r×r, Sr×s, Ss×r and Rs×s, and derive the equation

s×r(v1, . . . vr)
T + Rs×s(vr+1, . . . vr+s)

T = (ur+1, . . . ur+s)
T

rom (Vi − Fi)v = u. According to Proposition A.1, from vr+1, . . . vr+s =
it follows that ur+1, . . . ur+s = 0, thus the last equation reduces to

s×r(v1, . . . vr)
T = 0,

hich, considering that Ss×r ≤ 0 and (v1, . . . vr)T > 0, immediately im-

lies Ss×r = 0 and thus the reducibility of Vi − Fi.

emma A.3. Assume that Vi − Fi is irreducible. If u ≥ 0, u �= 0 then

Vi − Fi)v = u has a unique positive solution if Ri < 1, and it holds that

� 0 if Ri > 1. In the case when u = 0, v = 0 is the only solution if
i < 1, and for Ri > 1 it holds that either v = 0 or v has a negative

omponent.

roof. In the proof of Theorem 9 we have seen that (Vi − Fi)−1 ≥ 0

f Ri < 1, which implies the uniqueness of v ≥ 0 in (Vi − Fi)v = u. If

= 0 then trivially v = 0, and we use Lemma A.2 to get that v > 0

hen u �= 0. Similar arguments as in the proof of Theorem 9 yield

hat v has a non-positive component if Ri > 1, but Lemma A.2 again

akes only v = 0 and v � 0 possible. However, v = 0 is a solution of

Vi − Fi)v = u if and only if u = 0, otherwise v must have a negative

omponent.

The following technical lemma is needed for the proof of

heorem 15.

emma A.4. Assume that fx̂j(α) ≥ 0 is satisfied on an interval [0, α∗)
henever a region j, j ∈ {1, . . . r}, is DFAT in the boundary endemic

quilibrium EE0. Then for any DFAT region i, i ∈ {1, . . . r}, it holds that
dl f

x̂i

dαl (0) = 0 for l ≤ Mi.

roof. The inequality Mi0
≥ 0 is satisfied in every region i0 with x̂i0 =

. The case when Mi0
= 0 is trivial, so we consider a region i1 for which

i1
≥ 1, and by using x̂i1 = 0 we derive

Vi1 − Fi1)
dfx̂i1

dα
(0) =

r∑
j=1
j �=i1

C
i1,j
x fx̂j(0),

hich is similar to Eq. (4). For every j such that C
i1,j
x �= 0, it follows from

i1
�= 0 that fx̂j(0) = 0, thus the right hand side is zero. Lemma A.3

ields that
df

x̂i1

dα
(0) is either zero (in case Ri1 < 1 this is the only

ossibility), or has a negative component (this can be realized only if
i1 > 1). Nevertheless, the derivative having a negative component

ogether with x̂i1 = 0 contradicts the assumption that f
x̂i1

(α) ≥ 0 for

mall α, and this observation makes
df

x̂i1

dα
(0) = 0 the only possible
ase.
Next consider a region i2 where x̂i2 = 0 and Mi2
≥ 2. We have

df
x̂i2

dα
(0) = 0 since Mi2

≥ 2 ≥ 1, so Lemma 14 yields the equation

Vi2 − Fi2)
d2fx̂i2

dα2
(0) = 2

r∑
j=1
j �=i2

C
i2,j
x

dfx̂j

dα
(0).

e note that each region j for which C
i2,j
x �= 0 is DFAT since

i2
≥ 1. Thus, for Mj it follows that Mj ≥ 1, henceforth

df
x̂j

dα
(0) = 0

olds by induction, and the right hand side of the last equation is zero.

sing Lemma A.3 there are again two possibilities for
d2f

x̂i2

d2α
(0), namely

hat it is either zero or has a negative component; but f
x̂i2

(0) = 0,

df
x̂i2

dα
(0) = 0 and

d2f
x̂i2

d2α
(0) � 0 would imply the existence of an α∗∗

uch that f
x̂i2

(α) � 0 for α < α∗∗ which is impossible. We conclude

hat
d2f

x̂i2

dα2 (0) = 0 holds for all regions where Mi2
≥ 2.

The continuation of this procedure yields that
dl f

x̂
il

dαl (0) = 0 for any

egion il where Mil
≥ l holds. This proves the lemma.

Next, we present the proof of Lemma 16 in Section 6. For readers’

onvenience, we repeat the statement of the lemma here.

Lemma 16. Assume that in the boundary endemic equilibrium EE0,

here is no DFAT region j for which Rj > 1 and Mj < r − 1. Then for a

egion i which is DFAT it holds that
dl f

x̂i

dαl (0) = 0 for l ≤ Mi.

roof of Lemma 16. If i is disease free for α = 0 and the region is not

eachable from any region j with x̂j > 0 (that is, Mi = r − 1), then i does

ot import any infection by means of traveling and hence we have

x̂i(α) = 0 for all α > 0. This also means that
dl f

x̂i

dαl (0) = 0 holds for all

≤ l ≤ r − 1. The case when Mi = 0 is trivial, and for 1 ≤ Mi < r − 1

e use the method of induction.

We claim that for any 1 ≤ l ≤ r − 2, it holds that
dl f

x̂
il

dαl (0) = 0 when-

ver a region il is such that x̂il = 0, Ril < 1 and Mil
≥ l. If so, the state-

ent of the lemma follows for region i with the choice of i := il for

= 1, 2, . . . Mi. For a region i1 where x̂i1 = 0, Mi1
≥ 1 and Ri1 < 1, we

et
df

x̂i1

dα
(0) = 0 from

Vi1 − Fi1)
dfx̂i1

dα
(0) =

r∑
j=1
j �=i1

C
i1,j
x fx̂j(0)

nd Lemma A.3, since the right hand side is zero because of Mi1
≥ 1.

ssume that there exists an L < r − 2 such that the statement holds

or all l ≤ L. We consider a region iL+1 where x̂iL+1 = 0, RiL+1 < 1 and

iL+1
≥ L + 1. Clearly MiL+1

≥ 1, 2, . . . L, so
df

x̂
iL+1

dα
(0) =

d2f
x̂
iL+1

dα2 (0) =

· · =
dLf

x̂
iL+1

dαL (0) = 0 holds and thus Lemma 14 yields

ViL+1 − FiL+1)
dL+1fx̂iL+1

dαL+1
(0) = (L + 1)

r∑
j=1

j �=iL+1

C
iL+1,j
x

dLfx̂j

dαL
(0).

or any j with C
iL+1,j
x �= 0, it holds that the region is DFAT and Mj ≥

iL+1
− 1 ≥ L, thus

dLf
x̂j

dαL (0) = 0 makes the right hand side zero, and

sing Lemma A.3 we get that
dL+1f

x̂
iL+1

dαL+1 (0) = 0 since RiL+1 < 1.
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