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a b s t r a c t

Motivated by the empirical observation of the bimodal distribution of the incubation
time of P. vivax in Korea, we analyze a mathematical model for malaria transmission
dynamics that features two distinct exposed classes in the human population. The short-
term incubation period ismodeled by exponential distribution, while it is assumed that the
long-term incubation period has fixed length. Then we formulate the model as a system of
delay differential equations. We identify the basic reproduction number R0 and show that
it is a threshold parameter for the global dynamics of the model. If R0 ≤ 1, the disease-
free equilibrium is globally attractive, while the disease uniformly persists in the human
and mosquito populations when R0 > 1. Furthermore, for the special case of lifelong
immunity, we prove that the endemic equilibrium is globally asymptotically stable.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

According to recent research, 104 countries or territories are at risk of malaria [1]. In addition to its health toll, malaria
imposes a heavy economic burden on endemic countries [2]. One of the most common types of malaria is caused by
Plasmodium vivax. The parasite P. vivax can remain dormant in liver cells in a form called hypnozoite, leading to an increased
incubation period. P. vivax strains from different regions of the world have different length of incubation time [3]. Recent
analyzes of the incubation period of P. vivax malaria in Korea have confirmed that the incubation times have a bimodal
distribution, with a clear distinction of short-term and long-term incubations [4].

The basic models of Ross and Macdonald used ordinary differential equations to understand the dynamics of malaria
transmission [5,6]. The incubation periodwas incorporated first by Sharpe and Lotka [7] as a discrete time delay. The delayed
Ross–Macdonald model was later analyzed in [8,5,9]. It was concluded that prolonging the incubation periods reduces the
prevalence of the disease. Other researchers expressed the incubation period by exponential distribution, letting the latent
compartment decay exponentially in the absence of inflow from the infectious compartment [10,11], thus formulating the
models by systems of ordinary differential equations.

Xiao and Zou [12] considered a general probability function P(t) describing the latency distribution, in order to reflect
the fact that the latency period varies from individual to individual. They show that when the basic reproduction number
is less than one, the disease will eventually die out. When the basic reproduction number is greater than one, they consider
two specific forms for P(t): (i) P(t) is an exponential function; (ii) P(t) is a step function. In both cases, when the basic
reproduction number is greater than one, they show that the disease will persist. Moreover, under additional conditions, all
admissible positive solutions converge to the unique endemic equilibrium. They have generalized the conclusion of Ruan
et al. [9] that longer incubation periods lead to lower prevalence of the infection, regardless of the specific form of the
distributions.
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Based on empirical observation of the bimodality of the incubation times of P. vivax in Korea, Nah et al. [13] separated
the exposed class in their model into short-term and long-term exposed classes. They describe P(t) as a weighted sum of
two exponential functions. However, according to the empirical investigations, no cases had incubation time between 15
and 32 weeks [4]. In this sense, it is more realistic to describe P(t) as a weighted sum of an exponential function and a step
function, as it provides a better approximation of the observed phenomenon.

In this paper, we analyze a P. vivax malaria transmission model describing P(t) as a weighted sum of an exponential
function and a step function, which means we model the short-term incubation periods by exponential distribution, while
we assume that the long-term incubation period has fixed length. In Section 2, we construct the model and discuss its
fundamental properties.

In Section 3, we define the basic reproduction number, and show that it is a threshold parameter determining the
extinction or the persistence of the disease. Further, in the special case of lifelong immunity, we prove the global stability
of endemic equilibrium when the basic reproduction number is greater than one.

2. Model description and basic properties

2.1. Model formulation

Let us denote by eH (t), sH (t) and iM (t) the fraction of exposed human population, the fraction of susceptible human
population and the fraction of infective mosquito population at time t , respectively. We define the transmission coefficient
as

α := abm,

referring to Table 1 for the description of the parameters. Denote by ξ the mortality rate of human population. Then the
fraction of the exposed human population at time t is given by

eH (t) =


∞

0
αsH (t − u)iM (t − u)P(u)e−ξudu,

where P : R+ → [0, 1] and P(u) denotes the probability that an individual is still being in the exposed class u units of time
after entering the exposed class, provided that this individual survived this period, which has probability e−ξu.

We separate the exposed individuals into two distinct classes. Following [14], we use the exponential distribution for
the short-term incubation period (with average 1/η), while we assume a fixed time τ for every individual with long-term
incubation period. Let p ∈ (0, 1) be the probability that an exposed individual experiences a short-term incubation period
upon a successful contact with an infected mosquito. Then we can specify P(u) as

P(u) = pPs(u)+ (1 − p)Pl(u),

where

Ps(u) := e−ηu, Pl(u) :=


1, u ∈ [0, τ ] ,
0, u ∈ (τ ,∞) .

Let us denote by es
H
(t) and el

H
(t) the fraction of exposed human population with short-term incubation period and with

long-term incubation period at time t , respectively. It holds that

eH (t) = es
H
(t)+ el

H
(t).

Then we obtain

es
H
(t) =


∞

0
pαsH (t − u)iM (t − u)Ps(u)e−ξudu

=


∞

0
pαsH (t − u)iM (t − u)e−(η+ξ)udu, (1)

el
H
(t) =


∞

0
(1 − p)αsH (t − u)iM (t − u)Pl(u)e−ξudu

=

 τ

0
(1 − p) αsH (t − u)iM (t − u)e−ξudu. (2)

One can differentiate es
H
(t)with respect to t to get the ordinary differential equation

des
H
(t)

dt
= pαsH (t)iM (t)− (η + ξ) es

H
(t).

The fraction of human population progressing to the infectious class per unit of time at time t , after experiencing either the
short- or long-term incubation period, is given by ηes

H
(t)+ (1− p)αsH (t − τ)iM (t − τ)e−ξτ . We denote by iH (t) the fraction
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Fig. 1. Diagram for the disease transmission. The exposed class of humans is separated into two distinct classes according to the length of the incubation
period.

Table 1
Description of parameters.

Parameter Description

a Contact rate of a mosquito with humans
b Transmission efficacy of contact between an infected mosquito and a human individual
m Proportion of mosquito population to human population
c Transmission efficacy of contact between an infected human and a mosquito
p Probability of an exposed human to experience short-term incubation period after infection
τ Long-term incubation period of humans
ξ Mortality rate of humans
µ Mortality rate of mosquitoes
η Rate of progression from the short-term exposed state to the infectious state
r Recovery rate of humans
ω Rate of loss of immunity for humans

of infectious human population. The following differential equation captures the dynamics of the fraction of the infective
human population:

diH (t)
dt

= ηes
H
(t)+ (1 − p)αsH (t − τ)iM (t − τ)e−ξτ

− (r + ξ) iH (t).

By considering the recovered class of humans, rH (t), and the mosquito population dynamics, we arrive to

dsH (t)
dt

= ξ − αsH (t)iM (t)− ξ sH (t)+ ωrH (t), (3a)

des
H
(t)

dt
= pαsH (t)iM (t)− (η + ξ) es

H
(t), (3b)

diH (t)
dt

= ηes
H
(t)+ (1 − p)αsH (t − τ)iM (t − τ)e−ξτ

− (r + ξ) iH (t), (3c)

drH (t)
dt

= riH (t)− (ω + ξ) rH (t), (3d)

dsM (t)
dt

= µ− βsM (t)iH (t)− µsM (t), (3e)

diM (t)
dt

= βsM (t)iH (t)− µiM (t), (3f)

where β := ac .
See also Fig. 1 for the disease transmission diagram and Tables 1 and 2 for the description of the parameters and the

variables.
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Table 2
Description of the dynamical variables. Each variable denotes a fraction of the population so that sH + (es

H
+

el
H
)+ iH + rH = 1 and sM + iM = 1 hold.

Variable Description

sH Susceptible human population
eH Exposed human population
es
H

Exposed human population having a short-term incubation period
el
H

Exposed human population having a long-term incubation period
iH Infectious human population
rH Recovered human population
sM Susceptible mosquito population
iM Infectious mosquito population

By differentiating both sides of (2) with respect to t , one can obtain

del
H
(t)

dt
= (1 − p)αsH (t)iM (t)− (1 − p)αsH (t − τ)iM (t − τ)e−ξτ

− ξel
H
(t). (4)

Note that elH(t) does not appear in (3).
Let C ([−τ , 0] ,R) be the space of real valued continuous functions on the interval [−τ , 0], and consider

Ω := C ([−τ , 0] ,R)× R4
× C ([−τ , 0] ,R) .

Assuming that the solution exists in Ω , it is convenient to introduce a standard notation from the theory of functional
differential equations, see e.g [15,16]:

xt := (sHt , e
s
H
(t), iH (t), rH (t), sM (t), iMt ) ∈ Ω,

where sHt ∈ C ([−τ , 0] ,R) and iMt ∈ C ([−τ , 0] ,R) are defined by the relations

sHt (θ) = sH (t + θ), iMt (θ) = iM (t + θ) for θ ∈ [−τ , 0] .

In what follows, we write ŷ for the element of C ([−τ , 0] ,R) satisfying ŷ(θ) = y for all θ ∈ [−τ , 0]. Let

Ω+ := C ([−τ , 0] ,R+)× R4
+

× C ([−τ , 0] ,R+) .

Following the biological interpretation of our system, we prescribe the initial condition as

x0 = φ0 ∈ Ω+. (5)

Then system (3) can be written in the abstract form

dx(t)
dt

= F (xt),

where F : Ω → R6, with initial condition (5). We consider R6 equipped with the L∞ norm and C ([−τ , 0] ,R) equipped
with the usual supremum norm denoted by ∥ · ∥. NowΩ is a Banach space with the norm

|φ|Ω := max {∥f ∥ , |q2| , |q3| , |q4| , |q5| , ∥g∥} ,

for

φ = (f , q2, q3, q4, q5, g) ∈ Ω.

Then it is easy to show that F satisfies the local Lipschitz condition on each bounded subset of Ω , from which the local
existence of solutions of (3) follows, see also Theorem 3.7 in Chapter 3 in [16]. Furthermore, it is straightforward to show
that xt ∈ Ω+ for sufficiently small t and it is easy to give an a priori bound for |xt |Ω . Thus the solution xt is continuable on
R+. Consequently, (3) with (5) induces a continuous semiflow

Φ : R+ ×Ω+ → Ω+,

defined by

Φ (t, φ0) = xt (φ0) .

Let

X :=

φ


0 ≤ f (θ), 0 ≤ g(θ), for θ ∈ [−τ , 0],
0 ≤ qj, j ∈ {2, 3, 4, 5} ,

f (0)+

 0

−τ

(1 − p)αf (s)g(s)eξ sds +

4
j=2

qj = 1,

q5 + g(0) = 1.

 ⊂ Ω+.
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Proposition 1. The set X is forward invariant under Φ , i.e.

Φ (t, X) ⊂ X, t ∈ R+.

Proof. Let φ0 ∈ X . By Theorem 3.4 in [16], one can show that each component of xt(φ0) is nonnegative for all t ≥ 0.
Adding (3e) and (3f), we have s′M + i′M = 0, thus sM (t) + iM(t) is a constant function. Since sM (0) + iM (0) = 1, we have
sM (t)+ iM (t) = 1 for all t ≥ 0. Let

n(t) := sH (t)+ es
H
(t)+ iH (t)+ rH (t)+

 τ

0
(1 − p)αsH (t − a)iM (t − a)e−ξada.

Note that from (2) and (4) we have

d
dt

 τ

0
(1 − p)αsH (t − a)iM (t − a)e−ξada =

d
dt

el
H
(t)

= (1 − p)αsH (t)iM (t)− (1 − p)αsH (t − τ)iM (t − τ)e−ξτ

− ξ

 τ

0
(1 − p)αsH (t − a)iM (t − a)e−ξada.

Adding (3a)–(3d) and (4), one obtains

dn(t)
dt

= ξ − ξn(t)

with n(0) = 1. Thus n(t) = 1 for all t ≥ 0, and the conclusion follows. �

The variables in (3) represent fractions of either the human population or the mosquito population. Thus, in X , the
fractions of the human population sum up to 1, with all human compartments (sH , e

s
H
, el

H
, iH , rH ) being nonnegative; and

the fractions of mosquito populations sum up to 1, with all mosquito compartments (sM , iM ) being nonnegative. Therefore
X is exactly the biologically meaningful state space. In Sections 2 and 3 we consider the dynamics of system (3) in X .

2.2. Existence of equilibria

We define the basic reproduction number by

R0 :=


αβ

µ(r + ξ)


(1 − p)e−ξτ + p

η

η + ξ


. (6)

Here, α denotes the successful contact rate of an infected mosquito with humans. The term (1 − p)e−ξτ
+ p η

η+ξ
gives

the probability that an infected human individual survives the exposed state and then becomes infectious. The expected
infectious period of an infected mosquito is given by 1/µ. Therefore, the term α

µ


(1 − p)e−ξτ

+ p η

η+ξ


gives the expected

number of infectious human generated by one infected mosquito during its expected lifetime.
Next, β denotes the successful contact rate of an infectious human with mosquitoes. The expected infectious period of

an infected human is 1
r+ξ . Thus

β

r+ξ gives the expected number of infectious mosquitoes generated by one infected human
during the infectious period. Therefore R0 has the usual biological interpretation, where we used the convention of taking
the square root since reproduction takes two epidemiological generations.

The result on the existence of equilibria follows from algebraic calculation, see also [14].

Proposition 2. If R0 ≤ 1, then system (3) has a unique equilibrium in X, the disease-free equilibrium (1̂, 0, 0, 0, 1, 0̂). If R0 > 1,
there exist exactly two equilibria in X: the disease-free equilibrium and the endemic equilibrium,where each component is positive.

Proof. The equilibria can be obtained from the following system of algebraic equations:

0 = ξ − αsH iM − ξ sH + ωrH ,
0 = pαsH iM − (η + ξ)es

H
,

0 = ηes
H

+ (1 − p)αsH iM e−ξτ
− (r + ξ)iH ,

0 = riH − (ω + ξ)rH ,
0 = βsM iH − µiM .

By straightforward, but rather lengthy calculations, one can find that a unique endemic equilibrium with strictly positive
components exists if and only if R0 > 1. �
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3. Threshold dynamics: extinction and persistence of the disease

First we prove the global attractivity of the disease-free equilibrium for R0 ≤ 1. Let us define a subset of X by

G := {φ ∈ X |f (0) > 0, q5 > 0} .

It is easy to see that

Φ(t, X) ⊂ G, t > 0.

To prove the global attractivity, we construct a Lyapunov functional, for what we use, as a building block, the function

h(x) := x − 1 − ln x for x ∈ R+ \ {0}. (7)

Note that h(x) ≥ 0 for x ∈ R+ \ {0} and that h(x) = 0 if and only if x = 1.

Theorem 1. If R0 ≤ 1, then the disease-free equilibrium is globally attractive in X. Furthermore, if R0 < 1 holds, then it is
globally asymptotically stable in X.

Proof. Consider the following functional V : G → R+:

V (φ) := c1h(f (0))+ c2q2 + q3 + c3h(q5)+ c3g(0)+ c4

 0

−τ

f (s)g(s)ds,

where

c1 :=
µ(r + ξ)

αβ
, c2 :=

η

η + ξ
, c3 :=

r + ξ

β
, c4 := (1 − p)αe−ξτ .

We differentiate V with respect to t along solutions of (3):

d
dt

V (xt) = c1(ξ − αsH (t)iM (t)+ ωrH (t)− ξ sH (t))+ c1


−

ξ

sH (t)
+ αiM (t)− ω

rH (t)
sH (t)

+ ξ


+ c2(pαsH (t)iM (t)− (η + ξ)es

H
(t))+ ηes

H
(t)+ (1 − p)αsH (t − τ)iM (t − τ)e−ξτ

− (r + ξ)iH (t)+ c3(µ− βsM (t)iH (t)− µsM (t))+ c3


−

µ

sM (t)
+ βiH (t)+ µ


+ c3(βsM (t)iH (t)− µiM (t))+ c4(sH (t)iM (t)− sH (t − τ)iM (t − τ))

= c1ξ

2 − sH (t)−

1
sH (t)


+ c3µ


2 − sM (t)−

1
sM (t)


+ c1ωrH (t)


1 −

1
sH (t)


+ (c2pα + c4 − c1α)sH (t)iM (t)+ (η − c2(η + ξ))es

H
(t)+ (c1α − c3µ)iM (t)

+ (c3β − (r + ξ))iH (t)+ ((1 − p)αe−ξτ
− c4)sH (t − τ)iM (t − τ)

= c1ξ

2 − sH (t)−

1
sH (t)


+ c3µ


2 − sM (t)−

1
sM (t)


+ c1ωrH (t)


1 −

1
sH (t)


+ (c2pα + c4 − c1α)sH (t)iM (t).

Since R0 ≤ 1 is assumed, one can get

c2pα + c4 − c1α =
µ(r + ξ)

β
(R2

0 − 1) ≤ 0.

Therefore we have d
dt V (xt) ≤ 0. For a given solution, we define a set

G :=

ϕ ∈ G|V (ϕ) ≤ V (xt0)


,

for some t0 > 0. One can see that G is closed and positively invariant. Thus the closure of G is itself and G contains xt for all
t ≥ t0 > 0. Since V is continuous on G, V is a Lyapunov functional on G, see Chapter 5.3 in [15]. We define the set

E :=

ϕ ∈ G|V̇(3)(ϕ) = 0


,

and one finds that

E =

φ ∈ G|f (0) = 1, q5 = 1


.

Let M be the largest subset in E that is invariant with respect to (3). By LaSalle’s invariance principle, the solution tends to
M , see Theorem 3.2, Chapter 5.3 in [15]. We show thatM consists of only the disease free equilibrium. From the invariance
of M , for φ ∈ M one has xt(φ) ∈ M ⊂ E for t > 0. Then sM (t) = 1 and iH (t) = 0 follow. From (3f), we obtain
limt→∞ iM (t) = 0. Then one can see that limt→∞


es
H
(t), iH (t), iM (t)


= (0, 0, 0) and limt→∞ sH (t) = 1. Thus, M consists
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of only the disease-free equilibrium. Hence, every solution converges to the disease-free equilibrium. The local asymptotic
stability of the disease-free equilibrium can be demonstrated by standard linearization: one can compute the characteristic
equation (see [15,17]), and show that if R0 < 1, then all roots of the characteristic equation have negative real parts. Here
we omit the calculations. Thus the disease free equilibrium is globally asymptotically stable for R0 < 1. �

Next we prove the persistence of the disease for R0 > 1. Let us define

ρ :=

4
i=1

ρi,

where ρi : X → R+ for i ∈ {1, 2, 3, 4} are given by

ρ1(φ) = q2, ρ2(φ) = (1 − p)α
 0

−τ

f (s)g(s)eξ sds,

ρ3(φ) = q3, ρ4(φ) = g(0).

Let

X̃ := {φ ∈ X |ρ(φ) > 0}, (8)

X0 := {φ ∈ X |ρ(φ) = 0} = X \ X̃, (9)

where X0 is called the extinction space corresponding to ρ, for obvious reasons: X0 is the collection of states where the
disease is not present.

Proposition 3. The following assertions hold.

1. The set X̃ is forward invariant under Φ . Moreover, for each i ∈ {1, 2, 3, 4} it holds that

ρi(Φ(t, φ)) > 0 for φ ∈ X̃ and t > τ. (10)

2. The extinction space X0 is forward invariant under Φ .

Proof. One can prove the first part by a comparison method and a contradiction argument, thus here we only prove the
second part. Let φ ∈ X0. For t ∈ [0, τ ] one can see that

(1 − p)αsH (t − τ)iM (t − τ)e−ξτ
= (1 − p)αf (t − τ)g(t − τ)e−ξτ

= 0.

Therefore, for t ∈ [0, τ ], (3b)–(3d) are respectively reduced to

des
H
(t)

dt
= pαsH (t)iM (t)− (η + ξ) es

H
(t),

diH (t)
dt

= ηes
H
(t)− (r + ξ) iH (t),

diM (t)
dt

= βsM (t)iH (t)− µiM (t)

(11)

with es
H
(0) = iH (0) = iM (0) = 0. Since (es

H
, iH , iM ) = (0, 0, 0) is an equilibrium of (11), we get that

es
H
(t) = iH (t) = iM (t) = 0, t ∈ [0, τ ],

therefore 0

−τ

sHt (s)iMt (s)e
ξ sds =

 t

t−τ
sH (s)iM (s)e

−ξ(t−s)ds

=

 0

t−τ
f (s)g(s)e−ξ(t−s)ds +

 t

0
sH (s)iM (s)e

−ξ(t−s)ds

= 0, t ∈ [0, τ ].

Hence we obtain ρ(Φ(t, φ)) = 0 for t ∈ [0, τ ]. By the method of steps, we arrive to the conclusion that ρ(Φ(t, φ)) = 0
holds for all t ∈ R+, i.e. ρ(Φ(t, φ)) ∈ X0for all t ∈ R+. �

We now introduce some terminology of persistence theory from Chapters 3.1 and 8.3 in [17].

Definition 1. Let X be a nonempty set and ρ : X → R+.

1. A semiflowΦ : R+ × X → X is called uniformly weakly ρ-persistent, if there exists some ϵ > 0 such that

lim sup
t→∞

ρ(Φ(t, x)) > ϵ ∀x ∈ X, ρ(x) > 0.
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2. A semiflowΦ is called uniformly (strongly) ρ-persistent, if there exists some ϵ > 0 such that

lim inf
t→∞

ρ(Φ(t, x)) > ϵ ∀x ∈ X, ρ(x) > 0.

3. A setM ⊂ X is called weakly ρ-repelling if there is no x ∈ X such that ρ(x) > 0 andΦ(t, x) → M as t → ∞.

Theorem 2. If R0 > 1, then the semiflowΦ is uniformly ρ-persistent.

Proof. We apply Theorems 4.5 and 8.17 in [17]. First, we show that (1̂, 0, 0, 0, 1, 0̂) is weakly ρ-repelling. Suppose that
there exists ψ0 ∈ X such that ρ(ψ0) > 0 with

lim
t→∞

Φ(t, ψ0) = (1̂, 0, 0, 0, 1, 0̂). (12)

We denote by (sHt , e
s
H
(t), iH (t), rH (t), sM (t), iMt

) the solution at time t with initial stateψ0. Since we have (12), there exists
T > 0 such that sH (t) >

1
R0

and sM (t) >
1
R0

for all t > T . Let us define

U(t) :=
η

η + ξ
es
H
(t)+ (1 − p)αe−ξτ

 0

−τ

sHt (s)iMt
(s)ds + iH (t)+ R0

r + ξ

β
iMt
(0).

Since ρ(ψ0) > 0, by Proposition 3.1, U(T ) > 0. We compute

U ′(t) =
η

η + ξ
(pαsH (t)iM (t)− (η + ξ)es

H
(t))+ (1 − p)αe−ξτ (sH (t)iM (t)− sH (t − τ)iM (t − τ))

+ ηes
H
(t)+ (1 − p)αe−ξτ sH (t − τ)iM (t − τ)− (r + ξ)iH (t)+ R0

r + ξ

β
(βsM (t)iH (t)− µiM (t))

=


pα

η

η + ξ
+ (1 − p)αe−ξτ


sH (t)iM (t)− (r + ξ)iH (t)− R0

(r + ξ)µ

β
iM (t)+ R0(r + ξ)sM (t)iH (t)

= R0
(r + ξ)µ

β
iM (t)(R0sH (t)− 1)+ (r + ξ)iH (t)(R0sM (t)− 1)

≥ 0

for t > T . Since U is increasing for t > T and U(T ) > 0, U(t) does not converge to zero as t → ∞. Thus, there is noψ0 ∈ X
such that ρ(ψ0) > 0 and (12) holds. Therefore, (1̂, 0, 0, 0, 1, 0̂) is weakly ρ-repelling.

By Proposition 3.1, together with the obvious statement ∪φ∈X0 ω(φ) = (1̂, 0, 0, 0, 1, 0̂), one can see thatΦ is uniformly
weakly ρ-persistent using Theorem 8.17 in [17]. Since Φ has a compact global attractor on X , we can apply Theorem 4.5
in [17] to conclude thatΦ is uniformly ρ-persistent. �

For a function f : R → R, we use the notation

f ∞
= lim sup

t→∞

f (t) and f∞ = lim inf
t→∞

f (t).

Theorem 3. If R0 > 1, thenΦ is uniformly ρ4-persistent.

Proof. Let ψ ∈ X with ρ4(ψ) > 0. Since ρ(ψ) ≥ ρ4(ψ) > 0, by Theorem 2, there exists ϵ > 0 such that
lim inft→∞ ρ(Φ(t, ψ)) > ϵ. Thus, one has lim supt→∞ ρi(Φ(t, ψ)) > ϵ for some i ∈ {1, 2, 3, 4}.

First, assume that es∞
H

> ϵ. By the Fluctuation method [16], we can take a sequence {tj}∞j=1 such that es′
H
(tj) → 0,

es
H
(tj) → es∞

H
as j → ∞. From (3b), we get

lim
j→∞

sH (tj)iM (tj) = lim
j→∞


1
pα

es′
H
(tj)+

η + ξ

pα
es
H
(tj)


and then

i∞
M

≥ lim
j→∞

sH (tj)iM (tj) =
η + ξ

pα
es∞
H
>
(η + ξ)ϵ

pα
, (13)

thus we obtain the conclusion. Next we assume that el∞
H
> ϵ. Then we have a sequence {tm}

∞

m=1 satisfying el′
H
(tm) → 0,

el
H
(tm) → el∞

H
as m → ∞.

From (4), we have

lim
m→∞


sH (tm)iM (tm)− sH (tm − τ)iM (tm − τ)e−ξτ


= lim

m→∞


1

(1 − p)α
el′H(tm)+

ξ

(1 − p)α
el
H
(tm)


.
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Then we deduce that

i∞
M

≥ lim sup
m→∞

sH (tm)iM (tm)− lim inf
m→∞

sH (tm − τ)iM (tm − τ)e−ξτ

≥ lim sup
m→∞


sH (tm)iM (tm)− sH (tm − τ)iM (tm − τ)e−ξτ


=

ξ

(1 − p)α
el∞
H

>
ξϵ

(1 − p)α
. (14)

Finally we assume that i∞
H
> ϵ. Then there is a sequence {tl}∞l=1 such that i′

H
(tl) → 0, iH (tl) → i∞

H
as l → ∞. From (3c),

one has

lim
l→∞

 η
α
es
H
(tl)+ (1 − p)sH (tl − τ)iM (tl − τ)e−ξτ


= lim

l→∞


1
α
i′
H
(tl)+

r + ξ

α
iH (tl)


. (15)

Moreover,

i∞
M

≥ pi∞
M

+ (1 − p)e−ξτ i∞
M
.

Since inequality (13) implies i∞
M

≥
η+ξ

pα es∞
H

,

i∞
M

≥
η + ξ

α
es∞
H

+ (1 − p)e−ξτ lim sup
l→∞

sH (tl − τ)iM (tl − τ)

≥
η

α
es∞
H

+ (1 − p)e−ξτ lim sup
l→∞

sH (tl − τ)iM (tl − τ)

≥ lim
l→∞

 η
α
es
H
(tl)+ (1 − p)sH (tl − τ)iM (tl − τ)e−ξτ


.

By (15), we get

i∞
M

≥
r + ξ

α
i∞
H
>

r + ξ

α
ϵ.

Therefore, Φ is uniformly weakly ρ4-persistent. From the uniformly weak persistence, the uniform persistence follows
by Theorem 4.5 in [17]. �

Theorem 4. If R0 > 1, thenΦ is uniformly ρ3-persistent.

Proof. Let ψ ∈ X with ρ3(ψ) > 0. Since ρ(ψ) ≥ ρ3(ψ) > 0, by Theorem 2, there exists ϵ > 0 such that
lim inft→∞ ρ(Φ(t, ψ)) > ϵ. Then, lim supt→∞ ρi(Φ(t, ψ)) > ϵ for some i ∈ {1, 2, 3, 4}.

Assume that i∞
M
> ϵ. By (3f), with a sequence {tk}∞k=1 such that i′

M
(tk) → 0, iM (tk) → i∞

M
as k → ∞, we have

lim
k→∞

sM (tk)iH (tk) = lim
k→∞


1
β
i′
M
(tk)+

µ

β
iM (tk)


.

This implies

i∞
H

≥ lim
k→∞

sM (tk)iH (tk) =
µ

β
i∞
M
>
µ

β
ϵ. (16)

Next we assume that es∞
H
> ϵ. Similar as in (13), we get

i∞
M

≥
η + ξ

pα
es∞
H
. (17)

By (16) and (17), we find

i∞
H

≥
µ

β
i∞
M

≥
µ

β

η + ξ

pα
es∞
H
>
µ

β

η + ξ

pα
ϵ.

Next we assume that el∞
H
> ϵ. Similar as in (14), we get

i∞
M

≥
ξ

(1 − p)α
el∞
H
. (18)
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By (16) and (18), one has

i∞
H

≥
µ

β
i∞
M

≥
µ

β

ξ

(1 − p)α
el∞H >

µ

β

ξ

(1 − p)α
ϵ.

From uniformly weak persistence, the uniform persistence follows by Theorem 4.5 in [17]. �

Lemma 1. There exists T > 0 such that sH (t) >
1
2

ξ

α+ξ
for all t ≥ T .

Proof. From the first equation of (3), we have

s′
H

= ξ − αsH iM + ωrH − ξ sH ≥ ξ − αsH − ξ sH

and thus sH∞
≥

ξ

α+ξ
> 0. �

Theorem 5. If R0 > 1, thenΦ is uniformly ρ2-persistent.

Proof. Let ψ ∈ X with ρ2(ψ) > 0. By Proposition 3.1, there exist t∗ > τ such that ρ4(xt∗(ψ)) > 0.
Then, by Theorem 3, there exists ϵ > 0 such that

lim inf
t→∞

ρ4(Φ(t, ψ)) = lim inf
t→∞

ρ4(Φ(t, xt∗(ψ))) > ϵ.

From now on, we denote by (sHt , e
s
H
(t), iH (t), rH (t), sM (t), iMt

) the solution with initial state ψ . There exists T1 > 0 such
that iMt

(0) > 1
2ϵ for all t ≥ T1. Take T2 > 0 such that sHt (0) >

1
2

ξ

α+ξ
for all t ≥ T2. Then, 0

−τ

sHt (s)iMt
(s)eξ sds >

1
4

ξ

α + ξ
ϵ

 0

−τ

eξ sds

for all t > max{T1, T2} + τ . Therefore,

lim inf
t→∞

(1 − p)α
 0

−τ

sHt (s)iMt
(s)eξ sds ≥

1
4
(1 − p)α

ξ

α + ξ
ϵ

 0

−τ

eξ sds > 0. �

Theorem 6. If R0 > 1, thenΦ is uniformly ρ1-persistent.

Proof. Let ψ ∈ X with ρ1(ψ) > 0. By Proposition 3.1, there exist t∗ > τ such that ρ4(xt∗(ψ)) > 0. Then, by Theorem 3,
there exists ϵ > 0 such that

lim inf
t→∞

ρ4(Φ(t, ψ)) = lim inf
t→∞

ρ4(Φ(t, xt∗(ψ))) > ϵ.

From now on, we denote by (sHt , e
s
H
(t), iH (t), rH (t), sM (t), iMt

) the solution with initial state ψ . There exists T1 > 0 such
that iH (t) >

1
2ϵ for all t ≥ T1. Take T2 > 0 such that sH (t) >

1
2

ξ

α+ξ
for all t ≥ T2. Then,

d
dt

es
H
(t) = pαsH (t)iM (t)− (η + ξ)es

H
(t) ≥

1
4
pα

ξ

α + ξ
ϵ − (η + ξ)es

H
(t)

for all t > max{T1, T2}, thus esH∞
≥

pαξϵ
4(η+ξ)(α+ξ)

. �

Combining Theorems 3–6 and Proposition 3.1, we immediately obtain the following result.

Corollary 1. If R0 > 1, there exists ϵ > 0 such that

es
H∞

> ϵ, el
H∞

> ϵ, iH∞
> ϵ and iM∞

> ϵ

for every φ0 ∈ X̃ , i.e. the disease uniformly persists in each infected compartments of the human and mosquito populations.

4. Global stability of the endemic equilibrium

In the special case of ω = 0, which means that individuals acquire permanent immunity after recovering from
the infection, we show that the endemic equilibrium is indeed globally asymptotically stable, provided that the basic
reproduction number is greater than one.

Theorem 7. Assume that ω = 0. If R0 > 1, then the endemic equilibrium is globally asymptotically stable in X̃ .
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Proof. First we define a subset of X as

G̃ :=


φ ∈ X

f (θ) > 0, g(θ) > 0, θ ∈ [−τ , 0] ,
qj > 0, j ∈ {2, 3, 4, 5}.


.

From Proposition 3 one can see that

Φ(t, X̃) ⊂ G̃, t > τ.

To prove the theorem we construct a Lyapunov functional on G̃. Let us denote by
sH , e

s
H
, iH , rH , sM , iM


the endemic equilibrium of (3), where each component is strictly positive. We define

c1 :=
1
αiM

(k1 + k2) , c2 :=


αsH iM
es
H

−1
η

η + ξ
, c3 :=


αsH iM
iH

−1

,

c4 :=
1
βiH

(k1 + k2) , c5 :=


βsM iH
iM

−1

(k1 + k2) ,

where k1 and k2 are constants defined as

k1 := p
η

η + ξ
, k2 := (1 − p) e−ξτ .

For φ = (f , q2, q3, q4, q5, g) ∈ G̃, we consider the following functional:

Ve(φ) := c1h

f (0)
sH


+ c2h


q2
es
H


+ c3h


q3
iH


+ c4h


q5
sM


+ c5h


g(0)
iM


+ k2Ue(φ),

where

Ue(φ) :=

 0

−τ

h

f (s)g(s)
sH iM


ds

and h is defined as in (7) in Section 3. We differentiate Ve with respect to t along the solution of (3). Since one has ξ =

αsH iM + ξ sH from the first equation of (3), we compute

d
dt

h

sH (t)
sH


=

1
sH


1 −

sH
sH (t)

 
αsH iM + ξ sH − αsH (t)iM (t)− ξ sH (t)


=

1
sH


1 −

sH
sH (t)


αsH iM


1 −

sH (t)iM (t)
sH iM


+ ξ sH


1 −

sH (t)
sH


=

1
sH


αsH iM


1 −

sH
sH (t)


1 −

sH (t)iM (t)
sH iM


+ ξ sH


1 −

sH
sH (t)


1 −

sH (t)
sH


= αiM


1 −

sH (t)iM (t)
sH iM

−
sH

sH (t)
+

iM (t)
iM


+ ξ


1 −

sH
sH (t)


1 −

sH (t)
sH


. (19)

From (3b), one has

0 = pαsH iM − (η + ξ) es
H
, (20)

hence

η + ξ =
pαsH iM

es
H

.

Then

d
dt

h


es
H
(t)

es
H


=

1
es
H


1 −

es
H

es
H
(t)


pαsH (t)iM (t)− pαsH iM

es
H
(t)

es
H



= p
αsH iM
es
H


1 −

es
H

es
H
(t)


sH (t)iM (t)

sH iM
−

es
H
(t)

es
H



= p
αsH iM
es
H


sH (t)iM (t)

sH iM
−

es
H
(t)

es
H

−
es
H

es
H
(t)

sH (t)iM (t)
sH iM

+ 1


. (21)
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From (3c), one can get

r + ξ =
1
iH


ηes

H
+ (1 − p) αe−ξτ sH iM


.

Then we obtain

diH (t)
dt

= ηes
H


es
H
(t)

es
H

−
iH (t)
iH


+ (1 − p) αe−ξτ sH iM


sH (t − τ)iM (t − τ)

sH iM
−

iH (t)
iH


.

We compute

d
dt

h

iH (t)
iH


=

1
iH


1 −

iH
iH (t)


ηes

H


es
H
(t)

es
H

−
iH (t)
iH


+ (1 − p) αe−ξτ sH iM


sH (t − τ)iM (t − τ)

sH iM
−

iH (t)
iH



=
ηes

H

iH


1 −

iH
iH (t)

 es
H
(t)

es
H

−
iH (t)
iH



+ (1 − p)
αe−ξτ sH iM

iH


1 −

iH
iH (t)


sH (t − τ)iM (t − τ)

sH iM
−

iH (t)
iH


.

From (20), one finds that

ηes
H

= pαsH iM
η

η + ξ
= αsH iM k1.

Therefore

d
dt

h

iH (t)
iH


=
αsH iM
iH


k1


1 −

iH
iH (t)

 es
H
(t)

es
H

−
iH (t)
iH


+ k2


1 −

iH
iH (t)


sH (t − τ)iM (t − τ)

sH iM
−

iH (t)
iH



=
αsH iM
iH


k1


es
H
(t)

es
H

−
iH (t)
iH

−
iH

iH (t)

es
H
(t)

es
H

+ 1



+ k2


sH (t − τ)iM (t − τ)

sH iM
−

iH (t)
iH

−
iH

iH (t)
sH (t − τ)iM (t − τ)

sH iM
+ 1


.

We now use µ = βsM iH + µsM from (3e). Then

d
dt

h

sM (t)
sM


=

1
sM


1 −

sM
sM (t)

 
βsM iH + µsM − βsM (t)iH (t)− µsM (t)


=

1
sM


1 −

sM
sM (t)


βsM iH


1 −

sM (t)iH (t)
sM iH


+ µsM


1 −

sM (t)
sM


= βiH


1 −

sM (t)iH (t)
sM iH

−
sM

sM (t)
+

iH (t)
iH


+ µ


1 −

sM
sM (t)


1 −

sM (t)
sM


. (22)

Finally, from (3f) one has 0 = βsM iH − µiM , thus

µ =
βsM iH
iM

follows. Then

d
dt

h

iM (t)
iM


=

1
iM


1 −

iM
iM (t)

 
βsM (t)iH (t)− µiM (t)


=

1
iM


1 −

iM
iM (t)


βsM (t)iH (t)− βsM iH

iM (t)
iM


=
βsM iH
iM


1 −

iM
iM (t)


sM (t)iH (t)

sM iH
−

iM (t)
iM


=
βsM iH
iM


sM (t)iH (t)

sM iH
−

iM (t)
iM

−
iM

iM (t)
sM (t)iH (t)

sM iH
+ 1


. (23)
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Finally, we can compute that

d
dt

Ue(xt) = h

sH (t)iM (t)

sH iM


− h


sH (t − τ)iM (t − τ)

sH iM


=

sH (t)iM (t)
sH iM

− ln

sH (t)iM (t)

sH iM


−

sH (t − τ)iM (t − τ)

sH iM
+ ln


sH (t − τ)iM (t − τ)

sH iM


=

sH (t)iM (t)
sH iM

−
sH (t − τ)iM (t − τ)

sH iM
+ ln


sH (t − τ)iM (t − τ)

sH (t)iM (t)


. (24)

From (19)–(24) we get

d
dt

Ve(xt) = (k1 + k2)
ξ

βiM


1 −

sH
sH (t)


1 −

sH (t)
sH


+ (k1 + k2)

µ

βiH


1 −

sM
sM (t)


1 −

sM (t)
sM


+ (k1 + k2) C0(t)+ k1C1(t)+ k2C2(t),

where

C0(t) =


1 −

sH (t)iM (t)
sH iM

−
sH

sH (t)
+

iM (t)
iM


+


1 −

sM (t)iH (t)
sM iH

−
sM

sM (t)
+

iH (t)
iH


+


sM (t)iH (t)

sM iH
−

iM (t)
iM

−
iM

iM (t)
sM (t)iH (t)

sM iH
+ 1


,

C1(t) =


sH (t)iM (t)

sH iM
−

es
H
(t)

es
H

−
es
H

es
H
(t)

sH (t)iM (t)
sH iM

+ 1


+


es
H
(t)

es
H

−
iH (t)
iH

−
iH

iH (t)

es
H
(t)

es
H

+ 1


,

and

C2(t) =


sH (t − τ)iM (t − τ)

sH iM
−

iH (t)
iH

−
iH

iH (t)
sH (t − τ)iM (t − τ)

sH iM
+ 1


+


sH (t)iM (t)

sH iM
−

sH (t − τ)iM (t − τ)

sH iM
+ ln


sH (t − τ)iM (t − τ)

sH (t)iM (t)


.

One can respectively simplify C0,1,2(t) as

C0(t) =


1 −

sH (t)iM (t)
sH iM

−
sH

sH (t)


+


1 −

sM
sM (t)

+
iH (t)
iH


+


−

iM
iM (t)

sM (t)iH (t)
sM iH

+ 1

, (25)

C1(t) =


sH (t)iM (t)

sH iM
−

es
H

es
H
(t)

sH (t)iM (t)
sH iM

+ 1


+


−

iH (t)
iH

−
iH

iH (t)

es
H
(t)

es
H

+ 1


, (26)

C2(t) =


sH (t)iM (t)

sH iM
−

iH (t)
iH

−
iH

iH (t)
sH (t − τ)iM (t − τ)

sH iM
+ 1


+ ln


sH (t − τ)iM (t − τ)

sH (t)iM (t)


. (27)

From (25)–(27) one can compute

(k1 + k2) C0(t)+ k1C1(t)+ k2C2(t) = (k1 + k2)


1 −
sH

sH (t)


+


1 −

sM
sM (t)


+


−

iM
iM (t)

sM (t)iH (t)
sM iH

+ 1


+ k1


−

es
H

es
H
(t)

sH (t)iM (t)
sH iM

+ 1


+


−

iH
iH (t)

es
H
(t)

es
H

+ 1



+ k2


−

iH
iH (t)

sH (t − τ)iM (t − τ)

sH iM
+ 1 + ln


sH (t − τ)iM (t − τ)

sH (t)iM (t)


.

Let us define

L(t) := (k1 + k2)

ln


sH
sH (t)


+ ln


sM

sM (t)


+ ln


iM

iM (t)
sM (t)iH (t)

sM iH


+ k1


ln


es
H

es
H
(t)

sH (t)iM (t)
sH iM


+ ln


iH

iH (t)

es
H
(t)

es
H



+ k2


ln


iH
iH (t)

sH (t − τ)iM (t − τ)

sH iM


− ln


sH (t − τ)iM (t − τ)

sH (t)iM (t)


.
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We claim that L(t) = 0 holds. Indeed, one can calculate

L(t) = (k1 + k2) ln


sH
sH (t)

iM
iM (t)

iH (t)
iH


+ k1 ln


sH (t)iM (t)

sH iM

iH
iH (t)


+ k2


ln


iH
iH (t)


+ ln


sH (t)iM (t)

sH iM


= k2


ln


sH
sH (t)

iM
iM (t)

iH (t)
iH


+ ln


iH

iH (t)


+ ln


sH (t)iM (t)

sH iM


= 0.

Therefore, we obtain

(k1 + k2) C0(t)+ k1C1(t)+ k2C2(t) = (k1 + k2) C0(t)+ k1C1(t)+ k2C2(t)+ L(t)

= − (k1 + k2)

h


sH
sH (t)


+ h


sM

sM (t)


+ h


iM

iM (t)
sM (t)iH (t)

sM iH


− k1


h


es
H

es
H
(t)

sH (t)iM (t)
sH iM


+ h


iH

iH (t)

es
H
(t)

es
H



− k2h


iH
iH (t)

sH (t − τ)iM (t − τ)

sH iM


≤ 0.

Thus it follows that d
dt Ve(xt) ≤ 0. If x0 is the function identically equal to the endemic equilibrium, then obviously xt =

ŝH , e
s
H
, iH , rH , sM , ˆiM


for t > 0. Let us assume that xt is not identically equal to the endemic equilibrium. Then there exists

c > 0 such that c = Ve(xt0) for some t0 > τ . We define

Gc :=


φ ∈ G̃|Ve(φ) ≤ c = Ve(xt0)


.

We see that Gc is closed and positively invariant, thus the closure of Gc is itself and Gc contains xt for all t ≥ t0. Since Ve is
continuous on Gc , Ve is a Lyapunov functional on Gc , see Chapter 5.3 in [15]. We define the set

Σ :=

φ ∈ Gc |V̇e(3)(φ) = 0


.

We obtain

Σ =

φ

f (0) = sH , q5 = sM ,
q2
es
H

=
q3
iH

=
g(0)
iM

=
f (−τ)g(−τ)

sH iM

 .
Let L be the largest subset inΣ that is invariant with respect to (3). One can see that L is the set of initial functions satisfying

0 =
dsM (t)
dt

= µ− βsM iH (t)− µsM ,

for any t , thus one can identify the element (f , q2, q3, q4, q5, g) ∈ L as q3 = iH . Then we get q2 = es
H
and g(0) = iM . Next

one can see that
dsH (t)
dt

= ξ − αsH iM − ξ sH = 0,

diM (t)
dt

= βsM iH − µiM = 0,

thus f (θ) = sH and g(θ) = iM for every θ ∈ [−τ , 0]. Then, by LaSalle’s invariance principle, see Theorem 3.1 in [15],
we conclude that the solution tends to the endemic equilibrium of (3). Since for every solution we can choose such a c ,
the positive equilibrium is globally attractive. Similarly as we mentioned in the proof of Theorem 1, for the stability of the
endemic equilibrium, one can compute the characteristic equation and show that if R0 > 1 and ω = 0 hold, then all roots
of the characteristic equation have negative real parts. Thus the endemic equilibrium is globally asymptotically stable. �

5. Discussion

We have analyzed a malaria transmission model that features two distinct exposed classes in human population, the
class having short-term incubation period and the class having long-term incubation period. Short-term incubation period
ismodeled by exponential distribution, while it is assumed that the long-term incubation period has fixed length, to capture
the characteristics of the empirically observed distribution of incubation periods in temperate regions for P. vivax. The
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(a) Infectious human dynamics. (b) Infectious mosquito dynamics.

Fig. 2. Solution of system (3) with initial condition sH (t) = 1 and sM (t) = 1 for t < 0, (sH , e
s
H
, el

H
, iH , rH , sM , iM )(0) = (1, 0, 0, 0, 0, 0.09, 0.01). We

observe that the solution converge to the endemic equilibrium. Parameter values are ξ = 0.00004, p = 0.25, a = 0.3, b = 0.5, c = 0.23 τ = 330,
η = 0.04, µ = 0.1, r = 0.07,m = 2 and ω = 1/365, obtained from empirical observation in Korea, see [14].

basic reproduction number, R0 was identified from model parameters. When R0 ≤ 1, it was shown that the disease-
free equilibrium is globally attractive, which means the disease dies out. When R0 > 1, the disease uniformly persists.
Moreover, in the special case of lifelong immunity, the endemic equilibrium is globally asymptotically stable. We observe
from numerical simulations that the solutions converge to the endemic equilibrium also in the case without the specific
assumption of lifelong immunity (see Fig. 2).

From (6), we observe that R0 increases with respect to p if η

η+ξ
> e−ξτ , and decreases with respect to p otherwise. In

reality, it is natural to assume that the average short incubation time is less than the length of long term incubation time,
i.e., 1

η
< τ . With this restriction, we have

η

η + ξ
=

1

1 +
ξ

η

>
1

1 + ξτ
> e−ξτ ,

which leads to the conclusion that R0 is an increasing function of p. Note that R0 will be overestimated if we ignore the long
term incubation period inmodeling. It further indicates that for parasites, inducing long term incubation period in humans is
not beneficial for their reproduction. The observed bimodality of the incubation periods suggests that an another underlying
mechanism plays a role, possibly seasonal effects, which are relevant in malaria transmission in Korea [4].

It is known that hypnozoites are responsible for late relapses in P. vivax infections as well as long incubation. Some
previous studies considered relapse in the transmission model [18–20]. For future works on more realistic P. vivax
transmissionmodeling, the effect of multiple blood stage infections and seasonality is a natural next step to be investigated.
However, both has its inherent difficulties (such as analysis of time periodic delay differential equations). Our study shows
that it is possible to perform a rigorous mathematical analysis when the basic malaria transmission model is extended to
include short and long term incubation in humans, thus it is a step toward more realistic P. vivaxmodels in the future.
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