
Computers and Mathematics with Applications 66 (2013) 1534–1546

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

SIS model on homogeneous networks with threshold type
delayed contact reduction
Maoxing Liu a,b, Gergely Röst a,∗, Gabriella Vas c

a Bolyai Institute, University of Szeged, H-6720, Szeged, Hungary
b Department of Mathematics, North University of China, Taiyuan, Shanxi 030051, PR China
c MTA-SZTE Analysis and Stochastics Research Group, H-6720, Szeged, Hungary

a r t i c l e i n f o

Keywords:
Epidemic model
Homogeneous network
Delay
Stability
Periodic orbit
Rapid oscillation

a b s t r a c t

We study the dynamics of a delayed SIS epidemicmodel on homogeneous networks, where
it is assumed that individuals modify their contact patterns upon realizing the risk of
infection. This decision is made with some time delay, and it is threshold type: when the
density of infected nodes reaches a critical value, the number of links is reduced by a given
factor. Such assumptions lead to a delay differential equationwithdiscontinuous right hand
side. We show that if the basic reproduction number R0 ≤ 1, then the disease will be
eradicated, while it persists for R0 > 1. In the latter case, there is a globally asymptotically
stable endemic equilibrium, except for a crucial interval of reproduction numbers, where
the system shows oscillations. We construct explicitly the unique slowly oscillatory
periodic solution, which has strong attractivity properties, and show the existence of
rapidly oscillatory periodic solutions with any frequency. The amplitude of the oscillations
is determined by the time delay. Our results indicate that with such information delays, the
link density of a network has an important effect on the qualitative dynamics of infectious
diseases.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, many researchers have studied the spread of infections on networks [1–10], focusing mostly on
two different complex networks: the Watts–Strogatz model (a relatively homogeneous network exhibiting small-world
properties [11]) and the Barabási–Albert model (a typical example of a scale-free network [12]). Usually they have used
SIS type models as a framework, where the infection spreads via connections between S and I type nodes of the network.
However, there are interesting phenomena that has not been explored yet, even for homogeneous networks.

In many disease transmission models, time delay plays an important role in several epidemiological mechanisms.
Epidemic models with time delays have been extensively studied in various contexts (see, for example [13–16]). Recently
there have been some studies about epidemicmodels on complex networkswith time delays. For example, in the paper [17],
the authors present a modified SIS model with the effect of time delay in the transmission on small-world and scale-free
networks. They found that the presence of the delay may enhance outbreaks and increase the prevalence of infectious
diseases in these networks. Another recent work is [18], where the authors considered a delayed SIR epidemic model on
an uncorrelated complex network and addressed the effect of time lag on the shape and the number of epidemic waves.
They showed that a large delay can cause multiple waves with larger amplitudes in the second and subsequent waves.
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Depending on the perception of the risk of infections, individuals may reduce their usual activities after receiving infor-
mation about the epidemic outbreak. For example, people may reduce the time that they go out, they avoid crowded places
or mass transportation, school closures can be applied, hospital visitations can be restricted, and so on. Since information
on the ongoing epidemics motivates people to change their behaviors, it may impact the disease dynamics itself [19], as the
contact network changes [20]. There are many factors contributing to the fact that the exact number of infected individuals
cannot be known in real time, such as the incubation period of diseases, the concealment of infected individuals, or the
time needed for collecting and analyzing epidemic data. Based on the above facts, in this paper we assume that individuals
adjust their connections according to some information delay concerning the actual disease prevalence. For simplicity, we
work with the assumption that individuals uniformly and randomly reduce the number of their connections by some factor
whenever the density of infected individuals reaches a given threshold. We construct a model that takes into account the
time delay in making this decision, and then we study the dynamics of the spread of the disease under such circumstances.

By theoretical analysis we conclude that depending on the structure of network and some key parameters, the disease
will be eradicated, or the density converges to an endemic state, or oscillates in a periodic pattern. The oscillatory behavior
is dominated by a slowly oscillatory solution with strong attractivity properties, but rapidly oscillatory solutions also occur
with any frequency. All these behaviors qualitatively appear for any value of the delay, and they are completely characterized
by the basic reproduction number which is proportional to the density of links in the network.

The paper is organized as follows. In the following section, we construct an SIS model on homogeneous networks with
delayed reduction of contacts, which can be considered as a delayed relay system. In Section 3, we analyze the existence
and stability of the equilibria. Section 4 includes the main results regarding slow and rapid oscillations. Some numerical
simulations illustrating the key points of the theoretical analysis are given in Section 5, and we finish the paper with the
conclusions.

2. The model description

We consider a susceptible–infected–susceptible (SIS) model on homogeneous networks. In the SIS model, infectious
(I) individuals contaminate their susceptible (S) neighbors with some transmission rate. Meanwhile, infected individuals
recover at some rate and return to the susceptible state again. By using themean-field approach on homogeneous networks,
the authors arrived to the following epidemic model in [9]:

dI(t)
dt

= −µI(t)+ β⟨k⟩I(t)(1 − I(t)). (1)

Here I(t) ∈ [0, 1] denotes the density of infected nodes at time t . The first term considers infected nodes recovering with
rate µ. The second term on the right-hand side of Eq. (1) represents the newly infected nodes. This is proportional to the
transmission rate β , the number of links emanating from each node ⟨k⟩, and the probability that a given link points to a
healthy node, which is 1 − I(t). Here µ, β, ⟨k⟩ are positive constants.

We suppose that individuals modify their links according to the information they learn on the disease spread. If the
disease is not widespread (I(t) is small), people remain in contact with others as usual. With the increasing number of the
infected individuals, people reduce their activities and temporarily terminate some of their links if the density of infectious
nodes reaches a threshold quantity. We assume this is governed by the following function:

h(I) =


1, I < p,
q, I ≥ p,

where 0 < p, q < 1. When I < p the number of links of individuals is the same as usual ⟨k⟩; when I ≥ p, the links of
individuals are reduced to a lower level q⟨k⟩. By assuming a time delay τ > 0 in making this reduction, we obtain the
following epidemic model with discontinuous right hand side:

dI(t)
dt

= −µI(t)+ β⟨k⟩h(I(t − τ))I(t)(1 − I(t)). (2)

For the sake of simplicity, we rescale the time by Ĩ(t) = I(µ−1t). Let τ̃ = τµ, and write the equation for Ĩ(t):

dĨ(t)
dt

= −Ĩ(t)+
β⟨k⟩
µ

h(I(t − τ̃ ))Ĩ(t)(1 − Ĩ(t)). (3)

Dropping the tilde to use the notation I(t) for our variable in the rescaled time, and using the notation R0 =
β⟨k⟩
µ

, Eq. (2)
is transformed into the scalar delay differential equation

dI(t)
dt

= −I(t)+ R0h(I(t − τ))I(t)(1 − I(t)), (4)

where R0 is the basic reproduction number, which expresses the number of secondary infections generated by a single
infected node in a fully susceptible homogeneous network. As it is well known, scalar delay differential equations may
exhibit complicated behavior if the nonlinearity is nonmonotone [21].
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Adynamical system is called a delayed relay system (see Sieber [22]), if it is governed by a differential equation of the form

dI(t)
dt

=


f1(I(t)), if g(I(t − τ)) < 0,
f2(I(t)), if g(I(t − τ)) ≥ 0,

where τ > 0, and f1, f2 are Lipschitz continuous. The switching function g is a piecewise smooth Lipschitz continuous func-
tion with the property that g ′(x) ≠ 0 whenever g ′(x) exists and g(x) = 0. The set {I : g(I) = 0} is called the switching
manifold.

Eq. (4) induces a delayed relay system with

f1(I) = −I + R0I(1 − I), f2(I) = −I + qR0I(1 − I)

and switching function g(I) = I − p. In our case the singleton set {p} is the switching manifold. Let Φj be the flow
corresponding to the ordinary differential equation I ′(t) = fj(I(t)), j ∈ {1, 2}. It is a straightforward calculation to show
that if R0 > 1, then

Φ1(t, I) =
I(R0 − 1)

IR0 + [(1 − I)R0 − 1]e−(R0−1)t
(5)

and

Φ2(t, I) =


I(qR0 − 1)

IqR0 + [(1 − I)qR0 − 1]e−(qR0−1)t
, if qR0 ≠ 1,

I
It + 1

, otherwise.
(6)

From our examinations we exclude the special cases R0 =
1

1−p and R0 =
1

q(1−p) because then one of the flows is not
transversal to the switching manifold.

We have the following simple observation: if I(t) is a continuous solution of Eq. (4), T2 > T1 and I(t − τ) < p for all
t ∈ (T1, T2), then we have I(t) = Φ1(t − T1, I(T1)) for all t ∈ [T1, T2]. Analogously, if I(t − τ) ≥ p for all t in some interval,
then I(t) = Φ2(t − T1, I(T1)) for all t in the interval.

The natural phase space for our system is C = C([−τ , 0],R), the Banach space of real continuous functions defined on
[−τ , 0] with the usual supremum norm. If the history function φ ∈ C has the property that φ(θ) = p only for finitely many
θ ∈ [−τ , 0], let us say, θ1, θ2, . . . , θk, then the forward evolution of the solution on [0, τ ] will follow one of the flows on
each interval (θi + τ , θi+1 + τ); thus the solution is determined by the switching times θj and φ(0). This way, by the method
of steps, there exists a unique solution. There are many elements of C for which φ(θ) − p has infinitely many zeros. Then
we can define solutions as functions satisfying the variation of constants formula

I(t) = I(0)+

 t

0
I(s)[R0h(I(s − τ))(1 − I(s))− 1]ds

for t ≥ 0. To avoid unnecessary technicalities, in this paper we consider only initial functions with finitely many switching
times. Then we have the usual properties of existence, uniqueness and continuous dependence on initial data.

Throughout the paper by I ′(t)we mean the right derivative when I(t − τ) = p; this will not cause any confusion.
Given the interpretation of the model, we only consider solutions I(t) ∈ [0, 1]. As solutions of (4) satisfy

I(t) = I(t0) exp
 t

t0
[R0h(I(s − τ))(1 − I(s))− 1]ds


, (7)

it follows that nonnegative solutions remain nonnegative for all future time. Also note that if I(t) = 1, then I ′(t) = −1.
Hence solutions from the interval [0, 1] remain in [0, 1] for all future time of their existence. This invariance of [0, 1] implies
that such solutions exist for all future times. We consider the following phase space:

X := {ϕ ∈ C : 0 ≤ ϕ(θ) ≤ 1 for all θ ∈ [−τ , 0] and #{θ : ϕ(θ) = p} < ∞}.

Notice that if R0 <
1

1−p , then I(t) = p implies I ′(t) < 0, if R0 >
1

q(1−p) , then I(t) = p implies I ′(t) > 0, while for
1

1−p < R0 <
1

q(1−p) we show later in Lemma 4.2 that the number of switching times on a time interval of length τ cannot
increase; thus the set X is indeed invariant.

For a solution I : [−τ ,∞) → R of Eq. (4) and for t ≥ 0, the segment It is the element of X with It(s) = I(t + s),
s ∈ [−τ , 0]. A function Iϕ : [−τ ,∞) → R is a solution of Eq. (4) with the initial value ϕ ∈ X , if it is a solution and Iϕ0 = ϕ.
It follows from (7) that if ϕ ∈ X with ϕ(0) > 0, then Iϕ(t) > 0 for all t > 0. Such solutions are called nontrivial solutions.
Similarly, if ϕ ∈ X0 := {ϕ ∈ X : ϕ(0) = 0}, then Iϕ(t) = 0 for all t ≥ 0.

Note that depending on the choice of I , Φ1(t, I) and Φ2(t, I) may explode in finite time, but this does not cause any
problem in our case as long as solutions of Eq. (4) are in the interval [0, 1].
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3. Results on equilibria

Wedenote by I∗ the equilibria (constant solutions) of Eq. (4), and for simplicity we use the same notation for the constant
functions as elements of X and their value.

Proposition 3.1. (a) The disease free equilibrium I∗0 = 0 always exists,
(b) if 1 < R0 <

1
1−p , Eq. (4) has a unique positive equilibrium I∗1 = 1 −

1
R0
,

(c) if R0 >
1

q(1−p) , Eq. (4) has a different unique positive equilibrium I∗2 = 1 −
1

qR0
,

(d) if R0 ≤ 1 or 1
1−p < R0 <

1
q(1−p) , there is no positive equilibrium.

Proof. To obtain the equilibria of Eq. (4), we set I(t) ≡ I(t − τ) ≡ I∗, and let the right hand side of Eq. (4) be zero, so

R0h(I∗)I∗(1 − I∗) = I∗. (8)

I∗ = 0 is a solution, which corresponds to the disease free equilibrium. If I∗ ≠ 0, then from Eq. (8) we get

R0h(I∗)(1 − I∗) = 1. (9)

This equation does not have a positive solution for R0 ≤ 1. If R0 > 1, we distinguish two cases. If I∗ < p, then I∗ = 1 −
1
R0

(let us denote it by I∗1 ), and if I∗ ≥ p, then we have I∗ = 1 −
1

qR0
(denoted by I∗2 ). To satisfy I∗1 < p, we need 1 −

1
R0
< p,

which is equivalent to R0 <
1

1−p . Similarly, I∗2 > p is equivalent to R0 >
1

q(1−p) . The case I∗2 = p corresponds to R0 =
1

q(1−p)
which has been excluded. �

Proposition 3.2. (a) If R0 ≤ 1, then I∗0 is globally asymptotically stable. If R0 > 1, then I∗0 is unstable.
(b) If 1 < R0 <

1
1−p , the positive equilibrium I∗1 is globally asymptotically stable on X \ X0.

(c) If R0 >
1

q(1−p) , the positive equilibrium I∗2 is globally asymptotically stable on X \ X0.

Proof. If R0 ≤ 1, statement (a) easily follows from the comparison

dI(t)
dt

= [R0h(I(t − τ))− 1]I(t)− R0h(I(t − τ))I(t)2 ≤ −qR0I(t)2. (10)

As

dI(t)
dt

= I(t)[R0 − 1] (11)

is the linear variational equation around zero, the disease free equilibrium is unstable if R0 > 1.
Now suppose that 1 < R0 <

1
1−p . In order to prove (b), first we show that for all solutions I(t),

I∞ = lim sup
t→∞

I(t) ≤ I∗1 .

Indeed, if I(t) > I∗1 = 1 −
1
R0

for some t ≥ 0, then

R0h(I(t − τ))(1 − I(t)) < 1,

and

I ′(t) = I(t)(−1 + R0h(I(t − τ))(1 − I(t))) < 0.

Thus I(t) is strictly decreasing at t . This reasoning shows that if I(t0) ≤ I∗1 for some t0 ≥ 0, then I(t) ≤ I∗1 for all t ≥ t0. On the
other hand, if I(t) > I∗1 for all t ≥ 0, then I(t) is strictly decreasing on [0,∞), and I∗ = limt→∞ I(t) exists. In this case Eq. (4)
implies that limt→∞ I ′(t) also exists. As I(t) is strictly decreasing and bounded from below, necessarily limt→∞ I ′(t) = 0.
Thus 0 = I∗(−1 + R0h(I∗)(1 − I∗)) and I∗ is an equilibrium. As there are no equilibria greater than I∗1 , we have I∗ = I∗1 .
Summing up, I∞ ≤ I∗1 for all solutions I(t) of Eq. (4).

Hence for all nontrivial solutions I(t), t0 ≥ 0 can be given such that I(t) < p for all t > t0 − τ and I(t) satisfies the
ordinary differential equation

dI(t)
dt

= −I(t)+ R0I(t)(1 − I(t)) (12)

on (t0,∞). Solving (12), we obtain that

I(t) =
I(t0)(R0 − 1)

I(t0)R0 + [(1 − I(t0))R0 − 1]e−(R0−1)(t−t0)
for t > t0.
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Fig. 1. The relation of I∗ and R0 . The solutions oscillate when 1
1−p < R0 <

1
q(1−p) .

As I(t0) ≠ 0, it follows that limt→∞ I(t) = 1 −
1
R0

= I∗1 .
We can prove (c) by using a similar argument, by showing that

I∞ = lim inf
t→∞

I(t) ≥ I∗2 > p

for all nontrivial solutions I(t), and by verifying that the solutions of the ordinary differential equation

dI(t)
dt

= −I(t)+ qR0I(t)(1 − I(t))

converge to I∗2 as t → ∞. �

The graph showing the relation of equilibria I∗ and R0 is depicted in Fig. 1. From Fig. 1, we can also see the effect of the
network structure. By increasing the average degree ⟨k⟩, R0 is also increasing, and the equilibrium will change from zero to
nonzero, then to oscillations (to be proven in the next section), then back to a nonzero equilibrium again; thus system (4)
will experience different dynamical behaviors.

4. Oscillation results

From now on we assume that

1
1 − p

< R0 <
1

q(1 − p)
. (13)

Note that if I(t1) = p for some t1 ≥ 0, then I ′(t1) ≠ 0. Indeed, I ′(t1) =
∂
∂tΦi(0, p) with some i ∈ {1, 2}, which is nonzero

under the assumption (13). It follows that for all ϕ ∈ X and t ≥ 0, the measure of the set {θ ∈ [−τ , 0] : Iϕt (θ) = p} is zero.
This observation is used in the subsequent proof.

4.1. Oscillation around p

Proposition 4.1. If (13) holds, then all nontrivial solutions of Eq. (4) oscillate around p.

Proof. Suppose for contradiction that either there exists T1 such that I(t) ≥ p for all t > T1, or a T2 can be given so that
I(t) ≤ p for all t > T2 and I(t) is a nontrivial solution.

If I(t) ≥ p for all t > T1, then

I ′(t) = I(t)(−1 + R0q(1 − I(t))) < I(t)(−1 + R0q(1 − p)) < 0

for all t > T1 + τ , and I∗ = limt→∞ I(t) ≥ p exists. It is easy to see that limt→∞ I ′(t) = 0 in this case, and
0 = I∗(−1+R0q(1−I∗)), i.e. I∗ = 1−

1
qR0

is an equilibrium. This is a contradiction, as there are no positive equilibria for (13).
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If I(t) < p for all t > T2, then

I ′(t) = I(t)(−1 + R0(1 − I(t))) > I(t)(−1 + R0(1 − p)) > 0

for all t > T1 + τ with I(t) ≠ 0. Hence if I(t) is a nontrivial solution, then I(t) converges to the equilibrium I∗ = 1−
1
R0
> 0

in a similar way, which is a contradiction again.
We finish by demonstrating that if I(t) ≤ p for all t > T2, then a threshold number T3 can be given such that I(t) < p for

all t > T3. If that is not true, then we can find arbitrarily large tk such that I(tk) = p. If I(tk − τ) < p, then I ′ is continuous
at tk and I ′(tk) = 0 must hold, but then h(I(tk − τ)) = 1 and so

I ′(tk) = p(−1 + R0(1 − p)) ≠ 0.

If I(tk − τ) = p, then by integration we obtain that

1 =
I(tk)

I(tk − τ)
= exp

 tk

tk−τ
[−1 + R0h(I(s − τ))(1 − I(s))]ds


,

which implies that the integral in the exponent should be zero. However, R0h(I(s − τ))(1 − I(s))− 1 ≥ R0(1 − p)− 1 > 0
whenever I(s − τ) < p, and the equality I(s − τ) = p holds on a set of measure zero. Thus the integral is positive, which is
a contradiction. �

We introduce a discrete Lyapunov functional analogous to the one given by Mallet-Paret and Sell in [23].
For ϕ ∈ C , set sc(ϕ) = 0 if either ϕ(s) ≥ p for all s ∈ [−τ , 0], or ϕ(s) ≤ p for all s ∈ [−τ , 0]. Otherwise define

sc(ϕ) = sup

k ∈ N \ {0} : there exists a strictly increasing sequence

(si)k0 ⊆ [−τ , 0] with (ϕ(si−1)− p)(ϕ(si)− p) < 0 for i ∈ {1, 2, . . . , k}

.

Then define V : C → N ∪ {∞} by

V (ϕ) =


sc(ϕ), if sc(ϕ) is odd,
sc(ϕ)+ 1, if sc(ϕ) is even.

V has the following lower semi-continuity property (for a proof, see [23]): For each ϕ ∈ C and (ϕn)
∞

0 ⊂ C with ϕn → ϕ
as n → ∞, V (ϕ) ≤ lim infn→∞ V (ϕn).

The next lemma shows that V is indeed a Lyapunov functional and therefore X is invariant under the condition (13). The
proof is a slight modification of the proof of Lemma VI.2 in [24].

Lemma 4.2. If (13) holds, then t → V (It) is monotone nonincreasing for any solution I(t) of Eq. (4).

Proof. Let t2 > t1 ≥ 0 be arbitrary. We need to verify that V (It1) ≥ V (It2).
We claim that it suffices to show that for all t ≥ 0, there exists ε0 = ε0(t) > 0 so that V (It) ≥ V (It+ε) for all ε ∈ [0, ε0].

Suppose this property holds. Set

t∗ = sup{t ∈ [t1, t2] : V (It1) ≥ V (Iu) for all t1 ≤ u ≤ t}.

Clearly t1 ≤ t∗ ≤ t2. By definition, there exists a sequence (sn)∞n=0 in [t1, t∗] such that sn → t∗ as n → ∞ and V (It1) ≥ V (Isn)
for all n ≥ 0. Since Isn → It∗ as n → ∞, the lower semi-continuity property of V implies that V (It1) ≥ V (It∗). If t∗ < t2,
then a threshold number ε0(t∗) ∈ (0, t2 − t∗) can be given so that V (It1) ≥ V (It∗) ≥ V (It∗+ε) for all ε ∈ [0, ε0(t∗)]. This
contradicts the choice of t∗. So V (It1) ≥ V (It2), and the claim holds.

We confirm that for any t ≥ 0, a threshold number ε0 = ε0(t) > 0 can be given so that V (It) ≥ V (It+ε) for all ε ∈ [0, ε0].
The cases I(t) ≠ p or V (It) = ∞ are clear, so assume that I(t) = p and V (It) < ∞. Then there exists ε0 > 0 such that either

(i) I(s) ≥ p for s ∈ [t − τ , t − τ + ε0] and I(s)− p does not change sign on [t − ε0, t],
or
(ii) I(s) < p for s ∈ (t − τ , t − τ + ε0] and I(s)− p does not change sign on [t − ε0, t].
In case (i),

I(s) =


p(qR0 − 1)

pqR0 + [(1 − p)qR0 − 1]e−(qR0−1)(s−t)
, if qR0 ≠ 1,

p
p(s − t)+ 1

, if qR0 = 1
for all s ∈ [t, t + ε0].

As (1−p)qR0 −1 < 0, we see that I(s) is a strictly decreasing function on [t, t +ε0] regardless of the value of qR0 −1. Hence
if I(s) ≤ p for s ∈ [t − ε0, t], then I(s) − p does not change sign on [t − ε0, t + ε0], and V (It) ≥ V (It+ε) for all ε ∈ [0, ε0].
If I(s) ≥ p for s ∈ [t − ε0, t], then sc(It) is even and V (It) = sc(It) + 1. As I(s) − p admits at most one sign change on
[t − ε0, t + ε] for all ε ∈ [0, ε0], we conclude that sc(It+ε) ≤ sc(It)+ 1 and V (It+ε) ≤ V (It) for all ε ∈ [0, ε0].
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In case (ii),

I(s) =
p(R0 − 1)

pR0 + [(1 − p)R0 − 1]e−(R0−1)(s−t)
for s ∈ [t, t + ε0].

As R0 > 1 and (1 − p)R0 − 1 > 0, I(s) is strictly increasing on [t, t + ε0]. From now on, the proof is analogous to the one
given for case (i); therefore we omit the details. �

4.2. Periodic solutions

A solution I(t) of Eq. (4) is called slowly oscillatory, if V (It) = 1 for all t ≥ 0, and it is rapidly oscillatory if V (It) > 1 for
all t ≥ 0.

Theorem 4.3. Set p, q and R0 according to (13). Then for each delay τ > 0, there exists a unique slowly oscillatory periodic
solution Iτ (t) of Eq. (4) up to time translation. Theminimal period of Iτ (t) is T (τ ) = 2τ+ν1(τ )+ν2(τ ), where ν1(τ ), ν2(τ ) > 0
are given by

ν1(τ ) =


1

qR0 − 1
ln


(qR0 − 1) [(1 − p)R0 − 1] e−(R0−1)τ

− pR0(1 − q)
(R0 − 1) [(1 − p)qR0 − 1]


, if qR0 ≠ 1,

[(1 − p)R0 − 1]

1 − e−(R0−1)τ


p(R0 − 1)

, if qR0 = 1

(14)

and

ν2 (τ ) =


1

R0 − 1
ln


(R0 − 1) [(1 − p) qR0 − 1] e−(qR0−1)τ

+ pR0 (1 − q)
(qR0 − 1) [(1 − p)R0 − 1]


, if qR0 ≠ 1,

1
R0 − 1

ln

(pτ + 1) (R0 − 1)− pR0

(1 − p)R0 − 1


, if qR0 = 1

∈ (0,∞) . (15)

Iτ (t) is stable in the sense of Lyapunov and it is explicitly given by

Iτ (t) =


Φ1(t, p) for t ∈ [0, τ ] ,
Φ2(t − τ − ν1(τ ), p) for t ∈ (τ , 2τ + ν1(τ )],
Φ1(t − 2τ − ν1(τ )− ν2(τ ), p) for t ∈ (2τ + ν1(τ ), 2τ + ν1(τ )+ ν2(τ )]

(16)

on [0, T (τ )]. In addition, for all ϕ ∈ X with V (ϕ) = 1, a number t1 ≥ 0 and a constant ξ ∈ [0, T (τ )) can be given such that
Iϕ(t) = Iτ (t + ξ) for all t ≥ t1.

Proof. 1. Consider the set

A = {ϕ ∈ X : ϕ(s) ≤ p for all s ∈ [−τ , 0] , ϕ(0) = p}

of initial functions. Then for any ψ ∈ A, I(t) = Iψ (t) = Φ1(t, p) for all t ∈ [0, τ ] independently of the specific form of ψ
(see Fig. 2). It is easy to see from formula (5) that I(t) strictly increases on [0, τ ]; hence I(t) > p for t ∈ (0, τ ]. Set

p1 = Φ1(τ , p) =
p(R0 − 1)

pR0 + [(1 − p)R0 − 1]e−(R0−1)τ
> p. (17)

By Proposition 4.1, there exists ν1 = ν1(τ ) ∈ (0,∞) such that I(t) > p on (τ , τ + ν1) and I(τ + ν1) = p. It is also clear that
I(t) = Φ2(t − τ , p1) on [τ , 2τ + ν1]. Hence from the equationΦ2(ν1, p1) = pwe get

ν1 =


1

qR0 − 1
ln


p[(1 − p1)qR0 − 1]
p1[(1 − p)qR0 − 1]


, if qR0 ≠ 1,

1
p

−
1
p1

otherwise.
(18)

For all t ∈ [τ + ν1, 2τ + ν1], the solution is given by I(t) = Φ2(t − τ − ν1, p). Hence formula (6) shows that I(t) is strictly
decreasing on [τ + ν1, 2τ + ν1] and I(t) < p for t ∈ (τ + ν1, 2τ + ν1]. Set

p2 = Φ2(τ , p) =


p(qR0 − 1)

pqR0 + [(1 − p)qR0 − 1]e−(qR0−1)τ
, if qR0 ≠ 1,

p
pτ + 1

, if qR0 = 1.
(19)
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Fig. 2. Periodic solution Iτ (t).

Then p2 ∈ (0, p) and I(2τ + ν1) = p2. We use Proposition 4.1 again to get ν2 = ν2(τ ) ∈ (0,∞) such that I(t) < p
on (2τ + ν1, 2τ + ν1 + ν2) and I(2τ + ν1 + ν2) = p. As necessarily I(t) = Φ1(t − 2τ − ν1, p2) on the interval
[2τ + ν1, 2τ + ν1 + ν2], one can compute that

ν2 =
1

R0 − 1
ln


p[(1 − p2)R0 − 1]
p2[(1 − p)R0 − 1]


. (20)

We obtained that I2τ+ν1+ν2 ∈ A. So if Iτ (t) is defined to be the periodic extension of I(t)|[0,2τ+ν1+ν2] to [−τ ,∞), then
Iτ (t) is a slowly oscillatory periodic solution of Eq. (4) with minimal period T = 2τ + ν1 + ν2; furthermore it is given by
Φ1(t, p) on [0, τ ], byΦ2(t −τ , p1) = Φ2(t −τ −ν1, p) on (τ , 2τ +ν1] and byΦ1(t −2τ −ν1, p2) = Φ1(t −2τ −ν1 −ν2, p)
on (2τ + ν1, 2τ + ν1 + ν2].

The formulas for ν1, ν2 in the theorem are derived by substituting p1 and p2 into (18) and (20), respectively.
2. Suppose that ϕ ∈ X with V (ϕ) = 1 and consider the solution Iϕ . We show that there is a constant ξ ∈ [0, T (τ ))

such that Iϕ(t) = Iτ (t + ξ) for all t large enough. Proposition 4.1 guarantees the existence of t0 ≥ τ such that Iϕ(t0) = p.
Lemma 4.2 gives that V (Iϕt0) = 1, that is Iϕ(t)− p admits at most one sign change on [t0 − τ , t0].

First assume that Iϕ(t)− p has no sign change on [t0 − τ , t0]. If I
ϕ
t0(s) ≥ p for all s ∈ [−τ , 0], then Iϕ(t) = Φ2(t − t0, p)

for t ∈ [t0, t0 + τ ], and it is clear from the above construction that Iϕ(t0 + s) = Iτ (τ + ν1 + s) for all s ≥ 0. If Iϕt0(s) ≤ p for
all s ∈ [−τ , 0], then Iϕt0 belongs to function class A, and Iϕ(t0 + s) = Iτ (s) for all s ≥ 0.

It remains to examine the case when Iϕt0 has one sign change, that is u ∈ (0, τ ) can be given such that Iϕt0(−u) = p, Iϕt0 is
not the constant p function and either

(i) Iϕt0(s) ≤ p for all s in [−τ ,−u] and Iϕt0(s) ≥ p for all s in [−u, 0],
or
(ii) Iϕt0(s) ≥ p for all s ∈ [−τ ,−u] and Iϕt0(s) ≤ p for all s ∈ [−u, 0].
In case (i), Iϕt0(s) < p for all s in [−τ ,−u] except for a finite number of points; hence Iϕ(t) = Φ1(t − t0, p) for all

t ∈ [t0, t0 + τ − u]. It follows that Iϕ is strictly increasing on [t0, t0 + τ − u], and Iϕ(t) ≥ p for all t ∈ [t0 − u, t0 + τ − u].
Let t ′0 ≥ t0 + τ − u be minimal with Iϕ(t ′0) = p. Then Iϕ(t ′0 + s) = Iτ (τ + ν1 + s) for all s ≥ 0. The proof is analogous in case
(ii).

The uniqueness of the slowly oscillatory periodic solution follows immediately up to time translation.
3. At last we confirm that to all ε > 0, there corresponds δ = δ(ε) > 0 such that if ϕ ∈ X and

ϕ − Iτ0
 < δ, then

|Iϕ(t)− Iτ (t)| < ε for all t ≥ 0.
First note that the periodic solution Iτ (t) is Lipschitz continuous because it is piecewise continuously differentiable. Let

α > 0 be a Lipschitz constant for Iτ (t) and let

∆t ∈


0,min

 ε
α
,
ν1

2
, τ


.

Then |Iτ (t +∆t)− Iτ (t)| ≤ α∆t < ε for all t ≥ −τ . Set η > 0 with

η < min {Iτ (∆t)− p, Iτ (τ + ν1 −∆t)− p, p − Iτ (τ + ν1 +∆t) , ε} .
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This is possible as the expressions on the right hand side are positive. As Iτ (t) is strictly increasing on [0, τ ], strictly decreas-
ing on [τ , τ + ν1] and 0 < ∆t < τ < τ + ν1 − ∆t < τ + ν1, we see that Iτ (t) > p + η on [∆t, τ + ν1 − ∆t] (see Fig. 2).
Note that the length of this interval is greater than τ .

As the solutions of Eq. (4) depend continuously on the initial function, there exists δ > 0 so that ifϕ ∈ X and ∥ϕ−Iτ0 ∥ < δ,
then |Iϕ(t)− Iτ (t)| < η for all t ∈ [0, T ]. We show that |Iϕ(t)− Iτ (t)| < ε holds for all t ≥ 0.

On the one hand, Iϕ(t) > Iτ (t) − η > p on [∆t, τ + ν1 − ∆t], which interval has length greater than τ . On the other
hand, Iϕ(τ + ν1 +∆t) < Iτ (τ + ν1 +∆t)+ η < p. So there exists r ∈ (τ + ν1 −∆t, τ + ν1 +∆t) such that Iϕ(r) = p and
Iϕ(t) ≥ p for t ∈ [r − τ , r]. Consequently Iϕ(t) = Iτ (t + τ + ν1 − r) and

|Iϕ(t)− Iτ (t)| = |Iτ (t + τ + ν1 − r)− Iτ (t)| ≤ α∆t < ε

for all t ≥ r . The choice of η implies that |Iϕ(t)− Iτ (t)| < ε also for t ∈ [0, r). Hence Iτ (t) is stable in the sense of
Lyapunov. �

Theorem 4.4. If p, q and R0 satisfy (13), then for each τ > 0 and k ≥ 1, Eq. (4) admits a rapidly oscillatory periodic solution
with segments in V−1(2k + 1).

Proof. Our construction is similar to the one in [25]. By Theorem 4.3, νi(τ ) is a positive continuous function of τ with
limτ→0+ νi(τ ) = 0 for both i ∈ {1, 2}. Hence T (τ ) = 2τ + ν1(τ ) + ν2(τ ) is continuous, limτ→0+ T (τ ) = 0 and
limτ→∞ T (τ ) = ∞. It follows that for all τ > 0 and k ≥ 1, the equation τ = τ ′

+ kT (τ ′) admits at least one solution
τ ′. The slowly oscillatory solution Iτ

′

given by Theorem 4.3 satisfies

dI(t)
dt

= −I(t)+ R0h(I(t − τ ′
− kT (τ ′)))I(t)(1 − I(t)),

that is Iτ
′

(t) is a periodic solution also for the delay τ = τ ′
+kT (τ ′). It is easy to see from (16) that Iτ

′

(t)−p has 2k or 2k+1
sign changes on each interval of length τ . Hence the proof is complete. �

4.3. Permanence

We say that the disease is permanent, if there is a positive constant such that for sufficiently large t , every nonzero
solution I(t) is bounded by this constant from below, independently from initial data. It is clear from Proposition 3.2 that
Eq. (4) is permanent if 1 < R0 <

1
1−p or if R0 >

1
q(1−p) . We have an analogous result for the case (13).

Proposition 4.5. If (13) holds, then for all nontrivial solutions I(t),

0 < p2 ≤ lim inf
t→∞

I(t) ≤ lim sup
t→∞

I(t) ≤ p1,

where p1 and p2 are defined by (17) and (19), respectively.

Proof. Proposition 4.1 implies that for all nontrivial solutions I(t), there exists t0 ≥ 0 with I(t0) = p. In the following we
prove that p2 ≤ I(t) ≤ p1 for all t ≥ t0.

1. Suppose for contradiction that there is ε > 0 such that I(t) = p2 − ε for some t ≥ t0, and let t1 > t0 be minimal with
I(t1) = p2 − ε. Then I ′(t1) ≤ 0. It follows that

I(t1) [−1 + R0h(I(t1 − τ))(1 − I(t1))] ≤ 0,

that is R0h(I(t1 − τ))(1 − I(t1)) ≤ 1. With I(t1 − τ) < p we would have

R0h(I(t1 − τ))(1 − I(t1)) > R0(1 − p) > 1

by (13). So I(t1 − τ) ≥ p. Hence if t ′0 ∈ [t0, t1) is chosen to be maximal with I(t ′0) = p, then t1 − t ′0 ≤ τ .
As I ′(t) ≥ −I(t)+ R0qI(t)(1 − I(t)) for all t ≥ t ′0 and t → Φ2(t, p) is strictly decreasing, we have the estimate

I(t) ≥ Φ2(t − t ′0, p) ≥ Φ2(τ , p) = p2

for all t ∈

t ′0, t

′

0 + τ

. This contradicts our initial assumption I(t1) = p2 − ε because t1 ∈ [t ′0, t

′

0 + τ ].
2. If I(t) = p1 + ε for some t ≥ t0 and ε > 0, set t1 > t0 to be minimal with I(t1) = p1 + ε. Then

I(t1) [−1 + R0h(I(t1 − τ))(1 − I(t1))] = I ′(t1) ≥ 0

and R0h(I(t1 − τ))(1 − I(t1)) ≥ 1. It follows that I(t1 − τ) < p. Indeed, inequality I(t1 − τ) ≥ p would imply
R0h(I(t1 − τ))(1 − I(t1)) < R0q(1 − p) < 1. As in the previous case, we define t ′0 ∈ [t0, t1) to be maximal with I(t ′0) = p.
Then t1 − t ′0 ≤ τ and we have the estimate

I(t1) ≤ Φ1(t1 − t ′0, p) ≤ Φ1(τ , p) = p1

contradicting the assumption that I(t1) = p1 + ε.
So p2 ≤ I(t) ≤ p1 for all t ≥ t0. �
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Fig. 3. The time evolutions of the density of infection with ϕ(t) = 0.1 and 0.8, t ∈ [−τ , 0], R0 = 0.8, p = 0.8, q = 0.6, and τ = 2.

Note that p1 → p, p2 → p as τ → 0+ and p1 → 1 − 1/R0,

p2 →

1 −
1

qR0
, if qR0 > 1,

0, if qR0 ≤ 1
as τ → ∞.

5. Simulations

In this section, we discuss some examples and simulations. Our purpose is to illustrate the sharpness of the results of the
previous section. First we set initial data as constant functions. Let p = 0.8, q = 0.6 and demonstrate the stability of the
zero equilibrium, as shown in Fig. 3 with R0 = 0.8.

In the case R0 = 2, as shown in Fig. 4, the positive equilibrium I∗1 is asymptotically stable. While in the case R0 = 2.7,
p = 0.1, q = 0.6, as shown in Fig. 5, the positive equilibrium I∗2 is asymptotically stable.

If 1
1−p < R0 <

1
q(1−p) , then all solutions of Eq. (4) oscillate around p. In this case, to illustrate the effect of the time delay,

we consider distinct values of the delay while other parameters are fixed. In the first case the delay is small, depicted in
Fig. 6 (left), with τ = 0.64, and the amplitude of the solution around p is apparently small. In the second case, if the delay is
larger (τ = 3.6), thenwe observe increased amplitude in Fig. 6 (right). However, for all delays, the solutions always oscillate
between 1 −

1
R0

and 1 −
1

qR0
. These values are represented by the straight lines in Fig. 6, and one can see that these bounds

are rather sharp for large delays.
At last, we also consider different initial functions while the parameters p, q, R0 are fixed. In the first case the initial

function is ϕ(t) = 0.3 + sin(3(t − 1)), depicted in Fig. 7 (left). In the second case, the initial function is ϕ(t) =

0.3∗ (0.9−0.9∗ sin(10∗ (t −1))), depicted in Fig. 7 (right). From the figure one can see how solutions with different initial
functions tend to the slowly oscillatory periodic solution for 1

1−p < R0 <
1

q(1−p) .

6. Conclusion

In this paper, we studied a time delay model for an SIS epidemic process on a homogeneous network. We assumed that
individuals temporarily reduce the number of their links by a factor q when the density of infections reaches the threshold
number p, but this modification in the contact pattern is done with some delay τ . When the basic reproduction number is
smaller than or equal to one, the disease will be eradicated. For reproduction numbers larger than one, we showed that the
disease persists in the population. In this case the following behaviors are possible:

(i) all links remain active (if the density of infected nodes remain lower than the threshold), the reduction of contacts
will never be triggered and the solutions converge to the endemic equilibrium I∗1 ;

(ii) the density of infected nodes exceeds the threshold, the reduction of links is triggered, but the density of infected
nodes remain above threshold even with the reduced number of links, hence the terminated links remain inactive for all
future time and the solutions converge to a different endemic equilibrium I∗2 ;

(iii) there is an interesting intermediate situation for a range of basic reproduction numbers, when the reduction is



1544 M. Liu et al. / Computers and Mathematics with Applications 66 (2013) 1534–1546

Fig. 4. The time evolutions of the density of infection with ϕ(t) = 0.1 and 0.8, t ∈ [−τ , 0], R0 = 2, p = 0.8, q = 0.6 and τ = 2.

Fig. 5. Evolutions of the density of infection with ϕ(t) = 0.1 and 0.8, t ∈ [−τ , 0], R0 = 2.7, p = 0.1, q = 0.6 and τ = 2.

triggered, but with such reduced transmission the density of infected nodes decreases below the threshold; thus the links
will be reactivated again, which helps the disease to spread more, thus triggering the reduction, and so on, forming an
interesting periodic oscillatory pattern.

We showed that in this regime (iii) all solutions oscillate, and their frequency cannot increase. There is a unique slowly
oscillatory solution, which can be computed explicitly and which attracts every other slowly oscillatory solutions (in fact
each slowly oscillatory solution jumps onto the same orbit in finite time). However, rapidly oscillatory periodic solutions
exist as well for any delay and any frequency. The time delay has significance in determining the characteristics of the slow
oscillation: longer delay leads to larger amplitudes. It is typical for delay differential equations that increasing the delay
leads to oscillations. In our case, the oscillatory regime is determined not by the delay, but by the reproduction number,
which is proportional to the average degree of the network. Thus our results can be interpreted as follows: the solutions
converge if the link density of the network is small or large, but there is an intermediate intervalwhen the density of infected
nodes in the network oscillates for all future time. Our results indicate that the structure of the network, the switching type
reduction in contacts and the delayed decision in reduction interestingly interplay on influencing the spreading dynamics
of infectious diseases.
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Fig. 6. The time evolutions of the density of infection with ϕ(t) = 0.1, t ∈ [−τ , 0], R0 = 2, p = 0.3, q = 0.6 and different delays τ = 0.64 (left) and
τ = 3.6 (right).

Fig. 7. The time evolutions of the density of infection with R0 = 2, p = 0.3, q = 0.6, τ = 5 and with different initial functions. The figure on the left is
generated with ϕ(t) = 0.3 + sin(3(t − 1)), and the figure on the right is generated using ϕ(t) = 0.3 ∗ (0.9 − 0.9 ∗ sin(10 ∗ (t − 1))).
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