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ABSTRACT. We improve previous results for an SEIR-type disease transmission model with fixed

latency period, standard incidence and variable population size. Infected individuals are assumed to

be unable to give birth, and individuals recover from the disease and acquire permanent immunity

with probability f , and dies from the disease with probability 1 − f . In particular, by a novel

application of the envelope method we give a complete classification of the equilibria, we show the

stability of the disease free equilibrium for R0 < 1, and the proportional persistence of the disease

for R0 > 1.
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1. INTRODUCTION

Compartmental models are commonly used in analysing and predicting the dy-

namics of a spreading infectious disease. One of the classical types of such model

family is the SEIR model. If on adequate contact with an infectious individual, a

susceptible becomes exposed for a while; that is, infected but not yet infectious, then

it is realistic to introduce a latent compartment, leading to an SEIR-model. This

model has several variants, depending on the modelling assumptions [1]. In many

cases, the dynamics have been completely described a long time ago [6], [7], but cer-

tain SEIR models have still been actively studied recently, for example considering

varying infectivity depending on age since infection [10], time delay and nonlinear

incidence [5], varying population size and vaccination [12], various latent and infec-

tious periods [15], etc. It is important to know whether the standard results (such

as threshold dynamics, global asymptotic stability, or persistence) are still valid for

different modelling assumptions or not.
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The following particular model has been considered by Yan and Liu in [16]:

S ′(t) = bS(t) + bE(t) + bR(t) − µS(t) − γ
S(t)I(t)

N(t)
,(1.1)

E ′(t) = γ
S(t)I(t)

N(t)
− γ

S(t − τ)I(t − τ)

N(t − τ)
e−µτ − µE(t),(1.2)

I ′(t) = −µI(t) + γ
S(t − τ)I(t − τ)

N(t − τ)
e−µτ − αI(t),(1.3)

R′(t) = −µR(t) + fαI(t),(1.4)

where N(t) = S(t)+E(t)+I(t)+R(t) is the total population size. Here S(t), E(t), I(t)

and R(t) denote the number of susceptible, latent, infectious and recovered individ-

uals at time t, respectively. The parameter b is the per capita birth rate with b > µ,

which is the natural mortality rate, thus we have an exponentially growing popula-

tion structure. Many animal diseases are known to reduce fertility or parental care

ability that is necessary for the newborn to survive. Here we assume that infectious

individuals don’t reproduce. The transmission rate is denoted by γ, the fixed length

of the latency period is τ , the removal rate from the infectious class is α. An infected

individual recovers and acquires permament immunity with probability f ∈ (0, 1),

and the disease is lethal with probability 1 − f . All parameters are assumed to be

non-negative.

Now we transform the model by taking the proportions of the number of indi-

viduals in the given compartment with regard to the total population size, i.e. let

s(t) = S(t)/N(t), e(t) = E(t)/N(t), i(t) = I(t)/N(t), r(t) = R(t)/N(t). Then the

model in the new variables reads as

s′(t) = b − bi(t) − m(t)s(t) − γs(t)i(t),(1.5)

e′(t) = γs(t)i(t) − γs(t − τ)i(t − τ)e−
R t

t−τ
m(s)ds − m(t)e(t),(1.6)

i′(t) = γs(t − τ)i(t − τ)e−
R t

t−τ
m(s)ds − (m(t) + α)i(t),(1.7)

r′(t) = fαi(t) − m(t)r(t),(1.8)

with

s(t), e(t), i(t), r(t) ≥ 0, t ∈ [−τ, 0],

s(t) + e(t) + i(t) + r(t) = 1, t ∈ [−τ, 0],

m(t) = b − (b + (1 − f)α)i(t).

The non-negativity of solutions for all t > 0 can be guaranteed by imposing the

additional condition

e(0) =

∫ 0

−τ

γs(u)i(u)e−
R 0
u

m(z)dzdu.
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The modified contact rate

(1.9) R0 = γ
e−bτ

b + α

is an important threshold parameter for the above system. Yan and Liu [16] proved

several results for this model, in particular they showed that there is at least one en-

demic equilibrium when R0 > 1, all solutions converge to the disease free equilibrium

(1, 0, 0, 0) if γ < b + α, and the disease persists in the population if R0 > 1. We

improve the results of [16] in three aspects:

• we give a complete classification of the equilibria, and we show that there is no

endemic equilibrium if R0 < 1 (i.e. backward bifurcation is not possible), and

there is a unique endemic equilibrium if R0 > 1;

• we provide a stability analysis for the disease free equilibrium;

• we think that the proof of the persistence result in [16] is not complete, hence we

give an alternative proof for the persistence of the disease by applying a result

of Hale and Waltman [4].

2. EQUILIBRIA

Denote by (s∗, e∗, i∗, r∗) the endemic equilibrium of (1.5)–(1.8), i.e. an equlibrium

with i∗ > 0. Recall that s∗ + e∗ + i∗ + r∗ = 1. The endemic equilibrium has to satisfy

the algebraic equations

0 = b − bi∗ − m∗s∗ − γs∗i∗,(2.1)

0 = γs∗i∗(1 − e−τm∗

) − m∗e∗,(2.2)

0 = γs∗i∗e−τm∗

− (m∗ + α)i∗,(2.3)

0 = fαi∗ − m∗r∗,(2.4)

where m∗ = b − (b + (1 − f)α)i∗. From (2.4) we have

(2.5) r∗ =
fαi∗

b − (b + (1 − f)α)i∗
.

Since 0 ≤ r∗ and 0 < fαi∗, the denominator of (2.5) has to be positive, that is

i∗ < b/(b+(1−f)α). Furthermore, r∗ < 1 must hold for all i∗ ∈ (0, b/(b+(1−f)α)),

which gives i∗ < b/(b+α). Therefore, for an endemic equilibrium of system (1.5)–(1.8)

we have

i∗ ∈

(

0,
b

b + α

)

.

By equation (2.1) it follows

(2.6) s∗ =
b(1 − i∗)

b + [γ − (b + (1 − f)α)]i∗
.

Since s∗ > 0, the relation b + [γ − (b + (1 − f)α)]i∗ > 0 must hold as well. If

R0 ≥ 1 then γ > b + α, thus the inequality is satisfied for all points of the interval
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(0, b/(b + α)). In the case R0 < 1 it is easy to check that the inequality holds for

i∗ = 0 and i∗ = b/(b + α). Since the denominator is a linear function of i∗, it is

also positive for all i∗ ∈ (0, b/(b + α)). Also, s∗ < 1, which implies that the relation

γ > (1 − f)α must hold in order to have an endemic equilibrium.

Furthermore, by equation (2.3) we have

(2.7) s∗ =
(b + α) − (b + (1 − f)α)i∗

γ exp(−bτ) exp{(b + (1 − f)α)τi∗}
,

thus

(2.8)
(b + α) − (b + (1 − f)α)i∗

γ exp(−bτ) exp{(b + (1 − f)α)τi∗}
=

b(1 − i∗)

b + [γ − (b + (1 − f)α)]i∗
,

which is

(2.9)
1

R0

1 − (b + (1 − f)α)i∗/(b + α)

exp{(b + (1 − f)α)τi∗}
=

1 − i∗

1 + [γ − (b + (1 − f)α)]i∗/b
.

Denote by H(i∗) the nominator of the difference of the right- and left-hand sides of

(2.9), that is

H(i∗) :=R0e
(b+(1−f)α)τi∗(1 − i∗)

−

(

1 −
b + (1 − f)α

b + α
i∗

) (

1 +
γ − (b + (1 − f)α)

b
i∗

)

.

The number of zeros of the function H on the interval (0, b/(b+α)) equals the number

of endemic equilibria. First, we show that H(b/(b + α)) < 0.

H

(

b

b + α

)

= γ
e−bτ

b + α
e

b+(1−f)α
b+α

bτ α

b + α

−

(

1 −
b(b + (1 − f)α)

(b + α)2

)(

1 +
γ − (b + (1 − f)α)

b + α

)

≤
1

(b + α)2

[

γα − (b(1 + f)α + α2)
γ + fα

b + α

]

=
α

(b + α)2

[

γ − (γ + fα)
b(1 + f) + α

b + α

]

< 0.

We also have that H(0) = R0 − 1.

Theorem 2.1. If R0 ≤ 1, there exists no endemic equilibrium of system (1.5)–(1.8).

Proof. We shall prove that H(i∗) is negative on the interval (0, b/(b + α)), or equiva-

lently

R0e
(b+(1−f)α)τi∗(1 − i∗) <

(

1 −
b + (1 − f)α

b + α
i∗

)

×

(

1 +
[γ − (b + (1 − f)α)]

b
i∗

)

.
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Observe that on this interval the inequality

(2.10) 1 − i∗ ≤ 1 −
b + (1 − f)α

b + α
i∗

holds, therefore it is sufficient to show that

(2.11) R0e
(b+(1−f)α)τi∗ < 1 +

γ − (b + (1 − f)α)

b
i∗.

If i∗ = 0 then the left side of (2.11) equals R0 and the right side equals 1, while at

the endpoint i∗ = b/(b + α) we have

(2.12)
γ

b + α
e(

b+(1−f)α
b+α

−1)bτ <
γ + fα

b + α
,

which holds because the left side is less than γ/(b + α). Since the left side of (2.11)

is strictly convex and the right side is linear, furthermore at the endpoints the linear

function has at least the same values as the exponential function, we obtain that the

inequality holds for all points of (0, b/(b + α)).

Next we turn our attention to the case R0 > 1. Since H(0)H(b/(b+α)) < 0 holds,

H has at least one zero value on the interval (0, b/(b+α)), therefore, the existence of

at least one endemic equilibrium is guaranteed. We have the following exact result.

Theorem 2.2. If R0 > 1 then system (1.5)–(1.8) has a unique endemic equilibrium.

The proof is based on the Cheng-Lin envelope method which is developed sys-

tematically by Cheng and Lin in [2]. The idea of this method was applied earlier by

Wright [14] to study transcendental characteristic equations arisen from delay differ-

ential equations. Then similar ideas were used several times by Cheng and Lin to

study the roots of different characteristic equations. Later, a similar method, called

parametric representation method was applied to find bifurcation curves for various

problems motivated by chemical and biological processes ([9], [11]). Here we use the

Cheng-Lin theory as presented in [2].

Given a family of straight lines Lλ which can be expressed in the the form

(2.13) Lλ : f(λ)x + g(λ)y = h(λ)

where λ belongs to an interval I, and f, g, h are differentiable on I, we may sometimes

be able to associate exactly one point Pλ in each Lλ such that the totality of these

points form a curve S. Such an associated curve S is called an envelope of the family

{Lλ : λ ∈ I} if the straight lines Lλ and S share a common tangent line at the common

point Pλ. By Theorem 2.3 in [2], if f(λ)g′(λ) − f ′(λ)g(λ) 6= 0 for λ ∈ I, then the

envelope S can be described by parameter functions X(λ) and Y (λ) where

(2.14) X(λ) =
g′(λ)h(λ) − g(λ)h′(λ)

f(λ)g′(λ) − f ′(λ)g(λ)
and Y (λ) =

f(λ)h′(λ) − f ′(λ)h(λ)

f(λ)g′(λ) − f ′(λ)g(λ)
for λ ∈ I
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is obtained by solving the linear system
{

f(λ)x + g(λ)y = h(λ),

f ′(λ)x + g′(λ)y = h′(λ).

The following Theorem is a corollary of the Fundamental Theorem of the Cheng-Lin

method (Theorem 2.6 in [2]).

Theorem 2.3. Let f, g, h are differentiable functions on (0, 1) such that

f(λ)g′(λ) − f ′(λ)g(λ) 6= 0 for λ ∈ (0, 1). Let the curve S be the envelope of the the

family {Lλ : λ ∈ (0, 1)} which is of the form (2.13). Then for any X and Y , the

function

f(λ)X + g(λ)Y − h(λ)

has exactly m mutually distinct roots in (0, 1) if and only if S has exactly m mutually

distinct tangents that also pass through the point (X, Y ).

For the sake of convenience, let us introduce the notations

D = b + (1 − f)α, z =
γ − D

b + α
, d =

Db

(b + α)2
,

A =
(γ − D)Db

(b + α)3
, B =

Db − (b + α)(γ − D)

(b + α)2 ,

σ =
D

b + α
bτ, X = R0, Y = R0

b

b + α
.

Observe that A = zd and B = d− z. It is easy to see that 0 < d < 1, furthermore, if

R0 > 1, then γ > b + α ≥ D thus z > 0 and A > 0. Let

λ =
b + α

b
i∗.

We note that λ ∈ (0, 1) if, and only if, i∗ ∈ (0, b/(b+α)). Substituting i∗ = bλ/(b+α)

into H(i∗), we obtain

H(λ) =

[

(γ − D)Db

(b + α)3
λ2 +

(

Db − (b + α)(γ − D)

(b + α)2

)

λ − 1

]

+

(

R0 −
bR0

b + α
λ

)

e
D

b+α
bτλ

=
[

Aλ2 + Bλ − 1
]

+ (X − Y λ)eσλ,

therefore, H(λ) has a unique real root in (0, 1) if, and only if, H(i∗) has a unique real

root in (0, b/(b + α)).

To apply the Cheng-Lin envelope method, using the notation of [2], we consider

the function

(2.15) H(λ|x, y) =
[

Aλ2 + Bλ − 1
]

+ (x − yλ)eσλ.
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For λ ∈ (0, 1), let Lλ be a straight line in the plane defined by

(2.16) Lλ : x − λy = −e−σλ
(

Aλ2 + Bλ − 1
)

,

which is of the form (2.13). According to (2.14), we find the envelope S of the family

of straight lines {Lλ : 0 < λ < 1} :

(2.17) X(λ) = e−σλ
{

−Aσλ3 + (A − Bσ)λ2 + σλ + 1
}

,

and

(2.18) Y (λ) = e−σλ
{

−Aσλ2 + (2A − Bσ)λ + (σ + B)
}

.

By Theorem 2.3, it is sufficient to verify that the curve S has unique tangent line which

passes through the point (X, Y ). In order to see this, observe that (X(0+), Y (0+)) =

(1, σ + B),

(2.19) X ′(λ) = λY ′(λ) = λe−σλG(λ),

furthermore

(2.20)
dY

dX
=

1

λ
, and

d2Y

dX2
= −

1

λ2X ′(λ)
,

for 0 < λ < 1, where

G(λ) = Aσ2λ2 + (Bσ2 − 4Aσ)λ + (2A − 2Bσ − σ2).

From (2.20) it follows that the tangent line of S at (X(0+), Y (0+)) is vertical. We

have the following lemma.

Lemma 2.4. Let α, β ∈ R and the quadratic polynomial P (λ) = λ2 + αλ + β.

(i) P (λ) has no roots in (0, 1) if and only if one of the following conditions holds:

(1-1) α ≥ 0 and β ≥ 0;

(1-2) −2 < α < 0 and β > α2/4;

(1-3) α ≤ −2 and β ≥ −α − 1;

(1-4) β ≤ 0 and β ≤ −α − 1.

(ii) P (λ) has unique root in (0, 1) if and only if one of the following conditions holds:

(2-1) −α − 1 < β < 0;

(2-2) 0 < β < −α − 1;

(2-3) −2 < α < 0 and β = α2/4.

(iii) P (λ) has two distinct real roots in (0, 1) if and only if −2 < α < 0, 0 < β < α2/4,

and β > −α − 1.

We may refer to section 5.1 in [2] to prove this result by means of Cheng-Lin

envelope method or can be proved by elementary calculations.

Lemma 2.5.
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(1) G(λ) either has no roots in (0, 1), or has a unique root in (0, 1).

(2) G(λ) has a unique root in (0, 1) if and only if 0 < w < −s − 1, where

(2.21) s =
Bσ − 4A

Aσ
and w =

2A − 2Bσ − σ2

Aσ2
.

Proof. Note that G(λ) = Aσ2(λ2 + sλ + w). We first claim that if s > −2, then

w < −s − 1. Indeed,

(2.22) A + B − 1 = −(1 + z)(1 − d) < 0.

Since s > −2, we have

(2.23) −8A + 4Aσ > −2Bσ.

Then

w + s + 1 =
1

Aσ2
(2A − 2Bσ − 4Aσ + (A + B − 1) σ2)

<
1

Aσ2
(−6A + (A + B − 1) σ2) < 0.

By our claim and Lemma 2.4 (iii), G(λ) can not have two roots in (0, 1), and the

proof of statement (1) is complete. Furthermore, by our claim, we see that s and w

can not satisfy (2-1) and (2-3) in Lemma 2.4 (ii), therefore the proof of statement (2)

is also complete.

Let

L1−(x) := x − X(1−) + Y (1−) = x + e−σ (A + B − 1) ,

which is obtained by taking the left limit of Lλ as λ → 1−. Note that L1−(x) is the

tangent line of S at λ = 1−. The following two lemmas are dealing with the mutual

positions of L1−(x) and (X, Y ) = (R0, R0b/(b + α)).

Lemma 2.6. The point (X, Y ) lies above the line L1−(x), that is

R0
b

b + α
> L1−(R0).

Proof.

R0
b

b + α
− L1−(R0) = R0

b

b + α
− e−σ (A + B − 1) − R0

=
1

b + α

{

bR0 + e−
D

b+α
bτ (1 − d) (γ + fα)

}

− R0

≥
1

b + α

{

bR0 + γe−bτ (1 − d)
}

− R0

=
γe−bτ

b + α

{

1 +
fbα

(b + α)2

}

− R0

> R0 − R0 = 0.
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Lemma 2.7. Let s and w be defined by (2.21) and assume that s and w satisfy

w < −s − 1. If R0 > 1 then X(1−) − R0 > 0.

Proof. In view of w < −s − 1, we have

(2.24) (1 − B − A)σ2 + (4A + 2B)σ − 2A > 0.

Let

(2.25) F (t) = (1 − B − A) t2 + (4A + 2B) t − 2A.

By (2.22) and F (0) = −2A < 0, we see that F (t) has unique positive root σ. Since

σ ≥ 0 and F (σ) > 0, we have σ < σ. Observe that

F

(

z

1 + z

)

= (1 − B − A)

(

z

1 + z

)2

+ (4A + 2B)
z

1 + z
− 2A

= (1 − d + z − zd)
z2

(1 + z)2 + (4zd + 2d − 2z)
z

1 + z
− 2zd

= −
1 − d

1 + z
z2 < 0,

therefore

(2.26)
z

1 + z
< σ < σ.

Now we can estimate X(1−) − R0.

X(1−) − R0 = e−
D

b+a
bτ {(1 − A − B)σ + A + 1} −

γ

b + α
e−bτ

> e−bτ

{

(1 − A − B)σ + A + 1 −
γ

b + α

}

= e−bτ

{

(1 − A − B) σ + A −
γ − D

b + α
+ 1 −

D

b + α

}

= e−bτ

{

(1 − d) (1 + z)

(

σ −
z

1 + z

)

+ 1 −
D

b + α

}

> 0,

the proof is complete.

Finally, we are in the position to prove Theorem 2.2.

Proof. Note that if G(λ) has unique root in (0, 1), then w > 0 and G(0) = Aσ2w > 0

by Lemma 2.5 (2). So, by Lemma 2.5, we see that G(λ) has three possible situations.

Case 1. G(λ) > 0 on (0, 1);

Case 2. G(λ) < 0 on (0, 1);

Case 3. G(λ) > 0 on (0, λ∗) and G(λ) < 0 on (λ∗, 1) for some λ∗ ∈ (0, 1).
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Case 1. Since G(λ) > 0 on (0, 1), by (2.19) and (2.20) both X(λ) and Y (λ) are

strictly increasing on (0, 1), and the graph of S is concave. By Lemma 2.6, we see

that

Y = R0b/(b + α) > L1−(R0) = L1−(X).

Also, X = R0 > 1, and the situation is depicted in Figure 1(a). Then, by Theorem

3.5 in [2] S has unique tangent line which passes through the point (X, Y ).

(a) (b)

Figure 1. The relative geometric positions of the vertical line x = 1,

the line L1−, the point (X, Y ) and the envelope S are depicted. Case 1

corresponds to (a), case 3 corresponds to (b). Since in both cases there

is a unique tangent line from (X, Y ) to S, the Cheng-Lin envelope

method guarantees that there is a unique endemic equilibrium.

Case 2. Since G(λ) < 0 on (0, 1), by (2.19) and (2.20) we obtain that X(λ) and

Y (λ) are strictly decreasing on (0, 1). In this case G(1) = Aσ2(1 + s + w) < 0 implies

w < −s − 1. Then by Lemma 2.7,

R0 < X(1−) < X(0+) = 1,

which is a contradiction. Hence, when R0 > 1 it is impossible that G(λ) < 0 on (0, 1).

Case 3. G(λ) > 0 on (0, λ∗), thus X(λ) and Y (λ) is strictly increasing on (0, λ∗),

in addition the graph of S over (0, λ∗) is concave. Furthermore, since G(λ) < 0 on

(λ∗, 1), by (2.19) and (2.20), then X(λ) and Y (λ) is strictly decreasing on (λ∗, 1), and

the graph of S over (λ∗, 1) is convex. We recall s and w defined by (2.21). Since G(λ)

has unique root in (0, 1), by Lemma 2.5 (2), we have 0 < w < −s − 1. Furthermore,

Lemma 2.6 and 2.7 imply L1−(X) < Y and 1 < X < X(1−). The geometric situation

is depicted in Figure 1 (b). By Theorem 3.7 in [2], the curve S over [λ∗, 1) has no

tangent line which passes through the point (X, Y ), in addition, according to Theorem

3.5 in [2], the curve S over (0, λ∗) has a unique tangent line which passes through the

point (X, Y ). Thus, the curve S has a unique tangent line which passes through the

point (X, Y ), therefore, by Theorem 2.3 the proof is concluded.

Remark We assumed f > 0 throughout the paper. However, allowing f = 0

admits an additional equilibrium (0, 0, 1, 0), which corresponds to the situation when
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the disease is lethal for everyone and recovery is not possible. Then this equilibrium

describes a population where everyone is infectious and remains so, and since they

don’t reproduce, they will die out exponentially.

3. STABILITY OF THE DISEASE FREE EQUILIBRIUM

Theorem 3.1. The disease free equilibrium is locally asymptotically stable if R0 < 1,

and unstable if R0 > 1.

Proof. Linearizing the system (1.5)–(1.8) around (1, 0, 0, 0) gives

s′(t) = −bs(t) − (γ − (1 − f)α)i(t),(3.1)

e′(t) = −be(t) − γe−bτ i(t − τ),(3.2)

i′(t) = −(b + α)i(t) + γe−bτ i(t − τ),(3.3)

r′(t) = fαi(t) − br(t).(3.4)

The associated characteristic function is

C(λ) = (b + λ)3(λ + b + α − γe−bτe−λτ )

= (b + λ)3(λ + (b + α)(1 − R0e
−λτ )).

The first factor of C(λ) shows that λ = −b is a triple characteristic root with negative

real part, so it is sufficient to investigate the second factor

(3.5) C2(λ) := λ + (b + α)(1 − R0e
−λτ ).

First, consider the case R0 < 1. For the contrary, suppose that there exists a charac-

teristic root λ∗ with positive real part. Then, from the real part of (3.5), we obtain

(3.6) 0 = Reλ∗ + (b + α)(1 − R0e
−τReλ∗ cos τ Imλ∗) > Reλ∗ > 0,

which is a contradiction.

Now suppose that R0 > 1. We shall prove that there exists at least one real positive

characteristic root. Since C2(0) is negative and on the real line the limit limx→∞ C2(x)

equals plus infinity, the continuity of C2 implies the existence of such a root.

4. PERSISTENCE

In [16] the authors proved that the disease is uniformly persistent if R0 > 1 in

the sense that there exists an η > 0 such that lim inf i(t) > η. While this statement

is true, we think that their proof is not completely correct: on page 127 in the proof

of their Theorem 4.2 in [16] the authors claim that

X ∩ BδX2 = {x ∈ X; d(x, X2) < δ}
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has a compact closure K := {x ∈ X; d(x, X2) ≤ δ}, and they use this property to

invoke a general abstract persistence result. Here X = C+([−τ, 0], R2
+) and

X2 = {(φ0, φ1) ∈ X : φi(s) > 0, φ1−i(s) ≡ 0

for all s ∈ [−τ, 0] and some i ∈ {0, 1}}.

However, the set K is not compact in X, which is the positive cone of the Banach

space of continuous functions mapping from [−τ, 0] to R2. Hence, in what follows we

give an alternative proof.

It is sufficient to restrict our attention to the s − i subsystem (1.5),(1.7), where

we shall use the natural phase space

Y := C+([−τ, 0], R+) × C+([−τ, 0], R+)

for our variables s(t), i(t).

Theorem 4.1. If R0 > 1, then the disease persists, i.e. lim inf i(t) > η for some

η > 0.

Proof. We shall apply the following persistence result of Hale and Waltman [4]:

Suppose that we have the following:

(i) X0 is open and dense in Y with X0 ∪ X0 = Y and X0 ∩ X0 = ∅;

(ii) the solution operators T (t) satisfy

T (t) : X0 → X0, T (t) : X0 → X0;

(iii) T (t) is point dissipative in Y ;

(iv) there is a t0 ≥ 0 such that T (t) is compact for all t ≥ t0;

(v) A =
⋃

x∈Ab
ω(x) is isolated and has an acyclic covering N , where Ab is the global

attractor of T (t) restricted to X0 and N = ∪k
i=1Ni;

(vi) for each Ni ∈ N , W s(Ni) ∩ X0 = ∅, where W s refers to the stable set.

Then, T (t) is a uniform repeller with respect to X0, i.e. there is an η > 0 such

that for any x ∈ X0, lim inft→∞ d(T (t)x, X0) ≥ η.

We are checking all these six conditions. Let X0 = {x ∈ Y : i(t) ≡ 0}, then

(i) follows from the definition of X0 and the continuous dependence of solutions on

initial conditions;

(ii) is obvious;

(iii) is obvious;

(iv) follows from the boundedness and the Arzela-Ascoli theorem with t0 = τ .
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To prove (v), first we analyze the behaviour of the system restricted to X0, where

i(t) = 0 and m(t) = b:

s′(t) = b − bs(t),(4.1)

i′(t) = 0,(4.2)

This linear system has the global attractor P = (1, 0) on X0. Therefore A = {P}

and we have the trivial covering N = {P}.

Before proving that P is isolated, we show (vi). Suppose the contrary, that there

is a solution such that i(t) > 0, i(t) → 0, s(t) → 1. Then we also have m(t) → b.

Since R0 > 1 is equivalent with γe−bτ > b + α, there exists an ε > 0 such that

γ(1 − ε)e−bτ > b + α.

Let us fix such an ε, then there is a t0 such that s(t − τ) > 1 − ε for all t > t0. Note

that m(t) < b and e−
R t

t−τ
m(s)ds > e−bτ when i(t) > 0. Define

J(t) = i(t) +
(

γ(1 − ε)e−bτ
)

∫ t

t−τ

i(s)ds.

Then J(t) → 0 follows from i(t) → 0 as t → ∞. Differentiating with respect to time,

we obtain
dJ

dt
= i′(t) +

(

γ(1 − ε)e−bτ
)

(i(t) − i(t − τ)),

and from (1.7) we have

i′(t) > γ(1 − ε)i(t − τ)e−bτ − (b + α)i(t),

which yields

dJ

dt
>

(

γ(1 − ε)e−bτ − (b + α)
)

i(t) > 0

contradicting to J(t) → 0, thus we obtain W s(P ) ∩ X0 = ∅.

We finish with showing (v), by taking advantage of the functional J(t). There is a

neighborhood Uε of P where the functional J(t) is increasing along solutions. Suppose

that there is a compact invariant set M in this neighborhood. Then the continuous

functional takes its maximum at some point p ∈ M . Clearly p ∈ X0, otherwise J is

strictly increasing, contradicting to the invariance of M and the maximum property

of p. Hence M ⊂ X0 where P is asymptotically stable, therefore the trivial covering

N = {P} is isolated in Y (see Chapter 8.3 in [13] for more detailed explanation), and

also acyclic, since there is no orbit that connects it to itself. Therefore, we have that

if R0 > 1, then the disease persists in the population, more precisely there is an η > 0

such that lim inf i(t) > η.

Note that we obtained this persistence result for the transformed system (1.5)–

(1.8), which means for the original model that in the population the fraction of



46 G. ROST, S. Y. HUANG, AND L. SZEKELY

infectious individuals will remain above some positive constant on the long run, what

we called proportional persistence in the abstract of the paper.

5. DISCUSSION

In this paper we improve the results of [16] for an SEIR model with fixed latency

period and exponentially growing population. In particular, in [16] it was shown that

there is at least one endemic equilibrium if the threshold parameter R0 = γ e−bτ

b+α
> 1,

but further analysis has not been given regarding the equilibria. Here we demonstrate

that there is no endemic equilibrium whenever R0 ≤ 1, thus backward bifurcation

(which has been observed in some epidemic models, see for example [3]) is not pos-

sible for this model. The characterization of equilibria is usually a straightforward

task in epidemic models, however, in this case, it turned out to be surprisingly dif-

ficult. To overcome this unexpected difficulty and to prove that there is exactly one

endemic equilibrium in the case R0 > 1, we need to employ a rather technically subtle

application of the envelope method investigated in details in [2].

Furthermore, by standard linearization technique we provide a local stability

analysis for the disease free equilibrium, showing that it is locally asymptotically

stable if R0 < 1, and unstable if R0 > 1.

In [16], the authors proved a persistence result for R0 > 1. While their statement

is correct, we believe that their proof is not complete, hence we give an alternative

proof for the persistence of the disease by applying a result of Hale and Waltman [4].

There are still open problems remained for this model. In [16], the authors

showed by applying Lyapunov’s direct method that the disease free equilibrium is

globally asymptotically stable if γ < b + α. We know that it is unstable if R0 > 1, or

equivalently if γ

b+α
< e−bτ . Thus, the global asymptotic stability is still unknown for

the parameter regions

1 <
γ

b + α
< e−bτ .

Nevertheless, the nonexistence of endemic equilibrium and the local stability of the

disease free equilibrium for this case suggests the conjecture that the disease free

equilibrium is globally asymptotically stable.

For R0 > 1 it is now known that the disease persists in the population. In [16]

the authors concluded the global asymptotic stability of the endemic equilibrium in

the special case when the length of the latency period is zero. However, when the

delay is positive, it is unsolved whether the unique endemic equilibrium is globally

asymptotically stable, or the model can exhibit sustained oscillations, which is a

common consequence of introducing time delays.

It seems that for this model the recently - in the context of epidemic models with

mass action - very successfully applied Lyapunov-functions (see, for instance [8] or
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[5] and references thereof), which are various combinations of functions of the form

f(x) = 1 + x − ln x, are not applicable here, because of the term

e−
R t

t−τ
m(s)ds

in (1.6), thus the global asymptotic stability problem might be challenging.
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