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1. Introduction

Finding optimal policies to minimize the mortaliand morbidity of epidemic outbreaks is a top publéalth
priority. The previous influenza pandemic and othererging / reemerging diseases demonstrate thartamge
of mathematical modeling, and calls for a syneigisboperation of epidemiologists, mathematical etlers and
public health experts. The purpose of this papeo isrovide an introduction to the basic principtéscompart-
mental models and their implementation in Wolfratklathematica. Motivated by the 2009 A/H1N1 influanz
pandemic, here we focus on how to develop advanuedels for an influenza outbreak from simple buidi
blocks using this computer algebra system. Theetdrof this paper spans from the most basic SIRento
research level problems. Given the flexibility betsoftware, the models presented here are eampddy or
extend to include various intervention strategpspulation structure or other features. The Mamifikool is
especially useful when someone wants to have &aierview of the possible scenarios by changingoua
parameters. This way we can construct interactie spectacular simulation tools. We hope that wask will
be useful for those who are interested in infectidisease modelling, to help them to create artlygheir own
models using Mathematica.

The basic idea of compartmental models in infestidisease modelling is that we divide our popufatitto
disjoint groups, according to a few key charactiesswhich are relevant to the disease under ceraiibn.
Then we model the progress of an epidemic in aelgrgpulation comprising many different individuddg
keeping track of the number of individuals withiach subgroups, which are called compartments. ¥ample,

in many common infections, such as influenza, ikesasense to divide the population into those wie a
susceptible to the disease, those who are infectddhose who have recovered and are immune. Wepesify
further compartments such as those who have bemineded, those who are receiving treatment, agepst,
risk groups, etc. and the combinations of thosactmount for the heterogeneity of the populatiora kiynamical
model there are transition processes between tmpadments that specify the rate individuals mawenfone
compartment to the other. These are typically fdated as systems of differential equations.

A key concept in epidemic models is the basic répcton number, denoted Wy, defined as the average
number of new infections caused by a single infeatelividual introduced into a wholly susceptibleppilation
over the course of the infection of this individulal general, a disease introduced into a populatitl cause an
epidemic ifRy is greater than one, while the disease dies oigklguwvhen R, is less than one. Thus, control
measures that decrease the basic reproduction murebmv one may stop the epidemic even if they gan
prevent all new infections. One of the most impairtguantity that describes the severity of an apidds the
attack rate, which expresses the fraction of imtiligls who have not been avoided the infection. @rededuce
a final size relation that gives a connection betwthe attack rate ariy.

Influenza poses a new threat every year. Seastmaalsare related to strains that have been aitingl in the
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past thus a fraction of the population may haveesagsidual immunity, while most individuals are ceystible to
a novel pandemic strain. In the seasonal caseabenation campaign typically precedes the infuemahreak,
hence we can model this by simply assuming lessegtibles and more immunes in the initial valueswglver,
in case of a pandemic, the vaccine may be availatllein a later phase, and there is a race betwezicam-
paign and the outbreak. Modelling a delayed andimoous vaccination campaign is more challengingsi@es
vaccination, antiviral treatment is an other patmitigation strategy. A further difficulty fomfluenza is that
not all infected individuals develop symptoms;gnfficant fraction of them are asymptomatic but saipable of
transmitting the infection. Accordingly, we need ifiroduce compartments which contain the asymptioma
infected individuals. Many cases are mild enoughtadoe reported, hence influenza data will alwagsncom-
plete and fitting our model to real data can bebfgmatic. It seems that model parameters for inftacare
strongly age-dependent, that requires age-struttaredels. In particular, the contact structure leetw age
groups has a significant effect on the outcomehefdutbreak. In a real situation data are initititlyited and
there are uncertainties in the parameters. By ghsehsitivity analyses we can examine the variatibmodel
outputs in response to changes in input parametkeres. Our models need to be constructed in a Waly t
addresses the previous concerns.

The paper is organized as follows. Section 2 pewithe analysis of the simplest SIR model and &oduaction
to the relevant features of Mathematica. In SecBiame develop the SEAIR model which is the mosfulder
influenza, and include preseasonal vaccinationaamiiral treatment as possible intervention sgege Section
4 considers a much more complicated model withshigesture and delayed vaccination campaign thphiallel
to the outbreak. This reflects the real situatidnthee previous pandemic. Finally, we discuss sommthér
modelling challenges in Section 5 and we explaiw I use the relevant commands and tools of Matkiema
that have been applied throughout the paper ingreAdix. For an introductory, but detailed texttba mathe-
matical modelling of infectious disease, we refezr teader to O. Diekmann and J.A.P. Heesterbeethdviati-
cal Epidemiology of Infectious Diseases: Model Binb, Analysis and Interpretation, Wiley 2000, adthemat-
ical Epidemiology, Lecture Notes in Mathematics 394eds. F. Brauer, P. van den Driessche and J, Wu)
Springer 2008. In particular, chapters 2 and 1theflatter by F. Brauer consists most of the cdstehSection
2 and Section 3.

The basic SIR model

The basic compartmental models to describe thestmsion of communicable diseases are originatem f
sequence of papers by W.O. Kermack and A.G. McKekgdstarting from 1927. To introduce the principlef
compartmental models using Mathematica and concuth as the basic reproduction number and firza si
relation, we use the SIR model as a starting pdiné model described in this section is a highlgreimplified
special case of the general one constructed by &trand McKendrick that included dependence ortithe
elapsed since infection; however it is an importamtding block of more complex models. The popolatis
divided into three classes labeled®y, andR. Let S(t) denote the number of individuals who are susclepth
the disease at time t (measured usually in d&g3)the number of infected individuals (assuming they able to
spread the disease by contact with susceptibles)Ré&t) the number of individuals who have been recovered
from the disease. In the case of influenza, sudhvitluals have immunity for the same strain hermsy tcan not
be infected again during the outbreak. In a moneegd context,R(t) may refer to the class of individuals
removed from the possibility of being infected agar of spreading infection: they can either be imm
isolated or deceased. These characterizationsifégeedt from an epidemiological point of view biltey result
in the same model equations. To formulate our nmodetterms of differential equations, we assume tha
number of individuals in a compartment is a diffgigble function of time. As the outbreak begimglividuals
are getting infected and recover, and the dynawidhis transition from one compartment to anotben be
described by the differential equations.

St =-BSM 1O, 1)
'@ =gSOI1M-al®, 2
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R® =al®),
with initial conditions

S0) = S, 1(0) = lp, R(0) = Ro.

The basic SIR model
Figure 1

This system is based on several underlying assangptiAn average individual mak@® contact per unit time
which are adequate to transmit the infection t@hwhereN = S(t) + I (t) + R(t) is the total population. Since
new infection arises only when an infectious arglisceptible are in contact, the number of new tides per

unit time is BNI(S/N) = 8SI. Such a term called mass action incidence. Véenas that infected individuals
recover at rater, thus the sojourn time in the infected compartnfetiows exponential distribution and the

average duration of the infectionis Infected individuals move from th&class td, and recovered individuals
move froml to R, see Figure 1. Apart from that, there is no othetry or exit from the compartments: we
assume the population is closed (no birth, natdeath or migration). Furthermore, it is implicitggsumed that

the population is homogenous (all individuals sttheesame parameters), and randomly mixing.

System (1)-(3) is non-linear, and there is no eXpiinalytical expression for the solutions. Nekelgss, we can

give a very detailed analysis of the behaviouhefgolutions. First notice that
SH+1I'H)+R(@)=0
which is in accordance with our assumption

S(t) + (1) + R(t) = constant =N

for all t. Integrating (1) and (2) we can express the smistiasS(t) = (0) e A5V 4 | (1) = |(0) ehBSW-adu
therefore if the initial values are non-negatife solutions(t) andl(t) remain non-negative for all The non-

negativity ofR(t) follows form the non-negativity df(t).

FromS'(t) < 0 we see tha¥(t) decreases asncreases, while the number of people in cRissincreasing. The
following short program was written to study theoperties of the epidemic curves for various valoBshe

parameters, the population size is normalized to 1.

Manipulate [
DynamicModule [{sO, r0, a,sol,s,i,r,t },
sO=1-i0;r0 =0; a=1/1;
sol = NDSolve [
{s' [t]=-Bxs[t]«il[t],
i" [t]==BxS[t]*i[t]-axi [t],
r'o[t]=axift],
s[0] ==s0,i [0] =i0,r [0] =r0}, {s,i,r }, {10,150 1}1;

Plot [{s[t] /.sol,i [t] /.sol,r [t] /.sol },
{t, 0, 30 1}, PlotStyle - {Darker [Green ], Red, Blue 3},
PlotRange - {0, 1 }, PlotLegend - {"S","I", "R" },

LegendPosition - {0.5, -0.2 }, LegendShadow - None, ShadowBorder
FrameLabel - {Style ["time (in days )", Medium ], Style [" ", Medium

Frame - {{True, False }, {True, False }}]
15
{{i0, 0.001, "I o: infected at the beginning" },
0, 0.1, 0.001, ImageSize - Tiny, Appearance - "Labeled" 1},
{{B, 1.5," B: transmission rate" }, 05,5, 0.5,

®3)
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ImageSize - Tiny, Appearance - "Labeled" 3},

{{l,3,"1 /a: infectious period (in days )"},1,7,
1, ImageSize - Tiny, Appearance - "Labeled" 3},
Initialization : > (Needs ["PlotLegends™ 1), SaveDefinitions - True

1

Ip: infected at the beginning 3——— = 0.001

[: transmission rate —{}—— = 1.5
1/a: infectious period (in days) —3—— = 3

— s
—
— R
0 5 10 15 20 25 30
time (in days

What can be said abougt)? The simulation shows thaft) is initially increasing, then after reaching a max
mum it is decreasing. Is it true in general?
First let us determine the possible maximum padhigt) by examining the equatiadri (t) = 0.

ro=smI®mps-1®Ha=0,
02

SMH=—,
B

wheneverl (t) is not zero. From the monotonicity 8ft) we conclude thak(t) has its maximum whe§(t) =‘—;,
andl(t) can attain its maximum at most once. Ald@t) is increasing!l ' (t) > 0), whenS(t) >%, and decreasing
when S(t) <%. The conditionS(0) >‘—; is sufficient and necessary to start an outbrethlerwise the number of

infected individuals is decreasing from the vergibaing. | (t) is bounded and can not oscillate, thus it must
approach a limit at infinity. From (3) it followkat this limit is zero.

2.1. Basic reproduction number

The basic reproduction number, denotedRay is one of the most important parameters of amlespic. Ry
expresses the expected number of secondary infiecjenerated by a single infectious individualddtrced
into a fully susceptible population. This quantitgtermines weather a disease can invade a popul&io the
SIR model, initially an infected individual genexa8S(0) infections per unit time, and given that the dioraof

the infectious period is:ly, we obtainRO:S(O)g. Recall that for an outbreak to start we had tbediion

S0) > %, which is equivalent withRy>1. Thus, the reproduction number is a threshoklahtity. To control the
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disease, the reproduction number should be dectds=ew one.

2.2. Final size relation

SinceS(t) is decreasing but remains non-negative , the limit,, S(t) = : S, exists. Finding this limit provides
important information, because this quantity expesshow many susceptibles avoided the infectiomguhe
course of the outbreak, or equivalently what wasttital number of infections. Fronal (t) + S(t))’ = — al(t) it
follows I, =0. Integrating this equation we haww, — S0)-1(0)= —ag"l(u)clu. Taking the limit in

St) = SO)e b4 e obtain (o) = S0)e b 1WA or ogS, = log SO) - B [°1Wdu, and finally
logS., = log S(0) - g LA,
Assuming that (0) is small and neglecting it, we have the final sidation
log(45 ) ~ = (SO - S,
303 _ S
Iog( S, )N Ro(l 5(0))'

The relation between the final size of the epideamid the basic reproduction number is plotted next.

2.0

15

2.3. First integral

First integrals (invariants) carry important infation about the behaviour of nonlinear systemauncase, we
are looking for a first integral(S, 1) : R? - R, such thal is constant along solutions (i.e. solutions livetbe
level sets oW). Let us look for the first integral in the follamg form: V(S, 1) = S+ | — clog S. After differentiat-

ing with respect tdand using the differential equations, one easitg feat along solution%\—t/ equals to 0 if and
only if c= ‘—;. So V(S(), (b)) = St) + 1 (1) —‘—; logS(t) is a first integral. Sinc& (S(t), | (1)) = constant= C, we
can deduce the final size relation from V(50), 1(0)) = V(S,, l) which gives
S0) + 1(0) —i; 0gS(0) = S + leo —‘—; logS. , the equivalent oRy (1 - %) ~ Iog%(?) after ignoring 1(0). By
the first integral, we can determine the peak sizéhe epidemic. Sinc(t) attains its maximum whe§(t) :‘7;,

we obtainlmax= S0) + 1(0) —‘—; log S(0) —‘—; +‘—; Iog‘—;. Mathematica can plot the level curves\bion the S-I

plane, thus we can have a clear picture of theelsasves of the system, as can be seen below. Sirise
decreasing, as time elapses solutions move tether the S-l phase plane along the level curves.
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[B: transmission rate —{}——— = 0.63
Ro= 1.89

025 "]
020+
0.15
0.10 1
0.05 + 1
0.00 - .

0.2 04 0.6 0.8 1.0

3. Influenza models - asymptomatic infection,
vaccination and antiviral treatment

3.1. SEAIR model

To include two important aspects of influenza, wéend the basic SIR model. There is an incubatieriog
between infection and the development of the dieseasthat an infected person becomes infectiouss,Tive
introduce an intermediate compartmé&ntA significant fraction of people who have beefeated never develop
symptoms, so they will never be detected. Howegeing through an asymptomatic infection, they apable
of transmitting the infection. Thus the new modehtains the compartmen® E, |, A andR. Upon adequate
contact with an infective, susceptibles move irite tompartmenE. After the incubation period (which has

Iengthﬂ—l), they develop symptoms with probability or become asymptomatic infected with probability p.
E
Asymptomatic infected individuals are less infegidoy a factow. The recovery rates agg andu,a, respec-

tively. See Figure 2 for the flow chart of the SRAModel, the arrows indicate the movement of irbligls
between compartments.
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The chart flow on the SEAIR model

The mode equation take the form

St =-8SMH G AD+ 1), (4)
E'() = BSMH) 6 AM) + 1 (1) = pue E(), (5)
'®) = pue EQ — i 1), (6)

A'() = (1 - p) ue E(H) — pa A(Y), (7
R'(D) = pa A + p 1), (8)

with initial conditions
S(0) = &, E(0) = Eg, 1(0) = Iy, A(0) = Ag, R(0) = Ry.

For a single influenza outbreak, we can negleatrahtieath, birth and migration, which takes planea much
longer time scale. The equations do not accounthferdisease induced deaths, but once the mortaligyis
known, the number of the fatal cases can be eemihputed from the total number of infections.

Taking into account the average times spent is eoimgnts, we can express the expected number ohdaiy
infections generated by a single infective in asptible population as

=302 %)

Par amet er Descri ption Val ue
B transmi ssionrate 0-0.00003
ui durationof infectious period 2. 85days
‘ (synptomatic)
ui durationof i nfectious period 4. 1 days
A
(asmyptonmatic)
ui | at ency peri od 1. 25 days
E
& reductionof infectivenessfor 0.071
asynptomati cinfections
S(0) susceptiblesinitially 60000 - 100000 / 100000
E(0) latent initially 0 -150 / 100000
p probabi |l ity of devel opi ng synpt ons 0.5-0.7
N popul ati onsi ze 100000
Ry basi c reproducti on nunber S0) B ame b

HA H
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Typi cal nodel paraneters

Table 1 summarizes the parameter ranges used ifoltbesing simulation. Since a fraction of poputaii is
expected to have some residual immunity againstigiting seasonal strains, we 80) vary on a wide range.

p: prob. of developing symptoms —(3—— = 0.7
B: transmission rate —3——— = 9.1x107°
Eo: exposed at the beginning {J—— = 50
So: susceptibles at the beginning ———} = 95800

Ro= 1.8153:
S.= 25085.
7000¢
6000F
S E
S 5000¢ |
8 4000
— r
o L
4 3oooE .
S 2000
1000F
0: 1 L L L L L L L L L L L Il
0 20 40 60 80 100
time (in days)

3.2. Preseasonal vaccination

The most effective control strategy against inflzeeris vaccination. For seasonal influenza, vacicinatam-
paigns precede the outbreak, so from a modelingt pbiview to incorporate vaccination we simply @m the
immunized population from the susceptible compantnzand start the model with a lower valueSgd). In the
presence of an intervention strategy, the repréoluctumber is modified, and called control reprdauc
number, denoted bR.. R, can be calculated analogously Rsin the absence of vaccination. To control the
outbreak,R. should be less than one. However, any reductidha@rreproduction number mitigates the severity
of the epidemic. Since vaccination is not 100 %eetff/e, in the interactive simulation next we iuluge an
additional parametay which expresses the chance that vaccination isesséul. The initial values are given so
thatR; ~ 1.4.
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p: prob. of developing symptoms —{}—— = 0.7
B: transmission rate —(}——— = 9.3x107°

Eo: exposed at the beginning {3——— = 50
V: protected initially by vaccination ——{3— = 43200
g: vaccine efficacy —{3—— = 0.73

R.= 1.3232:
S.= 37915.5
2000;
S 1500
S — [
o I
o L
— 1000-
?r L
3 — A
cs L
©  500f
07 L L L
0 50 100 150
time (in days)

3.3. Antiviral treatment

Another possible intervention strategy againstuiefiza is antiviral treatment, specially when fomeoreason

there is no vaccine available. Antiviral treatmesduces the duration of the infection;%q and also the infectiv-
T

ity of a treated person by a factor Lett be the rate symptomatic infected individuals ree¢ieatment and is

the rate of relapse. An unsuccessfully treatedgpecan not be treated again, which menans thiopemves to
a new class denoted ly  The compartment of treated individuals is dendtedl;. Then we have the following

model:
SH=-BSOSAD+IO+0olr®) +1u®), 9)
E'M=BSO@GAO+I®+0olr®+1u®) — ug EQ), (10)
'®) = ppe EQ - 1) =71 (1), (12)
IO =7I®) = 017®) —prlr ), (12)
lWW'®=01r® - ly®, (13)
A'() = (1 - p) ue E® = pa A, (14)
R = pa AQ + 1 1@+ pr Iv (O + 1 1y (), (15)

whit initial conditions

S0) = S, E(0) = Eo, 1(0) = lo, 17(0) = Ito, 1u(0) = lyo, A(0) = Ao, R(0) = Ro.
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The control reproduction number for this model can be coexbas :

1 T o 0 1 A-po
ool e el )
m+T T \O+pur O+ pur p HA

p: prob. of developing symptoms —3—— = 0.7
B: transmission rate —3——— = 9.x107°

Eo: exposed at the beginning {4—— = 50

7. treatment rate ——{— = 0.3

0. relapse rate —3—— = 0.2

Re= 1.4074:
S.= 483155

25001
o 2000
o
S — [
8 15001
—
or
© 1000f
0 _— A
3

500+

100 120 140

time (in days)

3.4. Other interventions

There are other possible intervention strategiesh @as lowering the contact number (and tBudy school
closures or campaigning to avoid crowded placesptBiaxis can be given to strategic personnel osel
contacts of symptomatic infectives. Such measureth® combinations of them can be incorporated tht®
SEAIR model. For various simple models with vactiomaand antiviral treatment, we refer to Arincaé&t2006,
2008, Brauer 2008.

4. A pandemic model with age structure and delayed
vaccination campaign

In the spring of 2009 in Mexico, a new influenzeast appeared and spread quickly all over the wdfltcina-
tion campaigns started all around the world asimgry mitigation strategy against the first wavetioé 2009
A(H1IN1)v pandemic, though in several countries Haecine became available only in a later phasehef t
pandemics or with limited supplies. In a pandentigagion it is typical that there is an ongoingedmetween the
vaccination campaign and the dynamics of the oatgrevhich is a more challenging modeling problemanth
preseasonal vaccination.

We developed a compartmental model based on thR &ifidel (S: susceptible, E: exposed, I: infected, R
recovered) incorporating three important aspecfsmoflemic influenza to make the model more realisti
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i) Age structured models are necessary for multiplesons: various age groups have different coptadies
thus playing different roles in transmitting thesehse, and several important parameters are agadiag. We
introduced age structure with five age groups (06819, 20-39,

40-64 and 65+ years old), where the contacts behage groups are derived from the European sunassbhg
et al. 2008. The importance of age specificity basn addressed in several studies (Longini & Haid2005,
Medlock & Galvani 2009).

i) According to serological studies, it takes abdd days for the human body to develop antibodifter
vaccination to acquire immunity. During this intexdiate period an individual might contract the di® This
time delay can be significant when vaccinationiveig during the outbreak.

i) Optimal distribution of vaccines among diffetegroups has been studied. Here we focus on tleeteff the
scheduling of immunization of age groups.

We compare five vaccination strategies which diffeprioritizing the age groups in the timing oethvaccina-
tion. We targeted a 60 % vacination coverage byetittof a three months vaccination campaign. Thaefrioas
been discussed in detail in Knipl & Rost 2011,ha sequel we outline the main results and provifatemat-
ica code that can be used to simulate various sicsna

" OO O
W ®

Flow chart without age structure
Figure 3

Since we model a single pandemic wave, naturahgddath, migration are ignored. We assume no pistieg
immunity in the first four age groups, and 20 %uettbn in susceptibility in the elder age groumc®i the latent
period is relativily short (1.25 days), we negléee small probability of someone receiving the waeowvhile
bleing in clas€E. Vaccination is only administered for individulasthe classS until we reach the targeted 60 %
population levele coverage. Vaccinees move intoctaesW for an itermediate period during that infection is
still spossible. After 14 days they become eitlmemune with probabilityg and move into clasBy or if the
vaccine was ineffective, they move irfp meaning that they are still susceptible to theaks despite having
been vaccinated. Such individulas will not receflie vaccine again, but still can contract the dieedt is
assumed in the baseline scenario that the samenmejoidgical parameters apply to these individulagaathe
non-vaccinatedu, = ue andy,, =y, the durations of the incubation and the infecpregiod), and we assume
that vaccinated infected individualk,] are less intefctious by the reduction paramétgr For values of the
parameters of the baseline scenario, see Table 2.
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Par anet er Descri ption Val ue
Mi | at ent period 1. 25 days
E
Mi i nfectious period 3 days
|
g, i =1, ... 4 vacci ne efficiency for 0.8
0-65yearsaold
Js vacci ne ef fici ency for 0.6
65+ yearsold
Bij transm ssionrate see 4. 3.
Mi timetodevel op anti bodies 14 days
w
reductionininfectiousness 0.75

The key Model paraneters. Sources: Bal canet al. 2009,
Bastaet al . 2008, Ni chol 1998

We have 10 different classes for each age grouys5aage groups, so overall there are 50 compatsm&he
corresponding system of differential equationsofellwhere the upper indéx i = 1,... 5 denotes the age groups,

WOEDYRYN (I ity +6 I\j, (t)) denotes the force of infection, akti=Vi(t) is the prescribed vaccination rate

function determined by the specific strategy.

S'(t)=-SmA M) -V, (16)

E" (1) = (S +W'®)N'®) — pe E'D), (17)
() = p E'(V) = i ' (D), (18)

R" (1) = p;i I'(0), (19)

W (t) = Vi) = W) () — pwy W' (D), (20)
S = A= gp) pw W' (D) - S, (), (21)
EV' () = IO ®) - g E'O), (22)
V') = pg E'© =y 1'0), (23)

Ry (1) = My, (). (24)

Our model starts at= 0, time is measured in days. We assume that thialinumber of infected individuals is
low. The timeT refers to the delay in start of the campaign, meathat the vaccination starts on dayIn the
baseline scenario it takes 90 days to reach tlgetiedt 60% vaccination coverage. Vaccination stiasegre
compared to each other by two outcome measuresovbrall attack rates and mortality. Attack ratethe
cumulative incidence of the infection during thealentime period of the pandemic wave.

4.2. Age structure

The age distribution of the population is basedEamostat 2006 (see Table 3). We can observe th&aaton
structure of the population in the contact matixTable 4, where the elements; represent the number of

contacts of an individual in age groujpas with individuals in age groupis derived from Mossong et al. 2008
by applying an averaging and symmetrization method.

N NP N N NP
10500 (12000 (28500 [ 32500 |16 500
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Age distribution of the population per 100 000 (®eu Eurostat 2006)

5, 3580 1, 0865 3, 0404 2, 4847 0, 8150
0, 9507 10, 2827 2, 8148 3, 6215 0, 7752
1, 1201 1, 1852 6, 5220 4, 1938 0, 9016
0, 8027 1, 3372 3, 6776 5, 2632 1, 3977
0, 5187 0, 5638 1, 5573 2, 7531 2, 0742

Contact matrix for the five age groups, construttgthe data of Mossong et al. 2008 and Euro$1a6 2
Table 3

Age specific contact rates can be converted tcspgeific transmission ratgd; as follows. The average number

S

of contacts made by a member of the age gieuith a member of age group is ¢; j. At timet, T is the

j .
proportion of susceptibles% is the proportion of vaccinated susceptibiv%? is the proportion of those who

have already been vaccinated but not yet proténtade group. From this we obtain that the rates of infections
in age group j by individuals in age group i, aettihg 8 be the transmission parameter which involves the

normalization of the contacts to unit time and th&ectiousness of the virug; ; = % gives the correct

parameters used in the differential equations.

4.3. Reproduction number

S|
The elements of the next generation mathiare given by the formuleN); ; =n; = [%Sﬁ] ., expressing the
’ 1L

number of infections in age groypgenerated by an infected individual of age growaring the course of its
infection in the early phase of the pandemic. Tépgraduction number is the largest eigenvalue of ribgt
generation matrix (see Diekmann 2010) . We caresited matrix by3 to achieve any value of the reproduction
number. In the baseline scenraio, we condided.4, which corresponds b= 0.0334.

4.4. Vaccination strategies

We evaluated five different vaccination schedulingjch are described below.

'‘A' - Conventional strategy
It describes a common vaccination campaign whieh applied in many countries in epidemic situatiolhs.
consists of three phases:

Phase 1: 42 days, vaccination of high risk groejer people, emergency and health care persooekevs of
critical infrastructure facilities.

Phase 2: 18 days long, vaccination of children ud8e

Phase 3: In the last 30 days, vaccination is gieethe general population such that we achieves€h& cover-
age by the end of this phase in each age groups.

'‘B' - Uniform strategy
This is a universal vaccination strategy, whendteme no prioritized age groups, so we assumevétatination
is completely random and 0.667% of each age gr@wpdcinated daily, throughout 90 days.

'C' - Elderly first
Phased vaccination of elder people (older tharfi&)up to 60 % coverage (15 days) before vacidraelivered

to the other part of the population (75 days).

‘D' - Children first
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Phased vaccination of children (younger than 18} fip to 60 % coverage (20 days) before vaccimelisered
to the other part of the population (70 days).

'E' - By contacts

Here we take adventage of the full contact strectfr the five age groups, and vaccinate themvia fihases
according to the decreasing order of their totakact numbers (according to the contact matrix).

Phase 1: 10-19 years old, 11 days

Phase 2: 20-39 years old, 26 days

Phase 3: 0-9 years old, 10 days

Phase 4: 40-64 years old, 29 days

Phase 5: 65 and elder, 15 days

Main results

We have evaluated and compared the above desdiilgedtrategies for various delays in start of #aecina-
tion. Our main outcome measures are the (age speaifack rates.

aoT=0

@T=10
@T=20
mT=30
B T=50

AR(%)

Strategies

Total attack rates for the 5 strategies with vagidalays in start of the vaccination campaign
Figure 4

Figure 4 shows the attack rates for the five sgiate We consistently obtained the lowest attatdsrhy strategy
E, followed byD, B, A andC, for all values ofT. However, an unbalanced age specific mortalityepatmay
cause that not necessarily the lowest attack @tesponds to the lowest fatality rate.

A B c D E 0

60

40 ~

20 4
10
0

Age specific attack rates for the 5 strategies jAuid in the absence of vaccination (0). The colalicate the
increases inthe attack rates for longer delaytairt sf the campaign (T =0, T =25 and T = 50).

Figure 5

AR (%)

Younger age groups tend to have higher contact atsrthan others, which leads to the interestingnpimenon
that sometimes an age group benefits from havirginated later, since the early vaccinated key gsotan
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provide indirect protection. Such results are dietiain Knipl and Rést 2011, together with a compereive
sensitivity analysis. Next we present a Mathematiode that simulates this age structured SEIR-mouelel
with five age groups. It includes the full strueuof vaccination (as in Figure 3), where the fumtdi that
describe vaccination are temporarily set accordin@ uniform strategy (we do not give priority toyaage
group). One can easily define any other vaccinastoategy, calculate the corresponding vaccindtimetions

and incorporate them into the code, and then mnlations to explore the possible outcomes.

RunModel [g_, TO_, brn_,e30_ ]:=
Module [

{sol, NGMu, B, AR, ARALL, €0, s0, |, h, T, beta, 8, vf, s, sl, s2, s3, s4, s5, w, w0,
i4, ii5, r,

, Svl, sv2, sv3,
V3, iv4, iv5, rv,
=5 upuw=1/14, pe =1/1.25,
pi =1/3, pev =1/71.25 piv =1/73,n = {10500, 12000, 28500, 32500, 16 500

wl, w2, w3, w4, wh, e, el, e2, e3, e4, e5, ii, i0, iil, ii2, ii3, i

0, r1, r2, r3, r4, r5, rw, rw0, rwl, rw2, rw3, rw4, rw5, sv, sv0
sv4, svb, ev, ev0, evl, ev2, ev3, ev4, evs, iv, iv0, ivl, iv2, i

rvo, rvl, rv2, rv3, rv4, rv5, model, t, c, ps, ag

C =
{{5.358, 1.0865, 3.0404, 2.4847, 0.815 ),
{0.9507, 10.2827, 2.8184, 3.6215, 0.7752 )
{1.1201, 1.1852, 6.522, 4.1938, 0.9016 ),
{0.8027, 1.3372, 3.6776, 5.2632, 1.3977 ),
{0.5187, 0.5638, 1.5573, 2.7531, 2.0742 1

ps = Total [n];

w0 = ConstantArray [0, ag 1;
i0 = ConstantArray [0, ag 1;
r0 = ConstantArray [0, ag ]
rw0 = ConstantArray [0,
sv0 = ConstantArray [O,
ev0 = ConstantArray [0, ag 1;

ivO = ConstantArray [0, ag 1;

rvO = ConstantArray [0, ag 1;

S ={sl[t],s2 [t],s3 [t],s4 [t],s5 [t]};

w= {wil[t], w2 [t], w3 [t],wad [t], w5 [t]};
e={el[t],e2 [t],e3 [t],ed [t],eb [t]};

i = (il [ti1,i2 [t1,i3 [t1,i4 [t1,i5 [t1};
r={rl[ty],r2 [t1,r3 [t],r4d [t],r5 [t]};

ag 1.
ag 1.

w = {rwl[t], w2 [t], w3 [t], w4 [t], w5 [t]};
SV = {svl [t],sv2 [t],sv3 [t],sv4 [t],svd [t1};
ev = {evl[t],ev2 [t],ev3 [t],evd [t],ev5 [t]};
iv = {ivl [t],iv2 [t],iv3 [t],iv4d [t],ivbB [t1};
rv = {rvl [t],rv2 [t],rv3 [t],rv4 [t],rvE [t]};
model = {s, w, e, ii, I, rw, sv, ev, iv, rv };
e0 = {0, 0, e30, €30, 0 };

sO = n - e0;

(xHere you can set all the four
parameters necessary to describe a vaccination strategy.

6 = 0.75; (*Previously unsuccessfully vaccinated,

infected individuals are considered to be less infective.

I = {90, 90, 90, 90, 90 }; (xDetermine the length of the
duration of vaccination in each age group. Note that
vaccination in various age groups can run parallel, as well.

h = Table [60000 /1 [[i]], {i,1,ag }1;

(*Set the amount of vaccine provided for the age groups per day.

T=TO0+{0,0,0,0,0 }; (=«List T is for
scheduling: how many days after the outbreak should vaccina
begin in the age groups. TO is the number of days elapsed

*)

*)

tion

*)
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after the outbreak until the global start of the campaign. *)
NGMu= Table [(c[[i,j 11/n[[j11)*sO[[j11/u, {i,lag 1}, {il ag }1;
B = brn / Max[Map[Re, Eigenvalues [NGMyJ17;
beta =Table [Bxc[[i,j 11/n[[j1], {iilag 1}, {1 ag }1;
vf =
Table [h[[i]] *UnitStep [t -T[[i]]] *UnitStep [T[[i]]-t+![[i]11]1, {i,1,ag }1;
sol =

NDSolve [
Union [
Table [
DIs,t 1[[i]] ==
-S[[i 1] «Sumbeta [[j,i 11 (i [[J11+&6*iv [[J11), {j,1,ag }1-vf[[i]]
» {i,1,ag 1}1,
Table [

Diw, t T[[i 11 =vf [[i]]-
WL[i 1] «»Sum[beta [[j,i 11 (i [[[11+6xiv [[j1]), {i,1,ag }]-uwxw[[i]]
, {i,1,ag }1.
Table [
Die,t J[[i 11 = (SLLi]11+W[[i]])=
Sumfbeta [[j,i 11 (i [[j11+&*iv [[[1]), {jj1,ag }]-e[[i]]l=ue

1 {ivlvag }]x

Table [

Drii, t 1[[i1] =e[[i]]*pe-ii [[i]]*ui
’ {|,1,ag }],

Table [

DIr,t JLLi 1] =ii [[i1] *ui

’ {|,1,ag }],

Table [

Dirw, t T[[i1] =q*puwswW[[i]]
1 {ivlvag }]x

Table [

Disv,t 1[0 11 =(1-0q) *puw*W[[i]]-
SV[[i1]*Sumibeta [[j,i 11=* (i [[J11+&xiv [[j11), {i,1, a0 1}]

, {i,1,ag }1.

Table [

Drev,t J[[i 1] =sV[[i]]=*

Sumfbeta [[j,i 11 (i [[[11+&xiv [[[1]), {j1,ag }]-wmevxev[[i]]

» {i,1,ag 1},

Table [

Dliv,t J[[I]] =wuevxev[[i]]-uv =iv [[i]]

, {i,1,ag }1.

Table [

Dirv,t J[[i 1] =uiv %xiv [[i 1]

» {i,1,ag 1}1,

Table [(s[[i]] /.t »0) =sO[[i]1], {i,1,ag 1},
Table [(ii [[i1] /.t -»0) =i0 [[i]1], {i,1,ag }1,
Table [(e[[i]] /.t »0) =e0[[i]1], {i,1,ag 1},
Table [(r[[i]1] /.t -0)=r0[[i]1], {i,1,ag 1}1,
Table [(w[[i]] /.t -0) ==wO[[i]], {i,1,ag 1}1,
Table [(rw[[i]] /.t -0) =rwO[[i]], {i,1,ag }1,
Table [(sv[[i]] /.t -»0)=svO[[i]], {i,l,ag }1,
Table [(iv [[i]] /.t »0) =iv0 [[i]], {i,1,ag }],
Table [(ev[[i]1] /.t -»0) =evO[[i]], {1, ag }1,
Table [(rv [[i1] /.t -»0) =10 [[i]], {i,1,ag }]
1
, Flatten  [Table [#[[0]] & /@ variable,

— o~ o~ o+
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{variable, {s, e, ii, r, w, rw, sv, iv, ev, rv }311, {t, 0,250 1}1;
AR = Flatten eTable [1- (((s[[i]] /.sol ) /.t - 200) +
((sV[[i]]/.sol ) /.t -200) + ((rw[[i]] /.sol ) /.t - 200) +
((w[[i]]/.s0ol ) /.t -200)) /n[[i]1], {i,1,ag }1;
ARALL = Total [ARxn] / Total [n];
{ (Table [#[[0]] & /e variable, {variable, {s, e, i, r, w, rw, sv, iv, ev, rv 131 /.
sol )I[1, {3,8}]11, AR, ARALL, h, I, T }
1
vaccinatedPopulation [h,l,T ,t ,ag_ ] :=Table [
Piecewise [{{0,t <=T[[i 11}, {(h[[i 11 (¢t -TC[i11), TOLi11+01 [[i1]>=t>T[[i1]},
(h[i110 011, t >TLL 11+ [[i113}1, {iil,ag }1]
plotColors = {{Thick, RGBColor [0., 0.66, 0.05 13,
{Thick, RGBColor [1, 0.58, 0.066 13}, {Thick, RGBColor [0.25, 0., 0.8 13},
{Thick, RGBColor [1., 0. 0. 13}, {Thick, RGBColor [O., 0., 0. 13}};
tableColors = {RGBColor [0.4, 1, 0.66 ], RGBColor [1, 0.81, 053 1,
RGBColor [0.6, 0.7, 1. 1, RGBColor [1., 0.6, 0.6 1, RGBColor [0.75, 0.75, 0.75 1}
ageGroups = {"0-9","10 -19","20 -39","40 -64","65 -"};

Manipulate [
DynamicModule [
{solution, ar, overallAR, h, |, T, attackRates,
t,vacc =0.6,ag =5,n = {10500, 12000, 28500, 32500, 16 500 },

i, i1, ii2, i3, ii4, ii5, iv, ivl, iv2, iv3, iv4, ivb },
{solution, ar, overallAR, h, |, T } = RunModel [q, TO, brn, e30  7;
attackRates = Round[#, 0.01 ] & /e (100. Flatten [{ar, overallAR 11);
i = (ii1, ii2, i3, ii4, ii5 ¥
iv = {ivl, iv2, iv3, iv4, iv5 };
Plot [

Evaluate [

Table [ (solution [[1,i J][t] +solution [[2,i 11[t]1), {i,1,ag }11,
{t, 0, 150 3}, PlotRange - {0, 1200 }, PlotStyle - plotColors,
ImageSize - {300, 250 }, AspectRatio - 0.9, AxeslLabel -> {"t (days)", "cases" },
PlotLabel - Grid [{{Style ["AR=", Large, 16 1, Style [overallAR, Large, 16 1} 31,
PlotL,egend - {"0 -9","10 -19","20 -39","40 -64","65 +"},

LegendBorder - White, LegendShadow - None, LegendPosition -> {0.6, -0.41}]
15
Grid [
{
{"vaccine efficacy", Control [
{{q,0.6,™ 1}, 0.5, 0.9, 0.01, ImageSize - Small, Appearance - "Labeled" 3}13%,
{"starting time of vaccination", Control [
{{TO, 40,™ 13,0, 50, 5, ImageSize - Small, Appearance - "Labeled" 13113,
{"basic reproduction number", Control [{{brn, 1.55, ™ }, 1.2,
1.7, 0.01, ImageSize - Small, Appearance - "Labeled" 13113,
{"infected initially", Control [{{e30,7,™ 1},0,20,1,

ImageSize - Small, Appearance - "Labeled" }1}
}, Alignment - Left
1, Initialization : > (Needs ["PlotLegends™ 1), SaveDefinitions - True
1
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vaccine efficacy 7 0.6

starting time of vaccination —— 1 = 40

basic reproduction number 7 1.55
infected initially 0 7
AR= 0.23027!
1200
1000;
[ — 0-9
10-19
= 20-39
— 40-64
- 65+
! t (days
120

4.6. Application to the first wave of A/HIN1 in Hungary

Here we briefly illustrate how this 50-compartmemtdel can be applied in a real life situation. @wample is
the first wave of A/HIN1 in Hungary. Epidemic cusvevere reconstructed using the public reports ef th
National Center of Epidemiology (www.oek.hu). Foe tsimulations, we fixed the epidemiological partrseas

in Table 2, employed publicly available vaccinatidaita (www.jarvany.hu) and performed a grid seawith
respect to the basic reproduction number and tHact®n of contacts during holidays to find the thisby
means of ordinary least square method. The resuin cbe seen in Figure 6, where
the first day corresponds to August 24 @gd-1.3. The vaccination started on day 36, the redecwas made
about day 80, so that was a prediction for the phathe epidemic curve after that day. The modeueately
predicted the peak size of the outbreak and akstlle number of infections would not increaserdfieristmas
break.

Ry~ 13

20000 -

15000
5
o

= 1ol
=

snonl

0
(1] =0 10 1=0

time (in days)
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Hungarian epidemic curve and model prediction

5. Further advanced models

There are many more features that one can easityporate into the models and the codes presermed Ror
example, we assumed in all the models that thetidaraf latent and infectious periods follow expotial
distributions. By the so-called linear chain tritly, artificially dividing a period into smaller spériods, having
exponential distribution in each, we can model gandlistributed infectious or latency periods, aritll Isaving
ordinary differential equations. The 14 days petivat required to develop immunity after vaccinatigas also
assumed to follow exponential distribution, howettee fixed 14 days assumption seems more realiBc.
assuming that for every individual it takes exadtly days to acquire immunity, we obtain a delayedéntial
equation, which is mathematically rather complidata particular, for clasd/ we have the equation

W' () = V() = A(t) = V(t — 14) e Faidds,

where we omitted the indices anf) is the infection term that expresses the ratemt vaccinees contract the
infection, and may depend on the state of manyratbmpartments. This is a differential equationhvdiscrete
and distributed delays. Another modeling approaslo deads to differential equations with distritditend
discrete delays, namely the age since infectionainofantiviral treatment, which takes into accotlrg window
of opportunity for initiating treatment and the dedence of the treatment rate on the time elapsed ifec-
tion. This model family have been studied in deit@ihlexander et al. 2007, 2008 Moghadas et al.82@009,
where the possibility of emergence of a resistimirsand antiviral prophylaxis have also been wered. The
command '‘NDSolve' we used in this paper can hatifferential equations with discrete delays, i.guations of
the form

X' ()= f(X(t-Ty, x(t-T), ..., x(t—-Ty)).

Then, instead of the initial value x[8} c , the initial history function x[t /; £ 0] == h[t] should be specified in
the 'NDSolve' command. At the moment, ‘NDSolve'sdoet seem to be able to handle disributed delays.
However, the integral terms that represent theidiged delay can be approximated by their Riemsums, for

example f_ A ds~ Z}Sok(t — J). This way we can construct an approximative equati
W' () = V() = A(t) - V(t — 14) ¢ Z5oAED

with several discrete delays that can be treateébbgolve'.
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Appendix

Here we shortly introduce how to use Wolfram Mathéoa commands for simulations. To solve a difféedn
equation analytically, one may use the command \@SdSince most of the systems used in epidemjotog
not analytically solvable, we mostly treat them ruitally by using 'NDSolve'. An example is detaileere,
however, one can find many other options in thepHd@énu. Comments can be left with (* text *) in aviathe-
matica code.

Clear [s,i,r 1]
a=1/3;, 3=15;
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(*first give the parameters used in the differential equation S*)
sys = NDSolve [
(xthe differential equation system is labeled,

here by 'sys', for further references *)
{s' [t] =-BxsS[t]=i[t],

(xthe differential equation system consists of 3 equations,
which are divided from each other by commas *)

i" [t]==B*sS[t]*i[t]-a*i[t],
r' [t]=axift],
i [0] =0.001,r [0] =0,

s[0] == 1-0.001 (*initial values are given here *)
1

{s,i,r 1},

(xvariables are given here we solve the system for. *)
{t, 0,150 }

(xindependent variable must be given with its domain *)

1

{{s - Interpol ati ngFunction[{{0., 150.}}, <>],
i - InterpolatingFunction[{{0., 150.}}, <>],
r > InterpolatingFunction[{{0., 150.}}, <>]}}

To plot functions on the screen the command 'Rlt’ be used, see below. The Mathematica docunmamtati
center (see Help menu) provides comprehensivenmtion about the several additional options av&lab

Plot [i [t] /.sys, {1, 0,40 3}]

0.4

0.1

10 20 30 40

A very useful and convenient command to observeotiteomes of a model for varying input parameters i
'Manipulate'. By simply moving the sliders we camitrol as many parameters as we wish.

Manipulate [

DynamicModule [{a, sys, s, i, I, sO, r0 },
sO =1-i0;r0 =0; a=1/1; (xthe parameters i0,
B and | are not given here, they will be varied on the sliders *)

sys = NDSolve [
{s' [t]=-B*sS[t]=*i [t],
i" [t]==BxsS[t]*i[t]-axi [t],
r'o[t] =axift],
s[0] ==s0,i [0] =i0,r [0] =10}, {s,i,r 3}, {t, 0,150 1}1;
Plot [{s[t] /.sys,i [t] /.sys,r [t] /.sys }, {t,0,30 1},
(»several curves can be plotted on the same figure *)
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PlotStyle - {Darker [Green ], Red, Blue 1}, PlotRange - {0,1 }]
(»specification of the figure,
for example the colors of the curves and the domain of the y -axis. *)
1,
{{i0, 0.001, "I o: initially infected" }, 0, 0.005, 0.001,
ImageSize - Tiny, Appearance - "Labeled" }, (xfirst the variable,
the initial value and the title which will be displayed next t o the slider
is specified here in this order, then the range and the step si ze follow =)
{{B, 1.5, " B: transmission rate" }, 05,5, 0.5,
ImageSize - Tiny, Appearance - "Labeled" 3},
{{l,3,"1 /a: duration of the infection (in days )"},
1,7, 1, ImageSize - Tiny, Appearance - "Labeled" 1},
Initialization : > (i0 = 0.001; Needs ["PlotLegends™ 1), SaveDefinitions - True
]

Ip: initially infected —3——— = 0.001
[B: transmission rate —J}—— = 1.5
1/a: duration of the infection (in days) —3—— = 3
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