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Analysis and Stochastics Research Group, Hungarian Academy of Sciences
Bolyai Institute, University of Szeged, Hungary
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An SEI model with distributed delay is proposed where the transmission and
the death rates depend on the age of infection. The basic reproduction number
R0 is identified as a threshold quantity for the stability of equilibria. If R0 <
1, then the disease-free equilibrium is globally asymptotically stable and the
disease dies out. On the contrary, ifR0 > 1, then a locally asymptotically stable
endemic equilibrium appears, and applying a permanence theorem for infinite
dimensional systems we obtain that the disease persists in the population.

AMS 2000: 92D30, 37C70, 34K10

Keywords: disease model, distributed delay, varying infectivity and death rate

1. Introduction

Many compartmental models in mathematical epidemiology assume the
homogeneity of the infected class: all individuals in that compartment share
the same epidemiological parameters. In reality, as time elapses and the dis-
ease develops within the host, its infectivity continuously changes. Disease
induced mortality rate may also change during the course of infection. The
purpose of this paper is to incorporate these features into an SEI type
model. Besides multistage models6,8 , approaches keeping track of an indi-
vidual’s infection-age have existed1,2,5,7 to capture this variability. However,
the model we formulate in this paper differs from the previous ones since it
can be transformed into a system of differential equation with distributed
delays, which is easier to deal with than integro-differential or Volterra-type
models.

The paper is organized as follows. In section 2, taking into account the
age of infection as a parameter, and allowing varying infectivity and death
rates, we formulate an SEI model with distributed and constant delays. We
identify the basic reproduction number R0 in terms of the model parame-
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terers as a threshold quantity in section 3. If R0 < 1, the disease dies out
and all solutions converge to the disease free equilibrium. In section 4 we
show that a stable endemic equilibrium appears if R0 > 1. In section 5
we prove that the disease is endemic in the sense of permanence whenever
R0 > 1.

2. Derivation of the model

We divide a given population into the following categories: susceptibles
(those who are capable of contracting the disease); exposed (those who
are infected but not yet infectious); infectives (those who are infected and
capable of transmitting the disease). Denote the number of individuals at
time t in these classes by S(t), E(t), I(t), respectively. Let i(t, a) represent
the density of infected individuals with respect to the age of infection a

at the current time t, where a ≤ τ , then I(t) =
∫ τ

0
i(t, a)da. We introduce

the function 0 ≤ β(a) ≤ β to express the infectivity according to the age
of infection a. In what follows, Λ denotes the constant recruitment rate,
β is the maximal transmission rate, ∆ is the natural death rate, δ(a) ≥ 0
is the disease-induced death rate which depends on the age of infection as
well, 1/µ is the average incubation period. At age τ of infection, we remove
all remaining individuals from the class I who has survived. Thus, τ > 0
represents the maximal duration of the infectious period. All the constants
above are assumed to be positive. Then, using bilinear incidence in the force
of infection corrected by the infectivity factor due to the age of infection,
we arrive at the SEI type model

dS(t)
dt

= Λ− S(t)
∫ τ

0

β(a)i(t, a)da−∆S(t),

dE(t)
dt

= S(t)
∫ τ

0

β(a)i(t, a)da− (µ + ∆)E(t),

dI(t)
dt

= µE(t)−∆I(t)−
∫ τ

0

δ(a)i(t, a)da− i(t, τ)

The time evolution of the density i(t, a) is given by
( ∂

∂t
+

∂

∂a

)
i(t, a) = −(∆ + δ(a))i(t, a), (1)

subject to the boundary condition

i(t, 0) = µE(t).
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Solving (1) leads to

i(t, a) = i(t− a, 0)e−(∆a+
∫ a
0 δ(u)du) = µE(t− a)e−(∆a+

∫ a
0 δ(u)du), (2)

and we obtain the following deterministic model of delay differential equa-
tions with distributed and constant delays:

dS(t)
dt

= Λ− S(t)
∫ τ

0

β(a)µE(t− a)e−(∆a+
∫ a
0 δ(u)du)da−∆S(t), (3)

dE(t)
dt

= S(t)
∫ τ

0

β(a)µE(t− a)e−(∆a+
∫ a
0 δ(u)du)da− (µ + ∆)E(t), (4)

dI(t)
dt

= µE(t)−∆I(t)−
∫ τ

0

δ(a)µE(t− a)da

−e−(∆τ+
∫ τ
0 δ(u)du)µE(t− τ). (5)

From (2) we can express I(t) as a function of a solution E(t):

I(t) = µ

∫ τ

0

E(t− a)e−(∆a+
∫ a
0 δ(u)du)da.

All the information (boundedness, convergence, etc.) for I(t) can be ob-
tained from the E-component of the solution, and equation (5) decouples.
Therefore it is sufficient to restrict our attention to the system (3-4), and
we do this in the sequel. Clearly the state of system (3-4) at time t is spec-
ified by S(t) ∈ R and Et ∈ C([−τ, 0],R), the space of continuous functions
on the interval [−τ, 0]. It is straightforward to see that solutions of (3-4)
preserve non-negativity.

Proposition 2.1. The system (3-4) is point dissipative; that is there exists
an M > 0 such that for any non-negative solution of (3-4), there exists a
T > 0 such that S(t) ≤ M and E(t) ≤ M for all t ≥ T .

Proof. Consider an arbitrary nonnegative solution. For W (t) = S(t) +
E(t), we have

dW (t)
dt

= Λ−∆W (t)− µE(t) ≤ Λ−∆W (t).

Since any nonnegative solution of w′(t) = Λ−∆w(t) satisfies

lim
t→∞

w(t) = Λ/∆,

by a standard comparison argument we obtain

lim sup
t≥0

W (t) ≤ Λ
∆

.
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We conclude that for any ε > 0, there is a T > 0 such that the nonnegative
solution of (3-4) satisfies

S(t) ≤ Λ
∆

+ ε, E(t) ≤ Λ
∆

+ ε

whenever t ≥ T . Consequently, we can choose any M > Λ
∆ . Additionally,

we obtain the a-priori estimate

S(t), E(t) ≤ W (t) ≤ Λ/∆ + exp(−∆t)
(
S(0) + E(0)− Λ/∆

)
.

3. Basic reproduction number and the global stability of
the disease-free equilibrium

Clearly our model has a disease-free equilibrium P0 = (S0, 0) where
S0 = Λ/∆. To find the basic reproduction numberR0, we introduce a single
exposed individual into a totally susceptible population in the disease-free
equilibrium at t = 0. The probability of the presence of this individual in
the E-class after time t is given by e−(µ+∆)t, so the expected number of
generated secondary infections can be calculated by

R0 = S0

∫ ∞

0

∫ τ

0

β(a)µe−(∆a+
∫ a
0 δ(u)du)e−(µ+∆)tdadt,

which, after interchanging the integrals, reduces to

R0 =
S0µ

µ + ∆

∫ τ

0

β(a)e−(∆a+
∫ a
0 δ(u)du)da. (6)

Next we show that R0 determines the stability of the disease-free equilib-
rium and the disease dies out when R0 < 1.

Theorem 3.1. The disease free equilibrium is globally asymptotically stable
if R0 < 1, and unstable if R0 > 1.

Proof. For any ε > 0, we define

Rε =
µ

µ + ∆

( Λ
∆

+ ε
) ∫ τ

0

β(a)e−(∆a+
∫ a
0 δ(u)du)da.

Then limε→0Rε = R0 and Rε < 1 if R0 < 1 and ε is sufficiently small.
In Proposition 1. we have shown that for any ε > 0 there is a T > 0 such
that S(t) ≤ Λ

∆ + ε whenever t > T . Thus, without loss of generality, we
can suppose that S(t) ≤ Λ

∆ + ε for all t ≥ 0. This yields that the exposed
population E(t) is bounded above by the solutions of the linear equation

dE(t)
dt

=
( Λ

∆
+ ε

) ∫ τ

0

β(a)µE(t− a)e−(∆a+
∫ a
0 δ(u)du)da− (µ + ∆)E(t).
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Now we show that the characteristic roots of this linear equation have nega-
tive real parts and the global stability of the disease-free equilibrium follows
from the standard comparison argument. Using the exponential Ansatz eλt,
we arrive at the characteristic function

h(λ) =
( Λ

∆
+ ε

)
µ

∫ τ

0

β(a)e−(λa+∆a+
∫ a
0 δ(u)du)da− (λ + µ + ∆). (7)

We check that each characteristic root has negative real part. Suppose
that λ = x+ iy is a root of h(λ) with x > 0. Then |e−λa| < 1 for any a > 0,
and

1 =
∣∣∣

(
Λ
∆ + ε

)
µ

λ + µ + ∆

∫ τ

0

β(a)e−(−λa+∆a+
∫ a
0 δ(u)du)da

∣∣∣

≤

(
Λ
∆ + ε

)
µ

|λ + µ + ∆|
∫ τ

0

β(a)|e−λa|e−(∆a+
∫ a
0 δ(u)du)da < Rε,

which is a contradiction. Therefore, if R0 < 1, then all roots have negative
real part, thus limt→∞E(t) = 0 and all solutions converge to the disease
free equilibrium.

If R0 > 1, then the linearization about the disease free equilibrium gives
for (4) that

dE(t)
dt

= S0µ

∫ τ

0

β(a)E(t− a)e−(∆a+
∫ a
0 δ(u)du)da− (µ + ∆)E(t),

which leads to the characteristic function

ĥ(λ) = S0µ

∫ τ

0

β(a)e−(λa+∆a+
∫ a
0 δ(u)du)da− (λ + µ + ∆). (8)

Clearly, ĥ(λ) is a monotone decreasing continuous function for nonnegative
real λ and ĥ(∞) = −∞ . We have

ĥ(0) = S0µ

∫ τ

0

β(a)e−(∆a+
∫ a
0 δ(u)du)da− (µ + ∆) = (µ + ∆)(R0 − 1).

If R0 > 1, then there exists a positive real root of ĥ(λ) , and the disease-free
equilibrium is unstable.

4. The endemic equilibrium

Theorem 4.1. An endemic equilibrium exists if and only if R0 > 1. More-
over, the endemic equilibrium, if exists, is unique and locally asymptotically
stable.
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Proof. An endemic equilibrium P ∗ = (S∗, E∗) must satisfy the algebraic
equations

∆S∗ = Λ− S∗µ
∫ τ

0

β(a)E∗e−(∆a+
∫ a
0 δ(u)du)da, (9)

(µ + ∆)E∗ = S∗µ
∫ τ

0

β(a)E∗e−(∆a+
∫ a
0 δ(u)du)da. (10)

Since E∗ 6= 0, (10) yields

S0/S∗ = R0, or S∗ =
Λ

R0∆
. (11)

Simple calculations on (9) show that

Λ
R0

= Λ− (∆ + µ)E∗;

that is

E∗ =
Λ

∆ + µ

(
1− 1

R0

)
.

So, we conclude that E∗ > 0 if and only if R0 > 1.
Next we show the local asymptotic stability of the endemic equilibrium.

Introducing the new variables s(t) = S(t)−S∗, f(t) = E(t)−E∗, we obtain
the linearized system about the endemic equilibrium P ∗ = (S∗, E∗)

ds(t)
dt

= −
∫ τ

0

(
s(t)E∗ + S∗e(t− a)

)
µβ(a)e−(∆a+

∫ a
0 δ(u)du)da−∆s(t),

de(t)
dt

=
∫ τ

0

(
s(t)E∗ + S∗e(t− a)

)
µβ(a)e−(∆a+

∫ a
0 δ(u)du)da− (µ + ∆)e(t).

Noticing

µ

∫ τ

0

β(a)E∗e−(∆a+
∫ a
0 δ(u)du)da = R0 − 1,

we have

ds(t)
dt

= −s(t)(R0 − 1)− Λµ

R0∆

∫ τ

0

β(a)e(t− a)e−(∆a+
∫ a
0 δ(u)du)da−∆s(t),

de(t)
dt

= s(t)(R0 − 1) +
Λµ

R0∆

∫ τ

0

β(a)e(t− a)e−(∆a+
∫ a
0 δ(u)du)da− (µ + ∆)e(t).

Using the exponential Ansatz eλt(s0, e0), we have

(λ + ∆)s0 = −(λ + µ + ∆)e0
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and

(R0 − 1 + ∆ + λ)s0 = −
( Λµ

R0∆

∫ τ

0

β(a)e−λae−(∆a+
∫ a
0 δ(u)du)da

)
e0,

thus we obtain the characteristic equation

(λ+µ+∆)(R0−1+∆+λ) = (λ+∆)
( Λµ

R0∆

∫ τ

0

β(a)e−λae−(∆a+
∫ a
0 δ(u)du)da

)
.

(12)
Suppose that λ = x + iy is a root and x ≥ 0, that implies |e−λa| ≤ 1 for
any a ≥ 0. Now the inequalities

∣∣∣ Λµ

R0∆

∫ τ

0

β(a)e−λae−(∆a+
∫ a
0 δ(u)du)da

∣∣∣ ≤ µ + ∆ ≤ |λ + µ + ∆|

and

|∆ + λ| < |R0 − 1 + ∆ + λ|
follow, contradicting to (12). Therefore, every root has negative real part
and the endemic equilibrium is locally asymptotically stable if R0 > 1.

5. Persistence

Denote by T (t) : X → X, t ≥ 0 the family of solution operators corre-
sponding to (3-4), where X = R+

0 × C+
0 . Here C+

0 denotes the set of non-
negative continuous functions on the interval [−τ, 0]. The ω-limit set ω(x)
of x consists of y ∈ X such that there is a sequence tn →∞ as n →∞ with
T (tn)x → y as n → ∞. We shall apply the following permanence theorem
of Hale & Waltman3 , in the spirit of Röst & Wu4 .

Theorem. Suppose that we have the following:
(i) X0 is open and dense in X with X0 ∪X0 = X and X0 ∩X0 = ∅;
(ii) the solution operators T (t) satisfy

T (t) : X0 → X0, T (t) : X0 → X0;

(iii) T (t) is point dissipative in X;
(iv) there is a t0 ≥ 0 such that T (t) is compact for all t ≥ t0;
(v) A =

⋃
x∈Ab

ω(x) is isolated and has an acyclic covering N , where
Ab is the global attractor of T (t) restricted to X0 and N = ∪k

i=1Ni;
(vi) for each Ni ∈ N ,

W s(Ni) ∩X0 = ∅,
where W s refers to the stable set.
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Then T (t) is a uniform repeller with respect to X0, i.e. there is an η > 0
such that for any x ∈ X0, lim inft→∞ d(T (t)x,X0) ≥ η.

Theorem 5.1. If R0 > 1, then the disease is endemic; more precisely,
there exists an η > 0 such that

lim inf
t→∞

E(t) ≥ η.

Proof. Let

X0 = {(S, φ) ∈ X : φ(θ) > 0 for some θ < 0}

X0 = {(S, φ) ∈ X : φ(θ) = 0 for all θ ≤ 0, }.
We check all the conditions of the permanence theorem. It is straightforward
to see that (i) and (ii) are satisfied. The point dissipativity has been proved
in Proposition 1, so we have (iii). Applying the Arzela-Ascoli theorem we
obtain (iv) with t0 = τ .

Regarding (v), clearly A = {P0} (now P0 = (Λ/∆, 0) ∈ X) and isolated.
Hence the covering is simply N = {P0}, which is acyclic (there is no orbit
which connects P0 to itself in X0).

It remains to show that W s(P0) ∩X0 = ∅. Suppose the contrary, that
is there exists a solution in X0 such that

lim
t→∞

S(t) = S0, lim
t→∞

E(t) = 0.

Since R0 > 1, there exists an ε > 0 such that

(S0 − ε)µ
∫ τ

0

β(a)e−(∆a+
∫ a
0 δ(u)du)da > µ + ∆.

There exists a t0 such that for t ≥ t0, S(t) > S0 − ε and hence

E′(t) ≥ (S0 − ε)µ
∫ τ

0

β(a)E(t− a)e−(∆a+
∫ a
0 δ(u)du)da− (µ + ∆)E(t).

If E(t) → 0, as t → ∞, then by a standard comparison argument and the
nonnegativity, the solution n(t) of

n′(t) = (S0 − ε)µ
∫ τ

0

β(a)n(t− a)e−(∆a+
∫ a
0 δ(u)du)da− (µ + ∆)n(t)

with initial data n0 = E0, has to converge to 0 as well. By the mean value
theorem for integrals we have that for any t there is a ξt such that

∫ τ

0

β(a)n(t− a)e−(∆a+
∫ a
0 δ(u)du)da = n(ξt)

∫ τ

0

β(a)e−(∆a+
∫ a
0 δ(u)du)da
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and t− τ ≤ ξt ≤ t. Define

V (t) := n(t) + (µ + ∆)
∫ t

ξt

n(s)ds.

Differentiating with respect to time gives

dV

dt
=

(
β(S0 − ε)

∫ τ

0

k(a)µe−(∆a+
∫ a
0 δ(u)du)da− (µ + ∆)

)
n(ξt) ≥ 0.

Therefore, V (t) goes to infinity or approaches a positive limit as t → ∞.
On the other hand, by the definition of V , limt→∞ n(t) = 0 implies
limt→∞ V (t) = 0, a contradiction. Thus W s(P0) ∩ X0 = ∅ and we can
apply Theorem 4.2 of Hale & Waltman3 to obtain that for some η > 0,

lim inf
t→∞

E(t) > η.

Though our calculations has been done for the reduced system (3-4),
and we are interested in the dynamics of the infectious class, we easily
obtain that for R0 < 1, E(t) → 0 implies I(t) → 0, and for R0 > 1 from
(2) we have the endemic equilibrium

I∗ =
Λµ

∆ + µ

(
1− 1

R0

)( ∫ τ

0

e−(∆a+
∫ a
0 δ(u)du)da

)
,

furthermore, from (2) we obtain

lim inf
t→∞

I(t) > µη

∫ τ

0

e−(∆a+
∫ a
0 δ(u)du)da > 0.

Hence, applying the permanence theorem above, we obtain that the
disease will always be present in the population when R0 > 1.
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