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Abstract

Recently, particular counterexamples were constructed to some theorems of a previous paper, concerning the global
attractivity of the positive equilibrium for the delay equation
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E-m
_pðtÞ ¼ bpmðt � sÞ
1þ pnðt � sÞ � cpðtÞ:
The purpose of this note is to explore the underlying phenomenon from a more general point of view, and to give an expla-
nation of the situation. A theorem is proved regarding attractivity properties of the equilibrium zero.
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1. Introduction

Consider the scalar delay differential equation with constant coefficients
_pðtÞ ¼ bpmðt � sÞ
1þ pnðt � sÞ � cpðtÞ; ð1Þ
where s; b; c 2 ð0;1Þ and m; n 2 N. This equation was proposed to describe the dynamics of hematopoiesis,
the process of blood cell production. When m = 1, Eq. (1) reduces to the well-known ‘‘classical’’ Mackey–
Glass equation.

Clearly 0 is an equilibrium of Eq. (1), and a positive equilibrium �p, if exists, satisfies
c�p ¼ b�pm

1þ �pn
: ð2Þ
003/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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In the special case where n > m and there is a unique positive equilibrium �p, [1] claimed that

(i) if p is a positive solution of Eq. (1), which does not oscillate about �p, then limt!1pðtÞ ¼ �p, and
(ii) if s is small enough, then limt!1pðtÞ ¼ �p for every positive solution p.

Counterexamples were recently constructed in [2] for the above claim for certain values of the parameters,
however it was not clear why this claim is invalid in general.

In Section 2, we discuss the relation between the shape of the delayed feedback function and the dynamics
of solutions. We show that if m P 2, then the positive equilibrium can not be attractive, simply because of the
linear stability of the zero solution. Hence, there is no need to construct specific counterexamples to show that
the cited results of [1] are not valid.

In Section 3, applying the theory of monotone dynamical systems (see [3]), we prove that the trivial equi-
librium is not only stable, but even attracts a large subset of positive solutions, independently of the delay s.

2. The delayed feedback function

The differential equation
_xðtÞ ¼ �lxðtÞ þ f ðxðt � sÞÞ ð3Þ

with parameter l P 0 was widely discussed in the literature. The global dynamics, structure of the global attrac-
tor, existence and properties of periodic orbits were studied in details for the monotone positive and the mono-
tone negative feedback case, see [4–7] and references thereof. The case, where f(n) is not a monotone function, is
obviously more complicated. It was shown [8] that a unimodal feedback may lead to chaotic behavior.

Many well-known model equations are of the form Eq. (3), when f is a positive ‘‘hump-shaped’’ function.
We mention the Nicholson blowflies equation [3], where f ðnÞ ¼ an expð�bnÞ, or the Mackey–Glass equation
[9], where f ðnÞ ¼ an=ð1þ nnÞ. The latter is also an example of a scalar delay differential equation that exhibits
chaotic behavior. The profile suggested by the Nicholson blowflies equation and the Mackey–Glass equation
is sketched in Fig. 1a. Much has done about the global attractivity of the positive equilibrium, however, the
equivalence of local and global stability is still an open and interesting problem. For an overview and related
results, see [10] and references therein.

Functions with a slightly different profile, as described in Fig. 1b, are also used in various population mod-
els, with f ðnÞ ¼ an2 expð�bnÞ, or f ðnÞ ¼ bnm=ð1þ nnÞ with n > m P 2.

For the special case f ðnÞ ¼ bnm=ð1þ nnÞ, b > 0, n > m P 2, studied in [1,2], we have f 0ðnÞ ¼ 0 if n = 0 or
n ¼ n0 :¼

ffiffiffiffiffiffiffi
m

n�m
m
p

. Moreover, f is monotonically increasing on ½0; n0� and decreasing on ½n0;1Þ. Remark that
f ð0Þ ¼ f 0ð0Þ ¼ 0, so we are in the case Fig. 1b. Linearizing Eq. (1) at zero, we obtain the variational equation
_yðtÞ ¼ �lyðtÞ: ð4Þ

Therefore, the zero equilibrium is locally asymptotically stable, independently of the delay s. Its such a positive
equilibrium (if exists) can not be globally attractive. This explains why the aforementioned claim of [1] is
Fig. 1. Different possible profiles of the delayed feedback function f(n).
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incorrect. We note that in the proof of the claim, the authors first proved that if a solution pðtÞ > �p does not
oscillate about �p, then limt!1pðtÞ ¼ �p. This argument is correct, the remark ‘‘the case pðtÞ < �p is similar, hence
omitted’’ is wrong. It is similar only if the shape of the delayed feedback function behaviors like Fig. 1a, not b.

The case f ðnÞ ¼ bnm=ð1þ nnÞ with m P 2 is qualitatively different from the case m = 1. If b > 0, n > m P 2,
then there is a certain propriate value l0 of l such that Eq. (3) with l = l0 possesses a unique positive equi-
librium. When l < l0, then the system has at least two positive equilibria, when l > l0, than Eq. (3) has no
positive equilibrium.

3. Attractivity of the trivial equilibrium

It becomes natural now that we should consider the attractivity of the trivial equilibrium of Eq. (3) with the
profile described in Fig. 1b. In this section, we consider Eq. (3), where
f ðnÞP 0 for all n P 0; f ð0Þ ¼ 0; f 0ð0Þ ¼ 0 and there is a unique n0 > 0 such that f 0ðnÞ > 0 if

0 < n < n0; f 0ðn0Þ ¼ 0 and f 0ðn0Þ < 0 if n > n0: ð5Þ
The function f ðnÞ ¼ bnm=ð1þ nnÞ, with b > 0 and n > m P 2, fulfills (5). Remark that (5) allows the existence
of several positive equilibria of Eq. (3).

Let us recall some related definitions and terminology from the theory of semiflows (for more details, see [3]).
Let C ¼ Cð½�s; 0�;RÞ denote the Banach space of continuous functions / : ½�s; 0� ! R with the norm given by
jj/jj ¼ max
�s6s60

j/ðsÞj:
Every / 2 C determines a unique continuous function x ¼ x/ : ½�s;1Þ ! R, which is differentiable on ð0;1Þ,
satisfies (3) for all t > 0, and xðsÞ ¼ /ðsÞ for all s 2 ½�s; 0�. The segment xt 2 C of a solution is defined by the
relation xtðsÞ ¼ xðt þ sÞ, where s 2 ½�s; 0� and t P 0. Then, x0 = / and xt(0) = x(t). The family of maps
Utð/Þ : ½0;1Þ � C 3 ðt;/Þ ! xtð/Þ 2 C
defines a continuous semiflow on C. For any n 2 R, we write n* for the element of C satisfying n*(s) = n for all
s 2 ½�s; 0�. The set of equilibria of the semiflow generated by (3) is given by
E ¼ fn� 2 C : n 2 R and ln ¼ f ðnÞg:

Obviously 0� 2 E. The Banach space C contains the cone
Cþ ¼ f/ 2 C : /ðsÞP 0;�s 6 s 6 0g;

which generates various order relations on the space C, denoted by usual notations such as <;6;�. In par-
ticular, / 6 w holds in C if and only if /ðsÞ 6 wðsÞ for all s 2 ½�s; 0�; / < w if and only if / 6 w and / 5 w;
/� w if and only if /ðsÞ < wðsÞ for all s 2 ½�s; 0�. Thus we can define the order intervals
½/;w� :¼ ff 2 C : / 6 f 6 wg if / 6 w and ð/;wÞ :¼ ff 2 C : /� f� wg if /� w.

A semiflow U is said to be monotone provided
Utð/Þ 6 UtðwÞ; whenever / 6 w and t P 0:
It is easy to see that if f 0ðnÞP 0 for all n 2 R, then (3) defines a monotone semiflow. Furthermore, if (5) is
satisfied, then the cone C+ is positively invariant.

Lemma 1. If ½q�; r�� is a positively invariant order interval for some q < r and f 0ðnÞP 0 for all n 2 ½q; r�, then the

solution xr� ðtÞ with initial value r* converges to an equilibrium.

Proof. The positive invariance of the order interval ½q�; r�� implies xr�
t 6 r� for all t P 0. In this interval, the

semiflow is monotone, hence we have xr�
tþu 6 xr�

u , for t; u > 0. Equivalently, q� 6 xr�
t 6 xr�

u 6 r� whenever
0 6 u 6 t. Evaluating each functions in the previous inequality at s = 0, yields q 6 xr� ðtÞ 6 xr� ðuÞ 6 r, that
is xr� ðtÞ is monotone decreasing. We obtain that limt!1xr� ðtÞ ! w for some w 2 ½q; r�, hence the x-limit set
of xr�

t is the singleton {w*}, that must be an equilibrium. h
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Lemma 2. If there is no positive equilibrium, then the order interval ½0�; n0�� is positively invariant and all positive

solutions eventually enter this interval.

Proof. If 0 is the unique nonnegative equilibrium, then ln0 > f ðn0ÞP f ðnÞ for any n P 0. First notice that if
x(t) is a solution and xðt0Þ 6 n0 for some t0 > 0, then xðtÞ 6 n0 for all t > t0. Otherwise there exists a t1 P t0

such that xðt1Þ ¼ n0 and x0ðt1ÞP 0. But x0ðt1Þ ¼ �ln0 þ f ðxðt1 � sÞÞ < 0, a contradiction. This implies the
positive invariance of ½0�; n0��.

Now we show that all positive solutions eventually enter this interval. Suppose the contrary, i.e. that there
exist a t2 > 0 and a solution x(t) with xðtÞ > n0 for all t > t2. Let d :¼ ln0 � f ðn0Þ > 0. If follows that
x0ðtÞ < �d for all t > t2 þ s and hence xðtÞ ! �1 as t!1, contradicting to x(t) > n0 for all t > t2. h

Lemma 3. If �p is the unique or the smallest positive equilibrium, then the order interval ½0�; n�� is positively invari-

ant for each n 2 ð0; �p�.

Proof. For each n 2 ½0�; �p��, f ðnÞ < ln. The function f(n) is increasing on ½0�; �p�� � ½0�; n0��, hence if xðt0Þ ¼ n
and xðtÞ 6 n for t < t0, then x0ðt0Þ ¼ �lnþ f ðxðt0 � sÞÞ < �lnþ f ðnÞ < 0. h

Theorem 1.

(i) If 0 is the unique nonnegative equilibrium, then all solutions of (3) with initial values /ðsÞP 0 for s 2 ½�s; 0�
converge to the zero solution.

(ii) If �p is the unique or the smallest positive equilibrium, then all solutions with initial values contained in the

order interval ½0�; �p�Þ converge to 0.
Proof. When 0 is the unique equilibrium, then by Lemma 2 all solutions enter the positively invariant order
interval ½0�; n0�� where the semiflow is monotone and we can apply Lemma 1.

When �p is the unique or the smallest positive equilibrium, then we restrict our attention to the order interval
½0�; �p��, which is positively invariant by Lemma 3. Since �p 6 n0, the semiflow restricted to the order interval
½0�; �p�� is monotone and E ¼ f0�; �p�g. Due to Lemma 1, all solutions converge to 0 or �p. To prove the theorem,
it is enough to show that a point of ½0�; �p�Þ can not converge to �p. By Lemma 3, if c < �p, then ½0�; c�� is
positively invariant. For any / 2 ½0�; �p�Þ, we can choose a c < �p such that / < c�, then / 2 ½0�; c��. Hence by
the invariance of the order interval ½0�; c��, we find that x/ can not converge to �p and Lemma 1 guarantees that
x/ converges to 0. h
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