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Abstract

In this paper we study the delay differential equation

ẋ(t) = �(a(t)x(t) + f (t, x(t − 1))),

where� is a real parameter, the functionsa(t), f (t, �) areC4-smooth and periodic in the variable
t with period 1. Varying the parameter, eigenvalues of the monodromy operator (the derivative of
the time-one map at the equilibrium 0) cross the unit circle and bifurcation of an invariant curve
occurs. To detect the critical parameter-values, we use Floquet theory. We give an explicit formula to
compute the coefficient that determines the direction of the bifurcation. We extend the center manifold
projection method to our infinite-dimensional Banach space using spectral projection represented by
a Riesz–Dunford integral. The Neimark–Sacker Bifurcation Theorem implies the appearance of an
invariant torus in the spaceC×S1. We apply our results to an equation used in neural network theory.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Consider the non-autonomous scalar delay differential equation

ẋ(t) = �(a(t)x(t) + f (t, x(t − 1))), (1)
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where� is a real parameter,a : R → R andf : R × R → R areC4-smooth functions
satisfying

a(t + 1) = a(t),

f (t + 1, �) = f (t, �)

and

f (t,0) = 0,

for all t, � ∈ R. Every element� of the Banach spaceCof continuous real functions on the
initial interval[−1,0] determines a unique continuous functionx� : [−1,∞) → R, which
is differentiable on(0,∞), satisfies (1) for allt >0 andx�(t) = �(t) for all t ∈ [−1,0].
We call such a functionx� the solution of (1) with the initial value�. The time-one map
F : C → C is defined by the relations

F(�) = x
�
1 , xt (s) = x(t + s), s ∈ [−1,0].

When we want to emphasize the dependence of the time-one map on the parameter, we
writeF�. Denote the Banach space of continuous complex valued functions on the interval
[−1,0] by CC. The spacesC andCC are equipped with the norm

‖�‖ = sup
−1� t �0

|�(t)|.

The behavior of solutions close to the equilibrium 0 is determined by the spectrum�(U)

of the monodromy operatorU. This is the derivative of the time-one mapF at 0. The
monodromy operator is a linear continuous map and with the relationU(�) = U(Re�) +
iU(Im �) considered as an operatorCC → CC and given byU(�) = y

�
1 , wherey� :

[−1,∞) → C is the solution of the linear variational equation

ẏ(t) = �(a(t)y(t) + f�(t,0)y(t − 1)) (2)

with y
�
0 =� ∈ CC. The operatorU is compact, therefore all the non-zero points of the spec-

trum are isolated points and eigenvalues of finite multiplicity with finite dimensional range
of the associated eigenprojectionP� : CC → CC, where� ∈ �(U),� �= 0. These eigen-
values are called Floquet multipliers. The spectral theory and other properties of different
types of delay differential equations are extensively studied in[3,5] and[14].

Varying �, the Floquet multipliers cross the unit circle and bifurcation of an invariant
curve occurs. InSection2 we analyze how the Floquet multipliers depend on the parameter
�. The conditions for the Neimark–Sacker Bifurcation Theorem (it is also known as Hopf-
bifurcation for maps) are checked inSection3. A detailed proof of this theorem can be
found in[7], under generalized conditions in[1]. For applications of the Hopf-bifurcation
to autonomous functional differential equations, see[6]. In the critical case, all the essential
qualitative features of our dynamical system are captured by the center manifold. Unfor-
tunately, the classical process of computing the dynamical system restricted to the center
manifold using bilinear forms for delay differential equations[5,6] cannot be applied di-
rectly to periodic equations. In[4], the method of normal forms is presented for periodic
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functional differential equations, but that works only for equations with autonomous linear
part. In this paper we use a functional analytic approach to extend the projection method
to our Banach space. The computations are analogue to the one in[12], but performed in
the infinite dimensional spaceC. The arguments of this paper work only for the case when
the delay is the same as the period. When the delay is a multiple of the period, we are in
the same situation again. A different case, when the delay is not a multiple of the period,
but commensurable with that. Then the Floquet multipliers can be deduced by the explicit
solution of a system of ordinary differential equations, which is not possible in general.
In [17], some information was obtained on the Floquet multipliers in a similar problem:
a linearization along a periodic solution of an autonomous equation. There the delay is 1,
the period of the solution is 3, and under additional conditions a criterion was formulated
for the hyperbolicity of the periodic solution. The most difficult case when the delay is
incommensurable with the period.

We give an explicit formula for the coefficient that determines the direction of the bi-
furcation inSection5, which is important for specific applications. To do this, we have to
replace the scalar product inRn by the spectral projection represented by a Riesz–Dunford
integral. The spectral projection is the residuum of the resolvent ofU at the corresponding
eigenvalue. An explicit expression for the resolvent and the spectral projection operator is
computed inSection4, solving an ordinary differential equation with boundary condition.
Section6 summarizes our achievements. We show an example inSection7, applying our
results to an equation arisen in neural network theory.

2. The characteristic equation and the Floquet multipliers

A non-zero point� of the spectrum of the monodromy operatorU is called a Floquet
multiplier of Eq. (2) and any� for which� = e� is called a Floquet exponent of Eq. (2). By
the Floquet theory ([5, p. 237]), � = e� is a Floquet multiplier of Eq. (2) if and only if there
is a nonzero solution of equation (2) of the form

y(t) = p(t)e�t ,

wherep(t + 1)=p(t). Substituting this solution into Eq. (2) and usingp(t − 1)=p(t) we
obtain forp(t) the linear ordinary differential equation

ṗ(t) = p(t)(�a(t) + �f�(t,0)e−� − �),

which has the solution

p(t) = p(t0)e
∫ t
t0

[�a(s)+�f�(s,0)e
−�−�] ds

.

We can chooset0 such thatp(t0) �= 0. Settingt = t0 + 1, by the periodicity ofp(t) we
deduce that the Floquet exponents are the zeros of the characteristic function

h(�) = �� + �	e−� − �, (3)
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where

� =
∫ t0+1

t0

a(t)dt =
∫ 0

−1
a(t)dt,

	 =
∫ t0+1

t0

f�(t,0)dt =
∫ 0

−1
f�(t,0)dt.

The eigenfunctions have the form


�(t) : [−1,0] � t �→ e
∫ t
−1[�a(s)+�f�(s,0)e

−�] ds ∈ C.

For any root� of the characteristic function, the corresponding
�(t) defines a Floquet
solution of Eq. (2), hence the Floquet exponents coincide with the roots of the characteristic
function. Characteristic functions of the same type occur linearizing around a periodic orbit
of an autonomous equation. With this object these characteristic functions were widely
discussed. A detailed analysis can be found e.g. in[3, Chapter XI]. We recall some basic
facts.

Define the intervalsIk for k = 0,1,2, . . . by

Ik = ((2k − 1)�, (2k + 1)�).

EachIk is divided by the point 2k� into intervalsI−
k andI+

k :

I−
k = ((2k − 1)�,2k�), I+

k = (2k�, (2k + 1)�).

Let the curvesC±
k parametrized by� in the(u, v)-plane be defined as

C±
k =

{
(u, v) =

(
� cos(�)
sin(�)

,− �
sin(�)

)∣∣∣∣ � ∈ I±
k

}
.

The curvesC±
k are drawn inFig. 1, lie in the sectionsv > |u| andv < − |u|, do not

intersect, are ordered as is shown inFig. 1and asymptotic to the linesv=±u. These curves
and the lineL = {(u, v)|v = −u} divide the plane into regions. Takingu = �� andv = �	,
the number of roots of the characteristic function outside the unit circle is constant in these
regions. These numbers are also indicated inFig. 1.

The conjugate of a root of the characteristic function is also a root. The derivative of
h(�) with respect to� is h′(�) = −ve−� − 1. From this we obtain that� is a double root of
h(�) only whenv = −eu−1 and� = u − 1, which is real. The curveD in Fig. 1 is given by
v = −eu−1 and intersects the curvesC+

k . Double zeros ofh(�) occur only onD.
We have the double root zero at the point(1,−1), at the other intersection pointsu>1

and the double root is positive. We restrict our attention to the casev > |u| or v <−|u|, that
is 	2 > �2, because all the Neimark–Sacker bifurcation phenomena appear in this region,
where the Floquet multipliers on the unit circle are always simple. The linesu = 0 and
v=2u represent the case of resonance (Lemma 2). For a fixed� and	 the critical parameter
values can be obtained easily from the equation

(��, �	) =
(

� cos(�)
sin(�)

,− �
sin(�)

)
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as

�±n = −
± arccos(− �

	 ) + 2n�

±	 sin(arccos(− �
	 ))

, n ∈ N.

Lemma 1. The critical Floquet multipliers are�j = e�j = ei�j
√

	2−�2 = − �
	 − i

√
1 − �

	
2

and�̄j = e�̄j = e−i�j
√

	2−�2 = − �
	 + i

√
1 − �2

	2 .

Proof. Since|�j | = 1,�j = i
 for some
 ∈ R. In that case the real and imaginary parts of
the characteristic equation (3) are{

0 = �j� + �j	 cos(
),

 = −�j	 sin(
),

(4)
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thus 
�2

	2 = cos2(
),


2

�2
j	

2 = sin2(
),
(5)

follows. The sum of the last two equations gives

�2

	2 + 
2

�2
j	

2 = 1

and


2 = �2
j (	

2 − �2).

From (4) we obtain{
cos(
) = − �

	 ,

sin(
) = − 

�j	

(6)

and finally

e�
j = ei
 = cos(
) + i sin(
) = −�

	
− i

√
1 − �2

	2 . �

3. Neimark–Sacker bifurcation

Combining the Center Manifold Theorem, the Reduction Principle and the Neimark–
Sacker Bifurcation Theorem (for details see[2,12] and[18]) we can state the following:

Theorem A. Suppose that the one-parameter family of time-one mapsF� : C → C corre-
sponding to Eq.(1) has at the critical value� = �j the fixed point� = 0 with exactly two

simple Floquet multipliersei
,e−i
 on the unit circle. Then there is a neighborhood of0 in
which a unique closed invariant curve bifurcates from0 as� passes through�j , providing
that the transversality condition

�|�(�)|
��

∣∣∣∣
�j

�= 0

and the nonresonance conditions

�4
j �= 1, �3

j �= 1

hold.

Now we propose the main result. The definition of the terms in Theorem 1 (R�, V ,W )
and the detailed calculation can be found inSection5.
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Theorem 1. The direction of the appearance of the invariant curve is determined by the
sign of the coefficient

�(�j ) = 1
2Re

(
1

�
R�(W(
�, 
�, 
̄�) + 2V (
�, (1 − U)−1V (
�, 
̄�))

+V (
̄�, (�
2 − U)−1V (
�, 
�)))

)
,

where all the terms can be computed explicitly by(1).

Let us mention that the cases�(�j )<0 and�(�j )>0 are called supercritical and sub-
critical Neimark–Sacker bifurcations. In the supercritical case a stable (only in a restricted
sense, inside the invariant center manifold) invariant curve appears for�> �j , while in the
subcritical case an unstable invariant curve disappears when� increasingly crosses�j .

When �(�j ) = 0, we need further investigations (see[1]). Here we suppose that the
nondegeneracy condition�(�j ) �= 0 is fulfilled. The smoothness ofF� is guaranteed by the
smoothness ofa(t) andf (t, �).

Lemma 2. The transversality condition holds.

Proof. Let �j be a Floquet multiplier with modulus 1 for the critical parameter value�j .

By the Implicit Function Theorem there is a smooth function�(�)=e�(�) in a neighborhood
of �j with �(�j ) = �j , where�(�j ) satisfies (3). Using the notation�(�) = k(�) + il(�) the
transversality condition is equivalent to

k′(�j ) �= 0.

It is clear thatk(�j ) = 0, l(�j ) �= 0 and�j �= 0. The real and the imaginary parts of the
characteristic equation are{

k(�) = �� + �	e−k(�) cos(l(�)),
l(�) = −�	e−k(�) sin(l(�)).

(7)

Differentiating (7) with respect to� gives{
k′(�) = �+	e−k(�) cos(l(�))−�	e−k(�)k′(�) cos(l(�))−�	e−k(�) sin(l(�))l′(�),
l′(�) = −	e−k(�) sin(l(�))+�	e−k(�)k′(�) sin(l(�))−�	e−k(�) cos(l(�))l′(�). (8)

At critical values (7) becomes{
0 = � + 	 cos(l(�j )),
l(�j ) = −�j	 sin(l(�j )).

(9)

Substituting (9) into (8) yields{
k′(�j ) = �j�k

′(�j ) + l(�j )l
′(�j ),

l′(�j ) = l(�j )
�j

− k′(�j )l(�j ) + ��j l
′(�j ).

Supposingk′(�j ) = 0 we getl′(�j ) = 0 and finallyl(�j ) = 0, a contradiction, hence the
transversality conditions hold. Notice that this fact is intuitively clear fromFig. 1. �
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Lemma 3. �4
j = 1 if and only if� = 0,and�3

j = 1 if and only if	 = 2�.

Proof. Elementary calculations show substituting the appropriate values of the roots of
unity into the real and the imaginary parts of the characteristic equation. See Lemma 1.�

4. Resolvent and spectral projection

Let

�(z) = z − e[��+ �	
z

].

The equation�(z) = 0 is equivalent to the characteristic equation. Any complex number
� = e� is a root of�(z) if and only if � is a Floquet exponent. Applying Theorem 3.1 of [5,
p. 247]to Eq. (1) one finds that the Floquet multipliers consist of the roots of�(z), and the
algebraic multiplicity of an eigenvalue� equals the order of� as a zero of�(z). When this
number is 1, we call� a simple eigenvalue. We state the Riesz–Schauder Theorem for the
case when the eigenvalue is simple.

Theorem B. LetU : CC → CC be a compact operator. Ifz = � is a simple eigenvalue of
U, then there are two closed subspacesE� andQ� such that

(1) E� is one-dimensional;
(2) E� ⊕ Q� = CC;
(3) U(E�) ⊂ E� andU(Q�) ⊂ Q�;
(4) �(U |E�) = {�}, �(U |Q�) = �(U)\{�};
(5) the spectral projectionP� onto E� along Q� can be represented by a

Riesz–Dunford integral;

P� = 1

2�i

∫
��

(zI − U)−1 dz = Res
z=�

(zI − U)−1,

where�� is a small circle around� such that� is the only singularity of(zI − U)−1

inside��.

For simplicity, letb(t) = �f�(t,0) andc(t) = �a(t). With this notation the linearized
equation takes the form

ẏ(t) = c(t)y(t) + b(t)y(t − 1),

� = 1
�

∫ 0
−1 c(t)dt , 	 = 1

�

∫ 0
−1 b(t)dt and the eigenfunctions are


�(t) : [−1,0] � t �→ e
∫ t
−1[c(s)+ b(s)

� ] ds ∈ C.
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By the variation-of-constants formula for ordinary differential equations we find the
following representation of the time-one map

F(�)(t) = e
∫ t
−1 c(u) du

(
�(0) +

∫ t

−1
e− ∫ s

−1 c(u) du�f (s,�(s))ds

)
,

t ∈ [−1,0], (10)

which implies for the monodromy operator

U(�)(t) = e
∫ t
−1 c(u) du

(
�(0) +

∫ t

−1
e− ∫ s

−1 c(u) dub(s)�(s)ds

)
, t ∈ [−1,0]. (11)

Lemma 4. The resolvent of the monodromy operator can be expressed as

(zI − U)−1(�)(t)

= e
∫ t
−1[c(u)+ b(u)

z
] du

×
((

1

z
�(0) + e

∫ 0
−1[c(u)+ b(u)

z
] du

∫ 0

−1

1

z2 e− ∫ s
−1[c(u)+ b(u)

z
] dub(s)�(s)ds

)
× (z − e

∫ 0
−1[c(u)+ b(u)

z
] du)−1 + 1

z
e− ∫ t

−1[c(u)+ b(u)
z

] du�(t)

+
∫ t

−1

1

z2 e− ∫ s
−1[c(u)+ b(u)

z
] dub(s)�(s)ds

)
. (12)

Proof. Set� = (zI − U)−1�, or equivalently

�(t) = z�(t) − U(�)(t), t ∈ [−1,0]. (13)

To compute the resolvent we have to solve this equation. Let

�̂(t) = e− ∫ t
−1 c(u) du�(t), (14)

then by the representation (11) and the notation in (14), multiplying (13) with e− ∫ t
−1 c(u) du

gives

�̂(t) = z�̂(t) − �(0) −
∫ t

−1
b(s)�̂(s)ds. (15)

First we suppose that� is differentiable. Differentiating (15) one has

�̂
′
(t) = b(t)

z
�̂(t) + 1

z
�̂

′
(t). (16)

Takingt = −1 in (15) we obtain

�̂(−1) = z�̂(−1) − e
∫ 0
−1 c(u) du�̂(0). (17)
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The Eqs. (16) and (17) define a boundary value problem. By the variation-of-constants
formula from (16) we find the solution

�̂(t) = e
∫ t
−1

b(u)
z

du
(
�̂(−1) +

∫ t

−1

1

z
e− ∫ s

−1
b(u)
z

du�̂
′
(s)ds

)
. (18)

Letting t = 0 we have

�̂(0) = e
∫ 0
−1

b(u)
z

du
(
�̂(−1) +

∫ 0

−1

1

z
e− ∫ s

−1
b(u)
z

du�̂
′
(s)ds

)
.

Substituting this into the boundary condition, (17) becomes

�̂(−1) = z�̂(−1) − e
∫ 0
−1[c(u)+ b(u)

z
] du

(
�̂(−1) +

∫ 0

−1

1

z
e− ∫ s

−1
b(u)
z

du�̂
′
(s)ds

)
,

which yields

�̂(−1) =
(
�̂(−1) + e

∫ 0
−1[c(u)+ b(u)

z
] du

∫ 0

−1

1

z
e− ∫ s

−1
b(u)
z

du�̂
′
(s)ds

)
× (z − e

∫ 0
−1[c(u)+ b(u)

z
] du)−1, (19)

whenever

(z − e
∫ 0
−1[c(u)+ b(u)

z
] du) �= 0,

that isz /∈�(U). Substituting (19) into (18) and returning to�(t) we get

�(t) = e
∫ t
−1[c(u)+ b(u)

z
] du

((
�̂(−1) + e

∫ 0
−1[c(u)+ b(u)

z
] du

∫ 0

−1

1

z
e− ∫ s

−1
b(u)
z

du�̂
′
(s)ds

)
×(z − e

∫ 0
−1[c(u)+ b(u)

z
] du)−1 +

∫ t

−1

1

z
e− ∫ s

−1
b(u)
z

du�̂
′
(s)ds

)
.

Now we integrate by parts and return to�(t) to obtain the expression

(zI − U)−1(�)(t)

= e
∫ t
−1[c(u)+ b(u)

z
] du

((
�(−1) + 1

z
�(0) − e

∫ 0
−1[c(u)+ b(u)

z
] du 1

z
�(−1)

+e
∫ 0
−1[c(u)+ b(u)

z
] du

∫ 0

−1

1

z2 e− ∫ s
−1[c(u)+ b(u)

z
] dub(s)�(s)ds

)
× (z − e

∫ 0
−1[c(u)+ b(u)

z
] du)−1 + 1

z
e− ∫ t

−1[c(u)+ b(u)
z

] du�(t)

−1

z
�(−1) +

∫ t

−1

1

z2 e− ∫ s
−1[c(u)+ b(u)

z
] dub(s)�(s)ds

)
, (20)

which can be simplified to (12). This formula is valid for any differentiable�. The differ-
entiable functions form a dense set inCC, therefore the continuity of the formula implies
that (12) is valid for any� ∈ CC, we obtained an explicit expression for the resolvent.�
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Theorem 2. The spectral projection operator has the representation

P�(�) = 
�R�(�),

where

R�(�) =
(

1

� + �	

)(
�(0) +

∫ 0

−1

b(s)�(s)


�(s)
ds

)
.

Proof. A straightforward computation proves the theorem as follows:

P�(�)(t) = 1

2�i

∫
��

(zI − U)−1 dz(�)(t) = Res
z=�

(zI − U)−1(�)(t)

= lim
z→�

((z − �)(zI − U)−1(�)(t))

= e
∫ t
−1[c(u)+ b(u)

� ] ds
(
�(−1) + 1

�
�(0) − e

∫ 0
−1[c(u)+ b(u)

� ] du 1

�
�(−1)

+e
∫ 0
−1[c(u)+ b(u)

� ] du
∫ 0

−1

1

�2 e− ∫ s
−1[c(u)+ b(u)

� ] du
b(s)�(s)ds

)
× lim

z→�
((z − �)(z − e

∫ 0
−1[c(u)+ b(u)

z
] du)−1)

= 
�(t)( lim
z→�

((z − �)�(z)−1))

(
�(−1) + 1

�
�(0)

−e[��+ �	
� ] 1

�
�(−1) + e[��+ �	

� ] 1

�2

∫ 0

−1

b(s)�(s)


�(s)
ds

)

= 
�(t)
1

�′(�)

(
1

�
�(0) + 1

�

∫ 0

−1

b(s)�(s)


�(s)
ds

)

= 
�(t)

(
1

� + �	

)(
�(0) +

∫ 0

−1

b(s)�(s)


�(s)
ds

)
. �

5. The direction of the bifurcation

Consider the decomposition

C = T c ⊕ T su,

whereT c = ReE� ⊕ Im E� is the critical 2-dimensional realified center eigenspace corre-
sponding to� and spanned by{Re
�, Im 
�},T su=ReQ�⊕ Im Q� is the 2-codimensional
realified stable-unstable subspace corresponding to the other part of�(U). The idea of the
projection method is that we introduce new variablesx ∈ T c, y ∈ T su and use them as
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coordinates on these subspaces, which are invariant forDF(0). Suppose we have the map
F in the form{

x̃ = A(x) + g(x, y),

ỹ = B(y) + h(x, y),

where(x̃, ỹ)=F(x, y); x, x̃ ∈ T c; y, ỹ ∈ T su;AandBare linear maps on the corresponding
subspaces and

g(0,0) = 0, Dg(0,0) = 0,

h(0,0) = 0, Dh(0,0) = 0.

For a manifoldy = M(x) we have{
x̃ = A(x) + g(x,M(x)),

ỹ = B(M(x)) + h(x,M(x)).

If M(x) denotes the center manifold then by the invarianceỹ = M(x̃), and thus

M(A(x) + g(x,M(x))) = B(M(x)) + h(x,M(x)). (21)

The coefficients of the Taylor-expansion ofM(x) can be calculated by this formula. For
details and examples we refer to[12] and[18]. The computation below follows[12], but the
spaceT su is not finite dimensional and the scalar product is replaced by the representation
of the spectral projection given in Theorem 2. We need the derivatives of the operatorF up
to order three, which can be found from the representation (10), respectively,

DF(�)(�)(t) = e
∫ t
−1 c(u) du

(
�(0) +

∫ t

−1
e− ∫ s

−1 c(u) du�f�(s, �(s))�(s)ds

)
,

D2F(�)(�1,�2)(t) = e
∫ t
−1 c(u) du

∫ t

−1
e− ∫ s

−1 c(u) du�f��(s, �(s))�1(s)�2(s)ds

and

D3F(�)(�1,�2,�3)(t) = e
∫ t
−1 c(u) du

×
∫ t

−1
e− ∫ s

−1 c(u) du�f���(s, �(s))�1(s)�2(s)�3(s)ds.

Evaluating at� = 0,F(0)= 0 andDF(0)=U . LetV =D2F(0) andW =D3F(0).V and
Ware multilinear operators. Represent the Taylor-expansion ofF in the form

F(�) = U(�) + 1
2V (�,�) + 1

6W(�,�,�) + O(‖�‖4).

Let Z(�) = F(�) − U(�) the nonlinear part ofF. Now decompose� ∈ C as

� = z
� + z̄
̄� + �,

wherez = R�(�) ∈ C, z
� + z̄
̄� ∈ T c and � ∈ T su. The complex variablez is a
coordinate on the 2-dimensional real eigenspaceT c and the function� is a variable inT su.
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The subspacesT c andT su are invariant underU. For any real�, � ∈ T su if and only if
P�(�) = 0.U(
�) = �
� impliesU(
̄�) = �̄
̄�, R� = R�̄. After the above remarks we can
write {

z̃ = �z + R�(Z(�)),

�̃ = U(�) + Z(�) − R�(�)
� − R�̄(�)
̄�,

moreover
z̃ = �z + R�(Z(z
� + z̄
̄� + �)),

�̃ = U(�) + Z(z
� + z̄
̄� + �) − R�(Z(z
� + z̄
̄� + �)
�
−R�̄(Z(z
� + z̄
̄� + �)
̄�.

(22)

The Taylor-expansion ofZ(z
� + z̄
̄� + �) around 0 with respect toz, z̄ and� in terms of
V andW is given by

Z(z
� + z̄
̄� + �) = 1
2V (
�, 
�)z

2 + V (
�, 
̄�)zz̄ + 1
2V (
̄�, 
̄�)z̄

2

+V (
�,�)z + V (
̄�,�)z̄ + 1
2V (�,�)

+1
6W(
�, 
�, 
�)z

3 + 1
2W(
�, 
�, 
̄�)z

2z̄ + · · · .

Thus we can rewrite (22) using the linearity ofR�:
z̃ = �z + 1

2R�(V (
�, 
�))z
2 + R�(V (
�, 
̄�))zz̄ + 1

2R�(V (
̄�, 
̄�))z̄
2

+R�(V (
�,�))z + R�(V (
̄�,�))z̄ + 1
2R�(V (�,�))

+1
6R�(W(
�, 
�, 
�))z

3 + 1
2R�(W(
�, 
�, 
̄�))z

2z̄ + · · ·
�̃ = U(�) + 1

2�20z
2 + �11zz̄ + 1

2�02z̄
2 + · · · ,

where

�20 = V (
�, 
�) − R�(V (
�, 
�))
� − R�̄(V (
�, 
�))
̄�,

�11 = V (
�, 
̄�) − R�(V (
�, 
̄�))
� − R�̄(V (
�, 
̄�))
̄�,

�02 = V (
̄�, 
̄�) − R�(V (
̄�, 
̄�))
� − R�̄(V (
̄�, 
̄�))
̄�.

The center manifold is tangent toT c at 0 and has the representation

� = M(z, z̄) = 1
2�20z

2 + �11zz̄ + 1
2�02z̄

2 + O(|z|3),
whereP�(�ij ) = 0. In view of (21), the coefficients�ij can be computed from

(�2I − U)�20 = �20,

(I − U)�11 = �11,

(�−2I − U)�02 = �02.

Remark that� and�̄ are the only eigenvalues on the unit circle and not third roots of unity,
so the operators(I − U), (�2I − U), (�−2I − U) are invertible and given by Lemma 5.
The restricted map

z̃ = �z + R�(Z(z
� + z̄
̄� + M(z, z̄)))
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can be written as

z̃ = �z + 1
2�20z

2 + �11zz̄ + 1
2�02z̄

2 + 1
2�21z

2z̄ + · · · , (23)

where only that cubic term retained which is necessary to analyze the Neimark–Sacker
bifurcation (see[12]), and

�20 = R�(V (
�, 
�)),

�11 = R�(V (
�, 
̄�)),

�02 = R�(V (
̄�, 
̄�)),

�21 = R�(W(
�, 
�, 
̄�)) + 2R�(V (
�, �11)) + R�(V (
̄�, �20))

= R�(W(
�, 
�, 
̄�)) + R�(V (
�, (1 − U)−1�11))

+ R�(V (
̄�, (�
2 − U)−1�20))

= R�(W(
�, 
�, 
̄�)) + R�(V (
�, (1 − U)−1V (
�, 
̄�))

− R�(V (
�, 
̄�))
� − R�̄(V (
�, 
̄�))
̄�

+ R�(V (
̄�, (�
2 − U)−1V (
�, 
�)) − R�(V (
�, 
�))
�

− R�̄(V (
�, 
�))
̄�)). (24)

Taking into account the identities

zz̄ = |z|2, �̄ = 1

�
, R�̄(V (�,�)) = R�(V (�̄, �̄)),

(1 − U)−1
� = 1

1 − �

�, (�2 − U)−1
� = 1

�(� − 1)

�,

(1 − U)−1
̄� = 1

1 − 1
�


̄�, (�2 − U)−1
̄� = �
�3 − 1


̄�,

we obtain

�21 = R�(W(
�, 
�, 
̄�)) + 2R�(V (
�, (1 − U)−1V (
�, 
̄�)))

+ R�(V (
̄�, (�
2 − U)−1V (
�, 
�)))

+
1
� (1 − 2�)

1 − �
R�(V (
�, 
�))R�(V (
�, 
̄�))

− 2

1 − 1
�

|R�(V (
�, 
̄�))|2 − �
�3 − 1

|R�(V (
̄�, 
̄�))|2. (25)
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By [12], restricted maps of the form (23) can be transformed into the form

z̃ = �z(1 + d(�j )|z|2) + O(|z|4),

where the real number�(�j )=Red(�j ) determines the direction of the bifurcation and can
be computed by

�(�j ) = Re

( 1
��21

2

)
− Re

 (1 − 2�) 1
�2

2(1 − �)
�20�11

− 1
2|�11|2 − 1

4|�02|2.

Using this formula with the coefficients given in (24) and (25), we arrive at the invariant
expression

�(�j ) = 1
2Re

(
1

�
R�(W(
�, 
�, 
̄�) + 2V (
�, (1 − U)−1V (
�, 
̄�))

+V (
̄�, (�
2 − U)−1V (
�, 
�)))

)
, (26)

and the proof of Theorem 1 is complete. In (26) all the terms can be expressed explicitly
by a(t), the partial derivatives off (t, �) and� = e�, for example

V (
�, 
�)(t) = e
∫ t
−1 c(u) du

∫ t

−1
e− ∫ s

−1 c(u) du�f��(s,0)
�(s)
2 ds

= e
∫ t
−1 �a(u) du

∫ t

−1
�f��(s,0)(e

∫ s
−1 �a(u)+2�f�(u,0)e

−� du)ds etc.

6. The invariant torus

The evolutionary system associated with the translation along the solutions of the Eq. (1)
is given by the relation

T (t, s)� = x
�,s
t ,

wheret > s, T (t, s) : C → C andx�,s is the solution of (1) satisfyingx�,s
s = �. Let

F � =T (�+1, �), thenF 0 =F . The periodicity of (1) yields thatF � =F �+1 and the system
can be considered in the spaceC × S1 as an autonomous system with the solution maps

G(t) : C × S1 � (�, s) �→ (x
�,s
t , t + s mod 1) ∈ C × S1.

The characteristic equation and the Floquet-multipliers of the monodromy operatorsU � =
DF �(0) are independent of� hence an invariant curve occurs at the same parameter-values
for all F �. Denote these curves by��. WhileT (t, s)(�s) is an invariant curve with respect
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to F t , the uniqueness property shows thatT (t, s)(�s) = �t and the set

T =
⋃

�∈[0,1)
(��, �)

forms an invariant torus in the spaceC×S1 under the dynamics generated by the associated
mapsG(t).

Theorem 3. If the conditions of the Neimark–Sacker bifurcation are satisfied, then for any
family of systemsgeneratedby the solutionmapsG�(t) : C×S1 → C×S1 corresponding to
Eq.(1)a unique invariant torus bifurcates from the periodic solution(0, t) as the parameter
� passes through the critical value�j .The direction of the appearance of the invariant torus
is determined by the sign of the coefficient�(�j ), which can be computed explicitly.

7. An application

In this section we consider the equation

ż(t) = �r(t)(−mz(t) + g(z(t − 1))), (27)

where� is a real parameter,m>0, r : R → R andg : R → R areC4-smooth functions,
r satisfiesr(t + 1) = r(t) for all t ∈ R andg(0) = 0. When the functionr(t) is a constant
function, (27) is an autonomous equation. A comprehensive study of that equation can
be found in[8–11] and [15,16] under both positive feedback (�g(�)>0 for all � �= 0)
and negative feedback (�g(�)<0 for all � �= 0) conditions. Monotonicity properties of
the feedback are also required for certain results. The structure of the global attractor was
described for a wide range of parameters, but even complicated behavior of the solutions is
possible[13].The periodic orbits, appearing when the system goes through Hopf bifurcation,
play an important role in the dynamics. In some specific applications in neural network
theory the same equation occurs withg(�) = k1 tanh(k2�), k1 >0, k2 >0 (see[19] and
references therein).

A more realistic model can be (27), wherer(t) is a periodic function.

Theorem 4. Assume that0<
∫ 0
−1 r(s)ds, g′(0)<0, g′′(0) = 0 and g

′′′
0) �= 0. Then in

the case ofg′′′(0)<0 the dynamical system generated by the time-one map related to Eq.
(27) undergoes a subcritical, in the case ofg′′′(0)>0 a supercritical Neimark–Sacker
bifurcation as the parameter� passes through�0 increasingly.

Remark that the conditiong′′(0) = 0 is satisfied by the functionsg(�) = arctan(�) or
g(�)= tanh(�). The theorem describes a situation when only the sign ofg′′′(0) determines
the direction of the appearance of the invariant circle. Let us define

r =
∫ 0

−1
r(s)ds, q(t) =

∫ t

−1
r(s)ds.
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Using the notations of the previous sections we have

a(t) = −mr(t), f (t, x(t − 1)) = r(t)g(x(t − 1)),

f�(t,0) = r(t)g′(0), f��(t,0) = r(t)g′′(0), f���(t,0) = r(t)g′′′(0),

� = −mr, 	 = g′(0)r, c(u) = −�0mr(u), b(u) = �0g
′(0)r(u).

Lemma 5. Suppose that|�| = 1.Then the eigenfunction corresponding to the center sub-
space satisfies|
�(t)| = 1 and
�(t)
̄�(t) = 1 for all t ∈ [−1,0].

Proof. The characteristic equation of (27) is

� = −mr� + g′(0)r�e−� (28)

and the eigenfunctions have the form


�(s) = e�[−m+g′(0)e−�q(s)], (29)

thus it is enough to show that

Re(−m + g′(0)e−�) = 0.

By the characteristic equation (28)

−m + g′(0)e−� = �
r�

= i


r�

,

a purely imaginary number.�
If 0 < �< �0 then all the Floquet multipliers are inside the unit circle and the stationary

solution 0 is stable. We study the first bifurcation, when� passes through�0. Using (29)
and Lemma 5, we conclude

W(
�0
, 
�0

, 
̄�0
)(t) = e

∫ t
−1 −�0mr(u) du

∫ t

−1
e− ∫ s

−1 −�0mr(u) du�0r(s)

× g′′′(0)
�0
(s)
�0

(s)
̄�0
(s)ds

= �0g
′′′(0)e−�0mq(t)

∫ t

−1
e�0g

′(0)�̄0q(s)r(s)ds

= �0g
′′′(0)e−�0mq(t)(e�0g

′(0)�̄0q(t) − 1)
1

�0g
′(0)�̄0

= g′′′(0)�0

g′(0)
(
�0

(t) − e−�0mq(t)). (30)
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Denote the above function byW0(t) for short. Letx ∼= y if and only if xy >0. The
assumptiong′′(0) = 0 implies thatV ≡ 0. Now by Theorem 1, Theorem 2 and (30) we get

�(�0) = 1
2Re

(
1

�0
R�0

(W0(t))

)
∼= Re

(
1

�0

(
1

�0 + �0rg
′(0)

)(
W0(0) +

∫ 0

−1

�0g
′(0)r(s)W0(s)


�0
(s)

ds

))

= Re

(
1

�0

(
�̄0 + �0rg

′(0)
|�0 + �0rg

′(0)|2
)(

g′′′(0)�0

g′(0)
(
�0

(0) − e−�0mq(0))

+
∫ 0

−1

�0g
′(0)r(s)g′′′(0)�0(
�0

(s) − e−�0mq(s))
̄�0
(s)

g′(0)|
�0
(s)|2 ds

))
∼= − g′′′(0)Re

(
(�̄0 + �0rg

′(0))
(
�0 − e−�0mr

+
∫ 0

−1
�0g

′(0)r(s)(1 − e−�0mq(s)
̄�0
)ds

))
= − g′′′(0)Re

(
(�̄0 + �0rg

′(0))
(
�0 − e−�0mr + �0g

′(0)r

+1 − �̄0e−�0mr

�0 − 2 m
g′(0)

))
.

Introduce the notations

w = m

g′(0)
∈ (−1,0), w̃ = arccos(w)

sin(arccos(w))
>0,

then

�0 = −w̃

rg′(0)
>0.

By Lemma 1, one has

�0 = w − i
√

1 − w2, �̄0 = w + i
√

1 − w2.

Adverting the relations

�0g
′(0)r = −w̃, �0mr = −w̃w,

the expression in the argument of Re can be written as

(w + i
√

1 − w2 − w̃)

(
w − i

√
1 − w2 − ew̃w − w̃ + 1 − (w + i

√
1 − w2)ew̃w

w − i
√

1 − w2 − 2w

)
= (w+i

√
1−w2−w̃)(w−i

√
1−w2−ew̃w−w̃ − (w − i

√
1 − w2) + ew̃w)

= (w + i
√

1 − w2 − w̃)(−w̃),

which has the real part

w̃(w̃ − w).
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To finish the proof we only need some elementary calculus. The function

f (�) = arccos(�)
sin(arccos(�))

− �

has the derivative

f ′(�) = −1 − 1

1 − �2 + � arccos(�)

(1 − �2)3/2
,

which is negative on(−1,0]. Sincef (0) = �
2 >0 andf (�) is monotone decreasing on

(−1,0],f (�)> �
2 >0 on(−1,0) and the aforesaid real part is positive for anyw ∈ (−1,0).

Hence�(�0)
∼= −g′′′(0). �
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