Problems of the Miklós Schweitzer Memorial Competition, 2017.

1. Can one divide a square into finitely many triangles such that no two triangles share a side? (The triangles have pairwise disjoint interiors and their union is the square.)
2. Prove that a field K can be ordered if and only if every $A \in M_{n}(K)$ symmetric matrix can be diagonalized over the algebraic closure of K. (In other words, for all $n \in \mathbb{N}$ and all $A \in M_{n}(K)$, there exists an $S \in G L_{n}(\bar{K})$ for which $S^{-1} A S$ is diagonal.)
3. For every algebraic integer α define its positive degree $\operatorname{deg}^{+}(\alpha)$ to be the minimal $k \in \mathbb{N}$ for which there exists a $k \times k$ matrix with non-negative integer entries with eigenvalue α. Prove that for any $n \in \mathbb{N}$, every algebraic integer α with degree n satisfies $\operatorname{deg}^{+}(\alpha) \leq 2 n$.
4. Let K be a number field which is neither \mathbb{Q} nor a quadratic imaginary extension of \mathbb{Q}. Denote by $\mathcal{L}(K)$ the set of integers $n \geq 3$ for which we can find units $\varepsilon_{1}, \ldots, \varepsilon_{n} \in K$ for which

$$
\varepsilon_{1}+\cdots+\varepsilon_{n}=0
$$

but $\sum_{i \in I} \varepsilon_{i} \neq 0$ for any nonempty proper subset I of $\{1,2, \ldots, n\}$. Prove that $\mathcal{L}(K)$ is infinite, and that its smallest element can be bounded from above by a function of the degree and discriminant of K. Further, show that for infinitely many $K, \mathcal{L}(K)$ contains infinitely many even and infinitely many odd elements.
5. For every non-constant polynomial p, let $H_{p}=\{z \in \mathbb{C}| | p(z) \mid=1\}$. Prove that if $H_{p}=H_{q}$ for some polynomials p, q, then there exists a polynomial r such that $p=r^{m}$ and $q=\xi \cdot r^{n}$ for some positive integers m, n and constant $|\xi|=1$.
6. Let I and J be intervals. Let $\varphi, \psi: I \rightarrow \mathbb{R}$ be strictly increasing continuous functions and let $\Phi, \Psi: J \rightarrow \mathbb{R}$ be continuous functions. Suppose that $\varphi(x)+\psi(x)=x$ and $\Phi(u)+\Psi(u)=u$ holds for all $x \in I$ and $u \in J$. Show that if $f: I \rightarrow J$ is a continuous solution of the functional inequality

$$
f(\varphi(x)+\psi(y)) \leq \Phi(f(x))+\Psi(f(y)) \quad(x, y \in I)
$$

then $\Phi \circ f \circ \varphi^{-1}$ and $\Psi \circ f \circ \psi^{-1}$ are convex functions.
7. Characterize all increasing sequences $\left(s_{n}\right)$ of positive reals for which there exists a set $A \subset \mathbb{R}$ with positive measure such that $\lambda(A \cap I)<\frac{s_{n}}{n}$ holds for every interval I with length $1 / n$, where λ denotes the Lebesgue measure.
8. Let the base 2 representation of $x \in[0 ; 1)$ be $x=\sum_{i=0}^{\infty} \frac{x_{i}}{2^{i+1}}$. (If x is dyadically rational, i.e. $x \in\left\{\frac{k}{2^{n}}: k, n \in \mathbb{Z}\right\}$, then we choose the finite representation.) Define function $f_{n}:[0 ; 1) \rightarrow \mathbb{Z}$ by

$$
f_{n}(x)=\sum_{j=0}^{n-1}(-1)^{\sum_{i=0}^{j} x_{i}}
$$

Does there exist a function $\varphi:[0 ; \infty) \rightarrow[0 ; \infty)$ such that $\lim _{x \rightarrow \infty} \varphi(x)=\infty$ and

$$
\sup _{n \in \mathbb{N}} \int_{0}^{1} \varphi\left(\left|f_{n}(x)\right|\right) \mathrm{d} x<\infty ?
$$

9. Let N be a normed linear space with a dense linear subspace M. Prove that if L_{1}, \ldots, L_{m} are continuous linear functionals on N, then for all $x \in N$ there exists a sequence $\left(y_{n}\right)$ in M converging to x satisfying $L_{j}\left(y_{n}\right)=L_{j}(x)$ for all $j=1, \ldots, m$ and $n \in \mathbb{N}$.
10. Let X_{1}, X_{2}, \ldots be independent and identically distributed random variables with distribution $\mathbb{P}\left(X_{1}=0\right)=\mathbb{P}\left(X_{1}=1\right)=\frac{1}{2}$. Let Y_{1}, Y_{2}, Y_{3}, and Y_{4} be independent, identically distributed random variables, where $Y_{1}:=\sum_{k=1}^{\infty} \frac{X_{k}}{16^{k}}$. Decide whether the random variables $Y_{1}+2 Y_{2}+4 Y_{3}+8 Y_{4}$ and $Y_{1}+4 Y_{3}$ are absolutely continuous.
