Problems of the Miklós Schweitzer Memorial Competition, 2017.

1. Can one divide a square into finitely many triangles such that no two triangles share a side? (The triangles have pairwise disjoint interiors and their union is the square.)

2. Prove that a field K can be ordered if and only if every $A \in M_n(K)$ symmetric matrix can be diagonalized over the algebraic closure of K. (In other words, for all $n \in \mathbb{N}$ and all $A \in M_n(K)$, there exists an $S \in GL_n(\overline{K})$ for which $S^{-1}AS$ is diagonal.)

3. For every algebraic integer α define its positive degree deg⁺(α) to be the minimal $k \in \mathbb{N}$ for which there exists a $k \times k$ matrix with non-negative integer entries with eigenvalue α . Prove that for any $n \in \mathbb{N}$, every algebraic integer α with degree n satisfies deg⁺(α) $\leq 2n$.

4. Let K be a number field which is neither \mathbb{Q} nor a quadratic imaginary extension of \mathbb{Q} . Denote by $\mathcal{L}(K)$ the set of integers $n \geq 3$ for which we can find units $\varepsilon_1, \ldots, \varepsilon_n \in K$ for which

$$\varepsilon_1 + \dots + \varepsilon_n = 0,$$

but $\sum_{i \in I} \varepsilon_i \neq 0$ for any nonempty proper subset I of $\{1, 2, \ldots, n\}$. Prove that

 $\mathcal{L}(K)$ is infinite, and that its smallest element can be bounded from above by a function of the degree and discriminant of K. Further, show that for infinitely many K, $\mathcal{L}(K)$ contains infinitely many even and infinitely many odd elements.

5. For every non-constant polynomial p, let $H_p = \{z \in \mathbb{C} \mid |p(z)| = 1\}$. Prove that if $H_p = H_q$ for some polynomials p, q, then there exists a polynomial r such that $p = r^m$ and $q = \xi \cdot r^n$ for some positive integers m, n and constant $|\xi| = 1$.

6. Let *I* and *J* be intervals. Let $\varphi, \psi: I \to \mathbb{R}$ be strictly increasing continuous functions and let $\Phi, \Psi: J \to \mathbb{R}$ be continuous functions. Suppose that $\varphi(x) + \psi(x) = x$ and $\Phi(u) + \Psi(u) = u$ holds for all $x \in I$ and $u \in J$. Show that if $f: I \to J$ is a continuous solution of the functional inequality

$$f(\varphi(x) + \psi(y)) \le \Phi(f(x)) + \Psi(f(y)) \qquad (x, y \in I),$$

then $\Phi \circ f \circ \varphi^{-1}$ and $\Psi \circ f \circ \psi^{-1}$ are convex functions.

7. Characterize all increasing sequences (s_n) of positive reals for which there exists a set $A \subset \mathbb{R}$ with positive measure such that $\lambda(A \cap I) < \frac{s_n}{n}$ holds for every interval I with length 1/n, where λ denotes the Lebesgue measure.

8. Let the base 2 representation of $x \in [0;1)$ be $x = \sum_{i=0}^{\infty} \frac{x_i}{2^{i+1}}$. (If x is dyadically rational, i.e. $x \in \left\{\frac{k}{2^n} : k, n \in \mathbb{Z}\right\}$, then we choose the finite representation.) Define function $f_n : [0;1) \to \mathbb{Z}$ by

$$f_n(x) = \sum_{j=0}^{n-1} (-1)^{\sum_{i=0}^j x_i}.$$

Does there exist a function $\varphi : [0; \infty) \to [0; \infty)$ such that $\lim_{x \to \infty} \varphi(x) = \infty$ and

$$\sup_{n\in\mathbb{N}}\int_0^1\varphi(|f_n(x)|)\mathrm{d}x<\infty?$$

9. Let N be a normed linear space with a dense linear subspace M. Prove that if L_1, \ldots, L_m are continuous linear functionals on N, then for all $x \in N$ there exists a sequence (y_n) in M converging to x satisfying $L_j(y_n) = L_j(x)$ for all $j = 1, \ldots, m$ and $n \in \mathbb{N}$.

10. Let X_1, X_2, \ldots be independent and identically distributed random variables with distribution $\mathbb{P}(X_1 = 0) = \mathbb{P}(X_1 = 1) = \frac{1}{2}$. Let Y_1, Y_2, Y_3 , and Y_4 be independent, identically distributed random variables, where $Y_1 := \sum_{k=1}^{\infty} \frac{X_k}{16^k}$. Decide whether the random variables $Y_1 + 2Y_2 + 4Y_3 + 8Y_4$ and $Y_1 + 4Y_3$ are absolutely continuous.

Translation downloaded from Art of Problem Solving.