Problems of the Miklós Schweitzer Memorial Competition, 2015.

1. Let K be a closed subset of the closed unit ball in \mathbb{R}^{3}. Suppose there exists a family of chords Ω of the unit sphere S^{2}, with the following property: for every $X, Y \in S^{2}$, there exist $X^{\prime}, Y^{\prime} \in S^{2}$, as close to X and Y correspondingly, as we want, such that $X^{\prime} Y^{\prime} \in \Omega$ and $X^{\prime} Y^{\prime}$ is disjoint from K. Verify that there exists a set $H \subset S^{2}$, such that H is dense in the unit sphere S^{2}, and the chords connecting any two points of H are disjoint from K.
2. Let $\left\{x_{n}\right\}$ be a Van Der Corput series, that is, if the binary representation of n is $\sum a_{i} 2^{i}$ then $x_{n}=\sum a_{i} 2^{-i-1}$.Let V be the set of points on the plane that have the form $\left(n, x_{n}\right)$. Let G be the graph with vertex set V that is connecting any two points (p, q) if there is a rectangle R which lies in parallel position with the axes and $R \cap V=\{p, q\}$. Prove that the chromatic number of G is finite.
3. Let A be a finite set and \rightarrow be a binary relation on it such that for any $a, b, c \in A$, if $a \neq b, a \rightarrow c$ and $b \rightarrow c$ then either $a \rightarrow b$ or $b \rightarrow a$ (or possibly both). Let $B, B \subset A$ be minimal with the property: for any $a \in A \backslash B$ there exists $b \in B$, such that either $a \rightarrow b$ or $b \rightarrow a$ (or possibly both). Supposing that A has at most k elements that are pairwise not in relation \rightarrow, prove that B has at most k elements.
4. Let a_{n} be a series of positive integers with $a_{1}=1$ and for any arbitrary prime number p, the set $\left\{a_{1}, a_{2}, \cdots, a_{p}\right\}$ is a complete remainder system modulo p. Prove that $\lim _{n \rightarrow \infty} \frac{a_{n}}{n}=1$.
5. Let $f(x)=x^{n}+x^{n-1}+\cdots+x+1$ for an integer $n \geq 1$. For which n are there polynomials g, h with real coefficients and degrees smaller than n such that $f(x)=g(h(x))$.
6. Let G be the permutation group of a finite set Ω.Consider $S \subset G$ such that $1 \in S$ and for any $x, y \in \Omega$ there exists a unique element $\sigma \in S$ such that $\sigma(x)=y$.Prove that, if the elements of $S \backslash\{1\}$ are conjugate in G, then G is 2 -transitive on Ω.
7. We call a bar of width w on the surface of the unit sphere \mathbb{S}^{2}, a spherical segment, centered at the origin, which has width w and is symmetric with respect to the origin. Prove that there exists a constant $c>0$, such that for any positive integer n the surface \mathbb{S}^{2} can be covered with n bars of the same width so that any point is contained in no more than $c \sqrt{n}$ bars.
8. Prove that all continuous solutions of the functional equation

$$
(f(x)-f(y))\left(f\left(\frac{x+y}{2}\right)-f(\sqrt{x y})\right)=0, \forall x, y \in(0,+\infty)
$$

are the constant functions.
9. For a function u defined on $G \subset \mathbb{C}$ let us denote by $Z(u)$ the neignborhood of unit raduis of the set of roots of u. Prove that for any compact set $K \subset G$
there exists a constant C such that if u is an arbitrary real harmonic function on G which vanishes in a point of K then:

$$
\sup _{z \in K}|u(z)| \leq C \sup _{Z(u) \cap G}|u(z)| .
$$

10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuously differentiable,strictly convex function. Let H be a Hilbert space and A, B be bounded,self adjoint linear operators on H.Prove that,if $f(A)-f(B)=f^{\prime}(B)(A-B)$ then $A=B$.
11. For $[0,1] \subset E \subset[0,+\infty)$ where E is composed of a finite number of closed interval, we start a two dimensional Brownian motion from the point $x<0$ terminating when we first hit E.Let $p(x)$ be the probability of the finishing point being in $[0,1]$. Prove that $p(x)$ is increasing on $[-1,0)$.
