Problems of the Miklós Schweitzer Memorial Competition, 2012.

1. s there any real number α for which there exist two functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
\alpha=\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}
$$

but the function which associates to n the n-th decimal digit of α is not recursive?
2. Call a subset A of the cyclic group $\left(\mathbb{Z}_{n},+\right)$ rich if for all $x, y \in \mathbb{Z}_{n}$ there exists $r \in \mathbb{Z}_{n}$ such that $x-r, x+r, y-r, y+r$ are all in A. For what α is there a constant $C_{\alpha}>0$ such that for each odd positive integer n, every rich subset $A \subset \mathbb{Z}_{n}$ has at least $C_{\alpha} n^{\alpha}$ elements?
3. There is a simple graph which chromatic number is equal to k. We painted all of the edges of graph using two colors. Prove that there exist a monochromatic tree with k vertices.
4. Let K be a convex shape in the n dimensional space, having unit volume. Let $S \subset K$ be a Lebesgue measurable set with measure at least $1-\varepsilon$, where $0<\varepsilon<1 / 3$. Prove that dilating K from its centroid by the ratio of $2 \varepsilon \ln (1 / \varepsilon)$, the shape obtained contains the centroid of S.
5. Let $V_{1}, V_{2}, V_{3}, V_{4}$ be four dimensional linear subspaces in \mathbb{R}^{8} such that the intersection of any two contains only the zero vector. Prove that there exists a linear four dimensional subspace W in \mathbb{R}^{8} such that all four vector spaces $W \cap V_{i}$ are two dimensional.
6. Let A, B, C be matrices with complex elements such that $[A, B]=$ $C,[B, C]=A$ and $[C, A]=B$, where $[X, Y]$ denotes the $X Y-Y X$ commutator of the matrices. Prove that $e^{4 \pi A}$ is the identity matrix.
7. Let Γ be a simple curve, lying inside a circle of radius r, rectifiable and of length ℓ. Prove that if $\ell>k r \pi$, then there exists a circle of radius r which intersects Γ in at least $k+1$ distinct points.
8. For any function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ consider the function $\Phi_{f}: \mathbb{R}^{2} \rightarrow[-\infty, \infty]$ for which $\Phi_{f}(x, y)=\lim \sup _{z \rightarrow y} f(x, z)$ for any $(x, y) \in \mathbb{R}^{2}$.
(a) Is it true that if f is Lebesgue measurable then Φ_{f} is also Lebesgue measurable?
(b) Is it true that if f is Borel measurable then Φ_{f} is also Borel measurable?
9. Let D be the complex unit disk $D=\{z \in \mathbb{C}:|z|<1\}$, and $0<a<1$ a real number. Suppose that $f: D \rightarrow \mathbb{C} \backslash\{0\}$ is a holomorphic function such that $f(a)=1$ and $f(-a)=-1$. Prove that

$$
\sup _{z \in D}|f(z)| \geqslant \exp \left(\frac{1-a^{2}}{4 a} \pi\right)
$$

10. Let K be a knot in the 3 -dimensional space (that is a differentiable injection of a circle into \mathbb{R}^{3}, and D be the diagram of the knot (that is the projection of it to a plane so that in exception of the transversal double
points it is also an injection of a circle). Let us color the complement of D in black and color the diagram D in a chessboard pattern, black and white so that zones which share an arc in common are coloured differently. Define $\Gamma_{B}(D)$ the black graph of the diagram, a graph which has vertices in the black areas and every two vertices which correspond to black areas which have a common point have an edge connecting them.
(a) Determine all knots having a diagram D such that $\Gamma_{B}(D)$ has at most 3 spanning trees. (Two knots are not considered distinct if they can be moved into each other with a one parameter set of the injection of the circle)
(b) Prove that for any knot and any diagram $D, \Gamma_{B}(D)$ has an odd number of spanning trees.
11. Let X_{1}, X_{2},.. be independent random variables with the same distribution, and let $S_{n}=X_{1}+X_{2}+\ldots+X_{n}, n=1,2, \ldots$. For what real numbers c is the following statement true:

$$
P\left(\left|\frac{S_{2 n}}{2 n}-c\right| \leqslant\left|\frac{S_{n}}{n}-c\right|\right) \geqslant \frac{1}{2} .
$$

